1
|
Shi W, Gupta S, Copos C, Mogilner A. Collective mechanics of small migrating cell groups. Semin Cell Dev Biol 2025; 166:1-12. [PMID: 39647189 DOI: 10.1016/j.semcdb.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Migration of adhesive cell groups is a fundamental part of wound healing, development and carcinogenesis. Intense research has been conducted on mechanisms of collective migration of adhesive groups of cells. Here we focus on mechanical and mechanistic lessons from small migrating cell groups. We review forces and locomotory dynamics of two- and three-cell clusters, rotation of cell doublets, self-organization of one-dimensional cell trains, nascent efforts to understand three-dimensional collective migration and border cell clusters in Drosophila embryo.
Collapse
Affiliation(s)
- Wenzheng Shi
- Courant Institute, New York University, New York, NY 10012, USA.
| | - Selena Gupta
- Department of Biology, New York University, New York, NY 10012, USA.
| | - Calina Copos
- Departments of Biology and Mathematics, Northeastern University, Boston, MA 02115, USA.
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA.
| |
Collapse
|
2
|
Priante G, Ceol M, Gianesello L, Radu CM, Mantese R, Stefanelli LF, Cacciapuoti M, Martino FK, Calò LA, Anglani F, Nalesso F, Del Prete D. Human parietal epithelial cells as Trojan horses in albumin overload. Sci Rep 2025; 15:1761. [PMID: 39800742 PMCID: PMC11725586 DOI: 10.1038/s41598-024-84972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Parietal Epithelial Cells (PECs) activation and proliferation are common to several distinct forms of glomerulopathies. Due to several stimuli, PECs can change to a progenitor (CD24+ and CD133/2+) or a pro-sclerotic (CD44+) phenotype. In addition, PECs, which are constantly exposed to filtered albumin, are known to be involved in albumin internalization, but how this mechanism occurs is unknown. We hypothesized that PECs can transport albumin via receptor-mediated endocytosis and that albumin overload may affect the state of PECs. Conditionally immortalized human PECs (hPECs) were incubated with different albumin concentrations at different times. Albumin internalization studies were performed. Protein expression was assessed using In-Cell Western and immunofluorescence. Cell morphology was analyzed by phase-contrast microscopy and F-actin staining. We demonstrate that hPECs internalize albumin via receptor-mediated mechanisms. Under albumin stimulation, megalin, cubilin, ClC-5, CD133/2, CD24, and CD44 were upregulated. The increase of pERK1/2, the upregulation of ROCK1, ROCK2, caspase -3, -6, and -7, and the morphological changes associated with loss of F-actin fibers indicated that inflammation, proliferation and apoptosis mechanisms had been activated. Our results demonstrate that long-term exposure to high doses of albumin induces up-regulation of molecules involved in the tubular protein uptake machinery and suggest that albumin overload is able to trigger a regenerative process as well as an activation state which might lead in vivo to glomerular crescent formation.
Collapse
Affiliation(s)
- Giovanna Priante
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| | - Monica Ceol
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Lisa Gianesello
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Claudia Maria Radu
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Rachele Mantese
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Lucia Federica Stefanelli
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Martina Cacciapuoti
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Francesca K Martino
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Lorenzo Arcangelo Calò
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Franca Anglani
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Federico Nalesso
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Dorella Del Prete
- Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| |
Collapse
|
3
|
Latham ZD, Bermudez A, Hu JK, Lin NYC. Regulation of epithelial cell jamming transition by cytoskeleton and cell-cell interactions. BIOPHYSICS REVIEWS 2024; 5:041301. [PMID: 39416285 PMCID: PMC11479637 DOI: 10.1063/5.0220088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Multicellular systems, such as epithelial cell collectives, undergo transitions similar to those in inert physical systems like sand piles and foams. To remodel or maintain tissue organization during development or disease, these collectives transition between fluid-like and solid-like states, undergoing jamming or unjamming transitions. While these transitions share principles with physical systems, understanding their regulation and implications in cell biology is challenging. Although cell jamming and unjamming follow physics principles described by the jamming diagram, they are fundamentally biological processes. In this review, we explore how cellular processes and interactions regulate jamming and unjamming transitions. We begin with an overview of how these transitions control tissue remodeling in epithelial model systems and describe recent findings of the physical principles governing tissue solidification and fluidization. We then explore the mechanistic pathways that modulate the jamming phase diagram axes, focusing on the regulation of cell fluctuations and geometric compatibility. Drawing upon seminal works in cell biology, we discuss the roles of cytoskeleton and cell-cell adhesion in controlling cell motility and geometry. This comprehensive view illustrates the molecular control of cell jamming and unjamming, crucial for tissue remodeling in various biological contexts.
Collapse
Affiliation(s)
- Zoe D. Latham
- Bioengineering Department, UCLA, Los Angeles, California 90095, USA
| | | | - Jimmy K. Hu
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
4
|
Brückner DB, Broedersz CP. Learning dynamical models of single and collective cell migration: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:056601. [PMID: 38518358 DOI: 10.1088/1361-6633/ad36d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualising the emergent behaviour of cells. We first review how this inference problem has been addressed in both freely migrating and confined cells. Next, we discuss why these dynamics typically take the form of underdamped stochastic equations of motion, and how such equations can be inferred from data. We then review applications of data-driven inference and machine learning approaches to heterogeneity in cell behaviour, subcellular degrees of freedom, and to the collective dynamics of multicellular systems. Across these applications, we emphasise how data-driven methods can be integrated with physical active matter models of migrating cells, and help reveal how underlying molecular mechanisms control cell behaviour. Together, these data-driven approaches are a promising avenue for building physical models of cell migration directly from experimental data, and for providing conceptual links between different length-scales of description.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstr. 37, D-80333 Munich, Germany
| |
Collapse
|
5
|
Jahedi A, Kumar G, Kannan L, Agarwal T, Huse J, Bhat K, Kannan K. Gibbs process distinguishes survival and reveals contact-inhibition genes in Glioblastoma multiforme. PLoS One 2023; 18:e0277176. [PMID: 36795646 PMCID: PMC9934342 DOI: 10.1371/journal.pone.0277176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/22/2022] [Indexed: 02/17/2023] Open
Abstract
Tumor growth is a spatiotemporal birth-and-death process with loss of heterotypic contact-inhibition of locomotion (CIL) of tumor cells promoting invasion and metastasis. Therefore, representing tumor cells as two-dimensional points, we can expect the tumor tissues in histology slides to reflect realizations of spatial birth-and-death process which can be mathematically modeled to reveal molecular mechanisms of CIL, provided the mathematics models the inhibitory interactions. Gibbs process as an inhibitory point process is a natural choice since it is an equilibrium process of the spatial birth-and-death process. That is if the tumor cells maintain homotypic contact inhibition, the spatial distributions of tumor cells will result in Gibbs hard core process over long time scales. In order to verify if this is the case, we applied the Gibbs process to 411 TCGA Glioblastoma multiforme patient images. Our imaging dataset included all cases for which diagnostic slide images were available. The model revealed two groups of patients, one of which - the "Gibbs group," showed the convergence of the Gibbs process with significant survival difference. Further smoothing the discretized (and noisy) inhibition metric, for both increasing and randomized survival time, we found a significant association of the patients in the Gibbs group with increasing survival time. The mean inhibition metric also revealed the point at which the homotypic CIL establishes in tumor cells. Besides, RNAseq analysis between patients with loss of heterotypic CIL and intact homotypic CIL in the Gibbs group unveiled cell movement gene signatures and differences in Actin cytoskeleton and RhoA signaling pathways as key molecular alterations. These genes and pathways have established roles in CIL. Taken together, our integrated analysis of patient images and RNAseq data provides for the first time a mathematical basis for CIL in tumors, explains survival as well as uncovers the underlying molecular landscape for this key tumor invasion and metastatic phenomenon.
