1
|
Di T, Feng C, Wang L, Xu J, Du Y, Cheng B, Chen Y, Wu L. Enhancing Vasculogenesis in Dental Pulp Development: DPSCs-ECs Communication via FN1-ITGA5 Signaling. Stem Cell Rev Rep 2024; 20:1060-1077. [PMID: 38418738 PMCID: PMC11087358 DOI: 10.1007/s12015-024-10695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Dental pulp regeneration therapy is a challenge to achieve early vascularization during treatment. Studying the regulatory mechanisms of vascular formation during human dental pulp development may provide insights for related therapies. In this study, we utilized single-cell sequencing analysis to compare the gene expression of dental pulp stem cells (DPSCs) and vascular endothelial cells (ECs) from developing and mature dental pulps. METHOD Immunohistochemistry, Western blot, and real-time polymerase chain reaction (RT-PCR) were used to detect fibronectin 1 (FN1) expression and molecules, such as PI3K/AKT. Cell proliferation assay, scratch assay, tube formation assay and were used to investigate the effects of DPSCs on the vasculogenetic capability of ECs. Additionally, animal experiments involving mice were conducted. RESULT The results revealed that DPSCs exist around dental pulp vasculature. FN1 expression was significantly higher in DPSCs from young permanent pulps than mature pulps, promoting HUVEC proliferation, migration, and tube formation via ITGA5 and the downstream PI3K/AKT signaling pathway. CONCLUSION Our data indicate that intercellular communication between DPSCs and ECs mediated by FN1-ITGA5 signaling is crucial for vascularizationduring dental pulp development, laying an experimental foundation for future clinical studies.
Collapse
Affiliation(s)
- Tiankai Di
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
- Department of Stomatology, No.969 Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia, 010000, People's Republic of China
| | - Chao Feng
- Center for Computational Biology, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
- Department of Clinical Laboratory, No.969 Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia, 010000, People's Republic of China
| | - Lulu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Jinlong Xu
- Department of Stomatology, No.969 Hospital, Joint Logistics Support Force of the Chinese People's Liberation Army, Hohhot, Inner Mongolia, 010000, People's Republic of China
| | - Yang Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Baixiang Cheng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of General Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Yujiang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China.
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China.
| | - Lian Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
2
|
Hanna S, Eldeen GN, Alfayate RP, Aly R. The regenerative potential of Tideglusib and CHIR99021 small molecules as potent odontogenic differentiation enhancers of human dental pulp stem cells. Clin Oral Investig 2023; 28:48. [PMID: 38153556 DOI: 10.1007/s00784-023-05452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES To assess the effect of Tideglusib and CHIR99021 small molecules on the odontogenic differentiation potential of human dental pulp stem cells (hDPSCs) via Wnt/β-catenin pathway activation. METHODOLOGY hDPSCs were isolated from impacted third molars indicated for extraction and were characterized by flow cytometry. hDPSCs were then induced to differentiate into odontogenic lineage in the presence of Tideglusib and CHIR99021. Odontogenic differentiation was evaluated using Alizarin Red stain and RT-PCR for expression of odontogenic specific differentiation markers: DSPP, DMP1, ALP, OPN, and RUNX2 in relation to undifferentiated cells. RT-PCR was also conducted to assess the expression of Wnt/β-catenin pathway activation marker (AXIN2). One-way ANOVA Kruskal-Wallis test was used for statistical analysis. RESULTS Wnt/β-catenin pathway was successfully activated by Tideglusib and CHIR99021 in hDPSCs where AXIN2 was significantly upregulated. Successful odontogenic differentiation was confirmed by Alizarin Red staining of calcified nodules. RT-PCR for odontogenic differentiation markers DSPP, DMP1, and RUNX expression by hDPSCs induced by CHIR99021 was higher than that expressed by hDPSCs induced by Tideglusib, whereas expression of OPN and ALP was higher in Tideglusib-induced cells than in CHIR99021-induced cells. CONCLUSIONS Both small molecules successfully induced odontogenic differentiation of hDPSCs through Wnt/β-catenin pathway activation. CLINICAL RELEVANCE These findings suggest that Tideglusib and CHIR99021 can be applied clinically in pulp regeneration to improve strategies for vital pulp regeneration and to promote dentine repair.
Collapse
Affiliation(s)
- Samer Hanna
- Endodontics Department, Universidad Europea De Madrid (UEM), Madrid, Spain
| | - Ghada Nour Eldeen
- Molecular Genetics & Enzymology Department, Human Genetic & Genome Research Institute, National Research Centre, Dokki, Giza, Egypt
| | | | - Riham Aly
- Basic Dental Science Department, Oral Medicine & Dentistry Research Institute, National Research Centre, Dokki, Giza, Egypt.
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
3
|
The Role of Genetically Modified Human Feeder Cells in Maintaining the Integrity of Primary Cultured Human Deciduous Dental Pulp Cells. J Clin Med 2022; 11:jcm11206087. [PMID: 36294410 PMCID: PMC9605397 DOI: 10.3390/jcm11206087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Tissue-specific stem cells exist in tissues and organs, such as skin and bone marrow. However, their pluripotency is limited compared to embryonic stem cells. Culturing primary cells on plastic tissue culture dishes can result in the loss of multipotency, because of the inability of tissue-specific stem cells to survive in feeder-less dishes. Recent findings suggest that culturing primary cells in medium containing feeder cells, particularly genetically modified feeder cells expressing growth factors, may be beneficial for their survival and proliferation. Therefore, the aim of this study was to elucidate the role of genetically modified human feeder cells expressing growth factors in maintaining the integrity of primary cultured human deciduous dental pulp cells. Feeder cells expressing leukemia inhibitory factor, bone morphogenetic protein 4, and basic fibroblast growth factor were successfully engineered, as evidenced by PCR. Co-culturing with mitomycin-C-treated feeder cells enhanced the proliferation of newly isolated human deciduous dental pulp cells, promoted their differentiation into adipocytes and neurons, and maintained their stemness properties. Our findings suggest that genetically modified human feeder cells may be used to maintain the integrity of primary cultured human deciduous dental pulp cells.
Collapse
|
4
|
Aly RM, Aglan HA, Eldeen GN, Mahmoud NS, Aboul-Ezz EH, Ahmed HH. Efficient generation of functional pancreatic β cells from dental-derived stem cells via laminin-induced differentiation. J Genet Eng Biotechnol 2022; 20:85. [PMID: 35674918 PMCID: PMC9177930 DOI: 10.1186/s43141-022-00369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND This study was designed to generate functional insulin-producing cells (IPCs) from dental-derived mesenchymal stem cells (MSCs) and further explore their therapeutic potential against diabetes mellitus in vivo. MSCs were isolated from human dental pulp and periodontal ligament and were induced to differentiate into insulin-producing cells (IPCs) using laminin-based differentiation protocol for 14 days. Confirmation of IPCs was performed through real-time PCR analysis and insulin release assay. Then, the generated IPCs were labeled with PKH26 dye prior to transplantation in experimental animals. Twenty-eight days later, blood glucose, serum insulin (INS), c-peptide (CP), and visfatin (VF) levels and pancreatic glucagon (GC) level were estimated. Pancreatic forkhead box protein A2 (Foxa2) and SRY-box transcription factor 17 (Sox17), insulin-like growth factor I (IGF-1), and fibroblast growth factor10 (FGF 10) gene expression levels were analyzed. RESULTS Dental stem cells were successfully differentiated into IPCs that demonstrated increased expression of pancreatic endocrine genes. IPCs released insulin after being subjected to high levels of glucose. In vivo findings uncovered that the implanted IPCs triggered significant decrease in blood glucose, serum VF, and pancreatic GC levels with significant increase in serum INS and CP levels. Furthermore, the implanted IPCs provoked significant upregulation in the expression level of pancreatic genes. Histopathological description of the pancreas tissues revealed that transplantation of IPCs ameliorated the destabilization of pancreas tissue architecture. CONCLUSION This study demonstrates the significant role of the implantation of IPCs generated from dental-derived stem cells in treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Riham M Aly
- Basic Dental Science Department, Oral Medicine & Dentistry Research Institute, National Research Centre, Dokki, Giza, Egypt.
- Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, 12622, Giza, Egypt.
| | - Hadeer A Aglan
- Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, 12622, Giza, Egypt
- Hormones Department, Medicine Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Ghada Nour Eldeen
- Molecular Genetics & Enzymology Department, Human Genetic & Genome Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Nadia S Mahmoud
- Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, 12622, Giza, Egypt
- Hormones Department, Medicine Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Eman H Aboul-Ezz
- Basic Dental Science Department, Oral Medicine & Dentistry Research Institute, National Research Centre, Dokki, Giza, Egypt
- Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, 12622, Giza, Egypt
| | - Hanaa H Ahmed
- Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, 33 El Buhouth St., Dokki, 12622, Giza, Egypt
- Hormones Department, Medicine Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Gil-Recio C, Montori S, Al Demour S, Ababneh MA, Ferrés-Padró E, Marti C, Ferrés-Amat E, Barajas M, Al Madhoun A, Atari M. Chemically Defined Conditions Mediate an Efficient Induction of Dental Pulp Pluripotent-Like Stem Cells into Hepatocyte-Like Cells. Stem Cells Int 2021; 2021:5212852. [PMID: 34795766 PMCID: PMC8593589 DOI: 10.1155/2021/5212852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Liver diseases are major causes of morbidity and mortality. Dental pulp pluripotent-like stem cells (DPPSCs) are of a considerable promise in tissue engineering and regenerative medicine as a new source of tissue-specific cells; therefore, this study is aimed at demonstrating their ability to generate functional hepatocyte-like cells in vitro. Cells were differentiated on a collagen scaffold in serum-free media supplemented with growth factors and cytokines to recapitulate liver development. At day 5, the differentiated DPPSC cells expressed the endodermal markers FOXA1 and FOXA2. Then, the cells were derived into the hepatic lineage generating hepatocyte-like cells. In addition to the associated morphological changes, the cells expressed the hepatic genes HNF6 and AFP. The terminally differentiated hepatocyte-like cells expressed the liver functional proteins albumin and CYP3A4. In this study, we report an efficient serum-free protocol to differentiate DPPSCs into functional hepatocyte-like cells. Our approach promotes the use of DPPSCs as a new source of adult stem cells for prospective use in liver regenerative medicine.
Collapse
Affiliation(s)
- Carlos Gil-Recio
- Regenerative Medicine Research Institute, UIC Barcelona, Barcelona, Spain
| | - Sheyla Montori
- Regenerative Medicine Research Institute, UIC Barcelona, Barcelona, Spain
| | - Saddam Al Demour
- Department of Special Surgery/Division of Urology, The University of Jordan, School of Medicine, Amman, Jordan
| | - Mera A. Ababneh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Amman, Jordan
| | - Eduard Ferrés-Padró
- Oral and Maxillofacial Surgery Department, Fundació Hospital de Nens de Barcelona, Barcelona, Spain
| | - Carles Marti
- Oral and Maxillofacial Surgery Department, Hospital Clinico de Barcelona, Barcelona, Spain
| | - Elvira Ferrés-Amat
- Pediatric Dentistry Service, Oral and Maxillofacial Surgery Service, Hospital de Nens de Barcelona, Barcelona, Spain
| | - Miguel Barajas
- Biochemistry and Molecular Biology Department, Universidad Pública de Navarra, Pamplona, Spain
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Functional Genomic Unit, Dasman Diabetes Institute, Kuwait
| | - Maher Atari
- Regenerative Medicine Research Institute, UIC Barcelona, Barcelona, Spain
- Biointelligent Technology Systems SL, Diputaccion 316, 3D, 08009 Barcelona, Spain
| |
Collapse
|
6
|
Al Madhoun A, Sindhu S, Haddad D, Atari M, Ahmad R, Al-Mulla F. Dental Pulp Stem Cells Derived From Adult Human Third Molar Tooth: A Brief Review. Front Cell Dev Biol 2021; 9:717624. [PMID: 34712658 PMCID: PMC8545885 DOI: 10.3389/fcell.2021.717624] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The fields of regenerative medicine and stem cell-based tissue engineering have the potential of treating numerous tissue and organ defects. The use of adult stem cells is of particular interest when it comes to dynamic applications in translational medicine. Recently, dental pulp stem cells (DPSCs) have been traced in third molars of adult humans. DPSCs have been isolated and characterized by several groups. DPSCs have promising characteristics including self-renewal capacity, rapid proliferation, colony formation, multi-lineage differentiation, and pluripotent gene expression profile. Nevertheless, genotypic, and phenotypic heterogeneities have been reported for DPSCs subpopulations which may influence their therapeutic potentials. The underlying causes of DPSCs' heterogeneity remain poorly understood; however, their heterogeneity emerges as a consequence of an interplay between intrinsic and extrinsic cellular factors. The main objective of the manuscript is to review the current literature related to the human DPSCs derived from the third molar, with a focus on their physiological properties, isolation procedures, culture conditions, self-renewal, proliferation, lineage differentiation capacities and their prospective advances use in pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Maher Atari
- Biointelligence Technology Systems S.L., Barcelona, Spain
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
7
|
Sundaravadivelu PK, Raina K, Thool M, Ray A, Joshi JM, Kaveeshwar V, Sudhagar S, Lenka N, Thummer RP. Tissue-Restricted Stem Cells as Starting Cell Source for Efficient Generation of Pluripotent Stem Cells: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:151-180. [PMID: 34611861 DOI: 10.1007/5584_2021_660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have vast biomedical potential concerning disease modeling, drug screening and discovery, cell therapy, tissue engineering, and understanding organismal development. In the year 2006, a groundbreaking study reported the generation of iPSCs from mouse embryonic fibroblasts by viral transduction of four transcription factors, namely, Oct4, Sox2, Klf4, and c-Myc. Subsequently, human iPSCs were generated by reprogramming fibroblasts as a starting cell source using two reprogramming factor cocktails [(i) OCT4, SOX2, KLF4, and c-MYC, and (ii) OCT4, SOX2, NANOG, and LIN28]. The wide range of applications of these human iPSCs in research, therapeutics, and personalized medicine has driven the scientific community to optimize and understand this reprogramming process to achieve quality iPSCs with higher efficiency and faster kinetics. One of the essential criteria to address this is by identifying an ideal cell source in which pluripotency can be induced efficiently to give rise to high-quality iPSCs. Therefore, various cell types have been studied for their ability to generate iPSCs efficiently. Cell sources that can be easily reverted to a pluripotent state are tissue-restricted stem cells present in the fetus and adult tissues. Tissue-restricted stem cells can be isolated from fetal, cord blood, bone marrow, and other adult tissues or can be obtained by differentiation of embryonic stem cells or trans-differentiation of other tissue-restricted stem cells. Since these cells are undifferentiated cells with self-renewal potential, they are much easier to reprogram due to the inherent characteristic of having an endogenous expression of few pluripotency-inducing factors. This review presents an overview of promising tissue-restricted stem cells that can be isolated from different sources, namely, neural stem cells, hematopoietic stem cells, mesenchymal stem cells, limbal epithelial stem cells, and spermatogonial stem cells, and their reprogramming efficacy. This insight will pave the way for developing safe and efficient reprogramming strategies and generating patient-specific iPSCs from tissue-restricted stem cells derived from various fetal and adult tissues.
Collapse
Affiliation(s)
- Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Khyati Raina
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Madhuri Thool
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Arnab Ray
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Jahnavy Madhukar Joshi
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, Karnataka, India
| | - S Sudhagar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Nibedita Lenka
- National Centre for Cell Science, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
8
|
Cen X, Pan X, Zhang B, Huang W, Pei F, Luo T, Huang X, Liu J, Zhao Z. miR-20a-5p contributes to osteogenic differentiation of human dental pulp stem cells by regulating BAMBI and activating the phosphorylation of Smad5 and p38. Stem Cell Res Ther 2021; 12:421. [PMID: 34294156 PMCID: PMC8296686 DOI: 10.1186/s13287-021-02501-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human dental pulp stem cells (hDPSCs) are the preferable choice of seed cells for craniomaxillofacial bone tissue regeneration. As a member of the miR-17-92 cluster, miR-20a-5p functions as an important regulator during bone remodeling. This study aimed to investigate the roles and mechanisms of miR-20a-5p during osteogenesis of hDPSCs. METHODS Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to determine the expression of miR-20a-5p during osteogenesis of hDPSCs. We interfered with the expression of miR-20a-5p in hDPSCs to clarify the function of miR-20a-5p on osteogenesis both in vitro and vivo. Direct bind sites between miR-20a-5p and BAMBI were confirmed by dual-luciferase reporter assay, and the underlying mechanisms were investigated with cell co-transfections. RESULTS The expression of miR-20a-5p was showed to be upregulated during osteogenesis of hDPSCs. Inhibition of miR-20a-5p could weaken the intensity of ALP/ARS staining and downregulate the expression of mRNAs and proteins of osteogenic markers, while overexpression of miR-20a-5p could enhance the intensity of ALP/ARS staining and the expression of osteogenic markers. Both micro-CT reconstruction images and histological results showed that miR-20a-5p could promote the regeneration of calvarial defects. miR-20a-5p directly targeted bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), and the latter one was an inhibitor of hDPSC osteogenesis. Silencing BAMBI partially reversed the suppression effect of miR-20a-5p knockdown on osteogenesis. Phosphorylation of Smad5 and p38 was decreased when miR-20a-5p was silenced, whereas p-Smad5 and p-p38 were upregulated when miR-20a-5p was overexpressed or BAMBI was silenced. CONCLUSIONS It is demonstrated that miR-20a-5p functioned as a regulator of BAMBI to activate the phosphorylation of Smad5 and p38 during osteogenic differentiation of hDPSCs.
Collapse
Affiliation(s)
- Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fang Pei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Luo
- Department of Stomatology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Fibrin Glue Implants Seeded with Dental Pulp and Periodontal Ligament Stem Cells for the Repair of Periodontal Bone Defects: A Preclinical Study. Bioengineering (Basel) 2021; 8:bioengineering8060075. [PMID: 34206126 PMCID: PMC8226811 DOI: 10.3390/bioengineering8060075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
A technology to create a cell-seeded fibrin-based implant matching the size and shape of bone defect is required to create an anatomical implant. The aim of the study was to develop a technology of cell-seeded fibrin gel implant creation that has the same shape and size as the bone defect at the site of implantation. Using computed tomography (CT) images, molds representing bone defects were created by 3D printing. The form was filled with fibrin glue and human dental pulp stem cells (DPSC). The viability, set of surface markers and osteogenic differentiation of DPSC grown in fibrin gel along with the clot retraction time were evaluated. In mice, an alveolar bone defect was created. The defect was filled with fibrin gel seeded with mouse DPSC. After 28 days, the bone repair was analyzed with cone beam CT and by histological examination. The proliferation rate, set of surface antigens and osteogenic potential of cells grown inside the scaffold and in 2D conditions did not differ. In mice, both cell-free and mouse DPSC-seeded implants increased the bone tissue volume and vascularization. In mice with cell-seeded gel implants, the bone remodeling process was more prominent than in animals with a cell-free implant. The technology of 3D-printed forms for molding implants can be used to prepare implants using components that are not suitable for 3D printing.
Collapse
|
10
|
LncRNA MALAT1 Functions as a Competing Endogenous RNA to Regulate BMI1 Expression by Sponging miR-200c/miR-203 in the Control of the Differentiation of Pulp Cells. Biochem Genet 2021; 59:1260-1277. [PMID: 33772374 DOI: 10.1007/s10528-021-10054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) and miRNAs (microRNAs) are considered as key regulators of several biological processes, including dental development. In this study, we explored the lncRNAs and miRNAs which are involved in dental development. METHOD Real-time PCR was performed to identify the candidate lncRNAs and miRNAs involved in dental development. Bioinformatics analysis and luciferase assay were carried out to establish the regulatory relationships between MALAT1, miR-203 and miR-200c in dental development. RESULTS Among all candidate lncRNAs, only MALAT1 was highly expressed in differentiated human dental pulp cells (hDPCs), and among all candidate miRNAs which are down-regulated in differentiated hDPCs, miR-203, and miR-200c are most decreased. Furthermore, MALAT1 was up-regulated while miR-203 and miR-200c were down-regulated in differentiated hDPCs in a time-dependent manner. MiR-203 and miR-200c were proved to bind to MALAT1. Moreover, BMI1 was identified as a target gene of miR-203 or miR-200c, and BMI1 was time-dependently decreased in hDPCs cultured with odontogenic medium. On the contrary, dentin sialophosphoprotein (DSPP), dentin matrix protein-1 (DMP-1), osteocalcin (OCN), and alkaline phosphatase (ALP), were time-dependently increased in hDPCs cultured with odontogenic medium. Finally, the overexpression of MALAT1 and the knockdown of miR-203/miR-200c both significantly increased the levels of BMI1, DSPP, DMP-1, OCN, and ALP, while the effect of knockdown of miR-203/miR-200c was much stronger than that of the overexpression of MALAT1. CONCLUSION Our results demonstrated that MALAT1 functions as a competing endogenous RNA of miR-203 and miR-200c and accordingly promotes BMI1 expression. Therefore, MALAT1 may serve as a biomarker for dental development.
Collapse
|
11
|
Salkın H, Gönen ZB, Özcan S, Bahar D, Lekesizcan A, Taheri S, Kütük N, Alkan A. Effects of combination TGF-B1 transfection and platelet rich plasma (PRP) on three-dimension chondrogenic differentiation of rabbit dental pulp-derived mesenchymal stem cells. Connect Tissue Res 2021; 62:226-237. [PMID: 31581853 DOI: 10.1080/03008207.2019.1675649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim: The aim of this study was to evaluate the effects of standard culture medium and chondrogenic differentiation medium with PRP on chondrogenic differentiation of rabbit dental pulp-derived mesenchymal stem cells (rabbit DPSCs) that are transfected with transforming growth factor-beta 1 (TGF-B1) gene, based on the hypothesis of TGF- B1 and PRP can be effective on the chondrogenesis of stem cells. Materials and Methods: Rabbit DPSCs were characterized by using flow cytometry, immunofluorescent staining, quantitative Real Time Polymerase Chain Reaction (qRT-PCR) and differentiation tests. For the characterization, CD29, CD44 and CD45 mesenchymal cell markers were used. Rabbit DPSCs were transfected with TGF-B1 gene using electroporation technique in group 1; with PRP 10% in group 2; with chondrogenic medium in group 3; with both chondrogenic medium and PRP in group 4. DPSCs were cultured in medium with 10% inactive PRP in group 5, chondrogenic medium in group 6, chondrogenic medium with PRP 10% in group 7. SOX9, MMP13 and Aggrecan gene expression levels were evaluated in 3, 6, 12. and 24. days by qRT-PCR. Results: The expression levels of SOX9, MMP13 and Aggrecan were higher in group 2, 3 and group 7 in 3th day however in 24th day group 7 and group 2 were found higher. The expression levels changed by time-dependent. The extracellular matrix of the cells in experimental groups were positively stained with safranin O and toluidine blue. Conclusion: The combination in culture medium of TGF-B1 gene transfection and 10% PRP accelerates the chondrogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Hasan Salkın
- Department of Pathology Laboratory Techniques, Vocational School, Beykent University , Istanbul, Turkey.,Genome and Stem Cell Center, Erciyes University , Kayseri, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| | | | - Servet Özcan
- Genome and Stem Cell Center, Erciyes University , Kayseri, Turkey
| | - Dilek Bahar
- Genome and Stem Cell Center, Erciyes University , Kayseri, Turkey
| | - Ayça Lekesizcan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| | - Serpil Taheri
- Department of Medical Biology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| | - Nükhet Kütük
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, BezmiAlem University , İstanbul, Turkey
| | - Alper Alkan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, BezmiAlem University , İstanbul, Turkey
| |
Collapse
|
12
|
Sriram S, Kang NY, Subramanian S, Nandi T, Sudhagar S, Xing Q, Tong GJL, Chen AKL, Srijaya TC, Tan P, Loh YH, Chang YT, Sugii S. Novel live cell fluorescent probe for human-induced pluripotent stem cells highlights early reprogramming population. Stem Cell Res Ther 2021; 12:113. [PMID: 33546754 PMCID: PMC7866770 DOI: 10.1186/s13287-021-02171-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/15/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Despite recent rapid progress in method development and biological understanding of induced pluripotent stem (iPS) cells, there has been a relative shortage of tools that monitor the early reprogramming process into human iPS cells. METHODS We screened the in-house built fluorescent library compounds that specifically bind human iPS cells. After tertiary screening, the selected probe was analyzed for its ability to detect reprogramming cells in the time-dependent manner using high-content imaging analysis. The probe was compared with conventional dyes in different reprogramming methods, cell types, and cell culture conditions. Cell sorting was performed with the fluorescent probe to analyze the early reprogramming cells for their pluripotent characteristics and genome-wide gene expression signatures by RNA-seq. Finally, the candidate reprogramming factor identified was investigated for its ability to modulate reprogramming efficiency. RESULTS We identified a novel BODIPY-derived fluorescent probe, BDL-E5, which detects live human iPS cells at the early reprogramming stage. BDL-E5 can recognize authentic reprogramming cells around 7 days before iPS colonies are formed and stained positive with conventional pluripotent markers. Cell sorting of reprogrammed cells with BDL-E5 allowed generation of an increased number and higher quality of iPS cells. RNA sequencing analysis of BDL-E5-positive versus negative cells revealed early reprogramming patterns of gene expression, which notably included CREB1. Reprogramming efficiency was significantly increased by overexpression of CREB1 and decreased by knockdown of CREB1. CONCLUSION Collectively, BDL-E5 offers a valuable tool for delineating the early reprogramming pathway and clinically applicable commercial production of human iPS cells.
Collapse
Affiliation(s)
- Sandhya Sriram
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, A*STAR, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, A*STAR, 11 Biopolis Way, Singapore, 138667, Singapore.,Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Subha Subramanian
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, A*STAR, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Tannistha Nandi
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Genome #02-01, Singapore, 138672, Singapore
| | - Samydurai Sudhagar
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672, Singapore
| | - Qiaorui Xing
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Gerine Jin-Ling Tong
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Allen Kuan-Liang Chen
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | | | - Patrick Tan
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore, 138672, Singapore.,Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, Singapore, 168752, Singapore
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Young-Tae Chang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, A*STAR, 11 Biopolis Way, Singapore, 138667, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Department of Chemistry, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea.,Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, A*STAR, 11 Biopolis Way, Singapore, 138667, Singapore. .,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
13
|
Pluripotency of Dental Pulp Cells and Periodontal Ligament Cells Was Enhanced through Cell-Cell Communication via STAT3/Oct-4/Sox2 Signaling. Stem Cells Int 2021; 2021:8898506. [PMID: 33542738 PMCID: PMC7840254 DOI: 10.1155/2021/8898506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Alternation in culture environment due to cell-cell communications can rejuvenate the biological activity of aged/differentiated cells and stimulate the expression of pluripotency markers. Dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) are promising candidates in dental tissue regeneration. However, the molecular network that underlies cell-cell communications between dental-derived cells and the microenvironment remains to be identified. To elucidate the signaling network that regulates the pluripotency of DPCs and PDLCs, proliferation, apoptosis, cell cycle, and the expression of Oct-4/Sox2/c-Myc in DPCs and PDLCs with indirect/direct coculture were examined. PCR arrays were constructed to identify genes that were differentially expressed, and the results were confirmed by a rat model with injury. Further research on the mechanism of the related signaling pathways was investigated by overexpression/silence of STAT3, ChIP, the dual-luciferase reporter assay, and EMSA. We found that the proliferation and apoptosis of DPCs and PDLCs were inhibited, and their cell cycles were arrested at the G0/G1 phase after coculture. Oct-4, Sox2, and STAT3 expression significantly increased and PAX5 expression decreased in the coculture systems. Oct-4/Sox2/STAT3/PAX5 was actively expressed in the rat defect model. Moreover, STAT3 was directly bound to the Oct-4 and Sox2 gene promoter regions and activated the expression of those genes. Our data showed that the pluripotency of DPCs and PDLCs was enhanced through cell-cell communication. STAT3 plays essential roles in regulating the pluripotency of DPCs and PDLCs by targeting Oct-4 and Sox2 both in vitro and in vivo.
Collapse
|
14
|
Chang HH, Chen IL, Wang YL, Chang MC, Tsai YL, Lan WC, Wang TM, Yeung SY, Jeng JH. Regulation of the regenerative activity of dental pulp stem cells from exfoliated deciduous teeth (SHED) of children by TGF-β1 is associated with ALK5/Smad2, TAK1, p38 and MEK/ERK signaling. Aging (Albany NY) 2020; 12:21253-21272. [PMID: 33148869 PMCID: PMC7695363 DOI: 10.18632/aging.103848] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) regulates wound healing/regeneration and aging processes. Dental pulp stem cells from human exfoliated deciduous teeth (SHED) are cell sources for treatment of age-related disorders. We studied the effect of TGF-β1 on SHED and related signaling. SHED were treated with TGF-β1 with/without pretreatment/co-incubation by SB431542, U0126, 5Z-7-oxozeaenol or SB203580. Sircol collagen assay, 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) assay, RT-PCR, western blotting and PathScan phospho-ELISA were used to measure the effects. We found that SHED expressed ALK1, ALK3, ALK5, TGF-RII, betaglycan and endoglin mRNA. TGF-β1 stimulated p-Smad2, p-TAK1, p-ERK, p-p38 and cyclooxygenase-2 (COX-2) protein expression. It enhanced proliferation and collagen content of SHED that were attenuated by SB431542, 5Z-7-oxozeaenol and SB203580, but not U0126. TGF-β1 (0.5-1 ng/ml) stimulated ALP of SHED, whereas 5-10 ng/ml TGF-β1 suppressed ALP. SB431542 reversed the effects of TGF-β1. However, 5Z-7-oxozeaenol, SB203580 and U0126 only reversed the stimulatory effect of TGF-β1 on ALP. Four inhibitors attenuated TGF-β1-induced COX-2 expression. TGF-β1-stimulated TIMP-1 and N-cadherin was inhibited by SB431542 and 5Z-7-oxozeaenol. These results indicate that TGF-β1 affects SHED by differential regulation of ALK5/Smad2/3, TAK1, p38 and MEK/ERK. TGF-β1 and SHED could potentially be used for tissue engineering/regeneration and treatment of age-related diseases.
Collapse
Affiliation(s)
- Hsiao-Hua Chang
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Il-Ly Chen
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Mei-Chi Chang
- Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Ling Tsai
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Wen-Chien Lan
- Department of Oral Hygiene Care, Ching Kuo Institute of Management and Health, Keelung, Taiwan
| | - Tong-Mei Wang
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Solis‐Castro OO, Boissonade FM, Rivolta MN. Establishment and neural differentiation of neural crest-derived stem cells from human dental pulp in serum-free conditions. Stem Cells Transl Med 2020; 9:1462-1476. [PMID: 32633468 PMCID: PMC7581455 DOI: 10.1002/sctm.20-0037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
The potential of obtaining cell cultures with neural crest resemblance (neural crest-derived stem cells [NCSCs]) from dental-related tissues, including human dental pulp cells (hDPCs), has been discussed in the literature. However, most reports include the use of serum-rich conditions and do not describe the potential for neural differentiation, slowing translation to the clinic. Therefore, we aimed to culture and characterize NCSCs from the human dental pulp in vitro and evaluate their ability to differentiate into neurons; we also investigated the effectiveness of the addition of BMP4 to enhance this potential. Cultures were established from a varied cohort of patient samples and grown, as monolayers, in serum, serum-free, and also under sphere-aggregation conditions to induce and identify a NCSC phenotype. hDPC cultures were characterized by immunocytochemistry and reverse transcription quantitative polymerase chain reaction. Monolayer cultures expressed stem cell, neural progenitor and neural crest-related markers. Culturing hDPCs as neurospheres (hDPC-NCSCs) resulted in an increased expression of neural crest-related genes, while the addition of BMP4 appeared to produce better NCSC characteristics and neural differentiation. The neural-like phenotype was evidenced by the expression of TUJ1, peripherin, NFH, TAU, SYN1, and GAP43. Our results describe the establishment of hDPC cultures from a large variety of patients in serum-free medium, as NCSC that differentiate into neural-like cells, as well as an important effect of BMP4 in enhancing the neural crest phenotype and differentiation of hDPCs.
Collapse
Affiliation(s)
- Oscar O. Solis‐Castro
- Centre for Stem Cell Biology, Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- The Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Fiona M. Boissonade
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- The Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Marcelo N. Rivolta
- Centre for Stem Cell Biology, Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- The Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
16
|
Rosaian AS, Rao GN, Mohan SP, Vijayarajan M, Prabhakaran RC, Sherwood A. Regenerative Capacity of Dental Pulp Stem Cells: A Systematic Review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:S27-S36. [PMID: 33149427 PMCID: PMC7595477 DOI: 10.4103/jpbs.jpbs_121_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The dental pulp contains undifferentiated mesenchymal cells, blood vessels and so on, which are responsible for routine functions of a tooth. The determination of stemness and regenerative properties using biomarkers and further application in routine practice may unravel its potential. MATERIALS AND METHODS Inclusion criteria-original research articles published in English, from 2000 to 2019, were collected both manually and by electronic search from databases of Cochrane, Medline, Embase, and PubMed. Exclusion criteria-articles other than English and review manuscripts were omitted. The shortlisted articles were reviewed for specific biomarkers, to assess the regenerative potential, stemness, and lineage of dental pulp stem cells. RESULTS Of 512 articles, 64 were selected and reviewed to determine the mesenchymal, neurogenic, vasculogenic, hematopoietic, and stem cell potential. On the basis of the search analysis, a panel of markers was proposed. CONCLUSION The application of proposed markers, on a pulpectomized tissue derived from human teeth, may be helpful to determine the regenerative potential and the usefulness in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Adlin S Rosaian
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Gururaj Narayana Rao
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Sunil P Mohan
- Department of Oral Pathology, Sree Anjaneya Institute of Dental Sciences, Kozhikode, Kerala, India
- Department of Stem Cells and Regenerative Medicine, Sree Anjaneya Institute of Dental Sciences, Kozhikode, Kerala, India
| | - Mahalakshmi Vijayarajan
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Rebekkah C Prabhakaran
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Anand Sherwood
- Department of Operative Dentistry and Endodontics, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| |
Collapse
|
17
|
Faruqu FN, Zhou S, Sami N, Gheidari F, Lu H, Al‐Jamal KT. Three-dimensional culture of dental pulp pluripotent-like stem cells (DPPSCs) enhances Nanog expression and provides a serum-free condition for exosome isolation. FASEB Bioadv 2020; 2:419-433. [PMID: 32676582 PMCID: PMC7354694 DOI: 10.1096/fba.2020-00025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Stem cell-derived exosomes have been identified as novel cell-free therapeutics for regenerative medicine. Three-dimensional (3D) culture of stem cells were reported to improve their "stemness" and therapeutic efficacy. This work focused on establishing serum-free 3D culture of dental pulp pluripotent-like stem cells (DPPSCs)-a newly characterized pluripotent-like stem cell for exosome production. DPPSCs were expanded in regular 2D culture in human serum-supplemented (HS)-medium and transferred to a micropatterned culture plate for 3D culture in HS-medium (default) and medium supplemented with KnockOut™ serum replacement (KO-medium). Bright-field microscopy observation throughout the culture period (24 days) revealed that DPPSCs in KO-medium formed spheroids of similar morphology and size to that in HS-medium. qRT-PCR analysis showed similar Oct4A gene expression in DPPSC spheroids in both HS-medium and KO-medium, but Nanog expression significantly increased in the latter. Vesicles isolated from DPPSC spheroids in KO-medium in the first 12 days of culture showed sizes that fall within the exosomal size range by nanoparticle tracking analysis (NTA) and express the canonical exosomal markers. It is concluded that 3D culture of DPPSCs in KO-medium provided an optimal serum-free condition for successful isolation of DPPSC-derived exosomes for subsequent applications in regenerative medicine.
Collapse
Affiliation(s)
- Farid N. Faruqu
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Shuai Zhou
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Noor Sami
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Fatemeh Gheidari
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| | - Han Lu
- Genomics CentreKing’s College LondonLondonUK
| | | |
Collapse
|
18
|
Inostroza C, Vega-Letter AM, Brizuela C, Castrillón L, Saint Jean N, Duran CM, Carrión F. Mesenchymal Stem Cells Derived from Human Inflamed Dental Pulp Exhibit Impaired Immunomodulatory Capacity In Vitro. J Endod 2020; 46:1091-1098.e2. [PMID: 32422164 DOI: 10.1016/j.joen.2020.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Dental pulp stem cells (DPSC) are very attractive in regenerative medicine. In this study, we focused on the characterization of the functional properties of mesenchymal stem cells derived from DPSCs. Currently, it is unknown whether inflammatory conditions present in an inflamed dental pulp tissue could alter the immunomodulatory properties of DPSCs. This study aimed to evaluate the immunomodulatory capacity in vitro of DPSCs derived from healthy and inflamed dental pulp. METHODS DPSCs from 10 healthy and inflamed dental pulps (irreversible pulpitis) were characterized according to the minimal criteria of the International Society for Cell Therapy, proliferation, differential potential, and colony-forming units. Furthermore, the immunomodulatory capacity of DPSCs was tested on the proliferation of T lymphocytes by flow cytometry and the in vitro enzyme activity of indoleamine 2, 3-dioxygenase. RESULTS There were no significant differences in the DPSC characteristics and properties such as immunophenotype, tridifferentiation, colony-forming units, and proliferation of the DPSCs derived from normal and inflamed pulp tissue. Furthermore, there were significant differences in the immunomodulatory capacity of DPSCs obtained from human healthy dental pulp and with the diagnosis of irreversible pulpitis. CONCLUSIONS Our results showed that DPSCs isolated from inflamed dental pulp showed typical characteristics of MSCs and diminished immunosuppressive capacity in vitro in comparison with MSCs derived from healthy dental pulp. Further investigation in vivo is needed to clarify the mechanism of this diminished immunosuppressive capacity.
Collapse
Affiliation(s)
| | - Ana María Vega-Letter
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| | - Claudia Brizuela
- Dental School, Universidad de Los Andes, Las Condes, Santiago, Chile
| | - Luis Castrillón
- Dental School, Universidad de Los Andes, Las Condes, Santiago, Chile
| | - Nicole Saint Jean
- Dental School, Universidad de Los Andes, Las Condes, Santiago, Chile
| | - Carol Mira Duran
- Dental School, Universidad de Los Andes, Las Condes, Santiago, Chile
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile.
| |
Collapse
|
19
|
Uribe-Etxebarria V, García-Gallastegui P, Pérez-Garrastachu M, Casado-Andrés M, Irastorza I, Unda F, Ibarretxe G, Subirán N. Wnt-3a Induces Epigenetic Remodeling in Human Dental Pulp Stem Cells. Cells 2020; 9:cells9030652. [PMID: 32156036 PMCID: PMC7140622 DOI: 10.3390/cells9030652] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Dental pulp stem cells (DPSCs) from adult teeth show the expression of a very complete repertoire of stem pluripotency core factors and a high plasticity for cell reprogramming. Canonical Wnt and Notch signaling pathways regulate stemness and the expression of pluripotency core factors in DPSCs, and even very short-term (48 h) activations of the Wnt pathway induce a profound remodeling of DPSCs at the physiologic and metabolic levels. In this work, DPSC cultures were exposed to treatments modulating Notch and Wnt signaling, and also induced to differentiate to osteo/adipocytes. DNA methylation, histone acetylation, histone methylation, and core factor expression levels where assessed by mass spectroscopy, Western blot, and qPCR. A short-term activation of Wnt signaling by WNT-3A induced a genomic DNA demethylation, and increased histone acetylation and histone methylation in DPSCs. The efficiency of cell reprogramming methods relies on the ability to surpass the epigenetic barrier, which determines cell lineage specificity. This study brings important information about the regulation of the epigenetic barrier by Wnt signaling in DPSCs, which could contribute to the development of safer and less aggressive reprogramming methodologies with a view to cell therapy.
Collapse
Affiliation(s)
- Verónica Uribe-Etxebarria
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
- Pathology Department, New York University, 550 1st Avenue, New York, NY 10016, USA
| | - Patricia García-Gallastegui
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - Miguel Pérez-Garrastachu
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - María Casado-Andrés
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
- Unité Mixte de Recherche UMR1029. INSERM-Université de Bordeaux, 33000 Bordeaux, France
| | - Igor Irastorza
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - Fernando Unda
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - Gaskon Ibarretxe
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
- Correspondence: ; Tel.: +34-94-601-3218
| | - Nerea Subirán
- Physiology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain;
| |
Collapse
|
20
|
Coates DE, Alansary M, Friedlander L, Zanicotti DG, Duncan WJ. Dental pulp stem cells in serum-free medium for regenerative medicine. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1673447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Mohammad Alansary
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Lara Friedlander
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Diogo G. Zanicotti
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Warwick J. Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Núñez-Toldrà R, Montori S, Bosch B, Hupa L, Atari M, Miettinen S. S53P4 Bioactive Glass Inorganic Ions for Vascularized Bone Tissue Engineering by Dental Pulp Pluripotent-Like Stem Cell Cocultures. Tissue Eng Part A 2019; 25:1213-1224. [DOI: 10.1089/ten.tea.2018.0256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Raquel Núñez-Toldrà
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Sheyla Montori
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Begoña Bosch
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Maher Atari
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, Spain
- Surgery and Oral Implantology Department, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Susanna Miettinen
- Adult Stem Cell Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
22
|
Uribe‐Etxebarria V, Agliano A, Unda F, Ibarretxe G. Wnt signaling reprograms metabolism in dental pulp stem cells. J Cell Physiol 2019; 234:13068-13082. [PMID: 30549037 PMCID: PMC6519273 DOI: 10.1002/jcp.27977] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Human dental pulp stem cells (DPSCs) can differentiate to a wide range of different cell lineages, and share some gene expression and functional similarities with pluripotent stem cells. The stemness of DPSCs can also be pharmacologically enhanced by the activation of canonical Wnt signaling. Here, we examined the metabolic profile of DPSCs during reprogramming linked to Wnt activation, by a short (48 hr) exposure to either the GSK3-β inhibitor BIO (6-bromoindirubin-3´-oxine) or human recombinant protein WNT-3A. Both treatments largely increased glucose consumption, and induced a gene overexpression of pyruvate and mitochondrial acetyl-coA producing enzymes, thus activating mitochondrial tricarboxylic acid cycle (TCA) metabolism in DPSCs. This ultimately led to an accumulation of reducing power and a mitochondrial hyperpolarization in DPSCs. Interestingly, Nile Red staining showed that lipid fuel reserves were being stored in Wnt-activated DPSCs. We associate this metabolic reprogramming with an energy-priming state allowing DPSCs to better respond to subsequent high demands of energy and biosynthesis metabolites for cellular growth. These results show that enhancement of the stemness of DPSCs by Wnt activation comes along with a profound metabolic remodeling, which is distinctly characterized by a crucial participation of mitochondrial metabolism.
Collapse
Affiliation(s)
- Véronica Uribe‐Etxebarria
- Department of Cell Biology and HistologyUniversity of the Basque Country (UPV/EHU)Barrio SarrienaLeioaSpain
| | - Alice Agliano
- Division of Radiotherapy and ImagingCancer Research UK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Fernando Unda
- Department of Cell Biology and HistologyUniversity of the Basque Country (UPV/EHU)Barrio SarrienaLeioaSpain
| | - Gaskon Ibarretxe
- Department of Cell Biology and HistologyUniversity of the Basque Country (UPV/EHU)Barrio SarrienaLeioaSpain
| |
Collapse
|
23
|
Lin TC, Lin YY, Hsu CC, Yang YP, Yang CH, Hwang DK, Wang CY, Liu YY, Lo WL, Chiou SH, Peng CH, Chen SJ, Chang YL. Nanomedicine-based Curcumin Approach Improved ROS Damage in Best Dystrophy-specific Induced Pluripotent Stem Cells. Cell Transplant 2019; 28:1345-1357. [PMID: 31313605 PMCID: PMC6802151 DOI: 10.1177/0963689719860130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Best dystrophy (BD), also termed best vitelliform macular dystrophy (BVMD), is a
juvenile-onset form of macular degeneration and can cause central visual loss.
Unfortunately, there is no clear definite therapy for BD or improving the visual function
on this progressive disease. The human induced pluripotent stem cell (iPSC) system has
been recently applied as an effective tool for genetic consultation and chemical drug
screening. In this study, we developed patient-specific induced pluripotent stem cells
(BD-iPSCs) from BD patient-derived dental pulp stromal cells and then differentiated
BD-iPSCs into retinal pigment epithelial cells (BD-RPEs). BD-RPEs were used as an
expandable platform for in vitro candidate drug screening. Compared with unaffected
sibling-derived iPSC-derived RPE cells (Ctrl-RPEs), BD-RPEs exhibited typical RPE-specific
markers with a lower expression of the tight junction protein ZO-1 and Bestrophin-1
(BEST1), as well as reduced phagocytic capabilities. Notably, among all candidate drugs,
curcumin was the most effective for upregulating both the BEST1 and ZO-1 genes in BD-RPEs.
Using the iPSC-based drug-screening platform, we further found that curcumin can
significantly improve the mRNA expression levels of Best gene in BD-iPSC-derived RPEs.
Importantly, we demonstrated that curcumin-loaded PLGA nanoparticles (Cur-NPs) were
efficiently internalized by BD-RPEs. The Cur-NPs-based controlled release formulation
further increased the expression of ZO-1 and Bestrophin-1, and promoted the function of
phagocytosis and voltage-dependent calcium channels in BD-iPSC-derived RPEs. We further
demonstrated that Cur-NPs enhanced the expression of antioxidant enzymes with a decrease
in intracellular ROS production and hydrogen peroxide-induced oxidative stress.
Collectively, these data supported that Cur-NPs provide a potential cytoprotective effect
by regulating the anti-oxidative abilities of degenerated RPEs. In addition, the
application of patient-specific iPSCs provides an effective platform for drug screening
and personalized medicine in incurable diseases.
Collapse
Affiliation(s)
- Tai-Chi Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei.,Department of Ophthalmology, Taipei Veterans General Hospital, Taipei
| | - Yi-Ying Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei
| | - Chih-Chen Hsu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei.,Department of Ophthalmology, Taipei Veterans General Hospital, Taipei
| | - Yi-Ping Yang
- Institute of Pharmacology, National Yang-Ming University, Taipei.,School of Medicine, National Yang-Ming University, Taipei.,Department of Medical Research, Taipei Veterans General Hospital, Taipei
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei.,School of Medicine, National Yang-Ming University, Taipei
| | - Chien-Ying Wang
- School of Medicine, National Yang-Ming University, Taipei.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei
| | - Yung-Yang Liu
- School of Medicine, National Yang-Ming University, Taipei.,Department of Chest, Taipei Veterans General Hospital, Taipei
| | - Wen-Liang Lo
- Department of Stomatology, Taipei Veterans General Hospital & Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei.,Institute of Pharmacology, National Yang-Ming University, Taipei.,Department of Medical Research, Taipei Veterans General Hospital, Taipei
| | - Chi-Hsien Peng
- Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital & Fu-Jen Catholic University, Taipei
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei.,School of Medicine, National Yang-Ming University, Taipei
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei.,School of Medicine, National Yang-Ming University, Taipei.,Department of Pharmacology, Taipei Veterans General Hospital, Taipei.,School of Pharmaceutical Sciences, National Yang-Ming University, Taipei
| |
Collapse
|
24
|
Cândea Ciurea A, Şurlin P, Stratul ŞI, Soancă A, Roman A, Moldovan M, Tudoran B L, Pall E. Evaluation of the biocompatibility of resin composite-based dental materials with gingival mesenchymal stromal cells. Microsc Res Tech 2019; 82:1768-1778. [PMID: 31313433 DOI: 10.1002/jemt.23343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/30/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022]
Abstract
Resin composite-based dental materials can leach certain components into the oral environment, causing potentially harmful gingival biological effect. Gingival tissue is a rich source of mesenchymal stem cells (MSCs) that is easily accessible, and can be used as a complementary approach for the investigation of dental material biocompatibility. Using gingival MSCs (gMSCs), the present study aimed to investigate the cytotoxicity of two classes of restorative dental materials (ormocers and resin composites) used to restore class II cavities close to the gingival margin, in addition to analyzing the leached compounds from these resin composite-based materials. Functionality assays (Colony-forming unit, migratory potential, and proliferation assays) and a viability assay (MTT) were employed. Cells' aspect was observed by scanning electron microscopy (SEM). Leached monomers were also quantitated using high-performance liquid chromatography (HPLC). The cytotoxicity of the biomaterials was highlighted by impaired functionality and diminished viability of gMSCs. Despite being variants of the same commercial material, the two ormocers behaved differently one material having a more negative impact on cell functionality than the other. Cells appeared to attach well to all materials. Main monomer molecules were mostly released by the tested materials. For all samples, an increased elution of monomers was recorded in artificial saliva as compared with culture medium. One composite material has released nearly eight times more urethane dimetacrylate in artificial saliva than in culture medium. Significantly lower gMSC viability scores were recorded for all the investigated samples in comparison with the control.
Collapse
Affiliation(s)
- Andreea Cândea Ciurea
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Petra Şurlin
- Department of Periodontology, University of Medicine and Pharmacy, Craiova, Romania
| | - Ştefan-Ioan Stratul
- Department of Periodontology, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Andrada Soancă
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mărioara Moldovan
- Raluca Ripan Institute for Research in Chemistry, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lucian Tudoran B
- Electron Microscopy Integrated Laboratory (LIME), National Institute for Research and Development of Isotopic and Molecular Technologies, INCDTIM, Cluj-Napoca, Romania.,Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Emoke Pall
- Department of Veterinary Reproduction, Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
25
|
Lin CY, Kuo PJ, Chin YT, Weng IT, Lee HW, Huang HM, Lin HY, Hsiung CN, Chan YH, Lee SY. Dental Pulp Stem Cell Transplantation with 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside Accelerates Alveolar Bone Regeneration in Rats. J Endod 2019; 45:435-441. [DOI: 10.1016/j.joen.2018.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/06/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
|
26
|
Liu Y, Dong N, Miao J, Li C, Wang X, Ruan J. Lin28 promotes dental pulp cell proliferation via upregulation of cyclin-dependent proteins and interaction with let-7a/IGF2BP2 pathways. Biomed Pharmacother 2019; 113:108742. [PMID: 30851545 DOI: 10.1016/j.biopha.2019.108742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 01/23/2023] Open
Abstract
Caries, pulpitis, and trauma are the main causes of dental pulp damage. The regeneration capacity of dental pulp declines with age. Lin28 is a conserved RNA-binding protein in higher eukaryotes that regulates several important cellular functions associated with development, glucose metabolism, differentiation, and pluripotency. Conditional reactivation of Lin28 gene in adult mice markedly accelerates the wound-healing process in injured digits. However, little is known about its functions and molecular mechanism in human dental pulp. The aim of this study was to investigate the effects and mechanism of overexpression of Lin28 gene on the proliferation of human dental pulp cells (HDPCs). For this purpose, a number of molecular and biochemical analytical techniques, including the ethynyl-2'-deoxyuridine (EdU) incorporation assay, RNA-protein immunoprecipitation (RIP) analysis, and luciferase assays, were used for detailed characterization. In addition, factors regulating HDPCs activation were explored through gain-of-function and loss-of-function analyses. The results demonstrate that Lin28 promotes cell proliferation and the S-G2/M transition of HDPCs and directly binds to a group of cell cycle regulatory mRNAs in HDPCs. Through bioinformatics analysis and luciferase assays, we confirmed that let-7a targets IGF2BP2. Silencing of IGF2BP2 showed similar cellular and molecular effects as let-7a. Similarly, restoration of IGF2BP2 counteracted the effects of let-7a expression. In conclusion, Lin28 promotes cell proliferation by regulation of both mRNA translation (let-7-independent) and miRNA biogenesis (let-7-dependent). Lin28 can promote the expression of pro-proliferative genes by directly enhancing their translation to maintain a tight control over HDPC proliferation.
Collapse
Affiliation(s)
- Yan Liu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 Xiwu Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Ning Dong
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 Xiwu Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Jiyu Miao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chenxing Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jianping Ruan
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 Xiwu Road, Xi'an, Shaanxi, 710004, People's Republic of China.
| |
Collapse
|
27
|
Macrin D, Alghadeer A, Zhao YT, Miklas JW, Hussein AM, Detraux D, Robitaille AM, Madan A, Moon RT, Wang Y, Devi A, Mathieu J, Ruohola-Baker H. Metabolism as an early predictor of DPSCs aging. Sci Rep 2019; 9:2195. [PMID: 30778087 PMCID: PMC6379364 DOI: 10.1038/s41598-018-37489-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Tissue resident adult stem cells are known to participate in tissue regeneration and repair that follows cell turnover, or injury. It has been well established that aging impedes the regeneration capabilities at the cellular level, but it is not clear if the different onset of stem cell aging between individuals can be predicted or prevented at an earlier stage. Here we studied the dental pulp stem cells (DPSCs), a population of adult stem cells that is known to participate in the repair of an injured tooth, and its properties can be affected by aging. The dental pulp from third molars of a diverse patient group were surgically extracted, generating cells that had a high percentage of mesenchymal stem cell markers CD29, CD44, CD146 and Stro1 and had the ability to differentiate into osteo/odontogenic and adipogenic lineages. Through RNA seq and qPCR analysis we identified homeobox protein, Barx1, as a marker for DPSCs. Furthermore, using high throughput transcriptomic and proteomic analysis we identified markers for DPSC populations with accelerated replicative senescence. In particular, we show that the transforming growth factor-beta (TGF-β) pathway and the cytoskeletal proteins are upregulated in rapid aging DPSCs, indicating a loss of stem cell characteristics and spontaneous initiation of terminal differentiation. Importantly, using metabolic flux analysis, we identified a metabolic signature for the rapid aging DPSCs, prior to manifestation of senescence phenotypes. This metabolic signature therefore can be used to predict the onset of replicative senescence. Hence, the present study identifies Barx1 as a DPSCs marker and dissects the first predictive metabolic signature for DPSCs aging.
Collapse
Affiliation(s)
- Dannie Macrin
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Ammar Alghadeer
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA.,Department of Biomedical Dental Sciences, Imam Abdulrahman bin Faisal University, College of Dentistry, Dammam, 31441, Saudi Arabia
| | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA
| | - Jason W Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Damien Detraux
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Aaron M Robitaille
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98109, USA
| | - Anup Madan
- Covance Genomics Laboratory, Redmond, WA, 98052, USA
| | - Randall T Moon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Arikketh Devi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Comparative Medicine, University of Washington, School of Medicine, Seattle, WA, 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA. .,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
28
|
Martellucci S, Santacroce C, Santilli F, Piccoli L, Delle Monache S, Angelucci A, Misasi R, Sorice M, Mattei V. Cellular and Molecular Mechanisms Mediated by recPrP C Involved in the Neuronal Differentiation Process of Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:E345. [PMID: 30654447 PMCID: PMC6358746 DOI: 10.3390/ijms20020345] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Human Dental Pulp Stem Cells (hDPSCs) represent a type of adult mesenchymal stem cells that have the ability to differentiate in vitro in several lineages such as odontoblasts, osteoblasts, chondrocytes, adipocytes and neurons. In the current work, we used hDPSCs as the experimental model to study the role of recombinant prion protein 23⁻231 (recPrPC) in the neuronal differentiation process, and in the signal pathway activation of ERK 1/2 and Akt. We demonstrated that recPrPC was able to activate an intracellular signal pathway mediated by extracellular-signal-regulated kinase 1 and 2 (ERK 1/2) and protein kinase B (Akt). Moreover, in order to understand whether endogenous prion protein (PrPC) was necessary to mediate the signaling induced by recPrPC, we silenced PrPC, demonstrating that the presence of endogenous PrPC was essential for ERK 1/2 and Akt phosphorylation. Since endogenous PrPC is a well-known lipid rafts component, we evaluated the role of these structures in the signal pathway induced by recPrPC. Our results suggest that lipid rafts integrity play a key role in recPrPC activity. In fact, lipid rafts inhibitors, such as fumonisin B1 and MβCD, significantly prevented ERK 1/2 and Akt phosphorylation induced by recPrPC. In addition, we investigated the capacity of recPrPC to induce hDPSCs neuronal differentiation process after long-term stimulation through the evaluation of typical neuronal markers expression such as B3-Tubulin, neurofilament-H (NFH) and growth associated protein 43 (GAP43). Accordingly, when we silenced endogenous PrPC, we observed the inhibition of neuronal differentiation induced by recPrPC. The combined data suggest that recPrPC plays a key role in the neuronal differentiation process and in the activation of specific intracellular signal pathways in hDPSCs.
Collapse
Affiliation(s)
- Stefano Martellucci
- Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas", 02100 Rieti, Italy.
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| | - Costantino Santacroce
- Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas", 02100 Rieti, Italy.
| | - Francesca Santilli
- Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas", 02100 Rieti, Italy.
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| | - Luca Piccoli
- Department of Science Dentistry and Maxillofacial, "Sapienza" University, 00161 Rome, Italy.
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| | - Vincenzo Mattei
- Laboratory of Experimental Medicine and Environmental Pathology, Rieti University Hub "Sabina Universitas", 02100 Rieti, Italy.
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy.
| |
Collapse
|
29
|
Apel C, Buttler P, Salber J, Dhanasingh A, Neuss S. Differential mineralization of human dental pulp stem cells on diverse polymers. ACTA ACUST UNITED AC 2019; 63:261-269. [PMID: 28157689 DOI: 10.1515/bmt-2016-0141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/28/2016] [Indexed: 01/09/2023]
Abstract
In tissue engineering, biomaterials are used as scaffolds for spatial distribution of specific cell types. Biomaterials can potentially influence cell proliferation and extracellular matrix formation, both in positive and negative ways. The aim of the present study was to investigate and compare mineralized matrix production of human dental pulp stem cells (DPSC), cultured on 17 different well-characterized polymers. Osteogenic differentiation of DPSC was induced for 21 days on biomaterials using dexamethasone, L-ascorbic-acid-2-phosphate, and sodium β-glycerophosphate. Success of differentiation was analyzed by quantitative RealTime PCR, alkaline phosphatase (ALP) activity, and visualization of calcium accumulations by alizarin red staining with subsequent quantification by colorimetric method. All of the tested biomaterials of an established biomaterial bank enabled a mineralized matrix formation of the DPSC after osteoinductive stimulation. Mineralization on poly(tetrafluoro ethylene) (PTFE), poly(dimethyl siloxane) (PDMS), Texin, LT706, poly(epsilon-caprolactone) (PCL), polyesteramide type-C (PEA-C), hyaluronic acid, and fibrin was significantly enhanced (p<0.05) compared to standard tissue culture polystyrene (TCPS) as control. In particular, PEA-C, hyaluronic acid, and fibrin promoted superior mineralization values. These results were confirmed by ALP activity on the same materials. