1
|
Guo Z, Li H, Jiang S, Rahmati M, Su J, Yang S, Wu Y, Li Y, Deng Z. The role of AGEs in muscle ageing and sarcopenia. Bone Joint Res 2025; 14:185-198. [PMID: 40036085 PMCID: PMC11878473 DOI: 10.1302/2046-3758.143.bjr-2024-0252.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Sarcopenia is an ageing-related disease featured by the loss of skeletal muscle quality and function. Advanced glycation end-products (AGEs) are a complex set of modified proteins or lipids by non-enzymatic glycosylation and oxidation. The formation of AGEs is irreversible, and they accumulate in tissues with increasing age. Currently, AGEs, as a biomarker of ageing, are viewed as a risk factor for sarcopenia. AGE accumulation could cause harmful effects in the human body such as elevated inflammation levels, enhanced oxidative stress, and targeted glycosylation of proteins inside and outside the cells. Several studies have illustrated the pathogenic role of AGEs in sarcopenia, which includes promoting skeletal muscle atrophy, impairing muscle regeneration, disrupting the normal structure of skeletal muscle extracellular matrix, and contributing to neuromuscular junction lesion and vascular disorders. This article reviews studies focused on the pathogenic role of AGEs in sarcopenia and the potential mechanisms of the detrimental effects, aiming to provide new insights into the pathogenesis of sarcopenia and develop novel methods for the prevention and therapy of sarcopenia.
Collapse
Affiliation(s)
- Zhaojing Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou, China
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Jingyue Su
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengwu Yang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhan Deng
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Qi S, Wu Q, Xiang P, Hou C, Kang Z, Chen M, Yi C, Bai X, Li T, Li Z, Xie W. HMGB1 in Septic Muscle Atrophy: Roles and Therapeutic Potential for Muscle Atrophy and Regeneration. J Cachexia Sarcopenia Muscle 2025; 16:e13711. [PMID: 39963819 PMCID: PMC11833301 DOI: 10.1002/jcsm.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025] Open
Abstract
Currently, the treatment of septic myopathy presents significant challenges with implications for increased mortality rates and prolonged hospitalizations. Effective therapeutic strategies for septic myopathy remain elusive, highlighting an urgent need for novel therapeutic approaches. High-mobility group box 1 (HMGB1) is a conserved nonhistone nuclear protein that is released passively from deceased cells or actively secreted by activated immune cells, influencing both infectious and noninfectious inflammatory responses. Studies have indicated that HMGB1 likely plays a pivotal role in the pathogenesis of septic myopathy by crucial pathways associated with muscle atrophy and contributing to muscle regeneration under certain conditions. This review aims to summarize the possible mechanisms of HMGB1 in muscle atrophy and its potential in muscle regeneration, providing a theoretical basis for HMGB1 treatment of septic myopathy. Research shows that the dual role of HMGB1 is related to its specific forms, which are influenced to varying degrees by environmental factors. HMGB1 is a key participant in septic muscle atrophy, whereas HMGB1 shows therapeutic potential in muscle regeneration. One key mechanism by which HMGB1 contributes to septic muscle atrophy is through the exacerbation of inflammation. HMGB1 can amplify the inflammatory response by promoting the release of pro-inflammatory cytokines, which further damages muscle tissue. HMGB1 is also involved in promoting cell death in sepsis, which contributes to muscle degradation. Another important mechanism is the regulation of protein degradation systems. HMGB1 can activate the ubiquitin-proteasome system and autophagy-lysosome pathway, both of which are crucial for the breakdown of muscle proteins during atrophy. Conversely, targeting HMGB1 has shown the potential to ameliorate muscle atrophy in various diseases. For instance, HMGB1 has been shown to promote muscle vascular regeneration, modify stem cell status and enhance stem cell migration and differentiation, all of which are beneficial for muscle repair and recovery. Pharmacological inhibition of HMGB1 has been explored, with several drugs demonstrating efficacy in reducing inflammation and muscle degradation in sepsis models. These findings suggest that HMGB1 inhibition could be a viable therapeutic approach for septic myopathy. However, the function of promoting muscle regeneration in septic myopathy needs further research. HMGB1 emerges as a promising therapeutic target for the treatment of muscle atrophy in sepsis. This review focuses on identifying the correlation between HMGB1 and septic myopathy, analysing the possible role of HMGB1 in disease development and examining the feasibility of HMGB1 as a therapeutic target.
Collapse
Affiliation(s)
- Si‐Yuan Qi
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiqi Wu
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Peng‐Hui Xiang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chao‐Yao Hou
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhaofeng Kang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Meng‐Qi Chen
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Chengla Yi
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiangjun Bai
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tianyu Li
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhanfei Li
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei‐Ming Xie
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Trauma CenterPeking University People's HospitalBeijingChina
- Key Laboratory of Trauma Treatment and Neural Regeneration (Peking University)Ministry of EducationBeijingChina
- National Center for Trauma Medicine of ChinaBeijingChina
| |
Collapse
|
3
|
Olson LC, Nguyen T, Sabalewski EL, Puetzer JL, Schwartz Z, McClure MJ. S100b treatment overcomes RAGE signaling deficits in myoblasts on advanced glycation end-product cross-linked collagen and promotes myogenic differentiation. Am J Physiol Cell Physiol 2024; 326:C1080-C1093. [PMID: 38314727 DOI: 10.1152/ajpcell.00502.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Advanced glycation end-products (AGEs) stochastically accrue in skeletal muscle and on collagen over an individual's lifespan, stiffening the muscle and modifying the stem cell (MuSC) microenvironment while promoting proinflammatory, antiregenerative signaling via the receptor for advanced glycation end-products (RAGEs). In the present study, a novel in vitro model was developed of this phenomenon by cross linking a 3-D collagen scaffold with AGEs and investigating how myoblasts responded to such an environment. Briefly, collagen scaffolds were incubated with d-ribose (0, 25, 40, 100, or 250 mM) for 5 days at 37°C. C2C12 immortalized mouse myoblasts were grown on the scaffolds for 6 days in growth conditions for proliferation, and 12 days for differentiation and fusion. Human primary myoblasts were also used to confirm the C2C12 data. AGEs aberrantly extended the DNA production stage of C2C12s (but not in human primary myoblasts) which is known to delay differentiation in myogenesis, and this effect was prevented by RAGE inhibition. Furthermore, the differentiation and fusion of myoblasts were disrupted by AGEs, which were associated with reductions in integrins and suppression of RAGE. The addition of S100b (RAGE agonist) recovered the differentiation and fusion of myoblasts, and the addition of RAGE inhibitors (FPS-ZM1 and Azeliragon) inhibited the differentiation and fusion of myoblasts. Our results provide novel insights into the role of the AGE-RAGE axis in skeletal muscle aging, and future work is warranted on the potential application of S100b as a proregenerative factor in aged skeletal muscle.NEW & NOTEWORTHY Collagen cross-linked by advanced glycation end-products (AGEs) induced myoblast proliferation but prevented differentiation, myotube formation, and RAGE upregulation. RAGE inhibition occluded AGE-induced myoblast proliferation, while the delivery of S100b, a RAGE ligand, recovered fusion deficits.
Collapse
Affiliation(s)
- Lucas C Olson
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Gerontology, College of Health Professionals, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Tri Nguyen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Eleanor L Sabalewski
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jennifer L Puetzer
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Orthopaedic Surgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Michael J McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Orthopaedic Surgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
4
|
Pinky, Neha, Ali M, Tiwari P, Alam MM, Hattiwale HM, Jamal A, Parvez S. Unravelling of molecular biomarkers in synaptic plasticity of Alzheimer's disease: Critical role of the restoration of neuronal circuits. Ageing Res Rev 2023; 91:102069. [PMID: 37696304 DOI: 10.1016/j.arr.2023.102069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Learning and memory storage are the fundamental activities of the brain. Aberrant expression of synaptic molecular markers has been linked to memory impairment in AD. Aging is one of the risk factors linked to gradual memory loss. It is estimated that approximately 13 million people worldwide will have AD by 2050. A massive amount of oxidative stress is kept under control by a complex network of antioxidants, which occasionally fails and results in neuronal oxidative stress. Increasing evidence suggests that ROS may affect many pathological aspects of AD, including Aβ accumulation, tau hyperphosphorylation, synaptic plasticity, and mitochondrial dysfunction, which may collectively result in neurodegeneration in the brain. Further investigation into the relationship between oxidative stress and AD may provide an avenue for effective preservation and pharmacological treatment of this neurodegenerative disease. In this review, we briefly summarize the cellular mechanism underlying Aβ induced synaptic dysfunction. Since oxidative stress is common in the elderly and may contribute to the pathogenesis of AD, we also shed light on the role of antioxidant and inflammatory pathways in oxidative stress adaptation, which has a potential therapeutic target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Pinky
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mubashshir Ali
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Haroonrashid M Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
5
|
Miranda ER, Mey JT, Blackburn BK, Chaves AB, Fuller KNZ, Perkins RK, Ludlow AT, Haus JM. Soluble RAGE and skeletal muscle tissue RAGE expression profiles in lean and obese young adults across differential aerobic exercise intensities. J Appl Physiol (1985) 2023; 135:849-862. [PMID: 37675469 PMCID: PMC10642519 DOI: 10.1152/japplphysiol.00748.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Nearly 40% of Americans have obesity and are at increased risk for developing type 2 diabetes. Skeletal muscle is responsible for >80% of insulin-stimulated glucose uptake that is attenuated by the inflammatory milieu of obesity and augmented by aerobic exercise. The receptor for advanced glycation endproducts (RAGE) is an inflammatory receptor directly linking metabolic dysfunction with inflammation. Circulating soluble isoforms of RAGE (sRAGE) formed either by proteolytic cleavage (cRAGE) or alternative splicing (esRAGE) act as decoys for RAGE ligands, thereby counteracting RAGE-mediated inflammation. We aimed to determine if RAGE expression or alternative splicing of RAGE is altered by obesity in muscle, and whether acute aerobic exercise (AE) modifies RAGE and sRAGE. Young (20-34 yr) participants without [n = 17; body mass index (BMI): 22.6 ± 2.6 kg/m2] and with obesity (n = 7; BMI: 32.8 ± 2.9 kg/m2) performed acute aerobic exercise (AE) at 40%, 65%, or 80% of maximal aerobic capacity (V̇o2max; mL/kg/min) on separate visits. Blood was taken before and 30 min after each AE bout. Muscle biopsy samples were taken before, 30 min, and 3 h after the 80% V̇o2max AE bout. Individuals with obesity had higher total RAGE and esRAGE mRNA and RAGE protein (P < 0.0001). In addition, RAGE and esRAGE transcripts correlated to transcripts of the NF-κB subunit P65 (P < 0.05). There was no effect of AE on total RAGE or esRAGE transcripts, or RAGE protein (P > 0.05), and AE tended to decrease circulating sRAGE in particular at lower intensities of exercise. RAGE expression is exacerbated in skeletal muscle with obesity, which may contribute to muscle inflammation via NF-κB. Future work should investigate the consequences of increased skeletal muscle RAGE on the development of obesity-related metabolic dysfunction and potential mitigating strategies.NEW & NOTEWORTHY This study is the first to investigate the effects of aerobic exercise intensity on circulating sRAGE isoforms, muscle RAGE protein, and muscle RAGE splicing. sRAGE isoforms tended to diminish with exercise, although this effect was attenuated with increasing exercise intensity. Muscle RAGE protein and gene expression were unaffected by exercise. However, individuals with obesity displayed nearly twofold higher muscle RAGE protein and gene expression, which positively correlated with expression of the P65 subunit of NF-κB.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jacob T Mey
- Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Brian K Blackburn
- Applied Health Sciences and Kinesiology, Humboldt State University, Arcata, California, United States
| | - Alec B Chaves
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States
| | - Kelly N Z Fuller
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ryan K Perkins
- Department of Kinesiology, California State University Chico, Chico, California, United States
| | - Andrew T Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
6
|
Song J, Chowdhury IH, Choudhuri S, Ayadi AEI, Rios LE, Wolf SE, Wenke JC, Garg NJ. Acute muscle mass loss was alleviated with HMGB1 neutralizing antibody treatment in severe burned rats. Sci Rep 2023; 13:10250. [PMID: 37355693 PMCID: PMC10290662 DOI: 10.1038/s41598-023-37476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
Burn injury is associated with muscle wasting, though the involved signaling mechanisms are not well understood. In this study, we aimed to examine the role of high mobility group box 1 (HMGB1) in signaling hyper-inflammation and consequent skeletal muscle impairment after burn. Sprague Dawley rats were randomly assigned into three groups: (1) sham burn, (2) burn, (3) burn/treatment. Animals in group 2 and group 3 received scald burn on 30% of total body surface area (TBSA) and immediately treated with chicken IgY and anti-HMGB1 antibody, respectively. Muscle tissues and other samples were collected at 3-days after burn. Body mass and wet/dry weights of the hind limb muscles (total and individually) were substantially decreased in burn rats. Acute burn provoked the mitochondrial stress and cell death and enhanced the protein ubiquitination and LC3A/B levels that are involved in protein degradation in muscle tissues. Further, an increase in muscle inflammatory infiltrate associated with increased differentiation, maturation and proinflammatory activation of bone marrow myeloid cells and αβ CD4+ T and γδ T lymphocytes was noted in in circulation and spleen of burn rats. Treatment with one dose of HMGB1 neutralizing antibody reduced the burn wound size and preserved the wet/dry weights of the hind limb muscles associated with a control in the markers of cell death and autophagy pathways in burn rats. Further, anti-HMGB1 antibody inhibited the myeloid and T cells inflammatory activation and subsequent dysregulated inflammatory infiltrate in the muscle tissues of burn rats. We conclude that neutralization of HMGB1-dependent proteolytic and inflammatory responses has potential beneficial effects in preventing the muscle loss after severe burn injury.