Collapse
Affiliation(s)
- Afrooz Jahedi
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | - Gayatri Kumar
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | | | | | - Jason Huse
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | - Krishna Bhat
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America
- Department of Neurosurgery, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | - Kasthuri Kannan
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States of America
- Department of Neurosurgery, UT MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
6
|
Lebedeva IV, Wagner MV, Sahdeo S, Lu YF, Anyanwu-Ofili A, Harms MB, Wadia JS, Rajagopal G, Boland MJ, Goldstein DB. Precision genetic cellular models identify therapies protective against ER stress. Cell Death Dis 2021; 12:770. [PMID: 34354042 PMCID: PMC8342410 DOI: 10.1038/s41419-021-04045-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022]
Abstract
Rare monogenic disorders often share molecular etiologies involved in the pathogenesis of common diseases. Congenital disorders of glycosylation (CDG) and deglycosylation (CDDG) are rare pediatric disorders with symptoms that range from mild to life threatening. A biological mechanism shared among CDG and CDDG as well as more common neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, is endoplasmic reticulum (ER) stress. We developed isogenic human cellular models of two types of CDG and the only known CDDG to discover drugs that can alleviate ER stress. Systematic phenotyping confirmed ER stress and identified elevated autophagy among other phenotypes in each model. We screened 1049 compounds and scored their ability to correct aberrant morphology in each model using an agnostic cell-painting assay based on >300 cellular features. This primary screen identified multiple compounds able to correct morphological phenotypes. Independent validation shows they also correct cellular phenotypes and alleviate each of the ER stress markers identified in each model. Many of the active compounds are associated with microtubule dynamics, which points to new therapeutic opportunities for both rare and more common disorders presenting with ER stress, such as Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Michelle V Wagner
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | - Sunil Sahdeo
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | - Yi-Fan Lu
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Matthew B Harms
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jehangir S Wadia
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | | | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Falkenberg LG, Beckman SA, Ravisankar P, Dohn TE, Waxman JS. Ccdc103 promotes myeloid cell proliferation and migration independent of motile cilia. Dis Model Mech 2021; 14:dmm048439. [PMID: 34028558 PMCID: PMC8214733 DOI: 10.1242/dmm.048439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
The pathology of primary ciliary dyskinesia (PCD) is predominantly attributed to impairment of motile cilia. However, PCD patients also have perplexing functional defects in myeloid cells, which lack motile cilia. Here, we show that coiled-coil domain-containing protein 103 (CCDC103), one of the genes that, when mutated, is known to cause PCD, is required for the proliferation and directed migration of myeloid cells. CCDC103 is expressed in human myeloid cells, where it colocalizes with cytoplasmic microtubules. Zebrafish ccdc103/schmalhans (smh) mutants have macrophages and neutrophils with reduced proliferation, abnormally rounded cell morphology and an inability to migrate efficiently to the site of sterile wounds, all of which are consistent with a loss of cytoplasmic microtubule stability. Furthermore, we demonstrate that direct interactions between CCDC103 and sperm associated antigen 6 (SPAG6), which also promotes microtubule stability, are abrogated by CCDC103 mutations from PCD patients, and that spag6 zebrafish mutants recapitulate the myeloid defects observed in smh mutants. In summary, we have illuminated a mechanism, independent of motile cilia, to explain functional defects in myeloid cells from PCD patients. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lauren G. Falkenberg
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati OH 45267, USA
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah A. Beckman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Padmapriyadarshini Ravisankar
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tracy E. Dohn
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati OH 45267, USA
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
8
|
Rules of contact inhibition of locomotion for cells on suspended nanofibers. Proc Natl Acad Sci U S A 2021; 118:2011815118. [PMID: 33737392 DOI: 10.1073/pnas.2011815118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Contact inhibition of locomotion (CIL), in which cells repolarize and move away from contact, is now established as a fundamental driving force in development, repair, and disease biology. Much of what we know of CIL stems from studies on two-dimensional (2D) substrates that do not provide an essential biophysical cue-the curvature of extracellular matrix fibers. We discover rules controlling outcomes of cell-cell collisions on suspended nanofibers and show them to be profoundly different from the stereotyped CIL behavior on 2D substrates. Two approaching cells attached to a single fiber do not repolarize upon contact but rather usually migrate past one another. Fiber geometry modulates this behavior; when cells attach to two fibers, reducing their freedom to reorient, only one cell repolarizes on contact, leading to the cell pair migrating as a single unit. CIL outcomes also change when one cell has recently divided and moves with high speed-cells more frequently walk past each other. Our computational model of CIL in fiber geometries reproduces the core qualitative results of the experiments robustly to model parameters. Our model shows that the increased speed of postdivision cells may be sufficient to explain their increased walk-past rate. We also identify cell-cell adhesion as a key mediator of collision outcomes. Our results suggest that characterizing cell-cell interactions on flat substrates, channels, or micropatterns is not sufficient to predict interactions in a matrix-the geometry of the fiber can generate entirely new behaviors.
Collapse
|
9
|
Brückner DB, Arlt N, Fink A, Ronceray P, Rädler JO, Broedersz CP. Learning the dynamics of cell-cell interactions in confined cell migration. Proc Natl Acad Sci U S A 2021; 118:e2016602118. [PMID: 33579821 PMCID: PMC7896326 DOI: 10.1073/pnas.2016602118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The migratory dynamics of cells in physiological processes, ranging from wound healing to cancer metastasis, rely on contact-mediated cell-cell interactions. These interactions play a key role in shaping the stochastic trajectories of migrating cells. While data-driven physical formalisms for the stochastic migration dynamics of single cells have been developed, such a framework for the behavioral dynamics of interacting cells still remains elusive. Here, we monitor stochastic cell trajectories in a minimal experimental cell collider: a dumbbell-shaped micropattern on which pairs of cells perform repeated cellular collisions. We observe different characteristic behaviors, including cells reversing, following, and sliding past each other upon collision. Capitalizing on this large experimental dataset of coupled cell trajectories, we infer an interacting stochastic equation of motion that accurately predicts the observed interaction behaviors. Our approach reveals that interacting noncancerous MCF10A cells can be described by repulsion and friction interactions. In contrast, cancerous MDA-MB-231 cells exhibit attraction and antifriction interactions, promoting the predominant relative sliding behavior observed for these cells. Based on these experimentally inferred interactions, we show how this framework may generalize to provide a unifying theoretical description of the diverse cellular interaction behaviors of distinct cell types.
Collapse
Affiliation(s)
- David B Brückner
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
| | - Nicolas Arlt
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
| | - Alexandra Fink
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
- Faculty of Physics, Ludwig-Maximilian-University, D-80539 Munich, Germany
| | - Pierre Ronceray
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544
| | - Joachim O Rädler
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany;
- Faculty of Physics, Ludwig-Maximilian-University, D-80539 Munich, Germany
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany;
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Habicht J, Mooneyham A, Hoshino A, Shetty M, Zhang X, Emmings E, Yang Q, Coombes C, Gardner MK, Bazzaro M. UNC-45A breaks the microtubule lattice independently of its effects on non-muscle myosin II. J Cell Sci 2021; 134:jcs.248815. [PMID: 33262310 DOI: 10.1242/jcs.248815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
In invertebrates, UNC-45 regulates myosin stability and functions. Vertebrates have two distinct isoforms of the protein: UNC-45B, expressed in muscle cells only, and UNC-45A, expressed in all cells and implicated in regulating both non-muscle myosin II (NMII)- and microtubule (MT)-associated functions. Here, we show that, in vitro and in human and rat cells, UNC-45A binds to the MT lattice, leading to MT bending, breakage and depolymerization. Furthermore, we show that UNC-45A destabilizes MTs independent of its C-terminal NMII-binding domain and even in the presence of the NMII inhibitor blebbistatin. These findings identified UNC-45A as a novel type of MT-severing protein with a dual non-mutually exclusive role in regulating NMII activity and MT stability. Because many human diseases, from cancer to neurodegenerative diseases, are caused by or associated with deregulation of MT stability, our findings have profound implications in the biology of MTs, as well as the biology of human diseases and possible therapeutic implications for their treatment.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Juri Habicht
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany.,Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Asumi Hoshino
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaonan Zhang
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany.,Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Edith Emmings
- Bradenburg Medical School - Theodor Fontane, Neuruppin 16816, Germany
| | - Qing Yang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Courtney Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Swiatlowska P, Sanchez-Alonso JL, Mansfield C, Scaini D, Korchev Y, Novak P, Gorelik J. Short-term angiotensin II treatment regulates cardiac nanomechanics via microtubule modifications. NANOSCALE 2020; 12:16315-16329. [PMID: 32720664 DOI: 10.1039/d0nr02474k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mechanical properties of single myocytes contribute to the whole heart performance, but the measurement of mechanics in living cells at high resolution with minimal force interaction remains challenging. Angiotensin II (AngII) is a peptide hormone that regulates a number of physiological functions, including heart performance. It has also been shown to contribute to cell mechanics by inducing cell stiffening. Using non-contact high-resolution Scanning Ion Conductance Microscopy (SICM), we determine simultaneously cell topography and membrane transverse Young's modulus (YM) by a constant pressure application through a nanopipette. While applying pressure, the vertical position is recorded and a deformation map is generated from which YM can be calculated and corrected for the uneven geometry. High resolution of this method also allows studying specific membrane subdomains, such as Z-grooves and crests. We found that short-term AngII treatment reduces the transversal YM in isolated adult rat cardiomyocytes acting via an AT1 receptor. Blocking either a TGF-β1 receptor or Rho kinase abolishes this effect. Analysis of the cytoskeleton showed that AngII depletes microtubules by decreasing long-lived detyrosinated and acetylated microtubule populations. Interestingly, in the failing cardiomyocytes, which are stiffer than controls, the short-term AngII treatment also reduces the YM, thus normalizing the mechanical state of cells. This suggests that the short-term softening effect of AngII on cardiac cells is opposite to the well-characterized long-term hypertrophic effect. In conclusion, we generate a precise nanoscale indication map of location-specific transverse cortical YM within the cell and this can substantially advance our understanding of cellular mechanics in a physiological environment, for example in isolated cardiac myocytes.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Jose L Sanchez-Alonso
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Catherine Mansfield
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Denis Scaini
- Department of Medicine, Imperial College London, London, UK and International School for Advanced Studies, Trieste, Italy
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London, UK and Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Pavel Novak
- Department of Medicine, Imperial College London, London, UK and National University of Science and Technology, MISiS, Leninskiy prospect 4, Moscow, 119991, Russia
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
12
|
Porazinski S, Parkin A, Pajic M. Rho-ROCK Signaling in Normal Physiology and as a Key Player in Shaping the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:99-127. [PMID: 32030687 DOI: 10.1007/978-3-030-35582-1_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Rho-ROCK signaling network has a range of specialized functions of key biological importance, including control of essential developmental processes such as morphogenesis and physiological processes including homeostasis, immunity, and wound healing. Deregulation of Rho-ROCK signaling actively contributes to multiple pathological conditions, and plays a major role in cancer development and progression. This dynamic network is critical in modulating the intricate communication between tumor cells, surrounding diverse stromal cells and the matrix, shaping the ever-changing microenvironment of aggressive tumors. In this chapter, we overview the complex regulation of the Rho-ROCK signaling axis, its role in health and disease, and analyze progress made with key approaches targeting the Rho-ROCK pathway for therapeutic benefit. Finally, we conclude by outlining likely future trends and key questions in the field of Rho-ROCK research, in particular surrounding Rho-ROCK signaling within the tumor microenvironment.
