1
|
Ellur G, Govindappa PK, Subrahmanian S, Romero GF, Gonzales DA, Margolis DS, Elfar JC. 4-Aminopyridine Promotes BMP2 Expression and Accelerates Tibial Fracture Healing in Mice. J Bone Joint Surg Am 2025; 107:936-947. [PMID: 40120116 PMCID: PMC12058417 DOI: 10.2106/jbjs.24.00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
BACKGROUND Delayed bone healing is common in orthopaedic clinical care. Agents that alter cell function to enhance healing would change treatment paradigms. 4-aminopyridine (4-AP) is a U.S. Food and Drug Administration (FDA)-approved drug shown to improve walking in patients with chronic neurological disorders. We recently showed 4-AP's positive effects in the setting of nerve, wound, and even combined multi-tissue limb injury. Here, we directly investigated the effects of 4-AP on bone fracture healing, where differentiation of mesenchymal stem cells into osteoblasts is crucial. METHODS All animal experiments conformed to the protocols approved by the Institutional Animal Care and Use Committee at the University of Arizona and Pennsylvania State University. Ten-week-old C57BL/6J male mice (22 to 28 g), following midshaft tibial fracture, were assigned to 4-AP (1.6 mg/kg/day, intraperitoneal [IP]) and saline solution (0.1 mL/mouse/day, IP) treatment groups. Tibiae were harvested on day 21 for micro-computed tomography (CT), 3-point bending tests, and histomorphological analyses. 4-AP's effect on human bone marrow mesenchymal stem cell (hBMSC) and human osteoblast (hOB) cell viability, migration, and proliferation; collagen deposition; matrix mineralization; and bone-forming gene/protein expression analyses was assessed. RESULTS 4-AP significantly upregulated BMP2 gene and protein expression and gene expression of RUNX2, OSX, BSP, OCN, and OPN in hBMSCs and hOBs. 4-AP significantly enhanced osteoblast migration and proliferation, collagen deposition, and matrix mineralization. Radiographic and micro-CT imaging confirmed 4-AP's benefit versus saline solution treatment in mouse tibial fracture healing (bone mineral density, 687.12 versus 488.29 mg hydroxyapatite/cm 3 [p ≤ 0.0021]; bone volume/tissue volume, 0.87 versus 0.72 [p ≤ 0.05]; trabecular number, 7.50 versus 5.78/mm [p ≤ 0.05]; and trabecular thickness, 0.08 versus 0.06 mm [p ≤ 0.05]). Three-point bending tests demonstrated 4-AP's improvement of tibial fracture biomechanical properties versus saline solution (stiffness, 27.93 versus 14.30 N/mm; p ≤ 0.05). 4-AP also increased endogenous BMP2 expression and matrix components in healing callus. CONCLUSIONS 4-AP increased the healing rate, biomechanical properties, and endogenous BMP2 expression of tibiae following fracture. LEVEL OF EVIDENCE Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Govindaraj Ellur
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | | | - Gerardo Figueroa Romero
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona
| | - David A Gonzales
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona
| | - David S Margolis
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, Arizona
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona
| | - John C Elfar
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
2
|
Li J, Zhou X, Chen J, Zhu S, Mateus A, Eliasson P, Kingham PJ, Backman LJ. Impact of Static Myoblast Loading on Protein Secretion Linked to Tenocyte Migration. J Proteome Res 2025; 24:2529-2541. [PMID: 40202163 PMCID: PMC12053940 DOI: 10.1021/acs.jproteome.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Exercise has been shown to promote wound healing, including tendon repair. Myokines released from the exercised muscles are believed to play a significant role in this process. In our previous study, we used an in vitro coculture and loading model to demonstrate that 2% static loading of myoblasts increased the migration and proliferation of cocultured tenocytes─two crucial aspects of wound healing. IGF-1, released from myoblasts in response to 2% static loading, was identified as a contributor to the increased proliferation. However, the factors responsible for the enhanced migration remained unknown. In the current study, we subjected myoblasts in single culture conditions to 2, 5, and 10% static loading and performed proteomic analysis of the cell supernatants. Gene Ontology (GO) analysis revealed that 2% static loading induced the secretion of NBL1, C5, and EFEMP1, which is associated with cell migration and motility. Further investigation by adding exogenous recombinant proteins to human tenocytes showed that NBL1 increased tenocyte migration but not proliferation. This effect was not observed with treatments using C5 and EFEMP1.
Collapse
Affiliation(s)
- Junhong Li
- Department
of Medical and Translational Biology, UmeÅ
University, 90187 UmeÅ, Sweden
- Department
of Community Medicine and Rehabilitation, Physiotherapy, UmeÅ University, 90187 UmeÅ, Sweden
| | - Xin Zhou
- Department
of Medical and Translational Biology, UmeÅ
University, 90187 UmeÅ, Sweden
| | - Jialin Chen
- School
of Medicine, Southeast University, 210009 Nanjing, China
- Department
of Ophthalmology, Zhongda Hospital, Southeast
University, 210009 Nanjing, China
| | - Shaochun Zhu
- Department
of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Andre Mateus
- Department
of Chemistry, Umeå University, 90187 Umeå, Sweden
- The Laboratory
for Molecular Infection Medicine Sweden, Umeå University, 90187 Umeå, Sweden
| | - Pernilla Eliasson
- Department
of Orthopedics, Sahlgrenska University Hospital, 43180 Gothenburg, Sweden
| | - Paul J. Kingham
- Department
of Medical and Translational Biology, UmeÅ
University, 90187 UmeÅ, Sweden
| | - Ludvig J. Backman
- Department
of Medical and Translational Biology, UmeÅ
University, 90187 UmeÅ, Sweden
- Department
of Community Medicine and Rehabilitation, Physiotherapy, UmeÅ University, 90187 UmeÅ, Sweden
| |
Collapse
|
3
|
Fujiki T, Shiratsuchi H, Mikami Y, Toriumi T, Yonehara Y, Tsuda H. Decalcification of calcified tissues induced by inorganic polyphosphate in chondrogenic ATDC5 cells in the presence of insulin. J Oral Sci 2025; 67:65-70. [PMID: 40058814 DOI: 10.2334/josnusd.24-0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
PURPOSE Inorganic polyphosphate (PolyP), a polymer of orthophosphate, strongly promotes mineralized tissue formation. This study explored the conditions necessary for PolyP to induce calcified deposits in cartilage and assessed the role of insulin in modulating PolyP-induced tissue calcification. METHODS Murine chondrogenic ATDC5 cells were cultured under growth, mineralization, or PolyP-induced calcification conditions, with or without insulin. Calcified nodules were stained with Alizarin Red S, and conditioned media were analyzed for pH and lactate concentration using a pH meter and a lactate assay kit-WST. RESULTS PolyP treatment of ATDC5 cells led to calcified deposits by day 5, both with and without insulin. However, in the presence of insulin, these deposits were nearly fully decalcified by day 14. Conditioned media with insulin had a lower pH and a higher lactate concentration compared to those without insulin, with lactate levels sufficient to demineralize the PolyP-induced calcified deposits. CONCLUSION These data suggest that treatment of ATDC5 chondrogenic cells with PolyP accelerates the formation of mineralized tissue. However, PolyP-induced calcified nodules undergo demineralization owing to lactate production by cells in the presence of insulin.
Collapse
Affiliation(s)
- Tatsuaki Fujiki
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Hiroshi Shiratsuchi
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University
| | - Taku Toriumi
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Niigata
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
4
|
Hatzikotoulas K, Southam L, Stefansdottir L, Boer CG, McDonald ML, Pett JP, Park YC, Tuerlings M, Mulders R, Barysenka A, Arruda AL, Tragante V, Rocco A, Bittner N, Chen S, Horn S, Srinivasasainagendra V, To K, Katsoula G, Kreitmaier P, Tenghe AMM, Gilly A, Arbeeva L, Chen LG, de Pins AM, Dochtermann D, Henkel C, Höijer J, Ito S, Lind PA, Lukusa-Sawalena B, Minn AKK, Mola-Caminal M, Narita A, Nguyen C, Reimann E, Silberstein MD, Skogholt AH, Tiwari HK, Yau MS, Yue M, Zhao W, Zhou JJ, Alexiadis G, Banasik K, Brunak S, Campbell A, Cheung JTS, Dowsett J, Faquih T, Faul JD, Fei L, Fenstad AM, Funayama T, Gabrielsen ME, Gocho C, Gromov K, Hansen T, Hudjashov G, Ingvarsson T, Johnson JS, Jonsson H, Kakehi S, Karjalainen J, Kasbohm E, Lemmelä S, Lin K, Liu X, Loef M, Mangino M, McCartney D, Millwood IY, Richman J, Roberts MB, Ryan KA, Samartzis D, Shivakumar M, Skou ST, Sugimoto S, Suzuki K, Takuwa H, Teder-Laving M, Thomas L, Tomizuka K, Turman C, Weiss S, Wu TT, Zengini E, Zhang Y, Ferreira MAR, Babis G, Baras A, Barker T, Carey DJ, Cheah KSE, Chen Z, Cheung JPY, Daly M, de Mutsert R, Eaton CB, et alHatzikotoulas K, Southam L, Stefansdottir L, Boer CG, McDonald ML, Pett JP, Park YC, Tuerlings M, Mulders R, Barysenka A, Arruda AL, Tragante V, Rocco A, Bittner N, Chen S, Horn S, Srinivasasainagendra V, To K, Katsoula G, Kreitmaier P, Tenghe AMM, Gilly A, Arbeeva L, Chen LG, de Pins AM, Dochtermann D, Henkel C, Höijer J, Ito S, Lind PA, Lukusa-Sawalena B, Minn AKK, Mola-Caminal M, Narita A, Nguyen C, Reimann E, Silberstein MD, Skogholt AH, Tiwari HK, Yau MS, Yue M, Zhao W, Zhou JJ, Alexiadis G, Banasik K, Brunak S, Campbell A, Cheung JTS, Dowsett J, Faquih T, Faul JD, Fei L, Fenstad AM, Funayama T, Gabrielsen ME, Gocho C, Gromov K, Hansen T, Hudjashov G, Ingvarsson T, Johnson JS, Jonsson H, Kakehi S, Karjalainen J, Kasbohm E, Lemmelä S, Lin K, Liu X, Loef M, Mangino M, McCartney D, Millwood IY, Richman J, Roberts MB, Ryan KA, Samartzis D, Shivakumar M, Skou ST, Sugimoto S, Suzuki K, Takuwa H, Teder-Laving M, Thomas L, Tomizuka K, Turman C, Weiss S, Wu TT, Zengini E, Zhang Y, Ferreira MAR, Babis G, Baras A, Barker T, Carey DJ, Cheah KSE, Chen Z, Cheung JPY, Daly M, de Mutsert R, Eaton CB, Erikstrup C, Furnes ON, Golightly YM, Gudbjartsson DF, Hailer NP, Hayward C, Hochberg MC, Homuth G, Huckins LM, Hveem K, Ikegawa S, Ishijima M, Isomura M, Jones M, Kang JH, Kardia SLR, Kloppenburg M, Kraft P, Kumahashi N, Kuwata S, Lee MTM, Lee PH, Lerner R, Li L, Lietman SA, Lotta L, Lupton MK, Mägi R, Martin NG, McAlindon TE, Medland SE, Michaëlsson K, Mitchell BD, Mook-Kanamori DO, Morris AP, Nabika T, Nagami F, Nelson AE, Ostrowski SR, Palotie A, Pedersen OB, Rosendaal FR, Sakurai-Yageta M, Schmidt CO, Sham PC, Singh JA, Smelser DT, Smith JA, Song YQ, Sørensen E, Tamiya G, Tamura Y, Terao C, Thorleifsson G, Troelsen A, Tsezou A, Uchio Y, Uitterlinden AG, Ullum H, Valdes AM, van Heel DA, Walters RG, Weir DR, Wilkinson JM, Winsvold BS, Yamamoto M, Zwart JA, Stefansson K, Meulenbelt I, Teichmann SA, van Meurs JBJ, Styrkarsdottir U, Zeggini E. Translational genomics of osteoarthritis in 1,962,069 individuals. Nature 2025:10.1038/s41586-025-08771-z. [PMID: 40205036 DOI: 10.1038/s41586-025-08771-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/11/2025] [Indexed: 04/11/2025]
Abstract
Osteoarthritis is the third most rapidly growing health condition associated with disability, after dementia and diabetes1. By 2050, the total number of patients with osteoarthritis is estimated to reach 1 billion worldwide2. As no disease-modifying treatments exist for osteoarthritis, a better understanding of disease aetiopathology is urgently needed. Here we perform a genome-wide association study meta-analyses across up to 489,975 cases and 1,472,094 controls, establishing 962 independent associations, 513 of which have not been previously reported. Using single-cell multiomics data, we identify signal enrichment in embryonic skeletal development pathways. We integrate orthogonal lines of evidence, including transcriptome, proteome and epigenome profiles of primary joint tissues, and implicate 700 effector genes. Within these, we find rare coding-variant burden associations with effect sizes that are consistently higher than common frequency variant associations. We highlight eight biological processes in which we find convergent involvement of multiple effector genes, including the circadian clock, glial-cell-related processes and pathways with an established role in osteoarthritis (TGFβ, FGF, WNT, BMP and retinoic acid signalling, and extracellular matrix organization). We find that 10% of the effector genes express a protein that is the target of approved drugs, offering repurposing opportunities, which can accelerate translation.
Collapse
Affiliation(s)
- Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, The Netherlands
| | - Merry-Lynn McDonald
- Birmingham Veterans Affairs Healthcare System (BVAHS), Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Epidemiology, School of Public Health, UAB, Birmingham, AL, USA
- Department of Genetics, School of Medicine, UAB, Birmingham, AL, USA
| | - J Patrick Pett
- Wellcome Sanger Institute, Cellular Genetics Programme, Wellcome Genome Campus, Cambridge, UK
| | - Young-Chan Park
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rick Mulders
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrei Barysenka
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ana Luiza Arruda
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Alison Rocco
- Birmingham Veterans Affairs Healthcare System (BVAHS), Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Norbert Bittner
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Shibo Chen
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Horn
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Vinodh Srinivasasainagendra
- Birmingham Veterans Affairs Healthcare System (BVAHS), Birmingham, AL, USA
- Department of Biostatistics, School of Public Health, UAB, Birmingham, AL, USA
| | - Ken To
- Wellcome Sanger Institute, Cellular Genetics Programme, Wellcome Genome Campus, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Georgia Katsoula
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Peter Kreitmaier
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Amabel M M Tenghe
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tubingen, Tübingen, Germany
| | | | - Liubov Arbeeva
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lane G Chen
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | - Daniel Dochtermann
- Birmingham Veterans Affairs Healthcare System (BVAHS), Birmingham, AL, USA
| | - Cecilie Henkel
- Clinical Orthopaedic Research Hvidovre (CORH), Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jonas Höijer
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Shuji Ito
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, Japan
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Penelope A Lind
- Psychiatric Genetics, Brain and Mental Health Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Aye Ko Ko Minn
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Marina Mola-Caminal
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Akira Narita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Chelsea Nguyen
- Birmingham Veterans Affairs Healthcare System (BVAHS), Birmingham, AL, USA
| | - Ene Reimann
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Micah D Silberstein
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anne-Heidi Skogholt
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, UAB, Birmingham, AL, USA
| | - Michelle S Yau
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
| | - Ming Yue
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jin J Zhou
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - George Alexiadis
- 1st Department of Orthopaedics, KAT General Hospital, Athens, Greece
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Tariq Faquih
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lijiang Fei
- Wellcome Sanger Institute, Cellular Genetics Programme, Wellcome Genome Campus, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Anne Marie Fenstad
- The Norwegian Arthroplasty Register, Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway
| | | | - Maiken E Gabrielsen
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chinatsu Gocho
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kirill Gromov
- Clinical Orthopaedic Research Hvidovre (CORH), Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Thomas Hansen
- Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet - Glostrup, Glostrup, Denmark
| | - Georgi Hudjashov
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Thorvaldur Ingvarsson
- Department of Orthopedic Surgery, Akureyri Hospital, Akureyri, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jessica S Johnson
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Helgi Jonsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali The National University Hospital of Iceland, Reykjavik, Iceland
| | - Saori Kakehi
- Department of Metabolism & Endocrinology, Sportology Center, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Elisa Kasbohm
- Institute for Community Medicine, SHIP-KEF, University Medicine Greifswald, Greifswald, Germany
| | - Susanna Lemmelä
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Marieke Loef
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Daniel McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Joshua Richman
- Birmingham Veterans Affairs Healthcare System (BVAHS), Birmingham, AL, USA
- Department of Surgery, School of Medicine, UAB, Birmingham, AL, USA
| | - Mary B Roberts
- Center for Primary Care & Prevention, Brown University, Pawtucket, RI, USA
| | - Kathleen A Ryan
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dino Samartzis
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Manu Shivakumar
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Søren T Skou
- Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- The Research and Implementation Unit PROgrez, Department of Physiotherapy and Occupational Therapy, Næstved-Slagelse-Ringsted Hospitals, Slagelse, Denmark
| | - Sachiyo Sugimoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ken Suzuki
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Takuwa
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, Japan
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Laurent Thomas
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tian T Wu
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Eleni Zengini
- 4th Psychiatric Department, Dromokaiteio Psychiatric Hospital, Haidari, Athens, Greece
| | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health System, Danville, PA, USA
| | | | - George Babis
- 2nd Department of Orthopaedics, National and Kapodistrian University of Athens, Medical School, 'Konstantopouleio' Hospital, Athens, Greece
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Tyler Barker
- Sports Medicine Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Intermountain Healthcare, Precision Genomics, Salt Lake City, UT, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
| | - David J Carey
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jason Pui-Yin Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Mark Daly
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Charles B Eaton
- Center for Primary Care & Prevention, Brown University, Pawtucket, RI, USA
- Department of Family Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ove Nord Furnes
- The Norwegian Arthroplasty Register, Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Yvonne M Golightly
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Nils P Hailer
- Orthopedics, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Caroline Hayward
- MRC Human Genetics Unit IGC, University of Edinburgh, Edinburgh, UK
| | - Marc C Hochberg
- Department of Epidemiology and Public Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Laura M Huckins
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Minoru Isomura
- Faculty of Human Sciences, Shimane University, Matsue, Japan
| | | | - Jae H Kang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Margreet Kloppenburg
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nobuyuki Kumahashi
- Department of Orthopedic Surgery, Matsue Red Cross Hospital, Matsue, Japan
| | - Suguru Kuwata
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, Japan
| | | | - Phil H Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Robin Lerner
- Blizard Institute, Queen Mary University of London, London, UK
| | - Liming Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | | | - Luca Lotta
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Michelle K Lupton
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Neurogenetics and Dementia, Brain and Mental Health Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Nicholas G Martin
- Genetic Epidemiology, Brain and Mental Health Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Timothy E McAlindon
- Division of Rheumatology, Allergy, & Immunology, Tufts Medical Center, Boston, MA, USA
| | - Sarah E Medland
- Psychiatric Genetics, Brain and Mental Health Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Karl Michaëlsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Andrew P Morris
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Fuji Nagami
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Amanda E Nelson
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ole Birger Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital - Køge, Køge, Denmark
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Carsten Oliver Schmidt
- Institute for Community Medicine, SHIP-KEF, University Medicine Greifswald, Greifswald, Germany
| | - Pak Chung Sham
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jasvinder A Singh
- Birmingham Veterans Affairs Healthcare System (BVAHS), Birmingham, AL, USA
- Department of Epidemiology, School of Public Health, UAB, Birmingham, AL, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine at the School of Medicine, UAB, Birmingham, AL, USA
- Medicine Service, Michale E. DeBakey VA Medical Center, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Gen Tamiya
- Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Statistical Genetics Team, Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | - Anders Troelsen
- Clinical Academic Group: Research OsteoArthritis Denmark (CAG ROAD), Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Yuji Uchio
- Department of Orthopedic Surgery, Shimane University Faculty of Medicine, Izumo, Japan
| | - A G Uitterlinden
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, The Netherlands
| | | | - Ana M Valdes
- Faculty of Medicine & Health Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | | | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - J Mark Wilkinson
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Bendik S Winsvold
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Masayuki Yamamoto
- Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - John-Anker Zwart
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kari Stefansson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarah A Teichmann
- Department of Medicine & Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, The Netherlands
| | | | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany.
| |
Collapse
|
5
|
Barnes AM, Mitra A, Knue MM, Derkyi A, Dang Do A, Dale RK, Marini JC. CRTAP-Null Osteoblasts Have Increased Proliferation, Protein Secretion, and Skeletal Morphogenesis Gene Expression with Downregulation of Cellular Adhesion. Cells 2025; 14:518. [PMID: 40214472 PMCID: PMC11988066 DOI: 10.3390/cells14070518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Type VII osteogenesis imperfecta (OI), caused by recessive CRTAP mutations, is predominantly lethal in the first year of life. Due to its early lethality, little is known about bone dysplasia mechanism. RNA-seq analysis of differentiated osteoblasts of siblings with a non-lethal homozygous CRTAP-null variant showed an enrichment of gene ontology terms involved in DNA replication and cell cycle compared to control. BrdU incorporation confirmed a ≈2-fold increase in proliferation in non-lethal proband osteoblasts in comparison to control cells. In addition, the expression of cyclin dependent kinase inhibitor 2A (CDKN2A), encoding a protein involved in cell cycle inhibition, was significantly reduced (>50%) in CRTAP-null osteoblasts, while cyclin B1 (CCNB1), encoding a promoter of the cell cycle, was enhanced. Ossification and bone and cartilage development gene ontology pathways were enriched among upregulated genes throughout osteoblast differentiation, as was protein secretion. Ingenuity pathway analysis indicated an upregulation of BMP2 signaling, supported by increase in both BMP2 and MSX2, an early BMP2-responsive gene, by qPCR. Throughout differentiation, CRTAP-null osteoblasts showed a decrease in transcripts related to cell adhesion and extracellular matrix organization pathways. We propose that increased proliferation and osteogenesis of type VII OI osteoblasts may be stimulated through upregulation of BMP2 signaling, altering bone homeostasis, and leading to weaker bones.
Collapse
Affiliation(s)
- Aileen M. Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Apratim Mitra
- Bioinformatics & Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Marianne M. Knue
- Office of the Clinical Director, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; (M.M.K.)
| | - Alberta Derkyi
- Office of the Clinical Director, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; (M.M.K.)
| | - An Dang Do
- Office of the Clinical Director, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; (M.M.K.)
| | - Ryan K. Dale
- Bioinformatics & Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Joan C. Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Thakore P, Delany AM. miRNA-based regulation in growth plate cartilage: mechanisms, targets, and therapeutic potential. Front Endocrinol (Lausanne) 2025; 16:1530374. [PMID: 40225327 PMCID: PMC11985438 DOI: 10.3389/fendo.2025.1530374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of the skeleton. In the growth plate, these small non-coding RNAs modulate gene networks that drive key stages of chondrogenesis, including proliferation, differentiation, extracellular matrix synthesis and hypertrophy. These processes are orchestrated through the interaction of pivotal pathways including parathyroid hormone-related protein (PTHrP), Indian hedgehog (IHH), and bone morphogenetic protein (BMP) signaling. This review highlights the miRNA-mRNA target networks essential for chondrocyte differentiation. Many miRNAs are differentially expressed in resting, proliferating and hypertrophic cartilage zones. Moreover, differential enrichment of specific miRNAs in matrix vesicles is also observed, providing means for chondrocytes to influence the function and differentiation of their neighbors by via matrix vesicle protein and RNA cargo. Notably, miR-1 and miR-140 emerge as critical modulators of chondrocyte proliferation and hypertrophy by regulating multiple signaling pathways, many of them downstream from their mutual target Hdac4. Demonstration that a human gain-of-function mutation in miR-140 causes skeletal dysplasia underscores the clinical relevance of understanding miRNA-mediated regulation. Further, miRNAs such as miR-26b have emerged as markers for skeletal disorders such as idiopathic short stature, showcasing the translational relevance of miRNAs in skeletal health. This review also highlights some miRNA-based therapeutic strategies, including innovative delivery systems that could target chondrocytes via cartilage affinity peptides, and potential applications related to treatment of physeal bony bridge formation in growing children. By synthesizing current research, this review offers a nuanced understanding of miRNA functions in growth plate biology and their broader implications for skeletal health. It underscores the translational potential of miRNA-based therapies in addressing skeletal disorders and aims to inspire further investigations in this rapidly evolving field.
Collapse
|
7
|
Ha TY, Chan SW, Wang Z, Law PWN, Miu KK, Lu G, Chan WY. SOX9 haploinsufficiency reveals SOX9-Noggin interaction in BMP-SMAD signaling pathway in chondrogenesis. Cell Mol Life Sci 2025; 82:99. [PMID: 40025280 PMCID: PMC11872873 DOI: 10.1007/s00018-025-05622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Campomelic Dysplasia (CD) is a rare congenital disease caused by haploinsufficiency (HI) in SOX9. Patients with CD typically present with skeletal abnormalities and 75% of them have sex reversal. In this study, we use CRISPR/Cas9 to generate a human induced pluripotent stem cell (hiPSC) model from a heathy male donor, based on a previously reported SOX9 splice site mutation in a CD patients. This hiPSCs-derived chondrocytes from heterozygotes (HT) and homozygotes (HM) SOX9 mutation carriers showed significant defects in chondrogenesis. Bulk RNA profiling revealed that the BMP-SMAD signaling pathway, ribosome-related, and chromosome segregation-related gene sets were altered in the HT chondrocytes. The profile also showed significant noggin upregulation in CD chondrocytes, with ChIP-qPCR confirming that SOX9 binds to the distal regulatory element of noggin. This suggests SOX9 plays a feedback role in the BMP signaling pathway by modulating noggin expression rather than acting solely as a downstream regulator. This provides further insights into its dosage sensitivity in chondrogenesis. Overexpression of SOX9 showed promising results with improved sulfated glycosaminoglycans (GAGs) aggregation and COL2A1 expression following differentiation. We hope this finding could provide a better understanding of the dosage-dependent role of SOX9 in chondrogenesis and contribute to the development of improved therapeutic targets for CD patients.
Collapse
Affiliation(s)
- Tin-Yan Ha
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - See-Wing Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Patrick Wai Nok Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Gang Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai-Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Zhu M, Jiang S, Li X, Zhong W, Cao W, Luo Q, Wu A, Wu G, Zhang Q. TP8, A Novel Chondroinductive Peptide, Significantly Promoted Neo-Cartilage Repair without Activating Bone Formation. Adv Healthc Mater 2025; 14:e2401752. [PMID: 39690790 PMCID: PMC11874676 DOI: 10.1002/adhm.202401752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/16/2024] [Indexed: 12/19/2024]
Abstract
The repair of large cartilage defects remains highly challenging in the fields of orthopedics and oral and maxillofacial surgery. A chondroinductive agent is promising to activate endogenous mesenchymal stem cells (MSCs) so as to facilitate cartilage regeneration. In this study, we analyze the crystallographic data of the critical binding domain of transforming growth factor β3 (TGF-β3) with its type II receptor and successfully develop a novel chondroinductive peptide - TGF-β3-derived peptide No. 8 (TP8) that can induce an ectopic cartilage formation without obvious bone formation. TP8 shows a comparable capacity as TGF-β3 in enhancing glycosaminoglycans (GAGs) and proteoglycans (PGs) secretion in the micromass of bone marrow MSCs (BMSCs) and promoting the expression of chondrogenic markers in comparison with the Control group. TP8 induces a significantly higher expression of the SRY-box transcription factor 9 (Sox9) gene than TGF-β3. Moreover, TP8 significantly upregulates the phosphorylation of Smad1/5 but not MAPK/JNK or Smad 2/3. The knockdown of low-density lipoprotein receptor (LDLR) -related protein-1 (Lrp1), a transmembrane endocytosis receptor, nullifies the TP8-induced Sox9 expression. In the critical-size cartilage defects in rabbit medial femoral condyles, TP8 can induce neo-cartilage formation with a significantly thicker deep zone in comparison with the TGF-β3 and Control. These findings suggest a promising application potential of TP8 in cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingjing Zhu
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdam1081 LAthe Netherlands
| | - Siqing Jiang
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Xingyang Li
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Wenchao Zhong
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
- Department of Human GeneticsAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdam1081 HZNetherlands
- Department of Clinical ChemistryAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdam1081 HVNetherlands
- Amsterdam Movement SciencesTissue Function and RegenerationAmsterdam1081 HVNetherlands
| | - Wei Cao
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Qianting Luo
- Department of maxillofacial surgeryJiangmen Central HospitalJiangmen529030China
| | - Antong Wu
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Gang Wu
- Savid School of StomatologyHangzhou Medical CollegeHangzhou311399China
| | - Qingbin Zhang
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| |
Collapse
|
9
|
Xiong F, Chevalier Y, Klar RM. Parallel Chondrogenesis and Osteogenesis Tissue Morphogenesis in Muscle Tissue via Combinations of TGF-β Supergene Family Members. Cartilage 2025; 16:71-88. [PMID: 37714817 PMCID: PMC11744598 DOI: 10.1177/19476035231196224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVE This study aimed to decipher the temporal and spatial signaling code for clinical cartilage and bone regeneration. We investigated the effects of continuous equal dosages of a single, dual, or triplicate growth factor combination of bone morphogenetic protein (BMP)-2, transforming growth factor (TGF)-β3, and/or BMP-7 on muscle tissue over a culturing period. The hypothesis was that specific growth factor combinations at specific time points direct tissue transformation toward endochondral bone or cartilage formation. DESIGN The harvested muscle tissues from F-344 adult male rats were cultured in 96-well plates maintained in a specific medium and cultured at specific conditions. And the multidimensional and multi-time point analyses were performed at both the genetic and protein levels. RESULTS The results insinuate that the application of growth factor stimulates a chaotic tissue response that does not follow a chronological signaling cascade. Both osteogenic and chondrogenic genes showed upregulation after induction, a similar result was also observed in the semiquantitative analysis after immunohistochemical staining against different antigens. CONCLUSIONS The study showed that multiple TGF-β superfamily proteins applied to tissue stimulate developmental tissue processes that do not follow current tissue formation rules. The findings contribute to the understanding of the chronological order of signals and expression patterns needed to achieve chondrogenesis, articular chondrogenesis, or osteogenesis, which is crucial for the development of treatments that can regrow bone and articular cartilage clinically.
Collapse
Affiliation(s)
- Fei Xiong
- Wuxi Hand Surgery Hospital, Wuxi, China
| | - Yan Chevalier
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Germany
| | - Roland M. Klar
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, School of Dentistry, Kansas City, MO, USA
| |
Collapse
|
10
|
Matsuo Y, Qin X, Moriishi T, Kawata-Matsuura VKS, Komori H, Sakane C, Yabuta S, Jiang Q, Kaneko H, Ito K, Shigeta M, Abe T, Komori T. An Osteoblast-Specific Enhancer and Subenhancer Cooperatively Regulate Runx2 Expression in Chondrocytes. Int J Mol Sci 2025; 26:1653. [PMID: 40004117 PMCID: PMC11855347 DOI: 10.3390/ijms26041653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Runx2 is an essential transcription factor for osteoblast differentiation and chondrocyte maturation. The spatiotemporal expression of Runx2 is regulated by enhancers. We previously identified a 1.3 kb osteoblast-specific enhancer; however, mice with this deletion showed no phenotypes. A 0.8 kb conserved region detected near the 1.3 kb enhancer did not exhibit enhancer activity in reporter assays, whereas four tandem repeats of 452 bp (452 × 4) containing the most conserved region of 0.8 kb induced strong reporter activity in chondrocyte cell lines. However, chondrocytes of enhanced green fluorescent protein (EGFP) reporter mice using 452 × 4 did not express EGFP. When 452 × 4 was combined with the 1.3 kb enhancer, hypertrophic chondrocytes highly expressed EGFP. Moreover, the 0.8 kb region combined with the 1.3 kb enhancer induced EGFP expression in prehypertrophic and hypertrophic chondrocytes. The deletion of both the 1.3 kb enhancer and the 0.8 kb conserved region slightly reduced Runx2 expression in the limbs. However, neither homozygous nor heterozygous deletions in the Runx2+/- background showed phenotypes. The 0.8 kb conserved region itself lacked enhancer activity, but when combined with the 1.3 kb enhancer, EGFP expression was induced in chondrocytes with a similar expression pattern to Runx2. Therefore, the 0.8 kb conserved region has a novel function as a subenhancer.
Collapse
Affiliation(s)
- Yuki Matsuo
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; (Y.M.)
- Department of Skeletal Development and Regenerative Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Xin Qin
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; (Y.M.)
- Institute of Orthopaedics, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Takeshi Moriishi
- Department of Skeletal Development and Regenerative Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Viviane K. S. Kawata-Matsuura
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; (Y.M.)
| | - Hisato Komori
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; (Y.M.)
| | - Chiharu Sakane
- Research Center for Biomedical Models and Animal Welfare, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Suemi Yabuta
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; (Y.M.)
| | - Qing Jiang
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; (Y.M.)
- Institute of Orthopaedics, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Hitomi Kaneko
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; (Y.M.)
| | - Kosei Ito
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; (Y.M.)
| | - Mayo Shigeta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Toshihisa Komori
- Department of Molecular Tumor Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; (Y.M.)
| |
Collapse
|
11
|
Muñoz-Garcia J, Vargas-Franco JW, Schiavone K, Keatinge MT, Young R, Amiaud J, Fradet L, Jégou JF, Yagita H, Blin-Wakkach C, Wakkach A, Cochonneau D, Ollivier E, Pugière M, Henriquet C, Legendre M, Giurgea I, Amselem S, Heymann MF, Télétchéa S, Lézot F, Heymann D. Interleukin-34 orchestrates bone formation through its binding to bone morphogenic proteins. Theranostics 2025; 15:3185-3202. [PMID: 40083929 PMCID: PMC11898274 DOI: 10.7150/thno.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/16/2025] [Indexed: 03/16/2025] Open
Abstract
Rationale: During development, the contribution of IL34, a ligand of macrophage colony stimulating factor receptor (MCSFR), has not been fully defined. Together with its twin cytokine MCSF, they display an essential role in macrophage differentiation and activation, including tissue specialized macrophages. The mechanism of action of each molecule involves the phosphorylation of MCSFR in varying intensity and kinetics. Furthermore, IL34 can interact with other receptors and cofactors, opening a wide range of modulations during development. The aim of this work was to investigate these effects through the suppression of IL34 in different animal models and study molecular interactions, with a particular focus on osteoclast / osteoblast regulation. Methods: Two different and unique models of IL34-/- were generated in zebrafish and mouse. The skeleton of both species was analyzed and compared by histological and morphometric (Micro-CT) approaches. The role of IL34 and new partners in osteoclast and osteoblast differentiation was analyzed by multiple techniques including mineralization assays, tartrate resistant acid phosphatase (TRAP) staining, receptor phosphorylation and activation assays, and gene expression (real-time quantitative PCR) studies. Furthermore, protein interactions were studied by surface plasmon resonance approach and protein-protein docking ClusPro analysis. Results: Significant growth delay and hypo-mineralization of skeletal elements were observed in both IL34-/- models, as well as craniofacial dysmorphoses in mice. With regard to bone cells, an unexpected increase in the number of osteoclasts and an accumulation of pre-osteoblasts were observed in mice lacking IL34. For the first time, in vitro analyses complemented by protein binding and molecular docking studies established that IL34 interacts directly with certain Bone Morphogenetic Proteins (BMPs), modulating their various activities such as the stimulation of osteoblast differentiation. Conclusions: A new mechanism of action for IL34 through BMPs has been characterized. IL34 interactions with MCSFR and BMPs appear crucial for both osteoclastogenesis and osteoblastogenesis, impacting bone tissue homeostasis and development. The potential interaction of IL34 with different members of the BMP family and their functional impact, including pathological situations such as cancer, should be further explored, opening new therapeutic perspectives.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Nantes University, CNRS, US2B, UMR 6286, Nantes, France, 44300
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France, 44805
| | - Jorge W. Vargas-Franco
- University of Antioquia, Department of Basic Studies, Faculty of Odontology, Medellin, Colombia, 1225
| | - Kristina Schiavone
- Université of Sheffield, School of Medicine and Population Health, Sheffield, UK, S10 2TN
| | - Marcus T. Keatinge
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, UK, EH8 9XD
| | - Robin Young
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK, S10 2JF
| | - Jérôme Amiaud
- Nantes University, Department of Histology and Embryology, Medical School, Nantes, France, 44000
| | - Laurie Fradet
- Nantes University, CNRS, US2B, UMR 6286, Nantes, France, 44300
| | | | - Hideo Yagita
- Juntendo University, Department of Immunology, School of Medicine, Tokyo, Japan, 113-8421
| | | | | | - Denis Cochonneau
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France, 44805
| | - Emilie Ollivier
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France, 44805
| | - Martine Pugière
- University of Montpellier, INSERM, UMR1194, IRCM, Montpellier, France, 34298
| | - Corinne Henriquet
- University of Montpellier, INSERM, UMR1194, IRCM, Montpellier, France, 34298
| | - Marie Legendre
- Sorbonne University, INSERM, UMR933, Hospital Armand-Trousseau (AP-HP), Paris, France, 75012
| | - Irina Giurgea
- Sorbonne University, INSERM, UMR933, Hospital Armand-Trousseau (AP-HP), Paris, France, 75012
| | - Serge Amselem
- Sorbonne University, INSERM, UMR933, Hospital Armand-Trousseau (AP-HP), Paris, France, 75012
| | - Marie-Françoise Heymann
- Nantes University, CNRS, US2B, UMR 6286, Nantes, France, 44300
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France, 44805
| | | | - Frédéric Lézot
- Sorbonne University, INSERM, UMR933, Hospital Armand-Trousseau (AP-HP), Paris, France, 75012
| | - Dominique Heymann
- Nantes University, CNRS, US2B, UMR 6286, Nantes, France, 44300
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France, 44805
- Université of Sheffield, School of Medicine and Population Health, Sheffield, UK, S10 2TN
- Nantes University, Department of Histology and Embryology, Medical School, Nantes, France, 44000
| |
Collapse
|
12
|
Guo X, Yang L, Wang Y, Yuan M, Zhang W, He X, Wang Q. Wnt2bb signaling promotes pharyngeal chondrogenic precursor proliferation and chondrocyte maturation by activating Yap expression in zebrafish. J Genet Genomics 2025; 52:220-230. [PMID: 39566725 DOI: 10.1016/j.jgg.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Pharyngeal cartilage morphogenesis is crucial for the formation of craniofacial structures. Cranial neural crest cells are specified at the neural plate border, migrate to pharyngeal arches, and differentiate into pharyngeal chondrocytes, which subsequently flatten, elongate, and stack like coins during maturation. Although the developmental processes prior to chondrocyte maturation have been extensively studied, their subsequent changes in morphology and organization remain largely elusive. Here, we show that wnt2bb is expressed in the pharyngeal ectoderm adjacent to the chondrogenic precursor cells in zebrafish. Inactivation of Wnt2bb leads to a reduction in nuclear β-catenin, which impairs chondrogenic precursor proliferation and disrupts chondrocyte morphogenesis and organization, eventually causing a severe shrinkage of pharyngeal cartilages. Moreover, the decrease of β-catenin in wnt2bb-/- mutants is accompanied by the reduction of Yap expression. Reactivation of Yap can restore the proliferation of chondrocyte progenitors as well as the proper size, shape, and stacking of pharyngeal chondrocytes. Our findings suggest that Wnt/β-catenin signaling promotes Yap expression to regulate pharyngeal cartilage formation in zebrafish.
Collapse
Affiliation(s)
- Xiaojuan Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Liping Yang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yujie Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mengna Yuan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xinyu He
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China; Innovation Centre of Ministry of Education for Development and Diseases, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
13
|
Zhang Y, Fan X, Ge H, Yu Y, Li J, Zhou Z. The effect of salidroside on the bone and cartilage properties in broilers. Poult Sci 2024; 103:104274. [PMID: 39270480 PMCID: PMC11417263 DOI: 10.1016/j.psj.2024.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Leg disorders frequently occur in fast-growing broiler chickens, constituting severe health and welfare problems. Although salidroside (SAL) promotes osteogenesis and inhibits apoptosis of chondrocytes in rats, it remains to be determined whether SAL can effectively improve bone growth in broilers. The present study was designed to investigate the effects of dietary SAL supplementation on bone and cartilage characteristics in broiler chickens. Ninety-six Arbor Acres broiler chickens were randomly divided into 4 groups: control, low-dose SAL, medium-dose SAL, and high-dose SAL groups. The broiler chickens were raised until 42 d of age, with samples of bone and cartilage collected for biomechanical testing and bone metabolism index detection. The results showed that SAL significantly increased the vertical external diameter, cross-sectional moment of inertia, and cross-sectional area of the femur and tibia. Additionally, SAL enhanced bone mineral density and strength, as evidenced by significant increases in stiffness, Young's modulus, ultimate load, and fracture work of the femur and tibia. Furthermore, SAL influenced the relative content of phosphate, carbonate, and amide I in cortical bone. Moreover, SAL upregulated the expression of osteogenic genes (Collagen-1, RUNX2, BMP2, and ALP) in a dose-dependent manner and maintained the homeostasis of the extracellular matrix (ECM) of chondrocytes. These results indicated that SAL promoted leg health in broilers by improving bone and cartilage quality and enhancing chondrocyte activity.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongfan Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaling Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianzeng Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Ma X, Qian X, Ren R, Chen Y, Zhang H, Hao R, Pu X, Wang Y, Lu Z, Tang C. Functional Mechanism and Clinical Implications of lncRNA LINC-PINT in Delayed Fracture Healing. J INVEST SURG 2024; 37:2421826. [PMID: 39467565 DOI: 10.1080/08941939.2024.2421826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Fracture healing can be impeded or even compromised by various factors, resulting in a growing number of patients suffering. The lncRNA LINC-PINT has garnered attention for its latent role in enhancing fracture healing, but its specific functions in this process remain unclear. OBJECTIVES The primary objective of this study is to investigate the clinical relevance and underlying molecular mechanisms of LINC-PINT in delayed fracture healing (DFH), while also assessing its potential as an early diagnostic biomarker. MATERIALS AND METHODS The expression levels of LINC-PINT were measured in the serum of DFH patients and those with normal fracture healing using RT-qPCR. In MC3T3-E1 cells, the study investigated the influence on the expression of differentiation-related protein, cell viability, and apoptosis through the modulation of LINC-PINT and miR-324-3p. To elucidate the targeting relationship between LINC-PINT, miR-324-3p, and BMP2, a dual-luciferase reporter assay was employed. RESULTS The findings revealed a significant downregulation of LINC-PINT expression in DFH patients. LINC-PINT showed high sensitivity and specificity as a diagnostic marker for DFH. In MC3T3-E1 cells, LINC-PINT overexpression markedly enhanced the expression levels of ALP, OCN, Runx2, and OPN, improved cell viability, and inhibited apoptosis. LINC-PINT negatively regulated miR-324-3p, and the effects of LINC-PINT were counteracted by miR-324-3p. LINC-PINT was found to regulate BMP2 by targeting miR-324-3p. CONCLUSION LINC-PINT could serve as an early diagnostic biomarker for DFH and slow the progression of DFH by modulating BMP2 through the targeted regulation of miR-324-3p. This research presents new molecular targets for the diagnosis and treatment of DFH.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Guizhou University Medical College, Guizhou, China
| | - Xin Qian
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Rong Ren
- Department of Traumatic Orthopedics, Qinghai University Affiliated Hospital, Xining, China
| | - Yuzhou Chen
- Department of Orthopedics, The Second People's Hospital of Huangzhong District, Xining, China
| | - Hongyun Zhang
- Department of Orthopedics, The First People's Hospital of Huangzhong District, Xining, China
| | - Ruirui Hao
- Department of Traumatic Orthopedics, Qinghai University Affiliated Hospital, Xining, China
| | - Xinwei Pu
- Department of Traumatic Orthopedics, Qinghai University Affiliated Hospital, Xining, China
| | - Yongliang Wang
- Department of Traumatic Orthopedics, Qinghai University Affiliated Hospital, Xining, China
| | - Zhonglin Lu
- Department of Traumatic Orthopedics, Qinghai University Affiliated Hospital, Xining, China
| | - Chao Tang
- Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
15
|
García-Martínez J, Salto R, Girón MD, Pérez-Castillo ÍM, Bueno Vargas P, Vílchez JD, Linares-Pérez A, Manzano M, García-Córcoles MT, Rueda R, López-Pedrosa JM. Supplementation with a Whey Protein Concentrate Enriched in Bovine Milk Exosomes Improves Longitudinal Growth and Supports Bone Health During Catch-Up Growth in Rats. Nutrients 2024; 16:3814. [PMID: 39599602 PMCID: PMC11597726 DOI: 10.3390/nu16223814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Undernutrition impairs linear growth while restoration of nutritional provisions leads to accelerated growth patterns. However, the composition of the nutrition provided is key to facilitating effective catch-up growth without compromising bone quantity, quality, and long-term health. METHODS We evaluated the role of a whey protein concentrate enriched in bovine milk exosomes (BMEs) in modulating the proliferative properties of human chondrocytes in vitro and studied how these effects might impact bone quantity and quality measured as longitudinal tibia growth, bone mineral content (BMC) and density (BMD), and trabecular micro-CT parameters in stunted rats during catch-up growth. RESULTS BMEs promoted proliferation in C28/I2 human chondrocytes mediated by mTOR-Akt signaling. In a stunting rat model, two-week supplementation with BMEs during refeeding was associated with improved tibia BMD, trabecular microstructure (trabecular number (Tb. N.) and space (Tb. Sp.)), and a more active growth plate (higher volume, surface, and thickness) compared to non-supplemented stunted rats. Positive effects on physis translated to significantly longer tibias without compromising bone quality when extending the refeeding period for another two weeks. CONCLUSIONS Overall, BME supplementation positively contributed to longitudinal bone growth and improved bone quantity and quality during catch-up growth. These findings might be relevant for improving diets aimed at addressing the nutritional needs of children undergoing undernutrition during early life.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - Íñigo M. Pérez-Castillo
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Pilar Bueno Vargas
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Jose D. Vílchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - Azahara Linares-Pérez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain; (R.S.); (M.D.G.); (J.D.V.); (A.L.-P.)
| | - Manuel Manzano
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - María T. García-Córcoles
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - Ricardo Rueda
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| | - José M. López-Pedrosa
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (Í.M.P.-C.); (P.B.V.); (M.M.); (M.T.G.-C.); (R.R.); (J.M.L.-P.)
| |
Collapse
|
16
|
Yi D, Jin H, Lu WW, Zhang C, Xiao G, Tong L, Chen D. Deletion of Axin1 in aggrecan-expressing cells leads to growth plate cartilage defects in adult mice. Genes Dis 2024; 11:101147. [PMID: 38515941 PMCID: PMC10955195 DOI: 10.1016/j.gendis.2023.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/01/2023] [Accepted: 09/26/2023] [Indexed: 03/23/2024] Open
Affiliation(s)
- Dan Yi
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Hongting Jin
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - William W. Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Chunxiang Zhang
- Department of Cardiology, Basic Medicine Innovation Center for Cardiometabolic Diseases of Ministry of Education, Institute of Cardiovascular Research, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
17
|
Li B, Yang P, Shen F, You C, Wu F, Shi Y, Ye L. Gli1 labels progenitors during chondrogenesis in postnatal mice. EMBO Rep 2024; 25:1773-1791. [PMID: 38409269 PMCID: PMC11014955 DOI: 10.1038/s44319-024-00093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Skeletal growth promoted by endochondral ossification is tightly coordinated by self-renewal and differentiation of chondrogenic progenitors. Emerging evidence has shown that multiple skeletal stem cells (SSCs) participate in cartilage formation. However, as yet, no study has reported the existence of common long-lasting chondrogenic progenitors in various types of cartilage. Here, we identify Gli1+ chondrogenic progenitors (Gli1+ CPs), which are distinct from PTHrP+ or FoxA2+ SSCs, are responsible for the lifelong generation of chondrocytes in the growth plate, vertebrae, ribs, and other cartilage. The absence of Gli1+ CPs leads to cartilage defects and dwarfishness phenotype in mice. Furthermore, we show that the BMP signal plays an important role in self-renewal and maintenance of Gli1+ CPs. Deletion of Bmpr1α triggers Gli1+ CPs quiescence exit and causes the exhaustion of Gli1+ CPs, consequently disrupting columnar cartilage. Collectively, our data demonstrate that Gli1+ CPs are common long-term chondrogenic progenitors in multiple types of cartilage and are essential to maintain cartilage homeostasis.
Collapse
Affiliation(s)
- Boer Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Puying Yang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengjia You
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Iyer S, Enman M, Sahay P, Dudeja V. Novel therapeutics to treat chronic pancreatitis: targeting pancreatic stellate cells and macrophages. Expert Rev Gastroenterol Hepatol 2024; 18:171-183. [PMID: 38761167 DOI: 10.1080/17474124.2024.2355969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION Chronic pancreatitis (CP) is a persistent, recurrent, and progressive disorder that is characterized by chronic inflammation and irreversible fibrosis of the pancreas. It is associated with severe morbidity, resulting in intense abdominal pain, diabetes, exocrine and endocrine dysfunction, and an increased risk of pancreatic cancer. The etiological factors are diverse and the major risk factors include smoking, chronic alcoholism, as well as other environmental and genetic factors. The treatment and management of CP is challenging, and no definitive curative therapy is currently available. AREAS COVERED This review paper aims to provide an overview of the different cell types in the pancreas that is known to mediate disease progression and outline potential novel therapeutic approaches and drug targets that may be effective in treating and managing CP. The information presented in this review was obtained by conducting a NCBI PubMed database search, using relevant keywords. EXPERT OPINION In recent years, there has been an increased interest in the development of novel therapeutics for CP. A collaborative multi-disciplinary approach coupled with a consistent funding for research can expedite progress of translating the findings from bench to bedside.
Collapse
Affiliation(s)
- Srikanth Iyer
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Macie Enman
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Preeti Sahay
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
19
|
Seok MC, Koo HW, Jeong JH, Ko MJ, Lee BJ. Bone Substitute Options for Spine Fusion in Patients With Spine Trauma-Part II: The Role of rhBMP. Korean J Neurotrauma 2024; 20:35-44. [PMID: 38576507 PMCID: PMC10990692 DOI: 10.13004/kjnt.2024.20.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 04/06/2024] Open
Abstract
In Part II, we focus on an important aspect of spine fusion in patients with spine trauma: the pivotal role of recombinant human bone morphogenetic protein-2 (rhBMP-2). Despite the influx of diverse techniques facilitated by technological advancements in spinal surgery, spinal fusion surgery remains widely used globally. The persistent challenge of spinal pseudarthrosis has driven extensive efforts to achieve clinically favorable fusion outcomes, with particular emphasis on the evolution of bone graft substitutes. Part II of this review aims to build upon the foundation laid out in Part I by providing a comprehensive summary of commonly utilized bone graft substitutes for spinal fusion in patients with spinal trauma. Additionally, it will delve into the latest advancements and insights regarding the application of rhBMP-2, offering an updated perspective on its role in enhancing the success of spinal fusion procedures.
Collapse
Affiliation(s)
- Min cheol Seok
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Hae-Won Koo
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Myeong Jin Ko
- Department of Neurosurgery, College of Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Byung-Jou Lee
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
20
|
Kaur G, Wu B, Murali S, Lanigan T, Coleman RM. A synthetic, closed-looped gene circuit for the autonomous regulation of RUNX2 activity during chondrogenesis. FASEB J 2024; 38:e23484. [PMID: 38407380 PMCID: PMC10981937 DOI: 10.1096/fj.202300348rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
The transcription factor RUNX2 is a key regulator of chondrocyte phenotype during development, making it an ideal target for prevention of undesirable chondrocyte maturation in cartilage tissue-engineering strategies. Here, we engineered an autoregulatory gene circuit (cisCXp-shRunx2) that negatively controls RUNX2 activity in chondrogenic cells via RNA interference initiated by a tunable synthetic Col10a1-like promoter (cisCXp). The cisCXp-shRunx2 gene circuit is designed based on the observation that induced RUNX2 silencing after early chondrogenesis enhances the accumulation of cartilaginous matrix in ATDC5 cells. We show that the cisCXp-shRunx2 initiates RNAi of RUNX2 in maturing chondrocytes in response to the increasing intracellular RUNX2 activity without interfering with early chondrogenesis. The induced loss of RUNX2 activity in turn negatively regulates the gene circuit itself. Moreover, the efficacy of RUNX2 suppression from cisCXp-shRunx2 can be controlled by modifying the sensitivity of cisCXp promoter. Finally, we show the efficacy of inhibiting RUNX2 in preventing matrix loss in human mesenchymal stem cell-derived (hMSC-derived) cartilage under conditions that induce chondrocyte hypertrophic differentiation, including inflammation. Overall, our results demonstrated that the negative modulation of RUNX2 activity with our autoregulatory gene circuit enhanced matrix synthesis and resisted ECM degradation by reprogrammed MSC-derived chondrocytes in response to the microenvironment of the degenerative joint.
Collapse
Affiliation(s)
- Gurcharan Kaur
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Biming Wu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sunjana Murali
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Lanigan
- Biomedical Research Vector Core, University of Michigan, Ann Arbor, MI, USA
| | - Rhima M. Coleman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Liu T, Li X, Pang M, Wang L, Li Y, Sun X. Machine learning-based endoplasmic reticulum-related diagnostic biomarker and immune microenvironment landscape for osteoarthritis. Aging (Albany NY) 2024; 16:4563-4578. [PMID: 38428406 PMCID: PMC10968715 DOI: 10.18632/aging.205611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is the most common degenerative joint disease worldwide. Further improving the current limited understanding of osteoarthritis has positive clinical value. METHODS OA samples were collected from GEO database and endoplasmic reticulum related genes (ERRGs) were identified. The WGCNA network was further built to identify the crucial gene module. Based on the expression profiles of characteristic ERRGs, LASSO algorithm was used to select key factors according to the minimum λ value. Random forest (RF) algorithm was used to calculate the importance of ERRGs. Subsequently, overlapping genes based on LASSO and RF algorithms were identified as ERRGs-related diagnostic biomarkers. In addition, OA specimens were also collected and performed qRT-PCR quantitative analysis of selected ERRGs. RESULTS We identified four ERRGs associated with OA risk assessment through machine learning methods, and verified the abnormal expressions of these screened markers in OA patients through in vitro experiments. The influence of selected markers on OA immune infiltration was also evaluated. CONCLUSIONS Our results provide new evidence for the role of ER stress in the OA progression, as well as new markers and potential intervention targets for OA.
Collapse
Affiliation(s)
- Tingting Liu
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, Hainan 571199, China
| | - Xiaomao Li
- Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223023, China
| | - Mu Pang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, Guangdong 518000, China
| | - Lifen Wang
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, Hainan 571199, China
| | - Ye Li
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Xizhe Sun
- Research Center for Drug Safety Evaluation of Hainan, Hainan Medical University, Haikou, Hainan 571199, China
| |
Collapse
|
22
|
Song Y, Choe G, Kwon SH, Yoo J, Choi J, Kim SY, Jung Y. Dual Growth Factor Delivery Using Photo-Cross-Linkable Gelatin Hydrogels for Effectively Reinforced Regeneration of the Rotator Cuff Tendon. ACS APPLIED BIO MATERIALS 2024; 7:1146-1157. [PMID: 38282578 DOI: 10.1021/acsabm.3c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Rotator cuff tears are currently treated with drugs (steroids and nonsteroidal anti-inflammatory drugs) and surgery. However, the damaged rotator cuff requires a considerable amount of time to regenerate, and the regenerated tissue cannot restore the same level of function as that before the damage. Although growth factors can accelerate regeneration, they are difficult to be used alone because of the risk of degradation and the difficulties in ensuring their sustained release. Thus, hydrogels such as gelatin are used, together with growth factors. Gelatin is a biocompatible and biodegradable hydrogel derived from collagen; therefore, it closely resembles the components of native tissues and can retain water and release drugs continuously, while also showing easily tunable mechanical properties by simple modifications. Moreover, gelatin is a natural biopolymer that possesses the ability to form hydrogels of varying compositions, thereby facilitating effective cross-linking. Therefore, gelatin can be considered to be suitable for rotator-to-tendon healing. In this study, we designed photo-cross-linkable gelatin hydrogels to enhance spacing and adhesive effects for rotator cuff repair. We mixed a ruthenium complex (Ru(II)bpy32+) and sodium persulfate into gelatin-based hydrogels and exposed them to blue light to induce gelation. Basic fibroblast growth factor and bone morphogenetic protein-12 were encapsulated in the gelatin hydrogel for localized and sustained release into the wound, thereby enhancing the cell proliferation. The effects of these dual growth factor-loaded hydrogels on cell cytotoxicity and tendon regeneration in rotator cuff tear models were evaluated using mechanical and histological assessments. The findings confirmed that the gelatin hydrogel was biocompatible and that treatment with the dual growth factor-loaded hydrogels in in vivo rotator cuff tear models promoted regeneration and functional restoration in comparison with the findings in the nontreated group. Therefore, growth factor-loaded gelatin-based hydrogels may be suitable for the treatment of rotator cuff tears.
Collapse
Affiliation(s)
- Yerim Song
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- School of Integrative Engineering, Chung-ang University, Seoul 06974, Republic of Korea
| | - Goeun Choe
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Soo Hyun Kwon
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jin Yoo
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-ang University, Seoul 06974, Republic of Korea
| | - Soung-Yon Kim
- Department of Orthopaedic Surgery, Kangwon National University Hospital, Baengnyeong-ro 156, Chuncheon-si, Gangwon-do 24289, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Mancini FE, Humphreys PEA, Woods S, Bates N, Cuvertino S, O'Flaherty J, Biant L, Domingos MAN, Kimber SJ. Effect of a retinoic acid analogue on BMP-driven pluripotent stem cell chondrogenesis. Sci Rep 2024; 14:2696. [PMID: 38302538 PMCID: PMC10834951 DOI: 10.1038/s41598-024-52362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Osteoarthritis is the most common degenerative joint condition, leading to articular cartilage (AC) degradation, chronic pain and immobility. The lack of appropriate therapies that provide tissue restoration combined with the limited lifespan of joint-replacement implants indicate the need for alternative AC regeneration strategies. Differentiation of human pluripotent stem cells (hPSCs) into AC progenitors may provide a long-term regenerative solution but is still limited due to the continued reliance upon growth factors to recapitulate developmental signalling processes. Recently, TTNPB, a small molecule activator of retinoic acid receptors (RARs), has been shown to be sufficient to guide mesodermal specification and early chondrogenesis of hPSCs. Here, we modified our previous differentiation protocol, by supplementing cells with TTNPB and administering BMP2 at specific times to enhance early development (referred to as the RAPID-E protocol). Transcriptomic analyses indicated that activation of RAR signalling significantly upregulated genes related to limb and embryonic skeletal development in the early stages of the protocol and upregulated genes related to AC development in later stages. Chondroprogenitors obtained from RAPID-E could generate cartilaginous pellets that expressed AC-related matrix proteins such as Lubricin, Aggrecan, and Collagen II, but additionally expressed Collagen X, indicative of hypertrophy. This protocol could lay the foundations for cell therapy strategies for osteoarthritis and improve the understanding of AC development in humans.
Collapse
Affiliation(s)
- Fabrizio E Mancini
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
- Department of Solids and Structures, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Paul E A Humphreys
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - Steven Woods
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - Nicola Bates
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - Sara Cuvertino
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - Julieta O'Flaherty
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - Leela Biant
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - Marco A N Domingos
- Department of Solids and Structures, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Susan J Kimber
- Division of Cell Matrix and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK.
| |
Collapse
|
24
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
25
|
de Silva L, Longoni A, Staubli F, Nurmohamed S, Duits A, Rosenberg AJWP, Gawlitta D. Bone Regeneration in a Large Animal Model Featuring a Modular Off-the-Shelf Soft Callus Mimetic. Adv Healthc Mater 2023; 12:e2301717. [PMID: 37580174 PMCID: PMC11468236 DOI: 10.1002/adhm.202301717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Implantation of engineered cartilage with soft callus features triggers remodeling to bone tissue via endochondral bone regeneration (EBR). Thus far, EBR has not progressed to the level of large animals on the axis of clinical translation. Herein, the feasibility of EBR is aimed for a critical-sized defect in a large animal model. Chondrogenesis is first induced in goat-derived multipotent mesenchymal stromal cells (MSCs) by fine-tuning the cellular differentiation process. Through a unique devitalization process, two off-the-shelf constructs aimed to recapitulate the different stages of the transient cartilaginous soft callus template in EBR are generated. To evaluate bone regeneration, the materials are implanted in an adapted bilateral iliac crest defect model in goats, featuring a novel titanium star-shaped spacer. After 3 months, the group at the more advanced differentiation stage shows remarkable regenerative capacity, with comparable amounts of bone regeneration as the autograft group. In contrast, while the biomaterial mimicking the earlier stages of chondrogenesis shows improved regeneration compared to the negative controls, this is subpar compared to the more advanced material. Concluding, EBR is attainable in large animals with a soft callus mimetic material that leads to fast conversion into centimeter-scale bone, which prospects successful implementation in the human clinics.
Collapse
Affiliation(s)
- Leanne de Silva
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
| | - Alessia Longoni
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
- Department of OrthopedicsUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
| | - Flurina Staubli
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
| | - Silke Nurmohamed
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
| | - Anneli Duits
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
- Department of OrthopedicsUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
| | - Antoine J. W. P. Rosenberg
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental CareUniversity Medical Center UtrechtUtrecht UniversityUtrechtGA3508The Netherlands
- Regenerative Medicine Center UtrechtUtrechtCT3584The Netherlands
| |
Collapse
|
26
|
Chen J, Liao X, Gan J. Review on the protective activity of osthole against the pathogenesis of osteoporosis. Front Pharmacol 2023; 14:1236893. [PMID: 37680712 PMCID: PMC10481961 DOI: 10.3389/fphar.2023.1236893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Osteoporosis (OP), characterized by continuous bone loss and increased fracture risk, has posed a challenge to patients and society. Long-term administration of current pharmacological agents may cause severe side effects. Traditional medicines, acting as alternative agents, show promise in treating OP. Osthole, a natural coumarin derivative separated from Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim. f., exhibits protective effects against the pathological development of OP. Osthole increases osteoblast-related bone formation and decreases osteoclast-related bone resorption, suppressing OP-related fragility fracture. In addition, the metabolites of osthole may exhibit pharmacological effectiveness against OP development. Mechanically, osthole promotes osteogenic differentiation by activating the Wnt/β-catenin and BMP-2/Smad1/5/8 signaling pathways and suppresses RANKL-induced osteoclastogenesis and osteoclast activity. Thus, osthole may become a promising agent to protect against OP development. However, more studies should be performed due to, at least in part, the uncertainty of drug targets. Further pharmacological investigation of osthole in OP treatment might lead to the development of potential drug candidates.
Collapse
Affiliation(s)
- Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou, China
| | - Juwen Gan
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
27
|
Yan W, Shen M, Sun K, Li S, Miao J, Wang J, Xu J, Wen P, Zhang Q. Norisoboldine, a Natural Isoquinoline Alkaloid, Inhibits Diaphyseal Fracture Healing in Mice by Alleviating Cartilage Formation. Biomedicines 2023; 11:2031. [PMID: 37509670 PMCID: PMC10377295 DOI: 10.3390/biomedicines11072031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Norisoboldine (NOR), the major isoquinoline alkaloid constituent of a Chinese traditional medicine Radix Linderae, has been demonstrated to inhibit osteoclast differentiation and improve arthritis. The aim of this study is to examine the effect of NOR on bone fracture healing and the underlying mechanisms correlated with bone marrow stromal cells (BMSCs) differentiation to chondrocytes. Our results showed that NOR inhibits the tibia fracture healing process by suppressing cartilage formation, which leads to less endochondral ossification, indicated by less osterix and collage I signaling at the fracture site. Moreover, NOR significantly reduced the differentiation of primary BMSCs to chondrocytes in vitro by reducing the bone morphogenetic protein 2 (BMP2) signaling. These findings imply that NOR negatively regulates the healing of the tibial midshaft fracture, which might delay the union of the fractures and should be noticed when used in other treatments.
Collapse
Affiliation(s)
- Wenliang Yan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Meng Shen
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Kainong Sun
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Shiming Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jingyuan Miao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jun Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jiayang Xu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
28
|
Yuan W, Liu W, Zhang Y, Wang X, Xu C, Li Q, Ji P, Wang J, Feng P, Wu Y, Shen H, Wang P. Reduced APPL1 impairs osteogenic differentiation of mesenchymal stem cells by facilitating MGP expression to disrupt the BMP2 pathway in osteoporosis. J Biol Chem 2023:104823. [PMID: 37187293 DOI: 10.1016/j.jbc.2023.104823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023] Open
Abstract
An imbalance of human mesenchymal stem cells (MSCs) adipogenic and osteogenic differentiation plays an important role in the pathogenesis of osteoporosis. Our previous study verified that APPL1/myoferlin deficiency promotes adipogenic differentiation of mesenchymal stem cells by blocking autophagic flux in osteoporosis. However, the function of APPL1 in the osteogenic differentiation of MSCs remains unclear. This study aimed to investigate the role of APPL1 in the osteogenic differentiation of MSCs in osteoporosis and the underlying regulatory mechanism. In this study, we demonstrated the downregulation of APPL1 expression in osteoporosis patients and osteoporosis mice. The severity of clinical osteoporosis was negatively correlated with the expression of APPL1 in bone marrow MSCs. We found that APPL1 positively regulates the osteogenic differentiation of MSCs in vitro and in vivo. Moreover, RNA sequencing showed that the expression of MGP, an osteocalcin/matrix Gla family member, was significantly upregulated after APPL1 knockdown. Mechanistically, our study showed that reduced APPL1 impaired the osteogenic differentiation of mesenchymal stem cells by facilitating MGP expression to disrupt the BMP2 pathway in osteoporosis. We also evaluated the significance of APPL1 in promoting osteogenesis in a mouse model of osteoporosis. These results suggest that APPL1 may be an important target for the diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weiquan Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Xinglang Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Chenhao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Quanfeng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Pengfei Ji
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Jiaxin Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Pei Feng
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China.
| |
Collapse
|
29
|
Chen Z, Ding W, Duan P, Lv X, Feng Y, Yin Z, Luo Z, Li Z, Zhang H, Zhou T, Tan H. HWJMSC-derived extracellular vesicles ameliorate IL-1β-induced chondrocyte injury through regulation of the BMP2/RUNX2 axis via up-regulation TFRC. Cell Signal 2023; 105:110604. [PMID: 36669606 DOI: 10.1016/j.cellsig.2023.110604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Articular osteochondral injury is a common and frequently occurring disease in orthopedics that is caused by aging, disease, and trauma. The cytokine interleukin-1β (IL-1β) is a crucial mediator of the inflammatory response, which exacerbates damage during chronic disease and acute tissue injury. Human Wharton's jelly mesenchymal stem cell (HWJMSC) extracellular vesicles (HWJMSC-EVs) have been shown to promote cartilage regeneration. The study aimed to investigate the influence and mechanisms of HWJMSC-EVs on the viability, apoptosis, and cell cycle of IL-1β-induced chondrocytes. HWJMSC-EVs were isolated by Ribo™ Exosome Isolation Reagent kit. Nanoparticle tracking analysis was used to determine the size and concentration of HWJMSC-EVs. We characterized HWJMSC-EVs by western blot and transmission electron microscope. The differentiation, viability, and protein level of chondrocytes were measured by Alcian blue staining, Cell Counting Kit-8, and western blot, respectively. Flow cytometer was used to determine apoptosis and cell cycle of chondrocytes. The results showed that HWJMSCs relieved IL-1β-induced chondrocyte injury by inhibiting apoptosis and elevating viability and cell cycle of chondrocyte, which was reversed with exosome inhibitor (GW4869). HWJMSC-EVs were successfully extracted and proven to be uptake by chondrocytes. HWJMSC-EVs ameliorate IL-1β-induced chondrocyte injury by inhibiting cell apoptosis and elevating viability and cycle of cell, but these effects were effectively reversed by knockdown of transferrin receptor (TFRC). Notably, using bone morphogenetic protein 2 (BMP2) pathway agonist and inhibitor suggested that HWJMSC-EVs ameliorate IL-1β-induced chondrocyte injury through activating the BMP2 pathway via up-regulation TFRC. Furthermore, over-expression of runt-related transcription factor 2 (RUNX2) reversed the effects of BMP2 pathway inhibitor promotion of IL-1β-induced chondrocyte injury. These results suggested that HWJMSC-EVs ameliorate IL-1β-induced chondrocyte injury by regulating the BMP2/RUNX2 axis via up-regulation TFRC. HWJMSC-EVs may play a new insight for early medical interventions in patients with articular osteochondral injury.
Collapse
Affiliation(s)
- Zhian Chen
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Wei Ding
- College of Medicine Technology, Yunnan Medical Health College, Kunming City, Yunnan Province, China
| | - Peiya Duan
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Xiaoyu Lv
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Yujiao Feng
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Zhengbo Yin
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Zhihong Luo
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Zhigui Li
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Hua Zhang
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Tianhua Zhou
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| | - Hongbo Tan
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| |
Collapse
|
30
|
Progress of Wnt Signaling Pathway in Osteoporosis. Biomolecules 2023; 13:biom13030483. [PMID: 36979418 PMCID: PMC10046187 DOI: 10.3390/biom13030483] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoporosis, one of the serious health diseases, involves bone mass loss, bone density diminishing, and degeneration of bone microstructure, which is accompanied by a tendency toward bone fragility and a predisposition to fracture. More than 200 million people worldwide suffer from osteoporosis, and the cost of treating osteoporotic fractures is expected to reach at least $25 billion by 2025. The generation and development of osteoporosis are regulated by genetic factors and regulatory factors such as TGF-β, BMP, and FGF through multiple pathways, including the Wnt signaling pathway, the Notch signaling pathway, and the MAPK signaling pathway. Among them, the Wnt signaling pathway is one of the most important pathways. It is not only involved in bone development and metabolism but also in the differentiation and proliferation of chondrocytes, mesenchymal stem cells, osteoclasts, and osteoblasts. Dkk-1 and SOST are Wnt inhibitory proteins that can inhibit the activation of the canonical Wnt signaling pathway and block the proliferation and differentiation of osteoblasts. Therefore, they may serve as potential targets for the treatment of osteoporosis. In this review, we analyzed the mechanisms of Wnt proteins, β-catenin, and signaling molecules in the process of signal transduction and summarized the relationship between the Wnt signaling pathway and bone-related cells. We hope to attract attention to the role of the Wnt signaling pathway in osteoporosis and offer new perspectives and approaches to making a diagnosis and giving treatment for osteoporosis.
Collapse
|
31
|
Ueharu H, Pan H, Hayano S, Zapien-Guerra K, Yang J, Mishina Y. Augmentation of bone morphogenetic protein signaling in cranial neural crest cells in mice deforms skull base due to premature fusion of intersphenoidal synchondrosis. Genesis 2023; 61:e23509. [PMID: 36622051 PMCID: PMC10757424 DOI: 10.1002/dvg.23509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023]
Abstract
Craniofacial anomalies (CFAs) are a diverse group of disorders affecting the shapes of the face and the head. Malformation of the cranial base in humans leads CFAs, such as midfacial hypoplasia and craniosynostosis. These patients have significant burdens associated with breathing, speaking, and chewing. Invasive surgical intervention is the current primary option to correct these structural deficiencies. Understanding molecular cellular mechanism for craniofacial development would provide novel therapeutic options for CFAs. In this study, we found that enhanced bone morphogenetic protein (BMP) signaling in cranial neural crest cells (NCCs) (P0-Cre;caBmpr1a mice) causes premature fusion of intersphenoid synchondrosis (ISS) resulting in leading to short snouts and hypertelorism. Histological analyses revealed reduction of proliferation and higher cell death in ISS at postnatal day 3. We demonstrated to prevent the premature fusion of ISS in P0-Cre;caBmpr1a mice by injecting a p53 inhibitor Pifithrin-α to the pregnant mother from E15.5 to E18.5, resulting in rescue from short snouts and hypertelorism. We further demonstrated to prevent premature fusion of cranial sutures in P0-Cre;caBmpr1a mice by injecting Pifithrin-α through E8.5 to E18.5. These results suggested that enhanced BMP-p53-induced cell death in cranial NCCs causes premature fusion of ISS and sutures in time-dependent manner.
Collapse
Affiliation(s)
- Hiroki Ueharu
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Satoru Hayano
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Karen Zapien-Guerra
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Jingwen Yang
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Effects of Tuina on cartilage degradation and chondrocyte terminal differentiation in rats with knee osteoarthritis (KOA) via the Wnt/β-catenin signaling pathway. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2023. [DOI: 10.1007/s11726-023-1354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
33
|
Kim K, Kim MG, Lee GM. Improving bone morphogenetic protein (BMP) production in CHO cells through understanding of BMP synthesis, signaling and endocytosis. Biotechnol Adv 2023; 62:108080. [PMID: 36526238 DOI: 10.1016/j.biotechadv.2022.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors with the clinical potential to regulate cartilage and bone formation. Functionally active mature recombinant human BMPs (rhBMPs), produced primarily in Chinese hamster ovary (CHO) cells for clinical applications, are considered difficult to express because they undergo maturation processes, signaling pathways, or endocytosis. Although BMPs are a family of proteins with similar mature domain sequence identities, their individual properties are diverse. Thus, understanding the properties of individual rhBMPs is essential to improve rhBMP production in CHO cells. In this review, we discuss various approaches to improve rhBMP production in CHO cells by understanding the overall maturation process, signaling pathways and endocytosis of individual rhBMPs.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mi Gyeom Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
34
|
Xiao Y, Shen Q, Li W, Zhang Y, Yin K, Xu Y. 280 mT static magnetic field promotes the growth of postpartum condylar cartilage. Connect Tissue Res 2022; 64:248-261. [PMID: 36469671 DOI: 10.1080/03008207.2022.2148527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Functional appliances made of permanent magnets have been used in jaw orthopedic treatment. However, whether the static magnetic field (SMF) generated by permanent magnets promotes the developmental sequence of condylar cartilage and thus promotes the growth of the mandible remains to be studied. The aim of this study was to investigate the effects of 280 mT SMF on postnatal condylar chondrogenesis and endochondral ossification and the roles of FLRT3, FGF2 and BMP2 signaling in this chondrodevelopmental sequences. METHODS Forty-eight rats were assigned to two groups (control and SMF). The condyles were collected at the specified time points. The histomorphological changes in the condyle were observed by histological staining. The expression of proteins related to the proliferation and differentiation of the condylar cartilage and the changes in subchondral bone microstructure were analyzed by immunohistochemical staining and micro-CT scanning. FLRT3, FGF2, and BMP2 expression was detected by immunofluorescence staining. RESULTS Under SMF stimulation, the cartilage of young rats grew longitudinally and laterally, and the thickness of the cartilage became thinner as it grew. The SMF promoted the proliferation and differentiation of condylar chondrocytes and endochondral ossification and increased subchondral bone mineral density, and BMP2 signaling was involved. Moreover, under SMF loading, the increased expression of FGF2 and FLRT3 were involved in regulating cartilage morphogenesis and growth. In late development, the decreased expression of FGF2/FLRT3 and the increased expression of BMP2 promoted endochondral ossification. The SMF accelerated this opposite expression trend. CONCLUSION FGF2/FLRT3 and BMP2 signals are involved in the regulatory effect of SMF exposure on chondrogenesis and endochondral ossification, which provides a theoretical basis for the clinical use of magnetic appliances to promote condylar growth.
Collapse
Affiliation(s)
- Yiwen Xiao
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, China.,Department of Stomatology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, China.,Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Qinhao Shen
- Yunnan Key Laboratory of Stomatology, Kunming, China.,Department of the first dental clinic, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Weihao Li
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yibo Zhang
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Kang Yin
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Yanhua Xu
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| |
Collapse
|
35
|
Matrix from urine stem cells boosts tissue-specific stem cell mediated functional cartilage reconstruction. Bioact Mater 2022; 23:353-367. [PMID: 36474659 PMCID: PMC9709166 DOI: 10.1016/j.bioactmat.2022.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Articular cartilage has a limited capacity to self-heal once damaged. Tissue-specific stem cells are a solution for cartilage regeneration; however, ex vivo expansion resulting in cell senescence remains a challenge as a large quantity of high-quality tissue-specific stem cells are needed for cartilage regeneration. Our previous report demonstrated that decellularized extracellular matrix (dECM) deposited by human synovium-derived stem cells (SDSCs), adipose-derived stem cells (ADSCs), urine-derived stem cells (UDSCs), or dermal fibroblasts (DFs) provided an ex vivo solution to rejuvenate human SDSCs in proliferation and chondrogenic potential, particularly for dECM deposited by UDSCs. To make the cell-derived dECM (C-dECM) approach applicable clinically, in this study, we evaluated ex vivo rejuvenation of rabbit infrapatellar fat pad-derived stem cells (IPFSCs), an easily accessible alternative for SDSCs, by the abovementioned C-dECMs, in vivo application for functional cartilage repair in a rabbit osteochondral defect model, and potential cellular and molecular mechanisms underlying this rejuvenation. We found that C-dECM rejuvenation promoted rabbit IPFSCs' cartilage engineering and functional regeneration in both ex vivo and in vivo models, particularly for the dECM deposited by UDSCs, which was further confirmed by proteomics data. RNA-Seq analysis indicated that both mesenchymal-epithelial transition (MET) and inflammation-mediated macrophage activation and polarization are potentially involved in the C-dECM-mediated promotion of IPFSCs' chondrogenic capacity, which needs further investigation.
Collapse
|
36
|
Expression Profile of New Gene Markers Involved in Differentiation of Canine Adipose-Derived Stem Cells into Chondrocytes. Genes (Basel) 2022; 13:genes13091664. [PMID: 36140831 PMCID: PMC9498306 DOI: 10.3390/genes13091664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The interest in stem cell research continuously increased over the last decades, becoming one of the most important trends in the 21st century medicine. Stem cell-based therapies have a potential to become a solution for a range of currently untreatable diseases, such as spinal cord injuries, type I diabetes, Parkinson’s disease, heart disease, stroke, and osteoarthritis. Hence, this study, based on canine material, aims to investigate the molecular basis of adipose-derived stem cell (ASC) differentiation into chondrocytes, to serve as a transcriptomic reference for further research aiming to introduce ASC into treatment of bone and cartilage related diseases, such as osteoarthritis in veterinary medicine. Adipose tissue samples were harvested from a canine specimen subjected to a routine ovariohysterecromy procedure at an associated veterinary clinic. The material was treated for ASC isolation and chondrogenic differentiation. RNA samples were isolated at day 1 of culture, day 30 of culture in unsupplemented culture media, and day 30 of culture in chondrogenic differentiation media. The resulting RNA was analyzed using RNAseq assays, with the results validated by RT-qPCR. Between differentiated chondrocytes, early and late cultures, most up- and down-regulated genes in each comparison were selected for further analysis., there are several genes (e.g., MMP12, MPEG1, CHI3L1, and CD36) that could be identified as new markers of chondrogenesis and the influence of long-term culture conditions on ASCs. The results of the study prove the usefulness of the in vitro culture model, providing further molecular insight into the processes associated with ASC culture and differentiation. Furthermore, the knowledge obtained could be used as a molecular reference for future in vivo and clinical studies.
Collapse
|
37
|
Collagen Modulates the Biological Characteristics of WJ-MSCs in Basal and Osteoinduced Conditions. Stem Cells Int 2022; 2022:2116367. [PMID: 36071734 PMCID: PMC9441371 DOI: 10.1155/2022/2116367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
Transcriptomic analysis revealed mesenchymal stem/stromal cells (MSCs) from various origins exhibited distinct gene and protein expression profiles dictating their biological properties. Although collagen type 1 (COL) has been widely studied in bone marrow MSCs, its role in regulating cell fate of Wharton jelly- (WJ-) MSCs is not well understood. In this study, we investigated the effects of collagen on the characteristics of WJ-MSCs associated with proliferation, surface markers, adhesion, migration, self-renewal, and differentiation capabilities through gene expression studies. The isolated WJ-MSCs expressed positive surface markers but not negative markers. Gene expression profiles showed that COL not only maintained the pluripotency, self-renewal, and immunophenotype of WJ-MSCs but also primed cells toward lineage differentiations by upregulating BMP2 and TGFB1 genes. Upon osteoinduction, WJ-MSC-COL underwent osteogenesis by switching on the transcription of BMP6/7 and TGFB3 followed by activation of downstream target genes such as INS, IGF1, RUNX2, and VEGFR2 through p38 signalling. This molecular event was also accompanied by hypomethylation at the OCT4 promoter and increase of H3K9 acetylation. In conclusion, COL provides a conducive cellular environment in priming WJ-MSCs that undergo a lineage specification upon receiving an appropriate signal from extrinsic factor. These findings would contribute to better control of fate determination of MSCs for therapeutic applications related to bone disease.
Collapse
|
38
|
Wang K, Zhou C, Li L, Dai C, Wang Z, Zhang W, Xu J, Zhu Y, Pan Z. Aucubin promotes bone-fracture healing via the dual effects of anti-oxidative damage and enhancing osteoblastogenesis of hBM-MSCs. Stem Cell Res Ther 2022; 13:424. [PMID: 35986345 PMCID: PMC9389815 DOI: 10.1186/s13287-022-03125-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Aucubin (AU), an iridoid glucoside isolated from many traditional herbal medicines, has anti-osteoporosis and anti-apoptosis bioactivities. However, the effect of AU on the treatment of bone-fracture remains unknown. In the present study, the aims were to investigate the roles and mechanisms of AU not only on osteoblastogenesis of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) and anti-oxidative stress injury in vitro, but also on bone-fracture regeneration by a rat tibial fracture model in vivo. Methods CCK-8 assay was used to assess the effect of AU on the viability and proliferation of hBM-MSCs. The expression of specific genes and proteins on osteogenesis, apoptosis and signaling pathways was measured by qRT-PCR, western blotting and immunofluorescence analysis. ALP staining and quantitative analysis were performed to evaluate ALP activity. ARS and quantitative analysis were performed to evaluate calcium deposition. DCFH-DA staining was used to assess the level of reactive oxygen species (ROS). A rat tibial fracture model was established to validate the therapeutic effect of AU in vivo. Micro-CT with quantitative analysis and histological evaluation were used to assess the therapeutic effect of AU locally injection at the fracture site. Results Our results revealed that AU did not affect the viability and proliferation of hBM-MSCs. Compared with control group, western blotting, PCR, ALP activity and calcium deposition proved that AU-treated groups promoted osteogenesis of hBM-MSCs. The ratio of phospho-Smad1/5/9 to total Smad also significantly increased after treatment of AU. AU-induced expression of BMP2 signaling target genes BMP2 and p-Smad1/5/9 as well as of osteogenic markers COL1A1 and RUNX2 was downregulated after treating with noggin and LDN193189. Furthermore, AU promoted the translocation of Nrf2 from cytoplasm to nucleus and the expression level of HO1 and NQO1 after oxidative damage. In a rat tibial fracture model, local injection of AU promoted bone regeneration. Conclusions Our study demonstrates the dual effects of AU in not only promoting bone-fracture healing by regulating osteogenesis of hBM-MSCs partly via canonical BMP2/Smads signaling pathway but also suppressing oxidative stress damage partly via Nrf2/HO1 signaling pathway.
Collapse
|
39
|
Song S, Zhang H, Wang X, Chen W, Cao W, Zhang Z, Shi C. The role of mechanosensitive Piezo1 channel in diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:39-49. [PMID: 35436566 DOI: 10.1016/j.pbiomolbio.2022.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Mechanotransduction is associated with organ development and homoeostasis. Piezo1 and Piezo2 are novel mechanosensitive ion channels (MSCs) in mammals. MSCs are membrane proteins that are critical for the mechanotransduction of living cells. Current studies have demonstrated that the Piezo protein family not only functions in volume regulation, cellular migration, proliferation, and apoptosis but is also important for human diseases of various systems. The complete loss of Piezo1 and Piezo2 function is fatal in the embryonic period. This review summarizes the role of Piezo1 in diseases of different systems and perspectives potential treatments related to Piezo1 for these diseases.
Collapse
Affiliation(s)
- Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Hong Zhang
- Department of Cardiac Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Wei Chen
- Department of Urology, The Affiliated Xinqiao Hospital, The Third Military Medical University, Chongqing, 400038, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Zhe Zhang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
40
|
Ahmed AKMA, Nakagawa H, Isaksen TJ, Yamashita T. The effects of Bone Morphogenetic Protein 4 on adult neural stem cell proliferation, differentiation and survival in an in vitro model of ischemic stroke. Neurosci Res 2022; 183:17-29. [PMID: 35870553 DOI: 10.1016/j.neures.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
The subventricular zone (SVZ) of the lateral ventricles represents a main region where neural stem cells (NSCs) of the mature central nervous system (CNS) reside. Bone Morphogenetic Proteins (BMPs) are the largest subclass of the transforming growth factor-β (TGF-β) superfamily of ligands. BMP4 is one such member and plays important roles in adult NSC differentiation. However, the exact effects of BMP4 on SVZ adult NSCs in CNS ischemia are still unknown. Using oxygen and glucose deprivation (OGD) as an in vitro model of ischemia, we examined the behavior of adult NSCs. We observed that anoxia resulted in reduced viability of adult NSCs, and that BMP4 treatment clearly rescued apoptotic cell death following anoxia. Furthermore, BMP4 treatment exhibited a strong inhibitory effect on cellular proliferation of the adult NSCs in normoxic conditions. Moreover, such inhibitory effects of BMP4 treatment were also found in OGD conditions, despite the enhanced cellular proliferation of the adult NSCs that was observed under such ischemic conditions. Increased neuronal and astroglial commitment of adult NSCs were found in the OGD conditions, whereas a reduction in differentiated neurons and an increase in differentiated astrocytes were observed following BMP4 treatment. The present data indicate that BMP4 modulates proliferation and differentiation of SVZ-derived adult NSCs and promotes cell survival in the in vitro model of ischemic stroke.
Collapse
Affiliation(s)
- Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Nakagawa
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toke Jost Isaksen
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Bioscience, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
41
|
Rizzo MG, Palermo N, D’Amora U, Oddo S, Guglielmino SPP, Conoci S, Szychlinska MA, Calabrese G. Multipotential Role of Growth Factor Mimetic Peptides for Osteochondral Tissue Engineering. Int J Mol Sci 2022; 23:ijms23137388. [PMID: 35806393 PMCID: PMC9266819 DOI: 10.3390/ijms23137388] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
Articular cartilage is characterized by a poor self-healing capacity due to its aneural and avascular nature. Once injured, it undergoes a series of catabolic processes which lead to its progressive degeneration and the onset of a severe chronic disease called osteoarthritis (OA). In OA, important alterations of the morpho-functional organization occur in the cartilage extracellular matrix, involving all the nearby tissues, including the subchondral bone. Osteochondral engineering, based on a perfect combination of cells, biomaterials and biomolecules, is becoming increasingly successful for the regeneration of injured cartilage and underlying subchondral bone tissue. To this end, recently, several peptides have been explored as active molecules and enrichment motifs for the functionalization of biomaterials due to their ability to be easily chemically synthesized, as well as their tunable physico-chemical features, low immunogenicity issues and functional group modeling properties. In addition, they have shown a good aptitude to penetrate into the tissue due to their small size and stability at room temperature. In particular, growth-factor-derived peptides can play multiple functions in bone and cartilage repair, exhibiting chondrogenic/osteogenic differentiation properties. Among the most studied peptides, great attention has been paid to transforming growth factor-β and bone morphogenetic protein mimetic peptides, cell-penetrating peptides, cell-binding peptides, self-assembling peptides and extracellular matrix-derived peptides. Moreover, recently, phage display technology is emerging as a powerful selection technique for obtaining functional peptides on a large scale and at a low cost. In particular, these peptides have demonstrated advantages such as high biocompatibility; the ability to be immobilized directly on chondro- and osteoinductive nanomaterials; and improving the cell attachment, differentiation, development and regeneration of osteochondral tissue. In this context, the aim of the present review was to go through the recent literature underlining the importance of studying novel functional motifs related to growth factor mimetic peptides that could be a useful tool in osteochondral repair strategies. Moreover, the review summarizes the current knowledge of the use of phage display peptides in osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Nicoletta Palermo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials—National Research Council, Viale J. F. Kennedy 54, Mostra d’Oltremare, Pad. 20, 80125 Naples, Italy;
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Salvatore Pietro Paolo Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Correspondence: (S.C.); (G.C.)
| | - Marta Anna Szychlinska
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy;
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (M.G.R.); (N.P.); (S.O.); (S.P.P.G.)
- Correspondence: (S.C.); (G.C.)
| |
Collapse
|
42
|
The Emerging Role of Cell Transdifferentiation in Skeletal Development and Diseases. Int J Mol Sci 2022; 23:ijms23115974. [PMID: 35682655 PMCID: PMC9180549 DOI: 10.3390/ijms23115974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The vertebrate musculoskeletal system is known to be formed by mesenchymal stem cells condensing into tissue elements, which then differentiate into cartilage, bone, tendon/ligament, and muscle cells. These lineage-committed cells mature into end-stage differentiated cells, like hypertrophic chondrocytes and osteocytes, which are expected to expire and to be replaced by newly differentiated cells arising from the same lineage pathway. However, there is emerging evidence of the role of cell transdifferentiation in bone development and disease. Although the concept of cell transdifferentiation is not new, a breakthrough in cell lineage tracing allowed scientists to trace cell fates in vivo. Using this powerful tool, new theories have been established: (1) hypertrophic chondrocytes can transdifferentiate into bone cells during endochondral bone formation, fracture repair, and some bone diseases, and (2) tendon cells, beyond their conventional role in joint movement, directly participate in normal bone and cartilage formation, and ectopic ossification. The goal of this review is to obtain a better understanding of the key roles of cell transdifferentiation in skeletal development and diseases. We will first review the transdifferentiation of chondrocytes to bone cells during endochondral bone formation. Specifically, we will include the history of the debate on the fate of chondrocytes during bone formation, the key findings obtained in recent years on the critical factors and molecules that regulate this cell fate change, and the role of chondrocyte transdifferentiation in skeletal trauma and diseases. In addition, we will also summarize the latest discoveries on the novel roles of tendon cells and adipocytes on skeletal formation and diseases.
Collapse
|
43
|
Bordukalo-Nikšić T, Kufner V, Vukičević S. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Front Immunol 2022; 13:869422. [PMID: 35558080 PMCID: PMC9086899 DOI: 10.3389/fimmu.2022.869422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
In response to mechanical forces and the aging process, bone in the adult skeleton is continuously remodeled by a process in which old and damaged bone is removed by bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming cells, osteoblasts. During this essential process of bone remodeling, osteoclastic resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells, multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic lineage and their differentiation is driven by distinct signaling molecules and transcription factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator Nuclear Factor-κB Ligand (RANKL). Besides their resorption activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast precursors to the bone surface, regulating thus the whole process of bone remodeling. Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved in numerous molecular and signaling pathways, have significant role in osteoblast-osteoclast communication and significantly impact bone remodeling. It is well known that BMPs help to maintain healthy bone by stimulating osteoblast mineralization, differentiation and survival. Recently, increasing evidence indicates that BMPs not only help in the anabolic part of bone remodeling process but also significantly influence bone catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The dual effect of BMPs on bone mineralization and resorption highlights the essential role of BMP signaling in bone homeostasis and they also appear to be involved in pathological processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and -7) were approved for clinical use; however, increased bone resorption rather than formation were observed in clinical applications, suggesting the role BMPs have in osteoclast activation and subsequent osteolysis. Here, we summarize the current knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone remodeling, and osteoblast–osteoclast coupling. Furthermore, discussion of clinical application of recombinant BMP therapy is based on recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
44
|
Seetharam AS, Vu HTH, Choi S, Khan T, Sheridan MA, Ezashi T, Roberts RM, Tuteja G. The product of BMP-directed differentiation protocols for human primed pluripotent stem cells is placental trophoblast and not amnion. Stem Cell Reports 2022; 17:1289-1302. [PMID: 35594861 PMCID: PMC9214062 DOI: 10.1016/j.stemcr.2022.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that trophoblast (TB) can be generated from primed pluripotent stem cells (PSCs) by exposure to bone morphogenetic protein-4 (BMP4) when FGF2 and ACTIVIN signaling is minimized has recently been challenged with the suggestion that the procedure instead produces amnion. Here, by analyzing transcriptome data from multiple sources, including bulk and single-cell data, we show that the BMP4 procedure generates bona fide TB with similarities to both placental villous TB and TB generated from TB stem cells. The analyses also suggest that the transcriptomic signatures between embryonic amnion and different forms of TB have commonalities. Our data provide justification for the continued use of TB derived from PSCs as a model for investigating placental development. Cells differentiated by using BAP protocols resemble TB more than embryonic amnion Deviation from the standard BAP protocol results in less differentiated TB Single-cell/nucleus RNA-seq analysis identifies two syncytiotrophoblast populations
Collapse
Affiliation(s)
- Arun S Seetharam
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA; Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Ha T H Vu
- Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Sehee Choi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Obstetrics and Gynecology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Teka Khan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Megan A Sheridan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Obstetrics and Gynecology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Toshihiko Ezashi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - R Michael Roberts
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Geetu Tuteja
- Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
45
|
Zhu L, Liu Y, Wang A, Zhu Z, Li Y, Zhu C, Che Z, Liu T, Liu H, Huang L. Application of BMP in Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 10:810880. [PMID: 35433652 PMCID: PMC9008764 DOI: 10.3389/fbioe.2022.810880] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/01/2022] [Indexed: 01/15/2023] Open
Abstract
At present, bone nonunion and delayed union are still difficult problems in orthopaedics. Since the discovery of bone morphogenetic protein (BMP), it has been widely used in various studies due to its powerful role in promoting osteogenesis and chondrogenesis. Current results show that BMPs can promote healing of bone defects and reduce the occurrence of complications. However, the mechanism of BMP in vivo still needs to be explored, and application of BMP alone to a bone defect site cannot achieve good therapeutic effects. It is particularly important to modify implants to carry BMP to achieve slow and sustained release effects by taking advantage of the nature of the implant. This review aims to explain the mechanism of BMP action in vivo, its biological function, and how BMP can be applied to orthopaedic implants to effectively stimulate bone healing in the long term. Notably, implantation of a system that allows sustained release of BMP can provide an effective method to treat bone nonunion and delayed bone healing in the clinic.
Collapse
Affiliation(s)
- Liwei Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengqing Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Youbin Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Chenyi Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhenjia Che
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Tengyue Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| | - Lanfeng Huang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| |
Collapse
|
46
|
Bottasso-Arias N, Leesman L, Burra K, Snowball J, Shah R, Mohanakrishnan M, Xu Y, Sinner D. BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L224-L242. [PMID: 34851738 PMCID: PMC8794023 DOI: 10.1152/ajplung.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tracheobronchomalacia and complete tracheal rings are congenital malformations of the trachea associated with morbidity and mortality for which the etiology remains poorly understood. Epithelial expression of Wls (a cargo receptor mediating Wnt ligand secretion) by tracheal cells is essential for patterning the embryonic mouse trachea's cartilage and muscle. RNA sequencing indicated that Wls differentially modulated the expression of BMP signaling molecules. We tested whether BMP signaling, induced by epithelial Wnt ligands, mediates cartilage formation. Deletion of Bmp4 from respiratory tract mesenchyme impaired tracheal cartilage formation that was replaced by ectopic smooth muscle, recapitulating the phenotype observed after epithelial deletion of Wls in the embryonic trachea. Ectopic muscle was caused in part by anomalous differentiation and proliferation of smooth muscle progenitors rather than tracheal cartilage progenitors. Mesenchymal deletion of Bmp4 impaired expression of Wnt/β-catenin target genes, including targets of WNT signaling: Notum and Axin2. In vitro, recombinant (r)BMP4 rescued the expression of Notum in Bmp4-deficient tracheal mesenchymal cells and induced Notum promoter activity via SMAD1/5. RNA sequencing of Bmp4-deficient tracheas identified genes essential for chondrogenesis and muscle development coregulated by BMP and WNT signaling. During tracheal morphogenesis, WNT signaling induces Bmp4 in mesenchymal progenitors to promote cartilage differentiation and restrict trachealis muscle. In turn, Bmp4 differentially regulates the expression of Wnt/β-catenin targets to attenuate mesenchymal WNT signaling and to further support chondrogenesis.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lauren Leesman
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kaulini Burra
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John Snowball
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ronak Shah
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Megha Mohanakrishnan
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,2University of Cincinnati Honors Program, Cincinnati, Ohio
| | - Yan Xu
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Debora Sinner
- 1Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Universtiy of Cincinnati, College of Medicine, Cincinnati, Ohio
| |
Collapse
|
47
|
Marchini M, Ashkin MR, Bellini M, Sun MMG, Workentine ML, Okuyan HM, Krawetz R, Beier F, Rolian C. A Na +/K + ATPase Pump Regulates Chondrocyte Differentiation and Bone Length Variation in Mice. Front Cell Dev Biol 2022; 9:708384. [PMID: 34970538 PMCID: PMC8712571 DOI: 10.3389/fcell.2021.708384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
The genetic and developmental mechanisms involved in limb formation are relatively well documented, but how these mechanisms are modulated by changes in chondrocyte physiology to produce differences in limb bone length remains unclear. Here, we used high throughput RNA sequencing (RNAseq) to probe the developmental genetic basis of variation in limb bone length in Longshanks, a mouse model of experimental evolution. We find that increased tibia length in Longshanks is associated with altered expression of a few key endochondral ossification genes such as Npr3, Dlk1, Sox9, and Sfrp1, as well reduced expression of Fxyd2, a facultative subunit of the cell membrane-bound Na+/K+ ATPase pump (NKA). Next, using murine tibia and cell cultures, we show a dynamic role for NKA in chondrocyte differentiation and in bone length regulation. Specifically, we show that pharmacological inhibition of NKA disrupts chondrocyte differentiation, by upregulating expression of mesenchymal stem cell markers (Prrx1, Serpina3n), downregulation of chondrogenesis marker Sox9, and altered expression of extracellular matrix genes (e.g., collagens) associated with proliferative and hypertrophic chondrocytes. Together, Longshanks and in vitro data suggest a broader developmental and evolutionary role of NKA in regulating limb length diversity.
Collapse
Affiliation(s)
- Marta Marchini
- Department of Anatomy and Cell Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Mitchell R Ashkin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Melina Bellini
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Margaret Man-Ger Sun
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Matthew Lloyd Workentine
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hamza Malik Okuyan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Roman Krawetz
- Department of Anatomy and Cell Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Campbell Rolian
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
48
|
Caetano-Silva S, Simbi BH, Marr N, Hibbert A, Allen SP, Pitsillides AA. Restraint upon Embryonic Metatarsal Ex Vivo Growth by Hydrogel Reveals Interaction between Quasi-Static Load and the mTOR Pathway. Int J Mol Sci 2021; 22:ijms222413220. [PMID: 34948015 PMCID: PMC8706285 DOI: 10.3390/ijms222413220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Mechanical cues play a vital role in limb skeletal development, yet their influence and underpinning mechanisms in the regulation of endochondral ossification (EO) processes are incompletely defined. Furthermore, interactions between endochondral growth and mechanics and the mTOR/NF-ĸB pathways are yet to be explored. An appreciation of how mechanical cues regulate EO would also clearly be beneficial in the context of fracture healing and bone diseases, where these processes are recapitulated. The study herein addresses the hypothesis that the mTOR/NF-ĸB pathways interact with mechanics to control endochondral growth. To test this, murine embryonic metatarsals were incubated ex vivo in a hydrogel, allowing for the effects of quasi-static loading on longitudinal growth to be assessed. The results showed significant restriction of metatarsal growth under quasi-static loading during a 14-day period and concentration-dependent sensitivity to hydrogel-related restriction. This study also showed that hydrogel-treated metatarsals retain their viability and do not present with increased apoptosis. Metatarsals exhibited reversal of the growth-restriction when co-incubated with mTOR compounds, whilst it was found that these compounds showed no effects under basal culture conditions. Transcriptional changes linked to endochondral growth were assessed and downregulation of Col2 and Acan was observed in hydrogel-treated metatarsi at day 7. Furthermore, cell cycle analyses confirmed the presence of chondrocytes exhibiting S-G2/M arrest. These data indicate that quasi-static load provokes chondrocyte cell cycle arrest, which is partly overcome by mTOR, with a less marked interaction for NF-ĸB regulators.
Collapse
|
49
|
Khurana S, Schivo S, Plass JRM, Mersinis N, Scholma J, Kerkhofs J, Zhong L, van de Pol J, Langerak R, Geris L, Karperien M, Post JN. An ECHO of Cartilage: In Silico Prediction of Combinatorial Treatments to Switch Between Transient and Permanent Cartilage Phenotypes With Ex Vivo Validation. Front Bioeng Biotechnol 2021; 9:732917. [PMID: 34869253 PMCID: PMC8634894 DOI: 10.3389/fbioe.2021.732917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
A fundamental question in cartilage biology is: what determines the switch between permanent cartilage found in the articular joints and transient hypertrophic cartilage that functions as a template for bone? This switch is observed both in a subset of OA patients that develop osteophytes, as well as in cell-based tissue engineering strategies for joint repair. A thorough understanding of the mechanisms regulating cell fate provides opportunities for treatment of cartilage disease and tissue engineering strategies. The objective of this study was to understand the mechanisms that regulate the switch between permanent and transient cartilage using a computational model of chondrocytes, ECHO. To investigate large signaling networks that regulate cell fate decisions, we developed the software tool ANIMO, Analysis of Networks with interactive Modeling. In ANIMO, we generated an activity network integrating 7 signal transduction pathways resulting in a network containing over 50 proteins with 200 interactions. We called this model ECHO, for executable chondrocyte. Previously, we showed that ECHO could be used to characterize mechanisms of cell fate decisions. ECHO was first developed based on a Boolean model of growth plate. Here, we show how the growth plate Boolean model was translated to ANIMO and how we adapted the topology and parameters to generate an articular cartilage model. In ANIMO, many combinations of overactivation/knockout were tested that result in a switch between permanent cartilage (SOX9+) and transient, hypertrophic cartilage (RUNX2+). We used model checking to prioritize combination treatments for wet-lab validation. Three combinatorial treatments were chosen and tested on metatarsals from 1-day old rat pups that were treated for 6 days. We found that a combination of IGF1 with inhibition of ERK1/2 had a positive effect on cartilage formation and growth, whereas activation of DLX5 combined with inhibition of PKA had a negative effect on cartilage formation and growth and resulted in increased cartilage hypertrophy. We show that our model describes cartilage formation, and that model checking can aid in choosing and prioritizing combinatorial treatments that interfere with normal cartilage development. Here we show that combinatorial treatments induce changes in the zonal distribution of cartilage, indication possible switches in cell fate. This indicates that simulations in ECHO aid in describing pathologies in which switches between cell fates are observed, such as OA.
Collapse
Affiliation(s)
- Sakshi Khurana
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Stefano Schivo
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands.,Department of Formal Methods and Tools, CTIT Institute, University of Twente, Enschede, Netherlands
| | - Jacqueline R M Plass
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Nikolas Mersinis
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Jetse Scholma
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Johan Kerkhofs
- Biomechanics Research Unit, GIGA In Silico Medicine, ULiège, Liège, Belgium
| | - Leilei Zhong
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Jaco van de Pol
- Department of Formal Methods and Tools, CTIT Institute, University of Twente, Enschede, Netherlands.,Dept. of Computer Science, Aarhus University, Aarhus, Denmark
| | - Rom Langerak
- Department of Formal Methods and Tools, CTIT Institute, University of Twente, Enschede, Netherlands
| | - Liesbet Geris
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Marcel Karperien
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| | - Janine N Post
- Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands
| |
Collapse
|
50
|
Owida HA, Kuiper NL, Yang Y. Maintenance and Acceleration of Pericellular Matrix Formation within 3D Cartilage Cell Culture Models. Cartilage 2021; 13:847S-861S. [PMID: 31455088 PMCID: PMC8804781 DOI: 10.1177/1947603519870839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE In native articular cartilage, chondrocytes are surrounded by a thin pericellular matrix (PCM) forming chondrons. The PCM is exclusively rich in type VI collagen. The retention of the PCM has a significant influence on the metabolic activity of the chondrocytes. DESIGN This study investigated the influence of 2 hydrogels (hyaluronic acid [HA] and agarose) and 2 media compositions (basal and chondrogenic) on the preservation/maintenance and acceleration of PCM formation over a 21-day time course. Different combinations of chondrocytes, chondrons, and mesenchymal stem cells (MSCs) were studied. RESULTS Both hydrogels preserved chondrons PCM from day 1 up to 21-day culture regardless of media composition. Type VI collagen immunostaining of the cultured chondrons appeared both dense and homogenous. The presence of MSCs did not influence this outcome. At day 1, type VI collagen was not present around chondrocytes alone or their co-culture with MSCs. In the HA hydrogel, type VI collagen was located within the PCM after 7 days in both mono- and co-cultures. In the agarose hydrogel, collagen VI was located within the PCM at 7 days (co-cultures) and 14 days (monocultures). In both hydrogel systems, chondrogenic media enhanced the production of key extracellular matrix components in both mono- and co-cultures in comparison to basal media (11.5% and 14% more in glycosaminoglycans and type II collagen for chondrocytes samples at day 21 culture samples, respectively). However, the media types did not enhance type VI collagen synthesis. CONCLUSION Altogether, a 3D chondrogenic hydrogel environment is the primary condition for maintenance and acceleration of PCM formation.
Collapse
Affiliation(s)
- Hamza A. Owida
- Institute of Science & Technology in
Medicine, School of Medicine, University of Keele, Stoke-on-Trent, UK
| | - Nicola L. Kuiper
- Institute of Science & Technology in
Medicine, School of Medicine, University of Keele, Stoke-on-Trent, UK,Arthritis Research Centre, Robert Jones
& Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Ying Yang
- Institute of Science & Technology in
Medicine, School of Medicine, University of Keele, Stoke-on-Trent, UK,Ying Yang, Institute of Science &
Technology in Medicine, School of Medicine, University of Keele, Stoke-on-Trent
ST4 7QB, UK.
| |
Collapse
|