Collapse
Affiliation(s)
- Juquan Song
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| | - Imran H Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Subhadip Choudhuri
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Amina E I Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Lizette E Rios
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven E Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Joseph C Wenke
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, USA
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
7
|
Tu H, Li YL. Inflammation balance in skeletal muscle damage and repair. Front Immunol 2023; 14:1133355. [PMID: 36776867 PMCID: PMC9909416 DOI: 10.3389/fimmu.2023.1133355] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Responding to tissue injury, skeletal muscles undergo the tissue destruction and reconstruction accompanied with inflammation. The immune system recognizes the molecules released from or exposed on the damaged tissue. In the local minor tissue damage, tissue-resident macrophages sequester pro-inflammatory debris to prevent initiation of inflammation. In most cases of the skeletal muscle injury, however, a cascade of inflammation will be initiated through activation of local macrophages and mast cells and recruitment of immune cells from blood circulation to the injured site by recongnization of damage-associated molecular patterns (DAMPs) and activated complement system. During the inflammation, macrophages and neutrophils scavenge the tissue debris to release inflammatory cytokines and the latter stimulates myoblast fusion and vascularization to promote injured muscle repair. On the other hand, an abundance of released inflammatory cytokines and chemokines causes the profound hyper-inflammation and mobilization of immune cells to trigger a vicious cycle and lead to the cytokine storm. The cytokine storm results in the elevation of cytolytic and cytotoxic molecules and reactive oxygen species (ROS) in the damaged muscle to aggravates the tissue injury, including the healthy bystander tissue. Severe inflammation in the skeletal muscle can lead to rhabdomyolysis and cause sepsis-like systemic inflammation response syndrome (SIRS) and remote organ damage. Therefore, understanding more details on the involvement of inflammatory factors and immune cells in the skeletal muscle damage and repair can provide the new precise therapeutic strategies, including attenuation of the muscle damage and promotion of the muscle repair.
Collapse
|
8
|
Olson LC, Redden JT, Gilliam L, Nguyen TM, Vossen JA, Cohen DJ, Schwartz Z, McClure MJ. Human Adipose-Derived Stromal Cells Delivered on Decellularized Muscle Improve Muscle Regeneration and Regulate RAGE and P38 MAPK. Bioengineering (Basel) 2022; 9:bioengineering9090426. [PMID: 36134970 PMCID: PMC9495328 DOI: 10.3390/bioengineering9090426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Volumetric muscle loss (VML) is the acute loss of muscle mass due to trauma. Such injuries occur primarily in the extremities and are debilitating, as there is no clinical treatment to restore muscle function. Pro-inflammatory advanced glycation end-products (AGEs) and the soluble receptor for advanced glycation end-products (RAGE) are known to increase in acute trauma patient’s serum and are correlated with increased injury severity. However, it is unclear whether AGEs and RAGE increase in muscle post-trauma. To test this, we used decellularized muscle matrix (DMM), a pro-myogenic, non-immunogenic extracellular matrix biomaterial derived from skeletal muscle. We delivered adipose-derived stromal cells (ASCs) and primary myoblasts to support myogenesis and immunomodulation (N = 8 rats/group). DMM non-seeded and seeded grafts were compared to empty defect and sham controls. Then, 56 days after surgery muscle force was assessed, histology characterized, and protein levels for AGEs, RAGE, p38 MAPK, and myosin heavy chains were measured. Overall, our data showed improved muscle regeneration in ASC-treated injury sites and a regulation of RAGE and p38 MAPK signaling, while myoblast-treated injuries resulted in minor improvements. Taken together, these results suggested that ASCs combined with DMM provides a pro-myogenic microenvironment with immunomodulatory capabilities and indicates further exploration of RAGE signaling in VML.
Collapse
Affiliation(s)
- Lucas C. Olson
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Department of Gerontology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - James T. Redden
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - LaStar Gilliam
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Tri M. Nguyen
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Josephina A. Vossen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David J. Cohen
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Zvi Schwartz
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael J. McClure
- College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-828-8337
| |
Collapse
|
9
|
Szondy Z, Al‐Zaeed N, Tarban N, Fige É, Garabuczi É, Sarang Z. Involvement of phosphatidylserine receptors in the skeletal muscle regeneration: therapeutic implications. J Cachexia Sarcopenia Muscle 2022; 13:1961-1973. [PMID: 35666022 PMCID: PMC9397555 DOI: 10.1002/jcsm.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a progressive loss of muscle mass and strength with a risk of adverse outcomes such as disability, poor quality of life, and death. Increasing evidence indicates that diminished ability of the muscle to activate satellite cell-dependent regeneration is one of the factors that might contribute to its development. Skeletal muscle regeneration following myogenic cell death results from the proliferation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibres. Satellite cell differentiation is not a satellite cell-autonomous process but depends on signals provided by the surrounding cells. Infiltrating macrophages play a key role in the process partly by clearing the necrotic cell debris, partly by producing cytokines and growth factors that guide myogenesis. At the beginning of the muscle regeneration process, macrophages are pro-inflammatory, and the cytokines produced by them trigger the proliferation and differentiation of satellite cells. Following the uptake of dead cells, however, a transcriptionally regulated phenotypic change (macrophage polarization) is induced in them resulting in their transformation into healing macrophages that guide resolution of inflammation, completion of myoblast differentiation, myoblast fusion and growth, and return to homeostasis. Impaired efferocytosis results in delayed cell death clearance, delayed macrophage polarization, prolonged inflammation, and impaired muscle regeneration. Thus, proper efferocytosis by macrophages is a determining factor during muscle repair. Here we review that both efferocytosis and myogenesis are dependent on the cell surface phosphatidylserine (PS), and surprisingly, these two processes share a number of common PS receptors and signalling pathways. Based on these findings, we propose that stimulating the function of PS receptors for facilitating muscle repair following injury could be a successful approach, as it would enhance efferocytosis and myogenesis simultaneously. Because increasing evidence indicates a pathophysiological role of impaired efferocytosis in the development of chronic inflammatory conditions, as well as in impaired muscle regeneration both contributing to the development of sarcopenia, improving efferocytosis should be considered also in its management. Again applying or combining those treatments that target PS receptors would be expected to be the most effective, because they would also promote myogenesis. A potential PS receptor-triggering candidate molecule is milk fat globule-EGF-factor 8 (MFG-E8), which not only stimulates PS-dependent efferocytosis and myoblast fusion but also promotes extracellular signal-regulated kinase (ERK) and Akt activation-mediated cell proliferation and cell cycle progression in myoblasts.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Section of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of DentistryUniversity of DebrecenDebrecenHungary
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Nour Al‐Zaeed
- Doctoral School of Molecular Cell and Immune Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Nastaran Tarban
- Doctoral School of Molecular Cell and Immune Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Éva Fige
- Section of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of DentistryUniversity of DebrecenDebrecenHungary
| | - Éva Garabuczi
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
10
|
Olson LC, Redden JT, Schwartz Z, Cohen DJ, McClure MJ. Advanced Glycation End-Products in Skeletal Muscle Aging. Bioengineering (Basel) 2021; 8:bioengineering8110168. [PMID: 34821734 PMCID: PMC8614898 DOI: 10.3390/bioengineering8110168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Advanced age causes skeletal muscle to undergo deleterious changes including muscle atrophy, fast-to-slow muscle fiber transition, and an increase in collagenous material that culminates in the age-dependent muscle wasting disease known as sarcopenia. Advanced glycation end-products (AGEs) non-enzymatically accumulate on the muscular collagens in old age via the Maillard reaction, potentiating the accumulation of intramuscular collagen and stiffening the microenvironment through collagen cross-linking. This review contextualizes known aspects of skeletal muscle extracellular matrix (ECM) aging, especially the role of collagens and AGE cross-linking, and underpins the motor nerve’s role in this aging process. Specific directions for future research are also discussed, with the understudied role of AGEs in skeletal muscle aging highlighted. Despite more than a half century of research, the role that intramuscular collagen aggregation and cross-linking plays in sarcopenia is well accepted yet not well integrated with current knowledge of AGE’s effects on muscle physiology. Furthermore, the possible impact that motor nerve aging has on intramuscular cross-linking and muscular AGE levels is posited.