Collapse
Affiliation(s)
- Sean Porazinski
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| | - Ashleigh Parkin
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Marina Pajic
- Personalised Cancer Therapeutics Lab, The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Faculty of Medicine, St Vincent's Clinical School, University of NSW, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Habicht J, Mooneyham A, Shetty M, Zhang X, Shridhar V, Winterhoff B, Zhang Y, Cepela J, Starr T, Lou E, Bazzaro M. UNC-45A is preferentially expressed in epithelial cells and binds to and co-localizes with interphase MTs. Cancer Biol Ther 2019; 20:1304-1313. [PMID: 31328624 PMCID: PMC6783119 DOI: 10.1080/15384047.2019.1632637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNC-45A is an ubiquitously expressed protein highly conserved throughout evolution. Most of what we currently know about UNC-45A pertains to its role as a regulator of the actomyosin system. However, emerging studies from both our and other laboratories support a role of UNC-45A outside of actomyosin regulation. This includes studies showing that UNC-45A: regulates gene transcription, co-localizes and biochemically co-fractionates with gamma tubulin and regulates centrosomal positioning, is found in the same subcellular fractions where MT-associated proteins are, and is a mitotic spindle-associated protein with MT-destabilizing activity in absence of the actomyosin system. Here, we extended our previous findings and show that UNC45A is variably expressed across a spectrum of cell lines with the highest level being found in HeLa cells and in ovarian cancer cells inherently paclitaxel-resistant. Furthermore, we show that UNC-45A is preferentially expressed in epithelial cells, localizes to mitotic spindles in clinical tumor specimens of cancer and co-localizes and co-fractionates with MTs in interphase cells independent of actin or myosin. In sum, we report alteration of UNC45A localization in the setting of chemotherapeutic treatment of cells with paclitaxel, and localization of UNC45A to MTs both in vitro and in vivo. These findings will be important to ongoing and future studies in the field that further identify the important role of UNC45A in cancer and other cellular processes.
Collapse
Affiliation(s)
- Juri Habicht
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA.,Department of Medicine, Brandenburg Medical School Theodor Fontane , Neuruppin , Germany
| | - Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA.,Department of Oncology-Pathology, Karolinska Institutet , Stockholm , Sweden
| | - Vijayalakshmi Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester , MN , USA
| | - Boris Winterhoff
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Ying Zhang
- Minnesota Supercomputing Institute, University of MN , Minneapolis , MN , USA
| | - Jason Cepela
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Timothy Starr
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota , Minneapolis , MN , USA.,Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis , MN , USA
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
15
|
Frisch J, Angenendt A, Hoth M, Prates Roma L, Lis A. STIM-Orai Channels and Reactive Oxygen Species in the Tumor Microenvironment. Cancers (Basel) 2019; 11:E457. [PMID: 30935064 PMCID: PMC6520831 DOI: 10.3390/cancers11040457] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is shaped by cancer and noncancerous cells, the extracellular matrix, soluble factors, and blood vessels. Interactions between the cells, matrix, soluble factors, and blood vessels generate this complex heterogeneous microenvironment. The TME may be metabolically beneficial or unbeneficial for tumor growth, it may favor or not favor a productive immune response against tumor cells, or it may even favor conditions suited to hijacking the immune system for benefitting tumor growth. Soluble factors relevant for TME include oxygen, reactive oxygen species (ROS), ATP, Ca2+, H⁺, growth factors, or cytokines. Ca2+ plays a prominent role in the TME because its concentration is directly linked to cancer cell proliferation, apoptosis, or migration but also to immune cell function. Stromal-interaction molecules (STIM)-activated Orai channels are major Ca2+ entry channels in cancer cells and immune cells, they are upregulated in many tumors, and they are strongly regulated by ROS. Thus, STIM and Orai are interesting candidates to regulate cancer cell fate in the TME. In this review, we summarize the current knowledge about the function of ROS and STIM/Orai in cancer cells; discuss their interdependencies; and propose new hypotheses how TME, ROS, and Orai channels influence each other.
Collapse
Affiliation(s)
- Janina Frisch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Adrian Angenendt
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Leticia Prates Roma
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
- Center for Human and Molecular Biology, Saarland University, 66421 Homburg, Germany.
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
16
|
Kindberg AA, Bush JO. Cellular organization and boundary formation in craniofacial development. Genesis 2019; 57:e23271. [PMID: 30548771 PMCID: PMC6503678 DOI: 10.1002/dvg.23271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Craniofacial morphogenesis is a highly dynamic process that requires changes in the behaviors and physical properties of cells in order to achieve the proper organization of different craniofacial structures. Boundary formation is a critical process in cellular organization, patterning, and ultimately tissue separation. There are several recurring cellular mechanisms through which boundary formation and cellular organization occur including, transcriptional patterning, cell segregation, cell adhesion and migratory guidance. Disruption of normal boundary formation has dramatic morphological consequences, and can result in human craniofacial congenital anomalies. In this review we discuss boundary formation during craniofacial development, specifically focusing on the cellular behaviors and mechanisms underlying the self-organizing properties that are critical for craniofacial morphogenesis.
Collapse
Affiliation(s)
- Abigail A. Kindberg
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
17
|
Roycroft A, Szabó A, Bahm I, Daly L, Charras G, Parsons M, Mayor R. Redistribution of Adhesive Forces through Src/FAK Drives Contact Inhibition of Locomotion in Neural Crest. Dev Cell 2018; 45:565-579.e3. [PMID: 29870718 PMCID: PMC5988567 DOI: 10.1016/j.devcel.2018.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Contact inhibition of locomotion is defined as the behavior of cells to cease migrating in their former direction after colliding with another cell. It has been implicated in multiple developmental processes and its absence has been linked to cancer invasion. Cellular forces are thought to govern this process; however, the exact role of traction through cell-matrix adhesions and tension through cell-cell adhesions during contact inhibition of locomotion remains unknown. Here we use neural crest cells to address this and show that cell-matrix adhesions are rapidly disassembled at the contact between two cells upon collision. This disassembly is dependent upon the formation of N-cadherin-based cell-cell adhesions and driven by Src and FAK activity. We demonstrate that the loss of cell-matrix adhesions near the contact leads to a buildup of tension across the cell-cell contact, a step that is essential to drive cell-cell separation after collision. Focal adhesions disassemble at cell-cell contacts in contact inhibition of locomotion FA disassembly at the cell contact during CIL requires N-cadherin/Src/FAK signaling Cell separation during CIL involves a buildup of tension across the cell contact
Collapse
Affiliation(s)
- Alice Roycroft
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - András Szabó
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Isabel Bahm
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Liam Daly
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Guillaume Charras
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; London Centre for Nanotechnology, UCL, London WC1H 0AH, UK; Institute for the Physics of Living Systems, UCL, London WC1E 6BT, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, Kings College London, London SE11UL, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Mukherjee R, Majumder P, Chakrabarti O. MGRN1-mediated ubiquitination of α-tubulin regulates microtubule dynamics and intracellular transport. Traffic 2017; 18:791-807. [PMID: 28902452 DOI: 10.1111/tra.12527] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/26/2022]
Abstract
MGRN1-mediated ubiquitination of α-tubulin regulates microtubule stability and mitotic spindle positioning in mitotic cells. This study elucidates the effect of MGRN1-mediated ubiquitination of α-tubulin in interphase cells. Here, we show that MGRN1-mediated ubiquitination regulates dynamics of EB1-labeled plus ends of microtubules. Intracellular transport of mitochondria and endosomes are affected in cultured cells where functional MGRN1 is depleted. Defects in microtubule-dependent organellar transport are evident in cells where noncanonical K6-mediated ubiquitination of α-tubulin by MGRN1 is compromised. Loss of MGRN1 has been previously correlated with late-onset spongiform neurodegeneration. Mislocalised cytosolically exposed PrP (Ctm PrP) interacts with MGRN1 leading to its loss of function. Expression of Ctm PrP generating mutants of PrP[PrP(A117V) and PrP(KHII)] lead to decrease in MGRN1-mediated ubiquitination of α-tubulin and intracellular transport defects. Brain lysates from PrP(A117V) transgenic mice also indicate loss of tubulin polymerization as compared to non-transgenic controls. Depletion of MGRN1 activity may hamper physiologically important processes like mitochondrial movement in neuronal processes and intracellular transport of ligands through the endosomal pathway thereby contributing to the pathogenesis of neurodegeneration in certain types of prion diseases.
Collapse
Affiliation(s)
- Rukmini Mukherjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Priyanka Majumder
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| |
Collapse
|
19
|
Smeets B, Alert R, Pešek J, Pagonabarraga I, Ramon H, Vincent R. Emergent structures and dynamics of cell colonies by contact inhibition of locomotion. Proc Natl Acad Sci U S A 2016; 113:14621-14626. [PMID: 27930287 PMCID: PMC5187738 DOI: 10.1073/pnas.1521151113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cells in tissues can organize into a broad spectrum of structures according to their function. Drastic changes of organization, such as epithelial-mesenchymal transitions or the formation of spheroidal aggregates, are often associated either to tissue morphogenesis or to cancer progression. Here, we study the organization of cell colonies by means of simulations of self-propelled particles with generic cell-like interactions. The interplay between cell softness, cell-cell adhesion, and contact inhibition of locomotion (CIL) yields structures and collective dynamics observed in several existing tissue phenotypes. These include regular distributions of cells, dynamic cell clusters, gel-like networks, collectively migrating monolayers, and 3D aggregates. We give analytical predictions for transitions between noncohesive, cohesive, and 3D cell arrangements. We explicitly show how CIL yields an effective repulsion that promotes cell dispersal, thereby hindering the formation of cohesive tissues. Yet, in continuous monolayers, CIL leads to collective cell motion, ensures tensile intercellular stresses, and opposes cell extrusion. Thus, our work highlights the prominent role of CIL in determining the emergent structures and dynamics of cell colonies.
