1
|
Tóth M, Wan S, Schmitt J, Birner P, Wei T, von Bubnoff F, de la Torre C, Thomann S, Pinna F, Schirmacher P, Weiler SME, Breuhahn K. The Cell Polarity Protein MPP5/PALS1 Controls the Subcellular Localization of the Oncogenes YAP and TAZ in Liver Cancer. Int J Mol Sci 2025; 26:660. [PMID: 39859373 PMCID: PMC11766031 DOI: 10.3390/ijms26020660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The oncogenes yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause YAP/TAZ activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ. Co-immunoprecipitation (Co-IP) experiments confirmed that membrane protein palmitoylated 5 (MPP5; synonym: PALS1) physically interacts with YAP and TAZ. After removing different MPP5 protein domains, Co-IP analyses revealed that the PDZ domain plays a crucial role in YAP binding. The interaction between YAP and MPP5 in the cytoplasm of cancer cells was demonstrated by proximity ligation assays (PLAs). In human hepatocellular carcinoma (HCC) tissues, a reduction in apical MPP5 expression was observed, correlating with the nuclear accumulation of YAP and TAZ. Expression data analysis illustrated that MPP5 is inversely associated with YAP/TAZ target gene signatures in human HCCs. Low MPP5 levels define an HCC patient group with a poor clinical outcome. In summary, MPP5 facilitates the nuclear exclusion of YAP and TAZ in liver cancer. This qualifies MPP5 as a potential tumor-suppressor gene and explains how changes in cell polarity can foster tumorigenesis.
Collapse
Affiliation(s)
- Marcell Tóth
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Shan Wan
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Department of Pathology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jennifer Schmitt
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Patrizia Birner
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Teng Wei
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Cytotherapy Laboratory, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Fabian von Bubnoff
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Stefan Thomann
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Federico Pinna
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Kai Breuhahn
- Institute of Pathology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
3
|
Bugda Gwilt K, Thiagarajah JR. Membrane Lipids in Epithelial Polarity: Sorting out the PIPs. Front Cell Dev Biol 2022; 10:893960. [PMID: 35712665 PMCID: PMC9197455 DOI: 10.3389/fcell.2022.893960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell polarity in epithelia, is critical for tissue morphogenesis and vectorial transport between the environment and the underlying tissue. Epithelial polarity is defined by the development of distinct plasma membrane domains: the apical membrane interfacing with the exterior lumen compartment, and the basolateral membrane directly contacting the underlying tissue. The de novo generation of polarity is a tightly regulated process, both spatially and temporally, involving changes in the distribution of plasma membrane lipids, localization of apical and basolateral membrane proteins, and vesicular trafficking. Historically, the process of epithelial polarity has been primarily described in relation to the localization and function of protein 'polarity complexes.' However, a critical and foundational role is emerging for plasma membrane lipids, and in particular phosphoinositide species. Here, we broadly review the evidence for a primary role for membrane lipids in the generation of epithelial polarity and highlight key areas requiring further research. We discuss the complex interchange that exists between lipid species and briefly examine how major membrane lipid constituents are generated and intersect with vesicular trafficking to be preferentially localized to different membrane domains with a focus on some of the key protein-enzyme complexes involved in these processes.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Hebbar S, Knust E. Reactive oxygen species (ROS) constitute an additional player in regulating epithelial development. Bioessays 2021; 43:e2100096. [PMID: 34260754 DOI: 10.1002/bies.202100096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules produced in cells. So far, they have mostly been connected to diseases and pathological conditions. More recent results revealed a somewhat unexpected role of ROS in control of developmental processes. In this review, we elaborate on ROS in development, focussing on their connection to epithelial tissue morphogenesis. After briefly summarising unique characteristics of epithelial cells, we present some characteristic features of ROS species, their production and targets, with a focus on proteins important for epithelial development and function. Finally, we provide examples of regulation of epithelial morphogenesis by ROS, and also of developmental genes that regulate the overall redox status. We conclude by discussing future avenues of research that will further elucidate ROS regulation in epithelial development.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
5
|
Tamada M, Shi J, Bourdot KS, Supriyatno S, Palmquist KH, Gutierrez-Ruiz OL, Zallen JA. Toll receptors remodel epithelia by directing planar-polarized Src and PI3K activity. Dev Cell 2021; 56:1589-1602.e9. [PMID: 33932332 DOI: 10.1016/j.devcel.2021.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Toll-like receptors are essential for animal development and survival, with conserved roles in innate immunity, tissue patterning, and cell behavior. The mechanisms by which Toll receptors signal to the nucleus are well characterized, but how Toll receptors generate rapid, localized signals at the cell membrane to produce acute changes in cell polarity and behavior is not known. We show that Drosophila Toll receptors direct epithelial convergent extension by inducing planar-polarized patterns of Src and PI3-kinase (PI3K) activity. Toll receptors target Src activity to specific sites at the membrane, and Src recruits PI3K to the Toll-2 complex through tyrosine phosphorylation of the Toll-2 cytoplasmic domain. Reducing Src or PI3K activity disrupts planar-polarized myosin assembly, cell intercalation, and convergent extension, whereas constitutive Src activity promotes ectopic PI3K and myosin cortical localization. These results demonstrate that Toll receptors direct cell polarity and behavior by locally mobilizing Src and PI3K activity.
Collapse
Affiliation(s)
- Masako Tamada
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jay Shi
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Kia S Bourdot
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sara Supriyatno
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Karl H Palmquist
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Omar L Gutierrez-Ruiz
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
6
|
Boon N, Wijnholds J, Pellissier LP. Research Models and Gene Augmentation Therapy for CRB1 Retinal Dystrophies. Front Neurosci 2020; 14:860. [PMID: 32922261 PMCID: PMC7456964 DOI: 10.3389/fnins.2020.00860] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are inherited degenerative retinal dystrophies with vision loss that ultimately lead to blindness. Several genes have been shown to be involved in early onset retinal dystrophies, including CRB1 and RPE65. Gene therapy recently became available for young RP patients with variations in the RPE65 gene. Current research programs test adeno-associated viral gene augmentation or editing therapy vectors on various disease models mimicking the disease in patients. These include several animal and emerging human-derived models, such as human-induced pluripotent stem cell (hiPSC)-derived retinal organoids or hiPSC-derived retinal pigment epithelium (RPE), and human donor retinal explants. Variations in the CRB1 gene are a major cause for early onset autosomal recessive RP with patients suffering from visual impairment before their adolescence and for LCA with newborns experiencing severe visual impairment within the first months of life. These patients cannot benefit yet from an available gene therapy treatment. In this review, we will discuss the recent advances, advantages and disadvantages of different CRB1 human and animal retinal degeneration models. In addition, we will describe novel therapeutic tools that have been developed, which could potentially be used for retinal gene augmentation therapy for RP patients with variations in the CRB1 gene.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands.,The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Lucie P Pellissier
- Biology and Bioinformatics of Signalling Systems, Physiologie de la Reproduction et des Comportements INRAE UMR 0085, CNRS UMR 7247, Université de Tours, IFCE, Nouzilly, France
| |
Collapse
|
7
|
Sun J, Macabenta F, Akos Z, Stathopoulos A. Collective Migrations of Drosophila Embryonic Trunk and Caudal Mesoderm-Derived Muscle Precursor Cells. Genetics 2020; 215:297-322. [PMID: 32487692 PMCID: PMC7268997 DOI: 10.1534/genetics.120.303258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/17/2020] [Indexed: 01/06/2023] Open
Abstract
Mesoderm migration in the Drosophila embryo is a highly conserved, complex process that is required for the formation of specialized tissues and organs, including the somatic and visceral musculature. In this FlyBook chapter, we will compare and contrast the specification and migration of cells originating from the trunk and caudal mesoderm. Both cell types engage in collective migrations that enable cells to achieve new positions within developing embryos and form distinct tissues. To start, we will discuss specification and early morphogenetic movements of the presumptive mesoderm, then focus on the coordinate movements of the two subtypes trunk mesoderm and caudal visceral mesoderm, ending with a comparison of these processes including general insights gained through study.
Collapse
Affiliation(s)
- Jingjing Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Frank Macabenta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Zsuzsa Akos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
8
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
9
|
Krahn MP. Phospholipids of the Plasma Membrane - Regulators or Consequence of Cell Polarity? Front Cell Dev Biol 2020; 8:277. [PMID: 32411703 PMCID: PMC7198698 DOI: 10.3389/fcell.2020.00277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cell polarity is a key feature of many eukaryotic cells, including neurons, epithelia, endothelia and asymmetrically dividing stem cells. Apart from the specific localization of proteins to distinct domains of the plasma membrane, most of these cells exhibit an asymmetric distribution of phospholipids within the plasma membrane too. Notably, research over the last years has revealed that many known conserved regulators of apical-basal polarity in epithelial cells are capable of binding to phospholipids, which in turn regulate the localization and to some extent the function of these proteins. Conversely, phospholipid-modifying enzymes are recruited and controlled by polarity regulators, demonstrating an elaborated balance between asymmetrically localized proteins and phospholipids, which are enriched in certain (micro)domains of the plasma membrane. In this review, we will focus on our current understanding of apical-basal polarity and the implication of phospholipids within the plasma membrane during the cell polarization of epithelia and migrating cells.
Collapse
Affiliation(s)
- Michael P. Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
10
|
van IJzendoorn SCD, Agnetti J, Gassama-Diagne A. Mechanisms behind the polarized distribution of lipids in epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183145. [PMID: 31809710 DOI: 10.1016/j.bbamem.2019.183145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 01/28/2023]
Abstract
Epithelial cells are polarized cells and typically display distinct plasma membrane domains: basal plasma membrane domains face the underlying tissue, lateral domains contact adjacent cells and apical domains face the exterior lumen. Each membrane domain is endowed with a specific macromolecular composition that constitutes the functional identity of that domain. Defects in apical-basal plasma membrane polarity altogether or more subtle defects in the composition of either apical or basal plasma membrane domain can give rise to severe diseases. Lipids are the main component of cellular membranes and mechanisms that control their polarized distribution in epithelial cells are emerging. In particular sphingolipids and phosphatidylinositol lipids have taken center stage in the organization of the apical and basolateral plasma membrane domain. This short review article discusses mechanisms that contribute to the polarized distribution of lipids in epithelial cells.
Collapse
Affiliation(s)
- Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Jean Agnetti
- INSERM, Unité 1193, Villejuif F-94800, France; Université Paris-Sud, UMR-S 1193, Villejuif F-94800, France
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif F-94800, France; Université Paris-Sud, UMR-S 1193, Villejuif F-94800, France
| |
Collapse
|
11
|
Silver JT, Wirtz-Peitz F, Simões S, Pellikka M, Yan D, Binari R, Nishimura T, Li Y, Harris TJC, Perrimon N, Tepass U. Apical polarity proteins recruit the RhoGEF Cysts to promote junctional myosin assembly. J Cell Biol 2019; 218:3397-3414. [PMID: 31409654 PMCID: PMC6781438 DOI: 10.1083/jcb.201807106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 04/20/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Silver et al. show that the RhoGEF Cysts links apical polarity proteins to Rho1 and myosin activation at adherens junctions to support junctional and epithelial integrity in the Drosophila ectoderm. The spatio-temporal regulation of small Rho GTPases is crucial for the dynamic stability of epithelial tissues. However, how RhoGTPase activity is controlled during development remains largely unknown. To explore the regulation of Rho GTPases in vivo, we analyzed the Rho GTPase guanine nucleotide exchange factor (RhoGEF) Cysts, the Drosophila orthologue of mammalian p114RhoGEF, GEF-H1, p190RhoGEF, and AKAP-13. Loss of Cysts causes a phenotype that closely resembles the mutant phenotype of the apical polarity regulator Crumbs. This phenotype can be suppressed by the loss of basolateral polarity proteins, suggesting that Cysts is an integral component of the apical polarity protein network. We demonstrate that Cysts is recruited to the apico-lateral membrane through interactions with the Crumbs complex and Bazooka/Par3. Cysts activates Rho1 at adherens junctions and stabilizes junctional myosin. Junctional myosin depletion is similar in Cysts- and Crumbs-compromised embryos. Together, our findings indicate that Cysts is a downstream effector of the Crumbs complex and links apical polarity proteins to Rho1 and myosin activation at adherens junctions, supporting junctional integrity and epithelial polarity.
Collapse
Affiliation(s)
- Jordan T Silver
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Sérgio Simões
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Milena Pellikka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Dong Yan
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Richard Binari
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Takashi Nishimura
- RIKEN Center for Biosystems Dynamics Research, Minatojima-minamimachi, Kobe, Japan
| | - Yan Li
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA .,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Allam AH, Charnley M, Russell SM. Context-Specific Mechanisms of Cell Polarity Regulation. J Mol Biol 2018; 430:3457-3471. [PMID: 29886017 DOI: 10.1016/j.jmb.2018.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Cell polarity is an essential process shared by almost all animal tissues. Moreover, cell polarity enables cells to sense and respond to the cues provided by the neighboring cells and the surrounding microenvironment. These responses play a critical role in regulating key physiological processes, including cell migration, proliferation, differentiation, vesicle trafficking and immune responses. The polarity protein complexes regulating these interactions are highly evolutionarily conserved between vertebrates and invertebrates. Interestingly, these polarity complexes interact with each other and key signaling pathways in a cell-polarity context-dependent manner. However, the exact mechanisms by which these interactions take place are poorly understood. In this review, we will focus on the roles of the key polarity complexes SCRIB, PAR and Crumbs in regulating different forms of cell polarity, including epithelial cell polarity, cell migration, asymmetric cell division and the T-cell immunological synapse assembly and signaling.
Collapse
Affiliation(s)
- Amr H Allam
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia.
| | - Mirren Charnley
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia; Biointerface Engineering Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Sarah M Russell
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia; Department of Pathology, The University of Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia.
| |
Collapse
|
13
|
Chou FS, Li R, Wang PS. Molecular components and polarity of radial glial cells during cerebral cortex development. Cell Mol Life Sci 2018; 75:1027-1041. [PMID: 29018869 PMCID: PMC11105283 DOI: 10.1007/s00018-017-2680-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/08/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Originating from ectodermal epithelium, radial glial cells (RGCs) retain apico-basolateral polarity and comprise a pseudostratified epithelial layer in the developing cerebral cortex. The apical endfeet of the RGCs faces the fluid-filled ventricles, while the basal processes extend across the entire cortical span towards the pial surface. RGC functions are largely dependent on this polarized structure and the molecular components that define it. In this review, we will dissect existing molecular evidence on RGC polarity establishment and during cerebral cortex development and provide our perspective on the remaining key questions.
Collapse
Affiliation(s)
- Fu-Sheng Chou
- Department of Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
- Division of Neonatology, Children's Mercy-Kansas City, Kansas City, MO, USA
| | - Rong Li
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pei-Shan Wang
- Department of Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
14
|
Acevedo A, González-Billault C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med 2018; 116:101-113. [PMID: 29330095 DOI: 10.1016/j.freeradbiomed.2018.01.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 02/08/2023]
Abstract
The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality.
Collapse
Affiliation(s)
- Alejandro Acevedo
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
| | - Christian González-Billault
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024, Chile; The Buck Institute for Research on Aging, Novato, USA.
| |
Collapse
|
15
|
Apodaca G. Role of Polarity Proteins in the Generation and Organization of Apical Surface Protrusions. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027813. [PMID: 28264821 DOI: 10.1101/cshperspect.a027813] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protruding from the apical surfaces of epithelial cells are specialized structures, including cilia, microplicae, microvilli, and stereocilia. These contribute to epithelial function by cushioning the apical surface, by amplifying its surface area to facilitate nutrient absorption, and by promoting sensory transduction and barrier function. Despite these important roles, and the diseases that result when their formation is perturbed, there remain significant gaps in our understanding of the biogenesis of apical protrusions, or the pathways that promote their organization and orientation once at the apical surface. Here, I review some general aspects of these apical structures, and then discuss our current understanding of their formation and organization with respect to proteins that specify apicobasolateral polarity and planar cell polarity.
Collapse
Affiliation(s)
- Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
16
|
Lang CF, Munro E. The PAR proteins: from molecular circuits to dynamic self-stabilizing cell polarity. Development 2017; 144:3405-3416. [PMID: 28974638 DOI: 10.1242/dev.139063] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PAR proteins constitute a highly conserved network of scaffolding proteins, adaptors and enzymes that form and stabilize cortical asymmetries in response to diverse inputs. They function throughout development and across the metazoa to regulate cell polarity. In recent years, traditional approaches to identifying and characterizing molecular players and interactions in the PAR network have begun to merge with biophysical, theoretical and computational efforts to understand the network as a pattern-forming biochemical circuit. Here, we summarize recent progress in the field, focusing on recent studies that have characterized the core molecular circuitry, circuit design and spatiotemporal dynamics. We also consider some of the ways in which the PAR network has evolved to polarize cells in different contexts and in response to different cues and functional constraints.
Collapse
Affiliation(s)
- Charles F Lang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.,Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA .,Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
EGFR signalling controls cellular fate and pancreatic organogenesis by regulating apicobasal polarity. Nat Cell Biol 2017; 19:1313-1325. [PMID: 29058721 DOI: 10.1038/ncb3628] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023]
Abstract
Apicobasal polarity is known to affect epithelial morphogenesis and cell differentiation, but it remains unknown how these processes are mechanistically orchestrated. We find that ligand-specific EGFR signalling via PI(3)K and Rac1 autonomously modulates apicobasal polarity to enforce the sequential control of morphogenesis and cell differentiation. Initially, EGF controls pancreatic tubulogenesis by negatively regulating apical polarity induction. Subsequently, betacellulin, working via inhibition of atypical protein kinase C (aPKC), causes apical domain constriction within neurogenin3+ endocrine progenitors, which results in reduced Notch signalling, increased neurogenin3 expression, and β-cell differentiation. Notably, the ligand-specific EGFR output is not driven at the ligand level, but seems to have evolved in response to stage-specific epithelial influences. The EGFR-mediated control of β-cell differentiation via apical polarity is also conserved in human neurogenin3+ cells. We provide insight into how ligand-specific EGFR signalling coordinates epithelial morphogenesis and cell differentiation via apical polarity dynamics.
Collapse
|
18
|
Campanale JP, Sun TY, Montell DJ. Development and dynamics of cell polarity at a glance. J Cell Sci 2017; 130:1201-1207. [PMID: 28365593 DOI: 10.1242/jcs.188599] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells exhibit morphological and molecular asymmetries that are broadly categorized as cell polarity. The cell polarity established in early embryos prefigures the macroscopic anatomical asymmetries characteristic of adult animals. For example, eggs and early embryos have polarized distributions of RNAs and proteins that generate global anterior/posterior and dorsal/ventral axes. The molecular programs that polarize embryos are subsequently reused in multiple contexts. Epithelial cells require apical/basal polarity to establish their barrier function. Migrating cells polarize in the direction of movement, creating distinct leading and trailing structures. Asymmetrically dividing stem cells partition different molecules between themselves and their daughter cells. Cell polarity can develop de novo, be maintained through rounds of cell division and be dynamically remodeled. In this Cell Science at a Glance review and poster, we describe molecular asymmetries that underlie cell polarity in several cellular contexts. We highlight multiple developmental systems that first establish cell/developmental polarity, and then maintain it. Our poster showcases repeated use of the Par, Scribble and Crumbs polarity complexes, which drive the development of cell polarity in many cell types and organisms. We then briefly discuss the diverse and dynamic changes in cell polarity that occur during cell migration, asymmetric cell division and in planar polarized tissues.
Collapse
Affiliation(s)
- Joseph P Campanale
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Thomas Y Sun
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Denise J Montell
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
19
|
Lajko M, Cardona HJ, Taylor JM, Farrow KN, Fawzi AA. Photoreceptor oxidative stress in hyperoxia-induced proliferative retinopathy accelerates rd8 degeneration. PLoS One 2017; 12:e0180384. [PMID: 28671996 PMCID: PMC5495396 DOI: 10.1371/journal.pone.0180384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
To investigate the impact of photoreceptor oxidative stress on photoreceptor degeneration in mice carrying the rd8 mutation (C57BL/6N). We compared the hyperoxia-induced proliferative retinopathy (HIPR) model in two mouse strains (C57BL/6J and C57BL/6N). Pups were exposed to 75% oxygen, starting at birth and continuing for 14 days (P14). Mice were euthanized at P14, or allowed to recover in room air for one day (P15), seven days (P21), or 14 days (P28). We quantified retinal thickness and the length of residual photoreceptors not affected by rosette formation. In addition we explored differences in retinal immunostaining for NADPH oxidase 4 (NOX4), Rac1, vascular endothelium, and activated Mϋller cells. We analyzed photoreceptor oxidative stress using DCF staining in cross sections and quantified NOX4 protein levels using western blotting. C57BL/6N mice in HIPR showed increased oxidative stress, NOX4, and Rac1 in the photoreceptors at P14 and P15 compared to C57BL/6J. In addition, we observed significant progression of photoreceptor degeneration, with significantly accelerated rosette formation in C57BL/6N under HIPR, compared to their room air counterparts. Furthermore, C57BL/6N under HIPR had significantly thinner central retinas than C57BL/6J in HIPR. We did not find a difference in vascular disruption or Mϋller cell activation comparing the two strains in hyperoxia. In HIPR, the C57BL/6N strain carrying the rd8 mutation showed significantly accelerated photoreceptor degeneration, mediated via exacerbated photoreceptor oxidative stress, which we believe relates to Rac1-NOX dysregulation in the setting of Crb1 loss-of-function.
Collapse
Affiliation(s)
- Michelle Lajko
- Department of Ophthalmology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America
| | - Herminio J. Cardona
- Department of Pediatrics, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America
| | - Joann M. Taylor
- Department of Pediatrics, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America
| | - Kathryn N. Farrow
- Department of Pediatrics, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America
| | - Amani A. Fawzi
- Department of Ophthalmology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
20
|
Mazel T. Crosstalk of cell polarity signaling pathways. PROTOPLASMA 2017; 254:1241-1258. [PMID: 28293820 DOI: 10.1007/s00709-017-1075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Cell polarity, the asymmetric organization of cellular components along one or multiple axes, is present in most cells. From budding yeast cell polarization induced by pheromone signaling, oocyte polarization at fertilization to polarized epithelia and neuronal cells in multicellular organisms, similar mechanisms are used to determine cell polarity. Crucial role in this process is played by signaling lipid molecules, small Rho family GTPases and Par proteins. All these signaling circuits finally govern the cytoskeleton, which is responsible for oriented cell migration, cell shape changes, and polarized membrane and organelle trafficking. Thus, typically in the process of cell polarization, most cellular constituents become polarized, including plasma membrane lipid composition, ion concentrations, membrane receptors, and proteins in general, mRNA, vesicle trafficking, or intracellular organelles. This review gives a brief overview how these systems talk to each other both during initial symmetry breaking and within the signaling feedback loop mechanisms used to preserve the polarized state.
Collapse
Affiliation(s)
- Tomáš Mazel
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
- State Institute for Drug Control, Šrobárova 48, 100 41, Prague 10, Czech Republic.
| |
Collapse
|
21
|
Sollier K, Gaudé HM, Chartier FJM, Laprise P. Rac1 controls epithelial tube length through the apical secretion and polarity pathways. Biol Open 2015; 5:49-54. [PMID: 26700724 PMCID: PMC4728308 DOI: 10.1242/bio.015727] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The morphometric parameters of epithelial tubes are critical to the physiology and homeostasis of most organs. In addition, many human diseases are associated with tube-size defects. Here, we show that Rac1 limits epithelial tube elongation in the developing fly trachea by promoting Rab5-dependent endocytosis of the apical determinant Crumbs. Rac1 is also involved in a positive feedback loop with the septate junction protein Coracle. Thereby, Rac1 precludes paracellular diffusion and contributes to the septate junction-dependent secretion of the chitin-modifying enzymes Vermiform and Serpentine, which restrict epithelial tube length independently of Crumbs. Thus, Rac1 is a critical component of two important pathways controlling epithelial tube morphogenesis. Summary: Epithelial tube size regulation sustains organ physiology. Rac1 limits tube elongation in the fly trachea through restriction of apical membrane growth, and by supporting luminal secretion of chitin modifying enzymes.
Collapse
Affiliation(s)
- Kévin Sollier
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, 9 McMahon, Québec, Québec G1R 3S3, Canada Centre de recherche sur le cancer, Université Laval, 9 McMahon, Québec, Québec G1R 3S3, Canada CRCHU de Québec, axe oncologie, 9 McMahon, Québec, Québec G1R 3S3,Canada
| | - Helori-Mael Gaudé
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, 9 McMahon, Québec, Québec G1R 3S3, Canada Centre de recherche sur le cancer, Université Laval, 9 McMahon, Québec, Québec G1R 3S3, Canada CRCHU de Québec, axe oncologie, 9 McMahon, Québec, Québec G1R 3S3,Canada
| | - François J-M Chartier
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, 9 McMahon, Québec, Québec G1R 3S3, Canada Centre de recherche sur le cancer, Université Laval, 9 McMahon, Québec, Québec G1R 3S3, Canada CRCHU de Québec, axe oncologie, 9 McMahon, Québec, Québec G1R 3S3,Canada
| | - Patrick Laprise
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, 9 McMahon, Québec, Québec G1R 3S3, Canada Centre de recherche sur le cancer, Université Laval, 9 McMahon, Québec, Québec G1R 3S3, Canada CRCHU de Québec, axe oncologie, 9 McMahon, Québec, Québec G1R 3S3,Canada
| |
Collapse
|
22
|
Li P, Mao X, Ren Y, Liu P. Epithelial cell polarity determinant CRB3 in cancer development. Int J Biol Sci 2015; 11:31-7. [PMID: 25552927 PMCID: PMC4278252 DOI: 10.7150/ijbs.10615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023] Open
Abstract
Cell polarity, which is defined as asymmetry in cell shape, organelle distribution and cell function, is essential in numerous biological processes, including cell growth, cell migration and invasion, molecular transport, and cell fate. Epithelial cell polarity is mainly regulated by three conserved polarity protein complexes, the Crumbs (CRB) complex, partitioning defective (PAR) complex and Scribble (SCRIB) complex. Research evidence has indicated that dysregulation of cell polarity proteins may play an important role in cancer development. Crumbs homolog 3 (CRB3), a member of the CRB complex, may act as a cancer suppressor in mouse kidney epithelium and mouse mammary epithelium. In this review, we focus on the current data available on the roles of CRB3 in cancer development.
Collapse
Affiliation(s)
- Pingping Li
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Xiaona Mao
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Yu Ren
- 2. Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Peijun Liu
- 1. Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
23
|
Skwarek LC, Windler SL, de Vreede G, Rogers GC, Bilder D. The F-box protein Slmb restricts the activity of aPKC to polarize epithelial cells. Development 2014; 141:2978-83. [PMID: 25053431 DOI: 10.1242/dev.109694] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Par-3/Par-6/aPKC complex is the primary determinant of apical polarity in epithelia across animal species, but how the activity of this complex is restricted to allow polarization of the basolateral domain is less well understood. In Drosophila, several multiprotein modules antagonize the Par complex through a variety of means. Here we identify a new mechanism involving regulated protein degradation. Strong mutations in supernumerary limbs (slmb), which encodes the substrate adaptor of an SCF-class E3 ubiquitin ligase, cause dramatic loss of polarity in imaginal discs accompanied by tumorous proliferation defects. Slmb function is required to restrain apical aPKC activity in a manner that is independent of endolysosomal trafficking and parallel to the Scribble module of junctional scaffolding proteins. The involvement of the Slmb E3 ligase in epithelial polarity, specifically limiting Par complex activity to distinguish the basolateral domain, points to parallels with polarization of the C. elegans zygote.
Collapse
Affiliation(s)
- Lara C Skwarek
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | - Sarah L Windler
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | - Geert de Vreede
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| |
Collapse
|
24
|
Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 2014; 15:225-42. [PMID: 24651541 DOI: 10.1038/nrm3775] [Citation(s) in RCA: 526] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cells require apical-basal plasma membrane polarity to carry out crucial vectorial transport functions and cytoplasmic polarity to generate different cell progenies for tissue morphogenesis. The establishment and maintenance of a polarized epithelial cell with apical, basolateral and ciliary surface domains is guided by an epithelial polarity programme (EPP) that is controlled by a network of protein and lipid regulators. The EPP is organized in response to extracellular cues and is executed through the establishment of an apical-basal axis, intercellular junctions, epithelial-specific cytoskeletal rearrangements and a polarized trafficking machinery. Recent studies have provided insight into the interactions of the EPP with the polarized trafficking machinery and how these regulate epithelial polarization and depolarization.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, 1300 York Avenue, LC-301 New York City, New York 10065, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University Medical Center, 465 21st Avenue South, U 3209 MRB III, Nashville Tennessee 37232, USA
| |
Collapse
|
25
|
Polarized deposition of basement membrane proteins depends on Phosphatidylinositol synthase and the levels of Phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci U S A 2014; 111:7689-94. [PMID: 24828534 DOI: 10.1073/pnas.1407351111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The basement membrane (BM), a specialized sheet of the extracellular matrix contacting the basal side of epithelial tissues, plays an important role in the control of the polarized structure of epithelial cells. However, little is known about how BM proteins themselves achieve a polarized distribution. Here, we identify phosphatidylinositol 4,5-bisphosphate (PIP2) as a critical regulator of the polarized secretion of BM proteins. A decrease of PIP2 levels, in particular through mutations in Phosphatidylinositol synthase (Pis) and other members of the phosphoinositide pathway, leads to the aberrant accumulation of BM components at the apical side of the cell without primarily affecting the distribution of apical and basolateral polarity proteins. In addition, PIP2 controls the apical and lateral localization of Crag (Calmodulin-binding protein related to a Rab3 GDP/GTP exchange protein), a factor specifically required to prevent aberrant apical secretion of BM. We propose that PIP2, through the control of Crag's subcellular localization, restricts the secretion of BM proteins to the basal side.
Collapse
|
26
|
Song H, Bush RA, Vijayasarathy C, Fariss RN, Kjellstrom S, Sieving PA. Transgenic expression of constitutively active RAC1 disrupts mouse rod morphogenesis. Invest Ophthalmol Vis Sci 2014; 55:2659-68. [PMID: 24651551 DOI: 10.1167/iovs.13-13649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE Dominant-active RAC1 rescues photoreceptor structure in Drosophila rhodopsin-null mutants, indicating an important role in morphogenesis. This report assesses the morphogenetic effect of activated RAC1 during mammalian rod photoreceptor development using transgenic mice that express constitutively active (CA) RAC1. METHODS Transgenic mice were generated by expressing CA RAC1 under control of the Rhodopsin promoter, and morphological features of the photoreceptors were evaluated by histology, immunohistochemistry, and transmission electron microscopy. Function was evaluated by electroretinography. Potential protein partners of CA RAC1 were identified by co-immunoprecipitation of retinal extracts. RESULTS Constitutively active RAC1 expression in differentiating rods disrupted outer retinal lamination as early as postnatal day (P)6, and many photoreceptor cell nuclei were displaced apically into the presumptive subretinal space. These photoreceptors did not develop normal inner and outer segments and had abnormal placement of synaptic elements. Some photoreceptor nuclei were also mislocalized into the inner nuclear layer. Extensive photoreceptor degeneration was subsequently observed in the adult animal. Constitutively active RAC1 formed a complex with the polarity protein PAR6 and with microtubule motor dynein in mouse retina. The normal localization of the PAR6 complex was disrupted in CA RAC1-expressing rod photoreceptors. CONCLUSIONS Constitutively active RAC1 had a profound negative effect on mouse rod cell viability and development. Rod photoreceptors in the CA RAC1 retina exhibited a defect in polarity and migration. Constitutively active RAC1 disrupted rod morphogenesis and gave a phenotype resembling that found in the Crumbs mutant. PAR6 and dynein are two potential downstream effectors that may be involved in CA RAC1-mediated defective mouse photoreceptor morphogenesis.
Collapse
Affiliation(s)
- Hongman Song
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States
| | | | | | | | | | | |
Collapse
|
27
|
Rousso T, Shewan AM, Mostov KE, Schejter ED, Shilo BZ. Apical targeting of the formin Diaphanous in Drosophila tubular epithelia. eLife 2013; 2:e00666. [PMID: 23853710 PMCID: PMC3707080 DOI: 10.7554/elife.00666] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/03/2013] [Indexed: 12/12/2022] Open
Abstract
Apical secretion from epithelial tubes of the Drosophila embryo is mediated by apical F-actin cables generated by the formin-family protein Diaphanous (Dia). Apical localization and activity of Dia are at the core of restricting F-actin formation to the correct membrane domain. Here we identify the mechanisms that target Dia to the apical surface. PI(4,5)P2 levels at the apical membrane regulate Dia localization in both the MDCK cyst model and in Drosophila tubular epithelia. An N-terminal basic domain of Dia is crucial for apical localization, implying direct binding to PI(4,5)P2. Dia apical targeting also depends on binding to Rho1, which is critical for activation-induced conformational change, as well as physically anchoring Dia to the apical membrane. We demonstrate that binding to Rho1 facilitates interaction with PI(4,5)P2 at the plane of the membrane. Together these cues ensure efficient and distinct restriction of Dia to the apical membrane. DOI:http://dx.doi.org/10.7554/eLife.00666.001.
Collapse
Affiliation(s)
- Tal Rousso
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Annette M Shewan
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Keith E Mostov
- Department of Anatomy, University of California, San Francisco, San Francisco, United States
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Santucci-Pereira J, George C, Armiss D, Russo IH, Vanegas JE, Sheriff F, de Cicco RL, Su Y, Russo PA, Bidinotto LT, Russo J. Mimicking pregnancy as a strategy for breast cancer prevention. BREAST CANCER MANAGEMENT 2013; 2:283-294. [PMID: 24738009 DOI: 10.2217/bmt.13.16] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pregnancy and its effects on breast cancer risk have been widely investigated; there is consensus among researchers that early pregnancy confers protection against breast cancer later in life, whereas nulliparity and late-age parity have been associated with increased risk of developing breast cancer. The answer to the question of how pregnancy reduces breast cancer risk has been elusive; however, pregnancy, like breast cancer, is a similar hormone-dependent entity under direct control of estrogen, progesterone and, of particular importance, human chorionic gonadotropin (hCG). In this report, we emphasize the main changes, previously described by our laboratory, in morphology and gene expression levels of the mammary gland of Sprague-Dawley rats exposed to known cancer-preventative conditions (pregnancy, hCG and progesterone + estrogen). In addition, we postulate a protective mechanism induced by hCG that could reduce the cell's potential to be transformed by carcinogens.
Collapse
Affiliation(s)
| | - Christina George
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - David Armiss
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Irma H Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Johana E Vanegas
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Fathima Sheriff
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Yanrong Su
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Patricia A Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Lucas T Bidinotto
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
29
|
|
30
|
Chen J, Zhang M. The Par3/Par6/aPKC complex and epithelial cell polarity. Exp Cell Res 2013; 319:1357-64. [PMID: 23535009 DOI: 10.1016/j.yexcr.2013.03.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 12/20/2022]
Abstract
Apical-basal polarity is the basic organizing principle of epithelial cells, and endows epithelial cells to function as defensive barriers and as mediators of vectorial transport of nutrients in and out of organisms. Apical-basal polarity is controlled by a number of conserved polarity factors that regulate cytoskeletal organizations, asymmetric distributions of cellular components, and directional transports across cells. Polarity factors often occupy specific membrane regions in response to the adhesion forces generated by cell-cell and cell-extracellular matrix interactions. Both internal polarity factors and the external extracellular matrices play fundamental roles in epithelial cell polarity establishment and maintenance. This review focuses on recent developments of the Par3/Par6/aPKC complex and its interacting proteins in epithelial cell polarity.
Collapse
Affiliation(s)
- Jia Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | |
Collapse
|
31
|
Abstract
Epithelial cells are polarized along their apical-basal axis. Much of the cellular machinery that goes into establishing and maintaining epithelial cell polarity is evolutionarily conserved. Model organisms, including the fruit fly, Drosophila melanogaster, are thus particularly useful for the study of cell polarity. Work in Drosophila has identified several important components of the polarity machinery and has also established the surprising existence of a secondary cell polarity pathway required only under conditions of energetic stress. This work has important implications for the understanding of human cancer. Most cancers are epithelial in origin, and the loss of cell polarity is a critical step towards malignancy. Thus a better understanding of how polarity is established and maintained in epithelial cells will help us to understand the process of malignant transformation and may lead to improved therapies. In the present chapter we discuss the current understanding of how epithelial cell polarity is regulated and the known associations between polarity factors and cancer.
Collapse
|
32
|
Lin ML, Lu YC, Chen HY, Lee CC, Chung JG, Chen SS. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells. Mol Carcinog 2012. [PMID: 23192861 DOI: 10.1002/mc.21984] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stromal cell-derived factor-1α (SDF-1α) is a ligand for C-X-C chemokine receptor type 4 (CXCR4), which contributes to the metastasis of cancer cells by promoting cell migration. Here, we show that the SDF-1α/CXCR4 axis can significantly increase invasion of esophageal carcinoma (EC) cells. We accomplished this by examining the effects of CXCR4 knockdown as well as treatment with a CXCR4-neutralizing antibody and the CXCR4-specific inhibitor AMD3100. Curcumin suppressed SDF-1α-induced cell invasion and matrix metalloproteinase-2 (MMP-2) promoter activity, cell surface localization of CXCR4 at lipid rafts, and lipid raft-associated ras-related C3 botulinum toxin substrate 1 (Rac1)/phosphatidylinositol 3-kinase (PI3K) p85α/Akt signaling. Curcumin inhibited SDF-1α-induced cell invasion by suppressing the Rac1-PI3K signaling complex at lipid rafts but did not abrogate lipid raft formation. We further demonstrate that the attenuation of lipid raft-associated Rac1 activity by curcumin was critical for the inhibition of SDF-1α-induced PI3K/Akt/NF-κB activation, cell surface localization of CXCR4 at lipid rafts, MMP-2 promoter activity, and cell invasion. Collectively, our results indicate that curcumin inhibits SDF-1α-induced EC cell invasion by suppressing the formation of the lipid raft-associated Rac1-PI3K-Akt signaling complex, the localization of CXCR4 with lipid rafts at the cell surface, and MMP-2 promoter activity, likely through the inhibition of Rac1 activity.
Collapse
Affiliation(s)
- Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
33
|
Chartier FJM, Hardy ÉJL, Laprise P. Crumbs limits oxidase-dependent signaling to maintain epithelial integrity and prevent photoreceptor cell death. ACTA ACUST UNITED AC 2012; 198:991-8. [PMID: 22965909 PMCID: PMC3444775 DOI: 10.1083/jcb.201203083] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Crb fulfills a protective role during light exposure by limiting oxidative damage resulting from Rac1–NADPH oxidase complex activity. Drosophila melanogaster Crumbs (Crb) and its mammalian orthologues (CRB1–3) share evolutionarily conserved but poorly defined roles in regulating epithelial polarity and, in photoreceptor cells, morphogenesis and stability. Elucidating the molecular mechanisms of Crb function is vital, as mutations in the human CRB1 gene cause retinal dystrophies. Here, we report that Crb restricts Rac1–NADPH oxidase-dependent superoxide production in epithelia and photoreceptor cells. Reduction of superoxide levels rescued epithelial defects in crb mutant embryos, demonstrating that limitation of superoxide production is a crucial function of Crb and that NADPH oxidase and superoxide contribute to the molecular network regulating epithelial tissue organization. We further show that reduction of Rac1 or NADPH oxidase activity or quenching of reactive oxygen species prevented degeneration of Crb-deficient retinas. Thus, Crb fulfills a protective role during light exposure by limiting oxidative damage resulting from Rac1–NADPH oxidase complex activity. Collectively, our results elucidate an important mechanism by which Crb functions in epithelial organization and the prevention of retinal degeneration.
Collapse
Affiliation(s)
- François J-M Chartier
- Department of Molecular Biology, Medical Biochemistry and Pathology/Cancer Research Center, Laval University, Québec, QC G1R 2J6, Canada
| | | | | |
Collapse
|
34
|
Tepass U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 2012; 28:655-85. [PMID: 22881460 DOI: 10.1146/annurev-cellbio-092910-154033] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial tissue formation and function requires the apical-basal polarization of individual epithelial cells. Apical polarity regulators (APRs) are an evolutionarily conserved group of key factors that govern polarity and several other aspects of epithelial differentiation. APRs compose a diverse set of molecules including a transmembrane protein (Crumbs), a serine/threonine kinase (aPKC), a lipid phosphatase (PTEN), a small GTPase (Cdc42), FERM domain proteins (Moesin, Yurt), and several adaptor or scaffolding proteins (Bazooka/Par3, Par6, Stardust, Patj). These proteins form a dynamic cooperative network that is engaged in negative-feedback regulation with basolateral polarity factors to set up the epithelial apical-basal axis. APRs support the formation of the apical junctional complex and the segregation of the junctional domain from the apical membrane. It is becoming increasingly clear that APRs interact with the cytoskeleton and vesicle trafficking machinery, regulate morphogenesis, and modulate epithelial cell growth and survival. Not surprisingly, APRs have multiple fundamental links to human diseases such as cancer and blindness.
Collapse
Affiliation(s)
- Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
35
|
Ellenbroek SIJ, Iden S, Collard JG. Cell polarity proteins and cancer. Semin Cancer Biol 2012; 22:208-15. [PMID: 22465739 DOI: 10.1016/j.semcancer.2012.02.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/06/2023]
Abstract
Cell polarity is essential in many biological processes and required for development as well as maintenance of tissue integrity. Loss of polarity is considered both a hallmark and precondition for human cancer. Three conserved polarity protein complexes regulate different modes of polarity that are conserved throughout numerous cell types and species. These complexes are the Crumbs, Par and Scribble complex. Given the importance of cell polarity for normal tissue homeostasis, aberrant polarity signaling is suggested to contribute to the multistep processes of human cancer. Most human cancers are formed from epithelial cells. Evidence confirming the roles for polarity proteins in different phases of the oncogenic trajectory comes from functional studies using mammalian cells as well as Drosophila and zebrafish models. Furthermore, several reports have revealed aberrant expression and localization of polarity proteins in different human tumors. In this review we will give an overview on the current data available that couple polarity signaling to tumorigenesis, particularly in epithelial cells.
Collapse
Affiliation(s)
- Saskia I J Ellenbroek
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
36
|
Chartier FJM, Hardy ÉJL, Laprise P. Crumbs controls epithelial integrity by inhibiting Rac1 and PI3K. Development 2011. [DOI: 10.1242/dev.075523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|