Collapse
Affiliation(s)
- Lucas C. Olson
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
- Department of Gerontology, College of Health Professions, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - James T. Redden
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - David J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
| | - Michael J. McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.C.O.); (J.T.R.); (Z.S.); (D.J.C.)
- Correspondence:
| |
Collapse
|
11
|
Pujals M, Resar L, Villanueva J. HMGA1, Moonlighting Protein Function, and Cellular Real Estate: Location, Location, Location! Biomolecules 2021; 11:1334. [PMID: 34572547 PMCID: PMC8468999 DOI: 10.3390/biom11091334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
The gene encoding the High Mobility Group A1 (HMGA1) chromatin remodeling protein is upregulated in diverse cancers where high levels portend adverse clinical outcomes. Until recently, HMGA1 was assumed to be a nuclear protein exerting its role in cancer by transcriptionally modulating gene expression and downstream signaling pathways. However, the discovery of an extracellular HMGA1-RAGE autocrine loop in invasive triple-negative breast cancer (TNBC) cell lines implicates HMGA1 as a "moonlighting protein" with different functions depending upon cellular location. Here, we review the role of HMGA1, not only as a chromatin regulator in cancer and stem cells, but also as a potential secreted factor that drives tumor progression. Prior work found that HMGA1 is secreted from TNBC cell lines where it signals through the receptor for advanced glycation end products (RAGE) to foster phenotypes involved in tumor invasion and metastatic progression. Studies in primary TNBC tumors also suggest that HMGA1 secretion associates with distant metastasis in TNBC. Given the therapeutic potential to target extracellular proteins, further work to confirm this role in other contexts is warranted. Indeed, crosstalk between nuclear and secreted HMGA1 could change our understanding of tumor development and reveal novel therapeutic opportunities relevant to diverse human cancers overexpressing HMGA1.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
| | - Linda Resar
- Department of Medicine, Division of Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Departments of Medicine (Hematology), Oncology, Pathology and Institute of Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Pathobiology, Cellular and Molecular Medicine and Human Genetics Graduate Programs, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josep Villanueva
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
12
|
Fujikura Y, Sugihara H, Hatakeyama M, Oishi K, Yamanouchi K. Ketogenic diet with medium-chain triglycerides restores skeletal muscle function and pathology in a rat model of Duchenne muscular dystrophy. FASEB J 2021; 35:e21861. [PMID: 34416029 DOI: 10.1096/fj.202100629r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an intractable genetic disease associated with progressive skeletal muscle weakness and degeneration. Recently, it was reported that intraperitoneal injections of ketone bodies partially ameliorated muscular dystrophy by increasing satellite cell (SC) proliferation. Here, we evaluated whether a ketogenic diet (KD) with medium-chain triglycerides (MCT-KD) could alter genetically mutated DMD in model rats. We found that the MCT-KD significantly increased muscle strength and fiber diameter in these rats. The MCT-KD significantly suppressed the key features of DMD, namely, muscle necrosis, inflammation, and subsequent fibrosis. Immunocytochemical analysis revealed that the MCT-KD promoted the proliferation of muscle SCs, suggesting enhanced muscle regeneration. The muscle strength of DMD model rats fed with MCT-KD was significantly improved even at the age of 9 months. Our findings suggested that the MCT-KD ameliorates muscular dystrophy by inhibiting myonecrosis and promoting the proliferation of muscle SCs. As far as we can ascertain, this is the first study to apply a functional diet as therapy for DMD in experimental animals. Further studies are needed to elucidate the underlying mechanisms of the MCT-KD-induced improvement of DMD.
Collapse
Affiliation(s)
- Yuri Fujikura
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | | | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
13
|
Advanced Glycation End Products Are Retained in Decellularized Muscle Matrix Derived from Aged Skeletal Muscle. Int J Mol Sci 2021; 22:ijms22168832. [PMID: 34445538 PMCID: PMC8396213 DOI: 10.3390/ijms22168832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Decellularized tissues are biocompatible materials that engraft well, but the age of their source has not been explored for clinical translation. Advanced glycation end products (AGEs) are chemical cross-links that accrue on skeletal muscle collagen in old age, stiffening the matrix and increasing inflammation. Whether decellularized biomaterials derived from aged muscle would suffer from increased AGE collagen cross-links is unknown. We characterized gastrocnemii of 1-, 2-, and 20-month-old C57BL/6J mice before and after decellularization to determine age-dependent changes to collagen stiffness and AGE cross-linking. Total and soluble collagen was measured to assess if age-dependent increases in collagen and cross-linking persisted in decellularized muscle matrix (DMM). Stiffness of aged DMM was determined using atomic force microscopy. AGE levels and the effect of an AGE cross-link breaker, ALT-711, were tested in DMM samples. Our results show that age-dependent increases in collagen amount, cross-linking, and general stiffness were observed in DMM. Notably, we measured increased AGE-specific cross-links within old muscle, and observed that old DMM retained AGE cross-links using ALT-711 to reduce AGE levels. In conclusion, deleterious age-dependent modifications to collagen are present in DMM from old muscle, implying that age matters when sourcing skeletal muscle extracellular matrix as a biomaterial.
Collapse
|
14
|
Abstract
Receptor for advanced glycation end products (RAGE) is an immunoglobulin-like receptor present on cell surface. RAGE binds to an array of structurally diverse ligands, acts as a pattern recognition receptor (PRR) and is expressed on cells of different origin performing different functions. RAGE ligation leads to the initiation of a cascade of signaling events and is implicated in diseases, such as inflammation, cancer, diabetes, vascular dysfunctions, retinopathy, and neurodegenerative diseases. Because of the significant involvement of RAGE in the progression of numerous diseases, RAGE signaling has been targeted through use of inhibitors and anti-RAGE antibodies as a treatment strategy and therapy. Here in this review, we have summarized the physical and physiological aspects of RAGE biology in mammalian system and the importance of targeting this molecule in the treatment of various RAGE mediated pathologies. Highlights Receptor for advanced glycation end products (RAGE) is a member of immunoglobulin superfamily of receptors and involved in many pathophysiological conditions. RAGE ligation with its ligands leads to initiation of distinct signaling cascades and activation of numerous transcription factors. Targeting RAGE signaling through inhibitors and anti-RAGE antibodies can be promising treatment strategy.
Collapse
Affiliation(s)
- Nitish Jangde
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rashmi Ray
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| | - Vivek Rai
- Laboratory of Vascular Immunology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
15
|
Bellezza I, Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G, Donato R. Reductive stress in striated muscle cells. Cell Mol Life Sci 2020; 77:3547-3565. [PMID: 32072237 PMCID: PMC11105111 DOI: 10.1007/s00018-020-03476-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Reductive stress is defined as a condition of sustained increase in cellular glutathione/glutathione disulfide and NADH/NAD+ ratios. Reductive stress is emerging as an important pathophysiological event in several diseased states, being as detrimental as is oxidative stress. Occurrence of reductive stress has been documented in several cardiomyopathies and is an important pathophysiological factor particularly in coronary artery disease and myocardial infarction. Excess activation of the transcription factor, Nrf2-the master regulator of the antioxidant response-, consequent in most cases to defective autophagy, can lead to reductive stress. In addition, hyperglycemia-induced activation of the polyol pathway can lead to increased NADH/NAD+ ratio, which might translate into increased levels of hydrogen sulfide-via enhanced activity of cystathionine β-synthase-that would fuel reductive stress through inhibition of mitochondrial complex I. Reductive stress may be either a potential weapon against cancer priming tumor cells to apoptosis or a cancer's ally promoting tumor cell proliferation and making tumor cells resistant to reactive oxygen species-inducing drugs. In non-cancer pathological states reductive stress is definitely harmful paradoxically leading to reactive oxygen species overproduction via excess NADPH oxidase 4 activity. In face of the documented occurrence of reductive stress in several heart diseases, there is much less information about the occurrence and effects of reductive stress in skeletal muscle tissue. In the present review we describe relevant results emerged from studies of reductive stress in the heart and review skeletal muscle conditions in which reductive stress has been experimentally documented and those in which reductive stress might have an as yet unrecognized pathophysiological role. Establishing whether reductive stress has a (patho)physiological role in skeletal muscle will hopefully contribute to answer the question whether antioxidant supplementation to the general population, athletes, and a large cohort of patients (e.g. heart, sarcopenic, dystrophic, myopathic, cancer, and bronco-pulmonary patients) is harmless or detrimental.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Sara Chiappalupi
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy
- Centro Universitario Di Ricerca Sulla Genomica Funzionale, University of Perugia, 06132, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
- Interuniversity Institute of Myology (IIM), University of Perugia, 06132, Perugia, Italy.
| |
Collapse
|
16
|
Chiappalupi S, Sorci G, Vukasinovic A, Salvadori L, Sagheddu R, Coletti D, Renga G, Romani L, Donato R, Riuzzi F. Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. J Cachexia Sarcopenia Muscle 2020; 11:929-946. [PMID: 32159297 PMCID: PMC7432590 DOI: 10.1002/jcsm.12561] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cachexia, a multifactorial syndrome affecting more than 50% of patients with advanced cancer and responsible for ~20% of cancer-associated deaths, is still a poorly understood process without a standard cure available. Skeletal muscle atrophy caused by systemic inflammation is a major clinical feature of cachexia, leading to weight loss, dampening patients' quality of life, and reducing patients' response to anticancer therapy. RAGE (receptor for advanced glycation end-products) is a multiligand receptor of the immunoglobulin superfamily and a mediator of muscle regeneration, inflammation, and cancer. METHODS By using murine models consisting in the injection of colon 26 murine adenocarcinoma (C26-ADK) or Lewis lung carcinoma (LLC) cells in BALB/c and C57BL/6 or Ager-/- (RAGE-null) mice, respectively, we investigated the involvement of RAGE signalling in the main features of cancer cachexia, including the inflammatory state. In vitro experiments were performed using myotubes derived from C2C12 myoblasts or primary myoblasts isolated from C57BL/6 wild type and Ager-/- mice treated with the RAGE ligand, S100B (S100 calcium-binding protein B), TNF (tumor necrosis factor)α±IFN (interferon) γ, and tumour cell- or masses-conditioned media to analyse hallmarks of muscle atrophy. Finally, muscles of wild type and Ager-/- mice were injected with TNFα/IFNγ or S100B in a tumour-free environment. RESULTS We demonstrate that RAGE is determinant to activate signalling pathways leading to muscle protein degradation in the presence of proinflammatory cytokines and/or tumour-derived cachexia-inducing factors. We identify the RAGE ligand, S100B, as a novel factor able to induce muscle atrophy per se via a p38 MAPK (p38 mitogen-activated protein kinase)/myogenin axis and STAT3 (signal transducer and activator of transcription 3)-dependent MyoD (myoblast determination protein 1) degradation. Lastly, we found that in cancer conditions, an increase in serum levels of tumour-derived S100B and HMGB1 (high mobility group box 1) occurs leading to chronic activation/overexpression of RAGE, which induces hallmarks of cancer cachexia (i.e. muscle wasting, systemic inflammation, and release of tumour-derived pro-cachectic factors). Absence of RAGE in mice translates into reduced serum levels of cachexia-inducing factors, delayed loss of muscle mass and strength, reduced tumour progression, and increased survival. CONCLUSIONS RAGE is a molecular determinant in inducing the hallmarks of cancer cachexia, and molecular targeting of RAGE might represent a therapeutic strategy to prevent or counteract the cachectic syndrome.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology, Perugia, Italy.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Aleksandra Vukasinovic
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology, Perugia, Italy
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology, Perugia, Italy
| | - Roberta Sagheddu
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology, Perugia, Italy
| | - Dario Coletti
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Aging B2A, Sorbonne Université, Paris, France
| | - Giorgia Renga
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology, Perugia, Italy
| |
Collapse
|
17
|
Straughn AR, Hindi SM, Xiong G, Kumar A. Canonical NF-κB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis. J Mol Cell Biol 2020; 11:53-66. [PMID: 30239789 DOI: 10.1093/jmcb/mjy053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023] Open
Abstract
Skeletal muscle regeneration in adults is attributed to the presence of satellite stem cells that proliferate, differentiate, and eventually fuse with injured myofibers. However, the signaling mechanisms that regulate satellite cell homeostasis and function remain less understood. While IKKβ-mediated canonical NF-κB signaling has been implicated in the regulation of myogenesis and skeletal muscle mass, its role in the regulation of satellite cell function during muscle regeneration has not been fully elucidated. Here, we report that canonical NF-κB signaling is induced in skeletal muscle upon injury. Satellite cell-specific inducible ablation of IKKβ attenuates skeletal muscle regeneration in adult mice. Targeted ablation of IKKβ also reduces the number of satellite cells in injured skeletal muscle of adult mice, potentially through inhibiting their proliferation and survival. We also demonstrate that the inhibition of specific components of the canonical NF-κB pathway causes precocious differentiation of cultured satellite cells both ex vivo and in vitro. Finally, our results highlight that the constitutive activation of canonical NF-κB signaling in satellite cells also attenuates skeletal muscle regeneration following injury in adult mice. Collectively, our study demonstrates that the proper regulation of canonical NF-κB signaling is important for the regeneration of adult skeletal muscle.
Collapse
Affiliation(s)
- Alex R Straughn
- Departments of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Sajedah M Hindi
- Departments of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Guangyan Xiong
- Departments of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ashok Kumar
- Departments of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
18
|
Ling Y, Zheng Q, Zhu L, Xu L, Sui M, Zhang Y, Liu Y, Fang F, Chu M, Ma Y, Zhang X. Trend analysis of the role of circular RNA in goat skeletal muscle development. BMC Genomics 2020; 21:220. [PMID: 32151242 PMCID: PMC7063781 DOI: 10.1186/s12864-020-6649-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 03/04/2020] [Indexed: 01/15/2023] Open
Abstract
Background Circular RNA (circRNA) is produced during the splicing of mRNA (in addition to linear splicing) and is part of the gene regulatory network. The temporal expression patterns the different developmental stages were inseparable from these molecules’ function. Results Skeletal muscles of Anhui white goat (AWG) across seven fetal to postnatal development stages were sequenced and 21 RNA sequencing libraries were constructed. We thereby identified 9090 circRNAs and analyzed their molecular properties, temporal expression patterns, and potential functions at the different stages. CircRNAs showed complexities and diversity of formation as the same host gene produces multiple isoforms of these nucleic acids with different expression profiles. The differential expression of 2881 circRNAs (DECs, P < 0.05) was identified and four were randomly selected and validated by qPCR. Moreover, 1118 DECs under strict selected (SDECs, |log2FC| > 2 and P-adj value < 0.01) showed 4 expression trends (Clusters 0, 19, 16 and 18). Cluster 0 molecules had increasing expression at all stages with effects on muscle through metabolism, regulation of enzyme activity, and biosynthesis. Cluster 16 circRNAs had high expression in the early and late stages and are involved in “Wnt signaling pathway”, “AMPK signaling pathway” and others. Cluster 18 molecules were mainly expressed at F120 and participate in “cytoskeletal protein binding”, “Notch signaling pathway” and so on. Cluster 19 circRNAs were down-regulated at all stages and related to muscle structure and development. Lastly, the SDECs divided the period of skeletal muscle development into three transitional stages: stage 1 (F45 to F90), which related to muscle satellite cell proliferation and muscle fiber structure; stage 2 (F90 to B1), in which the attachment of the cytoplasmic surface to the actin cytoskeleton initiates; and stage 3, which involved the “cGMP-PKG signaling pathway”. Moreover, the paraffin sections messages also validated that there are three transitional stages of skeletal muscle development. Conclusion Our current study provides a catalog of goat muscle-related circRNAs that can stratify skeletal muscle development fetus 45 days to newborn 90 days into three developmental stages. These findings better our understanding of functional transitions during mammalian muscle development.
Collapse
Affiliation(s)
- Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China. .,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui province, Hefei, China
| | - Lu Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui province, Hefei, China
| | - Lina Xu
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Menghua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui province, Hefei, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui province, Hefei, China
| | - Ya Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui province, Hefei, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui province, Hefei, China
| | - Mingxing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese academy of agricultural sciences, Beijing, China
| | - Yuehui Ma
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese academy of agricultural sciences, Beijing, China
| | - Xiaorong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui province, Hefei, China
| |
Collapse
|
19
|
Kravchenko IV, Furalyov VA, Popov VO. Glycated albumin stimulates expression of inflammatory cytokines in muscle cells. Cytokine 2020; 128:154991. [PMID: 32000013 DOI: 10.1016/j.cyto.2020.154991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
The effects of glycated albumin on the expression of inflammatory cytokines in differentiated myotubes were investigated. Glycated albumin stimulates the expression of TNF α, IL-1β, IL-6 and CCL-2 both at the mRNA and protein levels via the receptor of AGEs. Various cytokines demonstrated different kinetics of stimulation by glycated albumin. At a high glucose concentration, the stimulation effect was more pronounced than at a low one. At physiological concentrations of albumin and fructosamine, the stimulation effect of glycated albumin on inflammatory cytokine expression in myotubes was also observed. The induction of expression of all studied cytokines was sensitive to the inhibitors of JNK, p38 MAPK, MEK1/2, Src family protein kinases and NF-κB. At the same time, the induction of TNFα and IL-1β was diminished by the Ca2+/calmodulin-dependent protein kinase inhibitor, whereas the induction of IL-6 and CCL-2 was reduced by the inhibitor of phosphoinositide 3-kinase. Possible implications of observed stimulation of cytokine expression by glycated albumin in the development of diabetes mellitus symptoms are discussed.
Collapse
Affiliation(s)
- Irina V Kravchenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, bld. 2, Moscow 119071, Russia.
| | - Vladimir A Furalyov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, bld. 2, Moscow 119071, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, bld. 2, Moscow 119071, Russia
| |
Collapse
|
20
|
Tu W, Wang H, Li S, Liu Q, Sha H. The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases. Aging Dis 2019; 10:637-651. [PMID: 31165007 PMCID: PMC6538222 DOI: 10.14336/ad.2018.0513] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress is defined as an imbalance between production of free radicals and reactive metabolites or [reactive oxygen species (ROS)] and their elimination by through protective mechanisms, including (antioxidants). This Such imbalance leads to damage of cells and important biomolecules and cells, with hence posing a potential adverse impact on the whole organism. At the center of the day-to-day biological response to oxidative stress is the Kelch-like ECH-associated protein 1 (Keap1) - nuclear factor erythroid 2-related factor 2 (Nrf2)- antioxidant response elements (ARE) pathway, which regulates the transcription of many several antioxidant genes that preserve cellular homeostasis and detoxification genes that process and eliminate carcinogens and toxins before they can cause damage. The redox-sensitive signaling system Keap1/Nrf2/ARE plays a key role in the maintenance of cellular homeostasis under stress, inflammatory, carcinogenic, and pro-apoptotic conditions, which allows us to consider it as a pharmacological target. Herein, we review and discuss the recent advancements in the regulation of the Keap1/Nrf2/ARE system, and its role under physiological and pathophysiological conditions, e.g. such as in exercise, diabetes, cardiovascular diseases, cancer, neurodegenerative disorders, stroke, liver and kidney system, etc. and such.
Collapse
Affiliation(s)
- Wenjun Tu
- Institute of Radiation Medicine, China Academy of Medical Science & Peking Union Medical College, Tianjin, China
- Department of Neurosurgery, Beijing Tiantan Hospital of Capital Medical University, Beijing, China
- Center for Translational Medicine, Institutes of Stroke, Weifang Medical University, Weifang, China
| | - Hong Wang
- Institute of Biomedical Engineering, China Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Song Li
- Institute of Radiation Medicine, China Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine, China Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Hong Sha
- Institute of Biomedical Engineering, China Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|
21
|
Potassium chloride released from contracting skeletal muscle may stimulate development of its hypertrophy. Biochem Biophys Rep 2019; 18:100627. [PMID: 30957033 PMCID: PMC6433999 DOI: 10.1016/j.bbrep.2019.100627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
The effects of potassium chloride on the expression of IGF-1 splice forms and myoblast proliferation were investigated. KCl at the concentrations of 7-12 mM stimulated the synthesis of IGF-1 and mechano growth factor (MGF) in murine myoblasts as well as in myotubes both at the mRNA and protein levels. Pan-calcium channel blocker CdCl2 completely abolished stimulation of growth factor expression, whereas blocker of HCN and Nav1.4 channels ZD7288 drastically reduced it. In addition, potassium chloride stimulated myoblast proliferation, while IGF-1 autocrine signaling inhibition partially suppressed these mitogenic effects.
Collapse
|
22
|
Biguetti CC, Cavalla F, Silveira EV, Tabanez AP, Francisconi CF, Taga R, Campanelli AP, Trombone APF, Rodrigues DC, Garlet GP. HGMB1 and RAGE as Essential Components of Ti Osseointegration Process in Mice. Front Immunol 2019; 10:709. [PMID: 31024546 PMCID: PMC6461067 DOI: 10.3389/fimmu.2019.00709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022] Open
Abstract
The release of the prototypic DAMP High Mobility Group Box 1 (HMGB1) into extracellular environment and its binding to the Receptor for Advanced Glycation End Products (RAGE) has been described to trigger sterile inflammation and regulate healing outcome. However, their role on host response to Ti-based biomaterials and in the subsequent osseointegration remains unexplored. In this study, HMGB1 and RAGE inhibition in the Ti-mediated osseointegration were investigated in C57Bl/6 mice. C57Bl/6 mice received a Ti-device implantation (Ti-screw in the edentulous alveolar crest and a Ti-disc in the subcutaneous tissue) and were evaluated by microscopic (microCT [bone] and histology [bone and subcutaneous]) and molecular methods (ELISA, PCR array) during 3, 7, 14, and 21 days. Mice were divided into 4 groups: Control (no treatment); GZA (IP injection of Glycyrrhizic Acid for HMGB1 inhibition, 4 mg/Kg/day); RAP (IP injection of RAGE Antagonistic Peptide, 4 mg/Kg/day), and vehicle controls (1.5% DMSO solution for GZA and 0.9% saline solution for RAP); treatments were given at all experimental time points, starting 1 day before surgeries. HMGB1 was detected in the Ti-implantation sites, adsorbed to the screws/discs. In Control and vehicle groups, osseointegration was characterized by a slight inflammatory response at early time points, followed by a gradual bone apposition and matrix maturation at late time points. The inhibition of HMGB1 or RAGE impaired the osseointegration, affecting the dynamics of mineralized and organic bone matrix, and resulting in a foreign body reaction, with persistence of macrophages, necrotic bone, and foreign body giant cells until later time points. While Control samples were characterized by a balance between M1 and M2-type response in bone and subcutaneous sites of implantation, and also MSC markers, the inhibition of HMGB1 or RAGE caused a higher expression M1 markers and pro-inflammatory cytokines, as well chemokines and receptors for macrophage migration until later time points. In conclusion, HMGB1 and RAGE have a marked role in the osseointegration, evidenced by their influence on host inflammatory immune response, which includes macrophages migration and M1/M2 response, MSC markers expression, which collectively modulate bone matrix deposition and osseointegration outcome.
Collapse
Affiliation(s)
- Claudia Cristina Biguetti
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Franco Cavalla
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil.,Department of Conservative Dentistry, School of Dentistry, University of Chile, Santiago, Chile
| | - Elcia Varize Silveira
- Department of Biological and Allied Health Sciences, Universidade Sagrado Coração, Bauru, Brazil
| | - André Petenuci Tabanez
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Rumio Taga
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Danieli C Rodrigues
- Department of Bioengineering, University of Texas at Dallas, Dallas, TX, United States
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Cappelletti C, Galbardi B, Bruttini M, Salerno F, Canioni E, Pasanisi MB, Rodolico C, Brizzi T, Mora M, Renieri A, Maggi L, Bernasconi P, Mantegazza R. Aging-associated genes and let-7 microRNAs: a contribution to myogenic program dysregulation in oculopharyngeal muscular dystrophy. FASEB J 2019; 33:7155-7167. [PMID: 30860873 DOI: 10.1096/fj.201801577rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset muscle disease caused by an abnormal (GCN) triplet expansion within the polyadenylate-binding protein nuclear 1 gene and consequent mRNA processing impairment and myogenic defects. Because a reduced cell proliferation potential and the consequent regeneration failure of aging muscle have been shown to be governed by lethal-7 (let-7) microRNA-mediated mechanisms, in the present study, we evaluated the role of let-7 in the pathogenesis of OPMD. By a multidisciplinary approach, including confocal microscopy, Western blot, and quantitative PCR analyses on muscle biopsies from patients and unaffected individuals, we found a significant increase in let-7 expression in OPMD muscles associated with an unusual high percentage of paired box 7-positive satellite cells. Furthermore, IL-6, a cytokine involved in the regulation of satellite cell proliferation and differentiation and a potential target of let-7, was found strongly down-regulated in OPMD compared with control muscles. The decrease in IL-6 transcript levels and protein content was also confirmed in vitro during differentiation of patients' and controls' muscle cells. Overall, our data suggest a key role of let-7 in the regeneration and degeneration process in OPMD muscle and pointed to IL-6 as a potential target molecule for new therapeutic approaches for this disorder.-Cappelletti, C., Galbardi, B., Bruttini, M., Salerno, F., Canioni, E., Pasanisi, M. B., Rodolico, C., Brizzi, T., Mora, M., Renieri, A., Maggi, L., Bernasconi, P., Mantegazza, R. Aging-associated genes and let-7 microRNAs: a contribution to myogenic program dysregulation in oculopharyngeal muscular dystrophy.
Collapse
Affiliation(s)
- Cristina Cappelletti
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Galbardi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Franco Salerno
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Canioni
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Barbara Pasanisi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carmelo Rodolico
- Department of Neurosciences, University of Messina, Messina, Italy; and
| | - Teresa Brizzi
- Department of Neurosciences, University of Messina, Messina, Italy; and.,Dipartimento Biomedico di Medicina Interna e Specialistica (DiBiMIS), University of Palermo, Palermo, Italy
| | - Marina Mora
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Lorenzo Maggi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pia Bernasconi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
24
|
Riuzzi F, Sorci G, Arcuri C, Giambanco I, Bellezza I, Minelli A, Donato R. Cellular and molecular mechanisms of sarcopenia: the S100B perspective. J Cachexia Sarcopenia Muscle 2018; 9:1255-1268. [PMID: 30499235 PMCID: PMC6351675 DOI: 10.1002/jcsm.12363] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022] Open
Abstract
Primary sarcopenia is a condition of reduced skeletal muscle mass and strength, reduced agility, and increased fatigability and risk of bone fractures characteristic of aged, otherwise healthy people. The pathogenesis of primary sarcopenia is not completely understood. Herein, we review the essentials of the cellular and molecular mechanisms of skeletal mass maintenance; the alterations of myofiber metabolism and deranged properties of muscle satellite cells (the adult stem cells of skeletal muscles) that underpin the pathophysiology of primary sarcopenia; the role of the Ca2+ -sensor protein, S100B, as an intracellular factor and an extracellular signal regulating cell functions; and the functional role of S100B in muscle tissue. Lastly, building on recent results pointing to S100B as to a molecular determinant of myoblast-brown adipocyte transition, we propose S100B as a transducer of the deleterious effects of accumulation of reactive oxygen species in myoblasts and, potentially, myofibers concurring to the pathophysiology of sarcopenia.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Cataldo Arcuri
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Ileana Giambanco
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology
| | - Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Alba Minelli
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, 06132, Italy.,Interuniversity Institute of Myology.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, 06132, Italy
| |
Collapse
|
25
|
Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:1213-1234. [PMID: 30334619 PMCID: PMC6351676 DOI: 10.1002/jcsm.12350] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that the signalling of the Receptor for Advanced Glycation End products (RAGE) is critical for skeletal muscle physiology controlling both the activity of muscle precursors during skeletal muscle development and the correct time of muscle regeneration after acute injury. On the other hand, the aberrant re-expression/activity of RAGE in adult skeletal muscle is a hallmark of muscle wasting that occurs in response to ageing, genetic disorders, inflammatory conditions, cancer, and metabolic alterations. In this review, we discuss the mechanisms of action and the ligands of RAGE involved in myoblast differentiation, muscle regeneration, and muscle pathological conditions. We highlight potential therapeutic strategies for targeting RAGE to improve skeletal muscle function.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Roberta Sagheddu
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| |
Collapse
|
26
|
Sagheddu R, Chiappalupi S, Salvadori L, Riuzzi F, Donato R, Sorci G. Targeting RAGE as a potential therapeutic approach to Duchenne muscular dystrophy. Hum Mol Genet 2018; 27:3734-3746. [DOI: 10.1093/hmg/ddy288] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Roberta Sagheddu
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| | - Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| | - Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
- Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM)
| |
Collapse
|
27
|
Medkova A, Srovnal J, Potomkova J, Volejnikova J, Mihal V. Multifarious diagnostic possibilities of the S100 protein family: predominantly in pediatrics and neonatology. World J Pediatr 2018; 14:315-321. [PMID: 29858979 DOI: 10.1007/s12519-018-0163-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 05/11/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Numerous articles related to S100 proteins have been recently published. This review aims to introduce this large protein family and its importance in the diagnostics of many pathological conditions in children and adults. DATA SOURCES Based on original publications found in database systems, we summarize the current knowledge about the S100 protein group and highlight the most important proteins with focus on pediatric use. RESULTS The S100 family is composed of Ca2+ and Zn2+ binding proteins, which are present only in vertebrates. Some of these proteins can be used as diagnostic markers in cardiology (S100A1, S100A12), oncology (S100A2, S100A5, S100A6, S100A14, S100A16, S100P, S100B), neurology (S100B), rheumatology (S100A8/A9, S100A4, S100A6, and S100A12), nephrology and infections (S100A8, S100A9, S100A8/A9, S100A12). The most useful S100 proteins in pediatrics are S100A8, S100A9, heterodimers S100A8/A9, S100B and S100A12. CONCLUSIONS The S100 family members are promising biomarkers and provide numerous possibilities for implementation into clinical practice to optimize the differential diagnostic process.
Collapse
Affiliation(s)
- Anna Medkova
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic.
| | - Josef Srovnal
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Hněvotínská, 1333/5, 779 00, Olomouc, Czech Republic
| | - Jarmila Potomkova
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
- Department of Science and Research, University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
| | - Jana Volejnikova
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Hněvotínská, 1333/5, 779 00, Olomouc, Czech Republic
| | - Vladimir Mihal
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, I. P. Pavlova 6, 779 00, Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University Olomouc, Hněvotínská, 1333/5, 779 00, Olomouc, Czech Republic
| |
Collapse
|
28
|
Kim YA, Jin SW, Oh SH, Lee GH, Pham HT, Choi JH, Chung YC, Lee WL, Kim SK, Jeong HG. Platycodon grandiflorum-derived saponin enhances exercise function, skeletal muscle protein synthesis, and mitochondrial function. Food Chem Toxicol 2018; 118:94-104. [PMID: 29723585 DOI: 10.1016/j.fct.2018.04.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 10/17/2022]
Abstract
Lower physical performance is an important risk factor in hypokinetic-related chronic disease, metabolic syndrome, and muscle atrophy. Our previous research demonstrated that Platycodon grandiflorum-derived saponin (PS) protects against eccentric exercise-induced muscle damage and mitochondrial function-related peroxisomal acyl-coenzme A oxidase (ACOX-1) and carnitine palmitoyltransferase (CPT-1) in high-fat diet-induced non-alcoholic steatohepatitis, and it inhibits osteoclast differentiation. However, the effects of PS on physical performance remain unknown. Therefore, we investigated whether PS enhances physical activity and skeletal muscle function. Supplementation with PS (2 mg/kg for 4 weeks) increased grip strength, wheel running repetition, and time to exhaustion in treadmill and swimming exercises. Marked increases in the synthesis of skeletal muscle proteins and muscle stem cell-related paired-box 7 (PAX7) were observed, and a decrease in the negative regulator myostatin was associated with enhanced muscle regeneration. Furthermore, PS induced expression of mitochondrial function proteins, including OXPHOS-III and -IV, in vivo and in vitro. These results suggest that PS enhances exercise function by ameliorating skeletal muscle protein synthesis and mitochondrial function.