Collapse
Affiliation(s)
- Bart Smeets
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium;
| | - Ricard Alert
- Departament de Física de la Matèria Condensada & Universitat de Barcelona Institute of Complex Systems (UBICS), Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jiří Pešek
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada & Universitat de Barcelona Institute of Complex Systems (UBICS), Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Herman Ramon
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Romaric Vincent
- Université Grenoble Alpes, Commissariat à l'énergie atomique (CEA), F-38000 Grenoble, France
- Laboratoire d'électronique des technologies de l'information (CEA-LETI), Micro and Nanotechnology Innovation Centre (MINATEC), F-38054 Grenoble, France
| |
Collapse
|
20
|
Stramer B, Mayor R. Mechanisms and in vivo functions of contact inhibition of locomotion. Nat Rev Mol Cell Biol 2016; 18:43-55. [PMID: 27677859 DOI: 10.1038/nrm.2016.118] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Contact inhibition of locomotion (CIL) is a process whereby a cell ceases motility or changes its trajectory upon collision with another cell. CIL was initially characterized more than half a century ago and became a widely studied model system to understand how cells migrate and dynamically interact. Although CIL fell from interest for several decades, the scientific community has recently rediscovered this process. We are now beginning to understand the precise steps of this complex behaviour and to elucidate its regulatory components, including receptors, polarity proteins and cytoskeletal elements. Furthermore, this process is no longer just in vitro phenomenology; we now know from several different in vivo models that CIL is essential for embryogenesis and in governing behaviours such as cell dispersion, boundary formation and collective cell migration. In addition, changes in CIL responses have been associated with other physiological processes, such as cancer cell dissemination during metastasis.
Collapse
Affiliation(s)
- Brian Stramer
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, London WC1E 6BT, UK
| |
Collapse
|
21
|
Roycroft A, Mayor R. Molecular basis of contact inhibition of locomotion. Cell Mol Life Sci 2016; 73:1119-30. [PMID: 26585026 PMCID: PMC4761371 DOI: 10.1007/s00018-015-2090-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
Contact inhibition of locomotion (CIL) is a complex process, whereby cells undergoing a collision with another cell cease their migration towards the colliding cell. CIL has been identified in numerous cells during development including embryonic fibroblasts, neural crest cells and haemocytes and is the driving force behind a range of phenomenon including collective cell migration and dispersion. The loss of normal CIL behaviour towards healthy tissue has long been implicated in the invasion of cancer cells. CIL is a multi-step process that is driven by the tight coordination of molecular machinery. In this review, we shall breakdown CIL into distinct steps and highlight the key molecular mechanisms and components that are involved in driving each step of this process.
Collapse
Affiliation(s)
- Alice Roycroft
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
22
|
Non-periodic oscillatory deformation of an actomyosin microdroplet encapsulated within a lipid interface. Sci Rep 2016; 6:18964. [PMID: 26754862 PMCID: PMC4709586 DOI: 10.1038/srep18964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/30/2015] [Indexed: 11/29/2022] Open
Abstract
Active force generation in living organisms, which is mainly involved in actin cytoskeleton and myosin molecular motors, plays a crucial role in various biological processes. Although the contractile properties of actomyosin have been extensively investigated, their dynamic contribution to a deformable membrane remains unclear because of the cellular complexities and the difficulties associated with in vitro reconstitution. Here, by overcoming these experimental difficulties, we demonstrate the dynamic deformation of a reconstituted lipid interface coupled with self-organized structure of contractile actomyosin. Therein, the lipid interface repeatedly oscillates without any remarkable periods. The oscillatory deformation of the interface is caused by the aster-like three-dimensional hierarchical structure of actomyosin inside the droplet, which is revealed that the oscillation occurs stochastically as a Poisson process.
Collapse
|
23
|
Impaired cytoskeletal arrangements and failure of ventral body wall closure in chick embryos treated with rock inhibitor (Y-27632). Pediatr Surg Int 2016; 32:45-58. [PMID: 26563157 DOI: 10.1007/s00383-015-3811-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Abstract
AIM Rho-associated kinase (ROCK) signaling regulates numerous fundamental developmental processes during embryogenesis, primarily by controlling actin-cytoskeleton assembly and cell contractility. ROCK knockout mice exhibit a ventral body wall defect (VBWD) phenotype due to disorganization of actin filaments at the umbilical ring. However, the exact molecular mechanisms leading to VBWD still remain unclear. Improper somitogenesis has been hypothesized to contribute to failure of VBW closure. We designed this study to investigate the hypothesis that administration of ROCK inhibitor (Y-27632) disrupts cytoskeletal arrangements in morphology during early chick embryogenesis, which may contribute to the development of VBWD. METHODS At 60 h incubation, chick embryos were explanted into shell-less culture and treated with 50 µL of vehicle for controls (n = 33) or 50 µL of 500 µM of Y-27632 for the experimental group (Y-27, n = 56). At 8 h post-treatment, RT-PCR was performed to evaluate mRNA levels of N-cadherin, E-cadherin and connexin43. Immunofluorescence confocal microscopy was performed to analyze the expression and distribution of actin, vinculin and microtubules in the neural tube and somites. A further cohort of embryos was treated in ovo by dropping 50 µL of vehicle or 50 µL of different concentrations of Y-27632 onto the embryo and allowing development to 12 and 14 days for further assessment. RESULTS Gene expression levels of N-cadherin, E-cadherin and connexin43 were significantly decreased in treated embryos compared with controls (p < 0.05). Thickened actin filament bundles were recorded in the neural tube of Y-27 embryos. In somites, cells were dissociated with reduced actin distribution in affected embryos. Clumping of vinculin expression was found in the neural tube and somites, whereas reduced expression of microtubules was observed in Y-27 embryos compared with controls. At 12 and 14 days of development, affected embryos presented with an enlarged umbilical ring and herniation of abdominal contents through the defect. CONCLUSION ROCK inhibition alters cytoskeletal arrangement during early chick embryogenesis, which may contribute to failure of anterior body wall closure causing VBWD at later stages of development.
Collapse
|
24
|
Mikami T, Yoshida K, Sawada H, Esaki M, Yasumura K, Ono M. Inhibition of Rho-associated kinases disturbs the collective cell migration of stratified TE-10 cells. Biol Res 2015; 48:48. [PMID: 26330114 PMCID: PMC4556056 DOI: 10.1186/s40659-015-0039-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 08/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The collective cell migration of stratified epithelial cells is considered to be an important phenomenon in wound healing, development, and cancer invasion; however, little is known about the mechanisms involved. Furthermore, whereas Rho family proteins, including RhoA, play important roles in cell migration, the exact role of Rho-associated coiled coil-containing protein kinases (ROCKs) in cell migration is controversial and might be cell-type dependent. Here, we report the development of a novel modified scratch assay that was used to observe the collective cell migration of stratified TE-10 cells derived from a human esophageal cancer specimen. Results Desmosomes were found between the TE-10 cells and microvilli of the surface of the cell sheet. The leading edge of cells in the cell sheet formed a simple layer and moved forward regularly; these rows were followed by the stratified epithelium. ROCK inhibitors and ROCK small interfering RNAs (siRNAs) disturbed not only the collective migration of the leading edge of this cell sheet, but also the stratified layer in the rear. In contrast, RhoA siRNA treatment resulted in more rapid migration of the leading rows and disturbed movement of the stratified portion. Conclusions The data presented in this study suggest that ROCKs play an important role in mediating the collective migration of TE-10 cell sheets. In addition, differences between the effects of siRNAs targeting either RhoA or ROCKs suggested that distinct mechanisms regulate the collective cell migration in the simple epithelium of the wound edge versus the stratified layer of the epithelium. Electronic supplementary material The online version of this article (doi:10.1186/s40659-015-0039-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taro Mikami
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan. .,Department of Plastic and Reconstructive Surgery, Fujisawa Shounandai Hospital, Fujisawa, Kanagawa-ken, Japan. .,Department of Plastic and Reconstructive Surgery, Yokohama City University Hospital, Yokohama, Kanagawa-ken, Japan.
| | - Keiichiro Yoshida
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | - Hajime Sawada
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | - Michiyo Esaki
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| | - Kazunori Yasumura
- Department of Plastic and Reconstructive Surgery, Yokohama City University Hospital, Yokohama, Kanagawa-ken, Japan.
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama, Kanagawa-ken, Japan.
| |
Collapse
|
25
|
Ryan CM, Brown JAL, Bourke E, Prendergast ÁM, Kavanagh C, Liu Z, Owens P, Shaw G, Kolch W, O'Brien T, Barry FP. ROCK activity and the Gβγ complex mediate chemotactic migration of mouse bone marrow-derived stromal cells. Stem Cell Res Ther 2015. [PMID: 26204937 PMCID: PMC4603944 DOI: 10.1186/s13287-015-0125-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Bone marrow-derived stromal cells (BMSCs), also known as mesenchymal stem cells, are the focus of intensive efforts worldwide to elucidate their function and biology. Despite the importance of BMSC migration for their potential therapeutic uses, the mechanisms and signalling governing stem cell migration are still not fully elucidated. METHODS We investigated and detailed the effects of MCP-1 activation on BMSCs by using inhibitors of G protein-coupled receptor alpha beta (GPCR αβ), ROCK (Rho-associated, coiled-coil containing protein kinase), and PI3 kinase (PI3K). The effects of MCP-1 stimulation on intracellular signalling cascades were characterised by using immunoblotting and immunofluorescence. The effectors of MCP-1-mediated migration were investigated by using migration assays (both two-dimensional and three-dimensional) in combination with inhibitors. RESULTS We established the kinetics of the MCP-1-activated signalling cascade and show that this cascade correlates with cell surface re-localisation of chemokine (C motif) receptor 2 (CCR2) (the MCP-1 receptor) to the cell periphery following MCP-1 stimulation. We show that MCP-1-initiated signalling is dependent on the activation of βγ subunits from the GPCR αβγ complex. In addition, we characterise a novel role for PI3Kγ signalling for the activation of both PAK and ERK following MCP-1 stimulation. We present evidence that the Gβγ complex is responsible for PI3K/Akt, PAK, and ERK signalling induced by MCP-1 in BMSCs. Importantly, we found that, in BMSCs, inhibition of ROCK significantly inhibits MCP-1-induced chemotactic migration, in contrast to previous reports in other systems. CONCLUSIONS Our results indicate differential chemotactic signalling in mouse BMSCs, which has important implications for the translation of in vivo mouse model findings into human trials. We identified novel components and interactions activated by MCP-1-mediated signalling, which are important for stem cell migration. This work has identified additional potential therapeutic targets that could be manipulated to improve BMSC delivery and homing.
Collapse
Affiliation(s)
- Caroline M Ryan
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, University Road, Galway, Ireland. .,Systems Biology Ireland, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - James A L Brown
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, University Road, Galway, Ireland. .,Systems Biology Ireland, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland. .,Present address: Discipline of Surgery, School of Medicine, Lambe Institute, Translational Research Facility, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Áine M Prendergast
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, University Road, Galway, Ireland. .,Systems Biology Ireland, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland. .,Present address: Hematopoietic Stem Cells and Stress' group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer feld 280, 69120, Heidelberg, Germany.
| | - Claire Kavanagh
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Zhonglin Liu
- Department of Radiology, University of Arizona, Tucson, AZ, 85724-5067, USA.
| | - Peter Owens
- Centre for Micro and Imaging, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Georgina Shaw
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, University Road, Galway, Ireland.
| | - Walter Kolch
- Systems Biology Ireland, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, University Road, Galway, Ireland. .,Systems Biology Ireland, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Frank P Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, University Road, Galway, Ireland. .,Systems Biology Ireland, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
26
|
Roycroft A, Mayor R. Forcing contact inhibition of locomotion. Trends Cell Biol 2015; 25:373-5. [PMID: 25981318 PMCID: PMC4509518 DOI: 10.1016/j.tcb.2015.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 11/25/2022]
Abstract
Contact inhibition of locomotion drives a variety of biological phenomenon, from cell dispersion to collective cell migration and cancer invasion. New imaging techniques have allowed contact inhibition of locomotion to be visualised in vivo for the first time, helping to elucidate some of the molecules and forces involved in this phenomenon.
Collapse
Affiliation(s)
- Alice Roycroft
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
27
|
Davis JR, Luchici A, Mosis F, Thackery J, Salazar JA, Mao Y, Dunn GA, Betz T, Miodownik M, Stramer BM. Inter-cellular forces orchestrate contact inhibition of locomotion. Cell 2015; 161:361-73. [PMID: 25799385 PMCID: PMC4398973 DOI: 10.1016/j.cell.2015.02.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 11/24/2014] [Accepted: 01/27/2015] [Indexed: 11/15/2022]
Abstract
Contact inhibition of locomotion (CIL) is a multifaceted process that causes many cell types to repel each other upon collision. During development, this seemingly uncoordinated reaction is a critical driver of cellular dispersion within embryonic tissues. Here, we show that Drosophila hemocytes require a precisely orchestrated CIL response for their developmental dispersal. Hemocyte collision and subsequent repulsion involves a stereotyped sequence of kinematic stages that are modulated by global changes in cytoskeletal dynamics. Tracking actin retrograde flow within hemocytes in vivo reveals synchronous reorganization of colliding actin networks through engagement of an inter-cellular adhesion. This inter-cellular actin-clutch leads to a subsequent build-up in lamellar tension, triggering the development of a transient stress fiber, which orchestrates cellular repulsion. Our findings reveal that the physical coupling of the flowing actin networks during CIL acts as a mechanotransducer, allowing cells to haptically sense each other and coordinate their behaviors.
Collapse
Affiliation(s)
- John R Davis
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Andrei Luchici
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Department of Mechanical Engineering, University College London, London WC2R 2LS, UK
| | - Fuad Mosis
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - James Thackery
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Jesus A Salazar
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Graham A Dunn
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Timo Betz
- Centre de Recherche, Institut Curie, Paris, UMR168, France
| | - Mark Miodownik
- Department of Mechanical Engineering, University College London, London WC2R 2LS, UK.
| | - Brian M Stramer
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
28
|
Barriga EH, Mayor R. Embryonic cell-cell adhesion: a key player in collective neural crest migration. Curr Top Dev Biol 2015; 112:301-23. [PMID: 25733144 DOI: 10.1016/bs.ctdb.2014.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration.
Collapse
Affiliation(s)
- Elias H Barriga
- Cell and Developmental Biology Department, University College London, London, United Kingdom
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, London, United Kingdom.
| |
Collapse
|
29
|
Mechanical boundary conditions bias fibroblast invasion in a collagen-fibrin wound model. Biophys J 2014; 106:932-43. [PMID: 24559996 DOI: 10.1016/j.bpj.2013.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/17/2013] [Accepted: 12/02/2013] [Indexed: 11/22/2022] Open
Abstract
Because fibroblasts deposit the collagen matrix that determines the mechanical integrity of scar tissue, altering fibroblast invasion could alter wound healing outcomes. Anisotropic mechanical boundary conditions (restraint, stretch, or tension) could affect the rate of fibroblast invasion, but their importance relative to the prototypical drivers of fibroblast infiltration during wound healing--cell and chemokine concentration gradients--is unknown. We tested whether anisotropic mechanical boundary conditions affected the directionality and speed of fibroblasts migrating into a three-dimensional model wound, which could simultaneously expose fibroblasts to mechanical, structural, steric, and chemical guidance cues. We created fibrin-filled slits in fibroblast-populated collagen gels and applied uniaxial mechanical restraint along the short or long axis of the fibrin wounds. Anisotropic mechanical conditions increased the efficiency of fibroblast invasion by guiding fibroblasts without increasing their migration speed. The migration behavior could be modeled as a biased random walk, where the bias due to multiple guidance cues was accounted for in the shape of a displacement orientation probability distribution. Taken together, modeling and experiments suggested an effect of strain anisotropy, rather than strain-induced fiber alignment, on fibroblast invasion.
Collapse
|
30
|
Chen K, Zhang W, Chen J, Li S, Guo G. Rho-associated protein kinase modulates neurite extension by regulating microtubule remodeling and vinculin distribution. Neural Regen Res 2014; 8:3027-35. [PMID: 25206623 PMCID: PMC4146208 DOI: 10.3969/j.issn.1673-5374.2013.32.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/25/2013] [Indexed: 01/11/2023] Open
Abstract
Rho-associated protein kinase is an essential regulator of cytoskeletal dynamics during the process of neurite extension. However, whether Rho kinase regulates microtubule remodeling or the distribution of adhesive proteins to mediate neurite outgrowth remains unclear. By specifically modulating Rho kinase activity with pharmacological agents, we studied the morpho-dynamics of neurite outgrowth. We found that lysophosphatidic acid, an activator of Rho kinase, inhibited neurite outgrowth, which could be reversed by Y-27632, an inhibitor of Rho kinase. Meanwhile, reorganization of microtubules was noticed during these processes, as indicated by their significant changes in the soma and growth cone. In addition, exposure to lysophosphatidic acid led to a decreased membrane distribution of vinculin, a focal adhesion protein in neurons, whereas Y-27632 recruited vinculin to the membrane. Taken together, our data suggest that Rho kinase regulates rat hippocampal neurite growth and microtubule formation via a mechanism associated with the redistribution of vinculin.
Collapse
Affiliation(s)
- Ke'en Chen
- Department of Neurosurgery, First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Wenbin Zhang
- Department of Emergency, First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Jing Chen
- Department of Anatomy, Medical College of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Sumei Li
- Department of Anatomy, Medical College of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Guoqing Guo
- Department of Anatomy, Medical College of Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
31
|
Abstract
Integrin-mediated adhesion used by Drosophila blood cells to migrate in vivo. SCAR/WAVE is required for lamellipodia but also for clearance of apoptotic cells. The formins Fhos and Diaphanous regulate Drosophila macrophage migration and morphology. Calcium waves drive hydrogen peroxide production to regulate inflammatory migrations. The steroid hormone Ecdysone controls the onset of immune competence.
Drosophila melanogaster contains a population of blood cells called hemocytes that represent the functional equivalent of vertebrate macrophages. These cells undergo directed migrations to disperse during development and reach sites of tissue damage or altered self. These chemotactic behaviors are controlled by the expression of PDGF/Vegf-related ligands in developing embryos and local production of hydrogen peroxide at wounds. Recent work reveals that many molecules important in vertebrate cell motility, including integrins, formins, Ena/VASP proteins and the SCAR/WAVE complex, have a conserved function in these innate immune cells. The use of this model organism has elucidated how damage signals are activated by calcium signaling during inflammation and that the steroid hormone ecdysone activates immune competence at key developmental stages.
Collapse
Affiliation(s)
- Iwan Robert Evans
- Department of Infection and Immunity, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; The Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Will Wood
- Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
32
|
Batson J, Maccarthy-Morrogh L, Archer A, Tanton H, Nobes CD. EphA receptors regulate prostate cancer cell dissemination through Vav2-RhoA mediated cell-cell repulsion. Biol Open 2014; 3:453-62. [PMID: 24795148 PMCID: PMC4058079 DOI: 10.1242/bio.20146601] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Metastatic prostate cancer cells display EphB receptor-mediated attraction when they contact stromal fibroblasts but EphA-driven repulsion when they contact one another. The impact of these ‘social’ interactions between cells during cancer cell invasion and the signalling mechanisms downstream of Eph receptors are unclear. Here we show that EphA receptors regulate prostate cancer cell dissemination in a 2D dispersal assay and in a 3D cancer cell spheroid assay. We show that EphA receptors signal via the exchange factor Vav2 to activate RhoA and that both Vav2 and RhoA are required for prostate cancer cell–cell repulsion. Furthermore, we find that in EphA2/EphA4, Vav2 or RhoA siRNA-treated cells, contact repulsion can be restored by partial microtubule destabilisation. We propose that EphA–Vav2–RhoA-mediated repulsion between contacting cancer cells at the tumour edge could enhance their local invasion away from the primary tumour.
Collapse
Affiliation(s)
- Jennifer Batson
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Lucy Maccarthy-Morrogh
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Amy Archer
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Helen Tanton
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Catherine D Nobes
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
33
|
Plestant C, Strale PO, Seddiki R, Nguyen E, Ladoux B, Mège RM. Adhesive interactions of N-cadherin limit the recruitment of microtubules to cell–cell contacts through organization of actomyosin. J Cell Sci 2014; 127:1660-71. [DOI: 10.1242/jcs.131284] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ABSTRACT
Adhesive interactions of cadherins induce crosstalk between adhesion complexes and the actin cytoskeleton, allowing strengthening of adhesions and cytoskeletal organization. The underlying mechanisms are not completely understood, and microtubules (MTs) might be involved, as for integrin-mediated cell–extracellular-matrix adhesions. Therefore, we investigated the relationship between N-cadherin and MTs by analyzing the influence of N-cadherin engagement on MT distribution and dynamics. MTs progressed less, with a lower elongation rate, towards cadherin adhesions than towards focal adhesions. Increased actin treadmilling and the presence of an actomyosin contractile belt, suggested that actin relays inhibitory signals from cadherin adhesions to MTs. The reduced rate of MT elongation, associated with reduced recruitment of end-binding (EB) proteins to plus ends, was alleviated by expression of truncated N-cadherin, but was only moderately affected when actomyosin was disrupted. By contrast, destabilizing actomyosin fibers allowed MTs to enter the adhesion area, suggesting that tangential actin bundles impede MT growth independently of MT dynamics. Blocking MT penetration into the adhesion area strengthened cadherin adhesions. Taken together, these results establish a crosstalk between N-cadherin, F-actin and MTs. The opposing effects of cadherin and integrin engagement on actin organization and MT distribution might induce bias of the MT network during cell polarization.
Collapse
Affiliation(s)
- Charlotte Plestant
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
| | - Pierre-Olivier Strale
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
| | - Rima Seddiki
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
- Institut Jacques Monod, UMR7592 CNRS, Université Paris Diderot, 75013 Paris, France
| | - Emmanuelle Nguyen
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Benoit Ladoux
- Institut Jacques Monod, UMR7592 CNRS, Université Paris Diderot, 75013 Paris, France
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - René-Marc Mège
- Institut du Fer à Moulin, UMRS 839 INSERM, Université Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
34
|
The role of the non-canonical Wnt-planar cell polarity pathway in neural crest migration. Biochem J 2014; 457:19-26. [PMID: 24325550 DOI: 10.1042/bj20131182] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The neural crest is an embryonic stem cell population whose migratory behaviour has been likened to malignant invasion. The neural crest, as does cancer, undergoes an epithelial-to-mesenchymal transition and migrates to colonize almost all the tissues of the embryo. Neural crest cells exhibit collective cell migration, moving in streams of high directionality. The migratory neural crest streams are kept in shape by the presence of negative signals in their vicinity. The directionality of the migrating neural crest is achieved by contact-dependent cell polarization, in a phenomenon called contact inhibition of locomotion. Two cells experiencing contact inhibition of locomotion move away from each other after collision. However, if the cell density is high only cells exposed to a free edge can migrate away from the cluster leading to the directional migration of the whole group. Recent work performed in chicks, zebrafish and frogs has shown that the non-canonical Wnt-PCP (planar cell polarity) pathway plays a major role in neural crest migration. PCP signalling controls contact inhibition of locomotion between neural crest cells by localizing different PCP proteins at the site of cell contact during collision and locally regulating the activity of Rho GTPases. Upon collision RhoA (ras homologue family member A) is activated, whereas Rac1 is inhibited at the contact between two migrating neural crest cells, leading to the collapse of protrusions and the migration of cells away from one another. The present review summarizes the mechanisms that control neural crest migration and focuses on the role of non-canonical Wnt or PCP signalling in this process.
Collapse
|
35
|
Czarnowski A, Papp S, Szaraz P, Opas M. Calreticulin affects cell adhesiveness through differential phosphorylation of insulin receptor substrate-1. Cell Mol Biol Lett 2014; 19:77-97. [PMID: 24470116 PMCID: PMC6275655 DOI: 10.2478/s11658-014-0181-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/20/2014] [Indexed: 11/21/2022] Open
Abstract
Cellular adhesion to the underlying substratum is regulated through numerous signaling pathways. It has been suggested that insulin receptor substrate 1 (IRS-1) is involved in some of these pathways, via association with and activation of transmembrane integrins. Calreticulin, as an important endoplasmic reticulum-resident, calcium-binding protein with a chaperone function, plays an obvious role in proteomic expression. Our previous work showed that calreticulin mediates cell adhesion not only by affecting protein expression but also by affecting the state of regulatory protein phosphorylation, such as that of c-src. Here, we demonstrate that calreticulin affects the abundance of IRS-1 such that the absence of calreticulin is paralleled by a decrease in IRS-1 levels and the unregulated overexpression of calreticulin is accompanied by an increase in IRS-1 levels. These changes in the abundance of calreticulin and IRS-1 are accompanied by changes in cell-substratum adhesiveness and phosphorylation, such that increases in the expression of calreticulin and IRS-1 are paralleled by an increase in focal contact-based cell-substratum adhesiveness, and a decrease in the expression of these proteins brings about a decrease in cell-substratum adhesiveness. Wild type and calreticulin-null mouse embryonic fibroblasts (MEFs) were cultured and the IRS-1 isoform profile was assessed. Differences in morphology and motility were also quantified. While no substantial differences in the speed of locomotion were found, the directionality of cell movement was greatly promoted by the presence of calreticulin. Calreticulin expression was also found to have a dramatic effect on the phosphorylation state of serine 636 of IRS-1, such that phosphorylation of IRS-1 on serine 636 increased radically in the absence of calreticulin. Most importantly, treatment of cells with the RhoA/ROCK inhibitor, Y-27632, which among its many effects also inhibited serine 636 phosphorylation of IRS-1, had profound effects on cell-substratum adhesion, in that it suppressed focal contacts, induced extensive close contacts, and increased the strength of adhesion. The latter effect, while counterintuitive, can be explained by the close contacts comprising labile bonds but in large numbers. In addition, the lability of bonds in close contacts would permit fast locomotion. An interesting and novel finding is that Y-27632 treatment of MEFs releases them from contact inhibition of locomotion, as evidenced by the invasion of a cell's underside by the thin lamellae and filopodia of a cell in close apposition.
Collapse
Affiliation(s)
- Arthur Czarnowski
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
| | - Sylvia Papp
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
| | - Peter Szaraz
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada M5S 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Medical Sciences Building, room 6326, Toronto, Ontario M5S 1A8 Canada
| |
Collapse
|
36
|
Arnette C, Efimova N, Zhu X, Clark GJ, Kaverina I. Microtubule segment stabilization by RASSF1A is required for proper microtubule dynamics and Golgi integrity. Mol Biol Cell 2014; 25:800-10. [PMID: 24478455 PMCID: PMC3952850 DOI: 10.1091/mbc.e13-07-0374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
RASSF1A is a microtubule-associated protein. This study provides evidence for RASSF1A regulating MT dynamics via segmental binding to provide local stabilization of the MT network, thus facilitating MT rescue. RASSF1A reconfigures the MT network through bundling of nearby MTs and provides a stable platform to maintain Golgi integrity. The tumor suppressor and microtubule-associated protein Ras association domain family 1A (RASSF1A) has a major effect on many cellular processes, such as cell cycle progression and apoptosis. RASSF1A expression is frequently silenced in cancer and is associated with increased metastasis. Therefore we tested the hypothesis that RASSF1A regulates microtubule organization and dynamics in interphase cells, as well as its effect on Golgi integrity and cell polarity. Our results show that RASSF1A uses a unique microtubule-binding pattern to promote site-specific microtubule rescues, and loss of RASSF1A leads to decreased microtubule stability. Furthermore, RASSF1A-associated stable microtubule segments are necessary to prevent Golgi fragmentation and dispersal in cancer cells and maintain a polarized cell front. These results indicate that RASSF1A is a key regulator in the fine tuning of microtubule dynamics in interphase cells and proper Golgi organization and cell polarity.
Collapse
Affiliation(s)
- Christopher Arnette
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232 JG Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | | | | | | | | |
Collapse
|
37
|
Smole Z, Thoma CR, Applegate KT, Duda M, Gutbrodt KL, Danuser G, Krek W. Tumor suppressor NF2/Merlin is a microtubule stabilizer. Cancer Res 2013; 74:353-62. [PMID: 24282279 DOI: 10.1158/0008-5472.can-13-1334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer-associated mutations in oncogene products and tumor suppressors contributing to tumor progression manifest themselves, at least in part, by deregulating microtubule-dependent cellular processes that play important roles in many cell biological pathways, including intracellular transport, cell architecture, and primary cilium and mitotic spindle organization. An essential characteristic of microtubules in the performance of these varied cell processes is their ability to continuously remodel, a phenomenon known as dynamic instability. It is therefore conceivable that part of the normal function of certain cancer-causing genes is to regulate microtubule dynamic instability. Here, we report the results of a high-resolution live-cell image-based RNA interference screen targeting a collection of 70 human tumor suppressor genes to uncover cancer genes affecting microtubule dynamic instability. Extraction and computational analysis of microtubule dynamics from EB3-GFP time-lapse image sequences identified the products of the tumor suppressor genes NF1 and NF2 as potent microtubule-stabilizing proteins. Further in-depth characterization of NF2 revealed that it binds to and stabilizes microtubules through attenuation of tubulin turnover by lowering both rates of microtubule polymerization and depolymerization as well as by reducing the frequency of microtubule catastrophes. The latter function appears to be mediated, in part, by inhibition of hydrolysis of tubulin-bound GTP on the growing microtubule plus end.
Collapse
Affiliation(s)
- Zlatko Smole
- Authors' Affiliations: Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland; and Department of Cell Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | | | | | | | |
Collapse
|
38
|
Moore R, Theveneau E, Pozzi S, Alexandre P, Richardson J, Merks A, Parsons M, Kashef J, Linker C, Mayor R. Par3 controls neural crest migration by promoting microtubule catastrophe during contact inhibition of locomotion. Development 2013; 140:4763-75. [PMID: 24173803 DOI: 10.1242/dev.098509] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is growing evidence that contact inhibition of locomotion (CIL) is essential for morphogenesis and its failure is thought to be responsible for cancer invasion; however, the molecular bases of this phenomenon are poorly understood. Here we investigate the role of the polarity protein Par3 in CIL during migration of the neural crest, a highly migratory mesenchymal cell type. In epithelial cells, Par3 is localised to the cell-cell adhesion complex and is important in the definition of apicobasal polarity, but the localisation and function of Par3 in mesenchymal cells are not well characterised. We show in Xenopus and zebrafish that Par3 is localised to the cell-cell contact in neural crest cells and is essential for CIL. We demonstrate that the dynamics of microtubules are different in different parts of the cell, with an increase in microtubule catastrophe at the collision site during CIL. Par3 loss-of-function affects neural crest migration by reducing microtubule catastrophe at the site of cell-cell contact and abrogating CIL. Furthermore, Par3 promotes microtubule catastrophe by inhibiting the Rac-GEF Trio, as double inhibition of Par3 and Trio restores microtubule catastrophe at the cell contact and rescues CIL and neural crest migration. Our results demonstrate a novel role of Par3 during neural crest migration, which is likely to be conserved in other processes that involve CIL such as cancer invasion or cell dispersion.
Collapse
Affiliation(s)
- Rachel Moore
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Theveneau E, Mayor R. Collective cell migration of epithelial and mesenchymal cells. Cell Mol Life Sci 2013; 70:3481-92. [PMID: 23314710 PMCID: PMC11113167 DOI: 10.1007/s00018-012-1251-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/13/2012] [Accepted: 12/20/2012] [Indexed: 12/14/2022]
Abstract
Directional cell migration is required for proper embryogenesis, immunity, and healing, and its underpinning regulatory mechanisms are often hijacked during diseases such as chronic inflammations and cancer metastasis. Studies on migratory epithelial tissues have revealed that cells can move as a collective group with shared responsibilities. First thought to be restricted to proper epithelial cell types able to maintain stable cell-cell junctions, the field of collective cell migration is now widening to include cooperative behavior of mesenchymal cells. In this review, we give an overview of the mechanisms driving collective cell migration in epithelial tissues and discuss how mesenchymal cells can cooperate to behave as a collective in the absence of bona fide cell-cell adhesions.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
40
|
Desai RA, Gopal SB, Chen S, Chen CS. Contact inhibition of locomotion probabilities drive solitary versus collective cell migration. J R Soc Interface 2013; 10:20130717. [PMID: 24047876 DOI: 10.1098/rsif.2013.0717] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Contact inhibition of locomotion (CIL) is the process whereby cells collide, cease migrating in the direction of the collision, and repolarize their migration machinery away from the collision. Quantitative analysis of CIL has remained elusive because cell-to-cell collisions are infrequent in traditional cell culture. Moreover, whereas CIL predicts mutual cell repulsion and 'scattering' of cells, the same cells in vivo are observed to undergo CIL at some developmental times and collective cell migration at others. It remains unclear whether CIL is simply absent during collective cell migration, or if the two processes coexist and are perhaps even related. Here, we used micropatterned stripes of extracellular matrix to restrict cell migration to linear paths such that cells polarized in one of two directions and collisions between cells occurred frequently and consistently, permitting quantitative and unbiased analysis of CIL. Observing repolarization events in different contexts, including head-to-head collision, head-to-tail collision, collision with an inert barrier, or no collision, and describing polarization as a two-state transition indicated that CIL occurs probabilistically, and most strongly upon head-to-head collisions. In addition to strong CIL, we also observed 'trains' of cells moving collectively with high persistence that appeared to emerge from single cells. To reconcile these seemingly conflicting observations of CIL and collective cell migration, we constructed an agent-based model to simulate our experiments. Our model quantitatively predicted the emergence of collective migration, and demonstrated the sensitivity of such emergence to the probability of CIL. Thus CIL and collective migration can coexist, and in fact a shift in CIL probabilities may underlie transitions between solitary cell migration and collective cell migration. Taken together, our data demonstrate the emergence of persistently polarized, collective cell movement arising from CIL between colliding cells.
Collapse
Affiliation(s)
- Ravi A Desai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
41
|
Scarpa E, Roycroft A, Theveneau E, Terriac E, Piel M, Mayor R. A novel method to study contact inhibition of locomotion using micropatterned substrates. Biol Open 2013; 2:901-6. [PMID: 24143276 PMCID: PMC3773336 DOI: 10.1242/bio.20135504] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/07/2013] [Indexed: 11/20/2022] Open
Abstract
The concept of contact inhibition of locomotion (CIL) describes the ability of a cell to change the direction of its movement after contact with another cell. It has been shown to be responsible for physiological and developmental processes such as wound healing, macrophage dispersion and neural crest cell migration; whereas its loss facilitates cancer cell invasion and metastatic dissemination. Different assays have been developed to analyze CIL in tissue culture models. However, these methods have several caveats. Collisions happen at low frequency between freely migrating cells and the orientation of the cells at the time of contact is not predictable. Moreover, the computational analysis required by these assays is often complicated and it retains a certain degree of discretion. Here, we show that confinement of neural crest cell migration on a single dimension by using a micropatterned substrate allows standardized and predictable cell–cell collision. CIL can thus easily be quantified by direct measurement of simple cellular parameters such as the distance between nuclei after collision. We tested some of the signaling pathways previously identified as involved in CIL, such as small GTPases and non-canonical Wnt signaling, using this new method for CIL analysis. The restricted directionality of migration of cells in lines is a powerful strategy to obtain higher predictability and higher efficiency of the CIL response upon cell–cell collisions.
Collapse
Affiliation(s)
- Elena Scarpa
- Department of Cell and Developmental Biology, University College London , Gower Street, London WC1E 6BT , UK
| | | | | | | | | | | |
Collapse
|
42
|
STRAMER B, DUNN G, DAVIS J, MAYOR R. Rediscovering contact inhibition in the embryo. J Microsc 2013; 251:206-11. [DOI: 10.1111/jmi.12045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/22/2013] [Indexed: 11/29/2022]
Affiliation(s)
- B.M. STRAMER
- Randall Division of Cell and Molecular Biophysics; Kings College London; London SE1 1UL United Kingdom
| | - G.A. DUNN
- Randall Division of Cell and Molecular Biophysics; Kings College London; London SE1 1UL United Kingdom
| | - J.R. DAVIS
- Randall Division of Cell and Molecular Biophysics; Kings College London; London SE1 1UL United Kingdom
| | - R. MAYOR
- Department of Cell and Developmental Biology; University College London; London WC1 6BT United Kingdom
| |
Collapse
|
43
|
Batson J, Astin JW, Nobes CD. Regulation of contact inhibition of locomotion by Eph-ephrin signalling. J Microsc 2013; 251:232-41. [PMID: 23495724 PMCID: PMC3838626 DOI: 10.1111/jmi.12024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/07/2013] [Indexed: 01/20/2023]
Abstract
Contact inhibition of locomotion (CIL) occurs when a cell stops migrating in a particular direction upon contact with another cell. Many cancer cells show Contact inhibition of locomotion when contacting one another but display contact-unimpeded migration following collision with noncancer cells. Here we review current understanding of Contact inhibition of locomotion, from Abercrombie's historical studies of cells in tissue culture to more recent analyses of Contact inhibition of locomotion in vivo. We discuss the cellular machinery required for CIL and the molecular signals that regulate it. We focus on our recent finding that in prostate cancer cells, Contact inhibition of locomotion is regulated by a balance between EphA and EphB receptor signalling. We show that, as recently described for chick heart fibroblasts, microtubule dynamics are required for Contact inhibition of locomotion in prostate cancer cells and we propose that stabilization of microtubules could account for defective Contact inhibition of locomotion between cancer cells and noncancer cells.
Collapse
Affiliation(s)
- J Batson
- School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
44
|
RNAi-mediated stathmin suppression reduces lung metastasis in an orthotopic neuroblastoma mouse model. Oncogene 2013; 33:882-90. [PMID: 23396365 DOI: 10.1038/onc.2013.11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/25/2012] [Accepted: 12/03/2012] [Indexed: 12/13/2022]
Abstract
Metastatic neuroblastoma is an aggressive childhood cancer of neural crest origin. Stathmin, a microtubule destabilizing protein, is highly expressed in neuroblastoma although its functional role in this malignancy has not been addressed. Herein, we investigate stathmin's contribution to neuroblastoma tumor growth and metastasis. Small interfering RNA (siRNA)-mediated stathmin suppression in two independent neuroblastoma cell lines, BE(2)-C and SH-SY5Y, did not markedly influence cell proliferation, viability or anchorage-independent growth. In contrast, stathmin suppression significantly reduced cell migration and invasion in both the neuroblastoma cell lines. Stathmin suppression altered neuroblastoma cell morphology and this was associated with changes in the cytoskeleton, including increased tubulin polymer levels. Stathmin suppression also modulated phosphorylation of the actin-regulatory proteins, cofilin and myosin light chain (MLC). Treatment of stathmin-suppressed neuroblastoma cells with the ROCKI and ROCKII inhibitor, Y-27632, ablated MLC phosphorylation and returned the level of cofilin phosphorylation and cell invasion back to that of untreated control cells. ROCKII inhibition (H-1152) and siRNA suppression also reduced cofilin phosphorylation in stathmin-suppressed cells, indicating that ROCKII mediates stathmin's regulation of cofilin phosphorylation. This data demonstrates a link between stathmin and the regulation of cofilin and MLC phosphorylation via ROCK. To examine stathmin's role in neuroblastoma metastasis, stathmin short hairpin RNA (shRNA)\luciferase-expressing neuroblastoma cells were injected orthotopically into severe combined immunodeficiency-Beige mice, and tumor growth monitored by bioluminescent imaging. Stathmin suppression did not influence neuroblastoma cell engraftment or tumor growth. In contrast, stathmin suppression significantly reduced neuroblastoma lung metastases by 71% (P<0.008) compared with control. This is the first study to confirm a role for stathmin in hematogenous spread using a clinically relevant orthotopic cancer model, and has identified stathmin as an important contributor of cell invasion and metastasis in neuroblastoma.
Collapse
|
45
|
Chen YT, Chen YF, Chiu WT, Wang YK, Chang HC, Shen MR. The ER Ca²⁺ sensor STIM1 regulates actomyosin contractility of migratory cells. J Cell Sci 2013; 126:1260-7. [PMID: 23378028 DOI: 10.1242/jcs.121129] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum (ER) Ca(2+) sensor that triggers the store-operated Ca(2+) entry (SOCE). The clinical relevance of STIM1 has been highlighted in breast and cervical cancer, but the molecular mechanism by which STIM1 promotes cancer progression remains unclear. This study explores the regulatory mechanisms by which STIM1-dependent Ca(2+) signaling controls cancer cell migration. Three different SOCE inhibitors, SKF96365, 2-APB and YM-58483, significantly inhibited cervical cancer cell migration to a similar extent to that of STIM1 silencing. In contrast, STIM1 overexpression significantly enhanced cervical cancer cell migration. Live cell confocal images and three-dimensional tomograms showed that STIM1 formed aggregates and translocated towards the plasma membranes of migratory cells, and this was accompanied by increasing cytosolic Ca(2+) spikes. STIM1 silencing also inhibited the recruitment and association of active focal adhesion kinase (pTyr397-FAK) and talin at focal adhesions, indicating the blockade of force transduction from integrin signaling. Epidermal growth factor-induced phosphorylation of myosin II regulatory light chains was abolished by STIM1 knockdown and SOCE inhibition. Dual immunostaining of activated myosin II (pSer19-MLC) and actin revealed that actomyosin formation depended on STIM1-mediated Ca(2+) entry. Most importantly, STIM1 expression levels as well as SOCE activity controlled the generation of cell contractile force, as measured by the microfabricated post-array-detector system. These results highlight the unique role of STIM1-dependent Ca(2+) signaling in controlling cell migration by the regulation of actomyosin reorganization in conjunction with enhanced contractile forces.
Collapse
Affiliation(s)
- Ying-Ting Chen
- Department of Biomedical Engineering, College of Egineering, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | |
Collapse
|
46
|
Goldspink DA, Gadsby JR, Bellett G, Keynton J, Tyrrell BJ, Lund EK, Powell PP, Thomas P, Mogensen MM. The microtubule end-binding protein EB2 is a central regulator of microtubule reorganisation in apico-basal epithelial differentiation. J Cell Sci 2013; 126:4000-14. [DOI: 10.1242/jcs.129759] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microtubule end-binding (EB) proteins influence microtubule dynamic instability, a process essential for microtubule reorganisation during apico-basal epithelial differentiation. Here we establish for the first time that EB2, but not EB1, expression is critical for initial microtubule reorganisation during apico-basal epithelial differentiation, and that EB2 downregulation promotes bundle formation. EB2 siRNA knockdown during early stages of apico-basal differentiation prevented microtubule reorganisation, while its downregulation at later stages promoted microtubule stability and bundle formation. Interestingly, while EB1 is not essential for microtubule reorganisation its knockdown prevented apico-basal bundle formation and epithelial elongation. EB2 siRNA depletion in undifferentiated epithelial cells induced formation of straight, less dynamic microtubules with EB1 and ACF7 lattice association and co-alignment with actin filaments, a phenotype that could be rescued by formin inhibition. Importantly, in situ inner ear and intestinal crypt epithelial tissue revealed direct correlations between low level of EB2 expression and presence of apico-basal microtubule bundles, which were absent where EB2 was elevated. EB2 is evidently important for initial microtubule reorganisation during epithelial polarisation, while its downregulation facilitates EB1/ACF7 microtubule lattice association, microtubule-actin filament co-alignment and bundle formation. The spatiotemporal expression of EB2 thus dramatically influences microtubule organisation, EB1/ACF7 deployment and epithelial differentiation.
Collapse
|
47
|
Ganguly A, Yang H, Sharma R, Patel KD, Cabral F. The role of microtubules and their dynamics in cell migration. J Biol Chem 2012; 287:43359-69. [PMID: 23135278 DOI: 10.1074/jbc.m112.423905] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although microtubules have long been implicated in cell locomotion, the mechanism of their involvement remains controversial. Most studies have concluded that microtubules play a positive role by regulating actin polymerization, transporting membrane vesicles to the leading edge, and/or facilitating the turnover of adhesion plaques. Here we used wild-type and mutant CHO cell lines with alterations in tubulin to demonstrate that microtubules can also act to restrain cell motility. Tubulin mutations or low concentrations of drugs that suppress microtubule dynamics without affecting the amount of microtubule polymer inhibited the rate of migration by preventing microtubule reorganization in the trailing portion of the cells where the more dynamic microtubules are normally found. Under these conditions, cells along the edge of a wound still extended lamellipodia and elongated toward the wound but were inhibited in their ability to retract their tails, thus retarding forward progress. The idea that microtubules normally act to restrain cell locomotion was confirmed by treating cells with high concentrations of nocodazole to depolymerize the microtubule network. In the absence of microtubules, wild-type CHO and HeLa cells could still move at near normal speeds, but the movement became more random. We conclude that microtubules act both to restrain cell movement and to establish directionality.
Collapse
Affiliation(s)
- Anutosh Ganguly
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
48
|
Schofield AV, Steel R, Bernard O. Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration. J Biol Chem 2012; 287:43620-9. [PMID: 23093407 DOI: 10.1074/jbc.m112.394965] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.
Collapse
Affiliation(s)
- Alice V Schofield
- St. Vincent's Institute of Medical Research Cytoskeleton and Cancer Unit, University of Melbourne, 3065 Victoria, Australia
| | | | | |
Collapse
|
49
|
Richerioux N, Blondeau C, Wiedemann A, Rémy S, Vautherot JF, Denesvre C. Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek's Disease Virus. PLoS One 2012; 7:e44072. [PMID: 22952878 PMCID: PMC3428312 DOI: 10.1371/journal.pone.0044072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/31/2012] [Indexed: 01/11/2023] Open
Abstract
Marek's Disease Virus (MDV) is an avian alpha-herpesvirus that only spreads from cell-to-cell in cell culture. While its cell-to-cell spread has been shown to be dependent on actin filament dynamics, the mechanisms regulating this spread remain largely unknown. Using a recombinant BAC20 virus expressing an EGFPVP22 tegument protein, we found that the actin cytoskeleton arrangements and cell-cell contacts differ in the center and periphery of MDV infection plaques, with cells in the latter areas showing stress fibers and rare cellular projections. Using specific inhibitors and activators, we determined that Rho-ROCK pathway, known to regulate stress fiber formation, and Rac-PAK, known to promote lamellipodia formation and destabilize stress fibers, had strong contrasting effects on MDV cell-to-cell spread in primary chicken embryo skin cells (CESCs). Inhibition of Rho and its ROCKs effectors led to reduced plaque sizes whereas inhibition of Rac or its group I-PAKs effectors had the adverse effect. Importantly, we observed that the shape of MDV plaques is related to the semi-ordered arrangement of the elongated cells, at the monolayer level in the vicinity of the plaques. Inhibition of Rho-ROCK signaling also resulted in a perturbation of the cell arrangement and a rounding of plaques. These opposing effects of Rho and Rac pathways in MDV cell-to-cell spread were validated for two parental MDV recombinant viruses with different ex vivo spread efficiencies. Finally, we demonstrated that Rho/Rac pathways have opposing effects on the accumulation of N-cadherin at cell-cell contact regions between CESCs, and defined these contacts as adherens junctions. Considering the importance of adherens junctions in HSV-1 cell-to-cell spread in some cell types, this result makes of adherens junctions maintenance one potential and attractive hypothesis to explain the Rho/Rac effects on MDV cell-to-cell spread. Our study provides the first evidence that MDV cell-to-cell spread is regulated by Rho/Rac signaling.
Collapse
Affiliation(s)
- Nicolas Richerioux
- INRA, UMR1282, Infectious Diseases and Public Health, ISP, BIOVA team, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
50
|
Cartelli D, Goldwurm S, Casagrande F, Pezzoli G, Cappelletti G. Microtubule destabilization is shared by genetic and idiopathic Parkinson's disease patient fibroblasts. PLoS One 2012; 7:e37467. [PMID: 22666358 PMCID: PMC3359730 DOI: 10.1371/journal.pone.0037467] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/23/2012] [Indexed: 11/19/2022] Open
Abstract
Data from both toxin-based and gene-based models suggest that dysfunction of the microtubule system contributes to the pathogenesis of Parkinson's disease, even if, at present, no evidence of alterations of microtubules in vivo or in patients is available. Here we analyze cytoskeleton organization in primary fibroblasts deriving from patients with idiopathic or genetic Parkinson's disease, focusing on mutations in parkin and leucine-rich repeat kinase 2. Our analyses reveal that genetic and likely idiopathic pathology affects cytoskeletal organization and stability, without any activation of autophagy or apoptosis. All parkinsonian fibroblasts have a reduced microtubule mass, represented by a higher fraction of unpolymerized tubulin in respect to control cells, and display significant changes in microtubule stability-related signaling pathways. Furthermore, we show that the reduction of microtubule mass is so closely related to the alteration of cell morphology and behavior that both pharmacological treatment with microtubule-targeted drugs, and genetic approaches, by transfecting the wild type parkin or leucine-rich repeat kinase 2, restore the proper microtubule stability and are able to rescue cell architecture. Taken together, our results suggest that microtubule destabilization is a point of convergence of genetic and idiopathic forms of parkinsonism and highlight, for the first time, that microtubule dysfunction occurs in patients and not only in experimental models of Parkinson's disease. Therefore, these data contribute to the knowledge on molecular and cellular events underlying Parkinson's disease and, revealing that correction of microtubule defects restores control phenotype, may offer a new therapeutic target for the management of the disease.
Collapse
Affiliation(s)
| | - Stefano Goldwurm
- Parkinson Institute, Istituti Clinici di Perfezionamento, Milan, Italy
| | | | - Gianni Pezzoli
- Parkinson Institute, Istituti Clinici di Perfezionamento, Milan, Italy
| | | |
Collapse
|