Collapse
Affiliation(s)
- Yong An Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Suck Hoon Oh
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hoa Thi Pham
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, Republic of Korea
| | - Wang Lok Lee
- Department of Sport Science, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
29
|
Riuzzi F, Beccafico S, Sagheddu R, Chiappalupi S, Giambanco I, Bereshchenko O, Riccardi C, Sorci G, Donato R. Levels of S100B protein drive the reparative process in acute muscle injury and muscular dystrophy. Sci Rep 2017; 7:12537. [PMID: 28970581 PMCID: PMC5624904 DOI: 10.1038/s41598-017-12880-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022] Open
Abstract
Regeneration of injured skeletal muscles relies on a tightly controlled chain of cellular and molecular events. We show that appropriate levels of S100B protein are required for timely muscle regeneration after acute injury. S100B released from damaged myofibers and infiltrating macrophages expands the myoblast population, attracts macrophages and promotes their polarization into M2 (pro-regenerative) phenotype, and modulates collagen deposition, by interacting with RAGE (receptor for advanced glycation end-products) or FGFR1 (fibroblast growth factor receptor 1) depending on the muscle repair phase and local conditions. However, persistence of high S100B levels compromises the regeneration process prolonging myoblast proliferation and macrophage infiltration, delaying M1/M2 macrophage transition, and promoting deposition of fibrotic tissue via RAGE engagement. Interestingly, S100B is released in high abundance from degenerating muscles of mdx mice, an animal model of Duchenne muscular dystrophy (DMD), and blocking S100B ameliorates histopathology. Thus, levels of S100B differentially affect skeletal muscle repair upon acute injury and in the context of muscular dystrophy, and S100B might be regarded as a potential molecular target in DMD.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.,Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Sara Beccafico
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.,Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Roberta Sagheddu
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.,Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Sara Chiappalupi
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.,Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Oxana Bereshchenko
- Department of Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.,Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy. .,Istituto Interuniversitario di Miologia, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy. .,Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132, Perugia, Italy.
| |
Collapse
|
30
|
Fibroblast growth factor 21 ameliorates high glucose-induced fibrogenesis in mesangial cells through inhibiting STAT5 signaling pathway. Biomed Pharmacother 2017; 93:695-704. [DOI: 10.1016/j.biopha.2017.06.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/12/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
|
31
|
Takase F, Inui A, Mifune Y, Sakata R, Muto T, Harada Y, Ueda Y, Kokubu T, Kurosaka M. Effect of platelet-rich plasma on degeneration change of rotator cuff muscles: In vitro and in vivo evaluations. J Orthop Res 2017; 35:1806-1815. [PMID: 27684960 DOI: 10.1002/jor.23451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/23/2016] [Indexed: 02/04/2023]
Abstract
Atrophy with fatty degeneration is often seen in rotator cuff muscles with torn tendons. PRP has been reported to enhance tissue repair processes after tendon ruptures. However, the effect of PRP on atrophy and fatty degeneration of the muscle is not yet known. The aim of this study is to examine the effect of PRP on degeneration change of rotator cuff muscles in vitro and in vivo. A murine myogenic cell line and a rat rotator cuff tear model were used in this study and PRP was administrated into subacromial space which is widely used in clinical practice. In in vitro study, administration of PRP to C2C12 cells stimulated cell proliferation while inhibited both myogenic and adipogenic differentiation. In in vivo study, administration of PRP suppressed Oil Red-O positive lipid droplet formation. The expression of adipogenic genes was also decreased by PRP administration. In conclusion, PRP promoted proliferation of myoblast cells, while inhibiting adipogenic differentiation of myoblast cells and suppressing fatty degeneration change in rat torn rotator cuff muscles. Further investigations are needed to determine the clinical applicability of the PRP. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1806-1815, 2017.
Collapse
Affiliation(s)
- Fumiaki Takase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ryosuke Sakata
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Tomoyuki Muto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshifumi Harada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yasuhiro Ueda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takeshi Kokubu
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
32
|
Sachdev U, Lotze MT. Perpetual change: autophagy, the endothelium, and response to vascular injury. J Leukoc Biol 2017; 102:221-235. [PMID: 28626046 PMCID: PMC6608075 DOI: 10.1189/jlb.3ru1116-484rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Current studies of vascular health, aging, and autophagy emphasize how the endothelium adapts to stress and contributes to disease. The endothelium is far from an inert barrier to blood-borne cells, pathogens, and chemical signals; rather, it actively translates circulating mediators into tissue responses, changing rapidly in response to physiologic stressors. Macroautophagy-the cellular ingestion of effete organelles and protein aggregates to provide anabolic substrates to fuel bioenergetics in times of stress-plays an important role in endothelial cell homeostasis, vascular remodeling, and disease. These roles include regulating vascular tone, sustaining or limiting cell survival, and contributing to the development of atherosclerosis secondary to infection, inflammation, and angiogenesis. Autophagy modulates these critical functions of the endothelium in a dynamic and perpetual response to tissue and intravascular cues.
Collapse
Affiliation(s)
- Ulka Sachdev
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Keller CW, Schmidt J, Lünemann JD. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann Clin Transl Neurol 2017; 4:422-445. [PMID: 28589170 PMCID: PMC5454400 DOI: 10.1002/acn3.419] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Inclusion Body Myositis (IBM) is a relatively common acquired inflammatory myopathy in patients above 50 years of age. Pathological hallmarks of IBM are intramyofiber protein inclusions and endomysial inflammation, indicating that both myodegenerative and inflammatory mechanisms contribute to its pathogenesis. Impaired protein degradation by the autophagic machinery, which regulates innate and adaptive immune responses, in skeletal muscle fibers has recently been identified as a potential key pathomechanism in IBM. Immunotherapies, which are successfully used for treating other inflammatory myopathies lack efficacy in IBM and so far no effective treatment is available. Thus, a better understanding of the mechanistic pathways underlying progressive muscle weakness and atrophy in IBM is crucial in identifying novel promising targets for therapeutic intervention. Here, we discuss recent insights into the pathomechanistic network of mutually dependent inflammatory and degenerative events during IBM.
Collapse
Affiliation(s)
- Christian W. Keller
- Institute of Experimental ImmunologyLaboratory of NeuroinflammationUniversity of ZürichZürichSwitzerland
| | - Jens Schmidt
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Jan D. Lünemann
- Institute of Experimental ImmunologyLaboratory of NeuroinflammationUniversity of ZürichZürichSwitzerland
- Department of NeurologyUniversity Hospital ZürichZürichSwitzerland
| |
Collapse
|
34
|
Lee H, Park JR, Kim WJ, Sundar IK, Rahman I, Park SM, Yang SR. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling. FASEB J 2017; 31:2076-2089. [PMID: 28148566 DOI: 10.1096/fj.201601155r] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 12/21/2022]
Abstract
The receptor for advanced glycan end products (RAGE) has been identified as a susceptibility gene for chronic obstructive pulmonary disease (COPD) in genome-wide association studies (GWASs). However, less is known about how RAGE is involved in the pathogenesis of COPD. To determine the molecular mechanism by which RAGE influences COPD in experimental COPD models, we investigated the efficacy of the RAGE-specific antagonist FPS-ZM1 administration in in vivo and in vitro COPD models. We injected elastase intratracheally and the RAGE antagonist FPS-ZM1 in mice, and the infiltrated inflammatory cells and cytokines were assessed by ELISA. Cellular expression of RAGE was determined in protein, serum, and bronchoalveolar lavage fluid of mice and lungs and serum of human donors and patients with COPD. Downstream damage-associated molecular pattern (DAMP) pathway activation in vivo and in vitro and in patients with COPD was assessed by immunofluorescence staining, Western blot analysis, and ELISA. The expression of membrane RAGE in initiating the inflammatory response and of soluble RAGE acting as a decoy were associated with up-regulation of the DAMP-related signaling pathway via Nrf2. FPS-ZM1 administration significantly reversed emphysema in the lung of mice. Moreover, FPS-ZM1 treatment significantly reduced lung inflammation in Nrf2+/+ , but not in Nrf2-/- mice. Thus, our data indicate for the first time that RAGE inhibition has an essential protective role in COPD. Our observation of RAGE inhibition provided novel insight into its potential as a therapeutic target in emphysema/COPD.-Lee, H., Park, J.-R., Kim, W. J., Sundar, I. K., Rahman, I., Park, S.-M., Yang. S.-R. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling.
Collapse
Affiliation(s)
- Hanbyeol Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Jeong-Ran Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon, South Korea; and
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea;
| |
Collapse
|
35
|
Potential involvement of dietary advanced glycation end products in impairment of skeletal muscle growth and muscle contractile function in mice. Br J Nutr 2017; 117:21-29. [PMID: 28093090 DOI: 10.1017/s0007114516004591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diets enriched with advanced glycation end products (AGE) have recently been related to muscle dysfunction processes. However, it remains unclear whether long-term exposure to an AGE-enriched diet impacts physiological characteristics of skeletal muscles. Therefore, we explored the differences in skeletal muscle mass, contractile function and molecular responses between mice receiving a diet high in AGE (H-AGE) and low in AGE (L-AGE) for 16 weeks. There were no significant differences between L-AGE and H-AGE mice with regard to body weight, food intake or epididymal fat pad weight. However, extensor digitorum longus (EDL) and plantaris (PLA) muscle weights in H-AGE mice were lower compared with L-AGE mice. Higher levels of N ε -(carboxymethyl)-l-lysine, a marker for AGE, in EDL muscles of H-AGE mice were observed compared with L-AGE mice. H-AGE mice showed lower muscle strength and endurance in vivo and lower muscle force production of PLA muscle in vitro. mRNA expression levels of myogenic factors including myogenic factor 5 and myogenic differentiation in EDL muscle were lower in H-AGE mice compared with L-AGE mice. The phosphorylation status of 70-kDa ribosomal protein S6 kinase Thr389, an indicator of protein synthesis signalling, was lower in EDL muscle of H-AGE mice than that of L-AGE mice. These findings suggest that long-term exposure to an AGE-enriched diet impairs skeletal muscle growth and muscle contractile function, and that these muscle dysfunctions may be attributed to the inhibition of myogenic potential and protein synthesis.
Collapse
|
36
|
Randolph ME, Phillips BL, Choo HJ, Vest KE, Vera Y, Pavlath GK. Pharyngeal Satellite Cells Undergo Myogenesis Under Basal Conditions and Are Required for Pharyngeal Muscle Maintenance. Stem Cells 2016; 33:3581-95. [PMID: 26178867 DOI: 10.1002/stem.2098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/15/2015] [Accepted: 06/01/2015] [Indexed: 12/19/2022]
Abstract
The pharyngeal muscles of the nasal, oral, and laryngeal pharynxes are required for swallowing. Pharyngeal muscles are preferentially affected in some muscular dystrophies yet spared in others. Muscle stem cells, called satellite cells, may be critical factors in the development of pharyngeal muscle disorders; however, very little is known about pharyngeal satellite cells (PSC) and their role in pharyngeal muscles. We show that PSC are distinct from the commonly studied hindlimb satellite cells both transcriptionally and biologically. Under basal conditions PSC proliferate, progress through myogenesis, and fuse with pharyngeal myofibers. Furthermore, PSC exhibit biologic differences dependent on anatomic location in the pharynx. Importantly, PSC are required to maintain myofiber size and myonuclear number in pharyngeal myofibers. Together, these results demonstrate that PSC are critical for pharyngeal muscle maintenance and suggest that satellite cell impairment could contribute to pharyngeal muscle pathology associated with various muscular dystrophies and aging.
Collapse
Affiliation(s)
| | | | - Hyo-Jung Choo
- Department of Pharmacology, Emory University, Atlanta, Georgia, USA
| | - Katherine E Vest
- Department of Pharmacology, Emory University, Atlanta, Georgia, USA
| | - Yandery Vera
- Department of Pharmacology, Emory University, Atlanta, Georgia, USA
| | - Grace K Pavlath
- Department of Pharmacology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Riuzzi F, Beccafico S, Sorci G, Donato R. S100B protein in skeletal muscle regeneration: regulation of myoblast and macrophage functions. Eur J Transl Myol 2016; 26:5830. [PMID: 27054019 PMCID: PMC4821221 DOI: 10.4081/ejtm.2016.5830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- F Riuzzi
- Department of Experimental Medicine, Section of Anatomy, University of Perugia , Italy
| | - S Beccafico
- Department of Experimental Medicine, Section of Anatomy, University of Perugia , Italy
| | - G Sorci
- Department of Experimental Medicine, Section of Anatomy, University of Perugia , Italy
| | - R Donato
- Department of Experimental Medicine, Section of Anatomy, University of Perugia , Italy
| |
Collapse
|
38
|
Mastrocola R, Nigro D, Chiazza F, Medana C, Dal Bello F, Boccuzzi G, Collino M, Aragno M. Fructose-derived advanced glycation end-products drive lipogenesis and skeletal muscle reprogramming via SREBP-1c dysregulation in mice. Free Radic Biol Med 2016; 91:224-35. [PMID: 26721591 DOI: 10.1016/j.freeradbiomed.2015.12.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/07/2015] [Accepted: 12/19/2015] [Indexed: 12/21/2022]
Abstract
Advanced Glycation End-Products (AGEs) have been recently related to the onset of metabolic diseases and related complications. Moreover, recent findings indicate that AGEs can endogenously be formed by high dietary sugars, in particular by fructose which is widely used as added sweetener in foods and drinks. The aim of the present study was to investigate the impact of a high-fructose diet and the causal role of fructose-derived AGEs in mice skeletal muscle morphology and metabolism. C57Bl/6J mice were fed a standard diet (SD) or a 60% fructose diet (HFRT) for 12 weeks. Two subgroups of SD and HFRT mice received the anti-glycative compound pyridoxamine (150 mg/kg/day) in the drinking water. At the end of protocol high levels of AGEs were detected in both plasma and gastrocnemius muscle of HFRT mice associated to impaired expression of AGE-detoxifying AGE-receptor 1. In gastrocnemius, AGEs upregulated the lipogenesis by multiple interference on SREBP-1c through downregulation of the SREBP-inhibiting enzyme SIRT-1 and increased glycation of the SREBP-activating protein SCAP. The AGEs-induced SREBP-1c activation affected the expression of myogenic regulatory factors leading to alterations in fiber type composition, associated with reduced mitochondrial efficiency and muscular strength. Interestingly, pyridoxamine inhibited AGEs generation, thus counteracting all the fructose-induced alterations. The unsuspected involvement of diet-derived AGEs in muscle metabolic derangements and proteins reprogramming opens new perspectives in pathogenic mechanisms of metabolic diseases.
Collapse
Affiliation(s)
- R Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Italy.
| | - D Nigro
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - F Chiazza
- Department of Drug Science and Technology, University of Turin, Italy
| | - C Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - F Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - G Boccuzzi
- Department of Medical Sciences, University of Turin, Italy
| | - M Collino
- Department of Drug Science and Technology, University of Turin, Italy
| | - M Aragno
- Department of Clinical and Biological Sciences, University of Turin, Italy
| |
Collapse
|
39
|
Chiu CY, Yang RS, Sheu ML, Chan DC, Yang TH, Tsai KS, Chiang CK, Liu SH. Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated, AMPK-down-regulated, Akt pathway. J Pathol 2015; 238:470-82. [PMID: 26586640 DOI: 10.1002/path.4674] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/01/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022]
Abstract
Diabetic myopathy, a less studied complication of diabetes, exhibits the clinical observations characterized by a less muscle mass, muscle weakness and a reduced physical functional capacity. Accumulation of advanced glycation end-products (AGEs), known to play a role in diabetic complications, has been identified in ageing human skeletal muscles. However, the role of AGEs in diabetic myopathy remains unclear. Here, we investigated the effects of AGEs on myogenic differentiation and muscle atrophy in vivo and in vitro. We also evaluated the therapeutic potential of alagebrium chloride (Ala-Cl), an inhibitor of AGEs. Muscle fibre atrophy and immunoreactivity for AGEs, Atrogin-1 (a muscle atrophy marker) and phosphorylated AMP-activated protein kinase (AMPK) expressions were markedly increased in human skeletal muscles from patients with diabetes as compared with control subjects. Moreover, in diabetic mice we found increased blood AGEs, less muscle mass, lower muscular endurance, atrophic muscle size and poor regenerative capacity, and increased levels of muscle AGE and receptor for AGE (RAGE), Atrogin-1 and phosphorylated AMPK, which could be significantly ameliorated by Ala-Cl. Furthermore, in vitro, AGEs (in a dose-dependent manner) reduced myotube diameters (myotube atrophy) and induced Atrogin-1 protein expression in myotubes differentiated from both mouse myoblasts and primary human skeletal muscle-derived progenitor cells. AGEs exerted a negative regulation of myogenesis of mouse and human myoblasts. Ala-Cl significantly inhibited the effects of AGEs on myotube atrophy and myogenesis. We further demonstrated that AGEs induced muscle atrophy/myogenesis impairment via a RAGE-mediated AMPK-down-regulation of the Akt signalling pathway. Our findings support that AGEs play an important role in diabetic myopathy, and that an inhibitor of AGEs may offer a therapeutic strategy for managing the dysfunction of muscle due to diabetes or ageing.
Collapse
Affiliation(s)
- Chen-Yuan Chiu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rong-Sen Yang
- Department of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ding-Cheng Chan
- Department of Geriatrics and Gerontology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Keh-Sung Tsai
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Departments of Integrated Diagnostics and Therapeutics and Internal Medicine, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Paediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
40
|
Zou X, Meng J, Li L, Han W, Li C, Zhong R, Miao X, Cai J, Zhang Y, Zhu D. Acetoacetate Accelerates Muscle Regeneration and Ameliorates Muscular Dystrophy in Mice. J Biol Chem 2015; 291:2181-95. [PMID: 26645687 DOI: 10.1074/jbc.m115.676510] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 11/06/2022] Open
Abstract
Acetoacetate (AA) is a ketone body and acts as a fuel to supply energy for cellular activity of various tissues. Here, we uncovered a novel function of AA in promoting muscle cell proliferation. Notably, the functional role of AA in regulating muscle cell function is further evidenced by its capability to accelerate muscle regeneration in normal mice, and it ameliorates muscular dystrophy in mdx mice. Mechanistically, our data from multiparameter analyses consistently support the notion that AA plays a non-metabolic role in regulating muscle cell function. Finally, we show that AA exerts its function through activation of the MEK1-ERK1/2-cyclin D1 pathway, revealing a novel mechanism in which AA serves as a signaling metabolite in mediating muscle cell function. Our findings highlight the profound functions of a small metabolite as signaling molecule in mammalian cells.
Collapse
Affiliation(s)
- Xiaoting Zou
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Jiao Meng
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Li Li
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Wanhong Han
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Changyin Li
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Ran Zhong
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Xuexia Miao
- the Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Cai
- the Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Zhang
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Dahai Zhu
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| |
Collapse
|
41
|
Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015; 80:2-13. [PMID: 26453493 DOI: 10.1016/j.bone.2015.02.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/21/2022]
Abstract
Both skeletal muscle and bone are of mesodermal origin and derived from somites during embryonic development. Somites differentiate into the dorsal dermomyotome and the ventral sclerotome, which give rise to skeletal muscle and bone, respectively. Extracellular signaling molecules, such as Wnt and Shh, secreted from the surrounding environment, determine the developmental fate of skeletal muscle. Dermomyotome cells are specified as trunk muscle progenitor cells by transcription factor networks involving Pax3. These progenitor cells delaminate and migrate to form the myotome, where they are determined as myoblasts that differentiate into myotubes or myofibers. The MyoD family of transcription factors plays pivotal roles in myogenic determination and differentiation. Adult skeletal muscle regenerates upon exercise, muscle injury, or degeneration. Satellite cells are muscle-resident stem cells and play essential roles in muscle growth and regeneration. Muscle regeneration recapitulates the process of muscle development in many aspects. In certain muscle diseases, ectopic calcification or heterotopic ossification, as well as fibrosis and adipogenesis, occurs in skeletal muscle. Muscle-resident mesenchymal progenitor cells, which may be derived from vascular endothelial cells, are responsible for the ectopic osteogenesis, fibrogenesis, and adipogenesis. The small GTPase M-Ras is likely to participate in the ectopic calcification and ossification, as well as in osteogenesis during development. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
42
|
Chiappalupi S, Luca G, Mancuso F, Madaro L, Fallarino F, Nicoletti C, Calvitti M, Arato I, Falabella G, Salvadori L, Di Meo A, Bufalari A, Giovagnoli S, Calafiore R, Donato R, Sorci G. Intraperitoneal injection of microencapsulated Sertoli cells restores muscle morphology and performance in dystrophic mice. Biomaterials 2015; 75:313-326. [PMID: 26523508 DOI: 10.1016/j.biomaterials.2015.10.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration leading to impaired locomotion, respiratory failure and premature death. In DMD patients, inflammatory events secondary to dystrophin mutation play a major role in the progression of the pathology. Sertoli cells (SeC) have been largely used to protect xenogeneic engraftments or induce trophic effects thanks to their ability to secrete trophic, antiinflammatory, and immunomodulatory factors. Here we have purified SeC from specific pathogen-free (SPF)-certified neonatal pigs, and embedded them into clinical grade alginate microcapsules. We show that a single intraperitoneal injection of microencapsulated SPF SeC (SeC-MC) in an experimental model of DMD can rescue muscle morphology and performance in the absence of pharmacologic immunosuppressive treatments. Once i.p. injected, SeC-MC act as a drug delivery system that modulates the inflammatory response in muscle tissue, and upregulates the expression of the dystrophin paralogue, utrophin in muscles through systemic release of heregulin-β1, thus promoting sarcolemma stability. Analyses performed five months after single injection show high biocompatibility and long-term efficacy of SeC-MC. Our results might open new avenues for the treatment of patients with DMD and related diseases.
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Italy
| | - Giovanni Luca
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Francesca Mancuso
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Luca Madaro
- IRCCS Fondazione Santa Lucia, Rome 00143, Italy; National Research Council, Institute of Cell Biology and Neurobiology, Fondazione Santa Lucia, Rome 00143, Italy; Interuniversity Institute of Myology (IIM), Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Carmine Nicoletti
- Unit of Histology, DAHFMO, La Sapienza University, Rome 00161, Italy; Interuniversity Institute of Myology (IIM), Italy
| | - Mario Calvitti
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Iva Arato
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Giulia Falabella
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy
| | - Antonio Di Meo
- Department of Veterinary Medicine, University of Perugia, Perugia 06126, Italy
| | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, Perugia 06126, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia 06123, Italy
| | | | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy; Interuniversity Institute of Myology (IIM), Italy.
| |
Collapse
|
43
|
Ojo OO, Ryu MH, Jha A, Unruh H, Halayko AJ. High-mobility group box 1 promotes extracellular matrix synthesis and wound repair in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1354-66. [PMID: 26432865 DOI: 10.1152/ajplung.00054.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) protein that binds Toll-like receptors (e.g., TLR4) and the receptor for advanced glycated end products (RAGE). The direct effects of HMGB1 on airway structural cells are not fully known. As epithelial cell responses are fundamental drivers of asthma, including abnormal repair-restitution linked to changes in extracellular matrix (ECM) synthesis, we tested the hypothesis that HMGB1 promotes bronchial epithelial cell wound repair via TLR4 and/or RAGE signaling that regulates ECM (fibronectin and the γ2-chain of laminin-5) and integrin protein abundance. To assess impact of HMGB1 we used molecular and pharmacological inhibitors of RAGE or TLR4 signaling in scratch wound, immunofluorescence, and immunoblotting assays to assess wound repair, ECM synthesis, and phosphorylation of intracellular signaling. HMGB1 increased wound closure, and this effect was attenuated by blocking RAGE and TLR4 signaling. HMGB1-induced fibronectin and laminin-5 (γ2 chain) was diminished by blocking RAGE and/or blunting TLR4 signaling. Similarly, induction of α3-integrin receptor for fibronectin and laminin-5 was also diminished by blocking TLR4 signaling and RAGE. Lastly, rapid and/or sustained phosphorylation of SMAD2, ERK1/2, and JNK signaling modulated HMGB1-induced wound closure. Our findings suggest a role for HMGB1 in human airway epithelial cell repair and restitution via multiple pathways mediated by TLR4 and RAGE that underpin increased ECM synthesis and modulation of cell-matrix adhesion.
Collapse
Affiliation(s)
- Oluwaseun O Ojo
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Min Hyung Ryu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Aruni Jha
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Helmut Unruh
- Department of Internal Medicine,University of Manitoba, Winnipeg, Manitoba, Canada; Section of Thoracic Surgery, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Internal Medicine,University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| |
Collapse
|
44
|
Abstract
Janeway's pattern recognition theory holds that the immune system detects infection through a limited number of the so-called pattern recognition receptors (PRRs). These receptors bind specific chemical compounds expressed by entire groups of related pathogens, but not by host cells (pathogen-associated molecular patterns (PAMPs). In contrast, Matzinger's danger hypothesis postulates that products released from stressed or damaged cells have a more important role in the activation of immune system than the recognition of nonself. These products, named by analogy to PAMPs as danger-associated molecular patterns (DAMPs), are proposed to act through the same receptors (PRRs) as PAMPs and, consequently, to stimulate largely similar responses. Herein, I review direct and indirect evidence that contradict the widely accepted danger theory, and suggest that it may be false.
Collapse
Affiliation(s)
- Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
45
|
MicroRNA-431 accelerates muscle regeneration and ameliorates muscular dystrophy by targeting Pax7 in mice. Nat Commun 2015; 6:7713. [PMID: 26151913 DOI: 10.1038/ncomms8713] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/02/2015] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle stem cells, called satellite cells, are a quiescent heterogeneous population. Their heterogeneity is influenced by Pax7, a well-defined transcriptional regulator of satellite cell functions that defines two subpopulations: Pax7(Hi) and Pax7(Lo). However, the mechanisms by which these subpopulations are established and maintained during myogenesis are not completely understood. Here we show that miR-431, which is predominantly expressed in the skeletal muscle, mediates satellite cell heterogeneity by fine-tuning Pax7 levels during muscle development and regeneration. In miR-431 transgenic mice, the Pax7(Lo) subpopulation is enriched, enhances myogenic differentiation and accelerates muscle regeneration. Notably, miR-431 attenuates the muscular dystrophic phenotype in mdx mice and may be a potential therapeutic target in muscular diseases. miR-431 transgenic mice are a unique genetic model for investigating the cellular features and biological functions of Pax7(Lo) satellite cells during muscle development and regeneration.
Collapse
|
46
|
Abstract
Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John R Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
47
|
Fu X, Wang H, Hu P. Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci 2015; 72:1663-77. [PMID: 25572293 PMCID: PMC4412728 DOI: 10.1007/s00018-014-1819-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022]
Abstract
Muscle stem cell (satellite cell) activation post muscle injury is a transient and critical step in muscle regeneration. It is regulated by physiological cues, signaling molecules, and epigenetic regulatory factors. The mechanisms that coherently turn on the complex activation process shortly after trauma are just beginning to be illuminated. In this review, we will discuss the current knowledge of satellite cell activation regulation.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | | | | |
Collapse
|
48
|
Choi Y, Suh Y, Ahn J, Lee K. Muscle hypertrophy in heavy weight Japanese quail line: Delayed muscle maturation and continued muscle growth with prolonged upregulation of myogenic regulatory factors. Poult Sci 2014; 93:2271-7. [DOI: 10.3382/ps.2013-03844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
49
|
Chiappalupi S, Riuzzi F, Fulle S, Donato R, Sorci G. Defective RAGE activity in embryonal rhabdomyosarcoma cells results in high PAX7 levels that sustain migration and invasiveness. Carcinogenesis 2014; 35:2382-92. [PMID: 25123133 DOI: 10.1093/carcin/bgu176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rhabdomyosarcoma is a muscle-derived malignant tumor mainly affecting children. The most frequent variant, embryonal rhabdomyosarcoma (ERMS) is characterized by overexpression of the transcription factor, PAX7 which prevents ERMS cells from exiting the cell cycle and terminally differentiating. However, a role for PAX7 in the invasive properties of ERMS cells has not been investigated in detail thus far. Here we show that ectopic expression of receptor for advanced glycation end-products (RAGE) in human ERMS cells results in the activation of a RAGE/myogenin axis which downregulates PAX7 by transcriptional and post-translational mechanisms, as in normal myoblasts, and reduces metastasis formation. High PAX7 sustains migration and invasiveness in ERMS cells by upregulating EPHA3 and EFNA1 and downregulating NCAM1 thus decreasing the neural cell adhesion molecule (NCAM)/polysialylated-NCAM ratio. Microarray gene expression analysis shows that compared with the RAGE(-ve) TE671/WT cells and similarly to primary human myoblasts, TE671/RAGE cells show upregulation of genes involved in muscle differentiation and cell adhesion, and downregulation of cell migration related and major histocompatibility complex class I genes. Our data reveal a link between PAX7 and metastasis occurrence in ERMSs, and support a role for the RAGE/myogenin axis in metastasis suppression. Thus, low RAGE expression in ERMS primary tumors may be predictive of metastatic behavior.
Collapse
MESH Headings
- Animals
- CD56 Antigen/genetics
- Cell Line, Tumor/drug effects
- Cell Movement/genetics
- Ephrin-A1/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Leupeptins/pharmacology
- Mice
- Mice, Mutant Strains
- Mice, Nude
- Myoblasts/pathology
- Myogenin/metabolism
- PAX7 Transcription Factor/genetics
- PAX7 Transcription Factor/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor for Advanced Glycation End Products
- Receptor, EphA3
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Rhabdomyosarcoma, Embryonal/drug therapy
- Rhabdomyosarcoma, Embryonal/genetics
- Rhabdomyosarcoma, Embryonal/metabolism
- Rhabdomyosarcoma, Embryonal/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy, Interuniversity Institute of Myology (IIM), Italy and
| | - Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy, Interuniversity Institute of Myology (IIM), Italy and
| | - Stefania Fulle
- Interuniversity Institute of Myology (IIM), Italy and Department of Neuroscience and Imaging, CeSI, University G. d'Annunzio Chieti-Pescara, 66013 Chieti, Italy
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy, Interuniversity Institute of Myology (IIM), Italy and
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy, Interuniversity Institute of Myology (IIM), Italy and
| |
Collapse
|
50
|
Choi YM, Suh Y, Shin S, Lee K. Skeletal muscle characterization of Japanese quail line selectively bred for lower body weight as an avian model of delayed muscle growth with hypoplasia. PLoS One 2014; 9:e95932. [PMID: 24763754 PMCID: PMC3999150 DOI: 10.1371/journal.pone.0095932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 04/02/2014] [Indexed: 01/17/2023] Open
Abstract
This study was designed to extensively characterize the skeletal muscle development in the low weight (LW) quail selected from random bred control (RBC) Japanese quail in order to provide a new avian model of impaired and delayed growth in physically normal animals. The LW line had smaller embryo and body weights than the RBC line in all age groups (P<0.05). During 3 to 42 d post-hatch, the LW line exhibited approximately 60% smaller weight of pectoralis major muscle (PM), mainly resulting from lower fiber numbers compared to the RBC line (P<0.05). During early post-hatch period when myotubes are still actively forming, the LW line showed impaired PM growth with prolonged expression of Pax7 and lower expression levels of MyoD, Myf-5, and myogenin (P<0.05), likely leading to impairment of myogenic differentiation and consequently, reduced muscle fiber formation. Additionally, the LW line had delayed transition of neonatal to adult myosin heavy chain isoform, suggesting delayed muscle maturation. This is further supported by the finding that the LW line continued to grow unlike the RBC line; difference in the percentages of PMW to body weights between both quail lines diminished with increasing age from 42 to 75 d post-hatch. This delayed muscle growth in the LW line is accompanied by higher levels of myogenin expression at 42 d (P<0.05), higher percentage of centered nuclei at 42 d (P<0.01), and greater rate of increase in fiber size between 42 and 75 d post-hatch (P<0.001) compared to the RBC line. Analysis of physiological, morphological, and developmental parameters during muscle development of the LW quail line provided a well-characterized avian model for future identification of the responsible genes and for studying mechanisms of hypoplasia and delayed muscle growth.
Collapse
Affiliation(s)
- Young Min Choi
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Sangsu Shin
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|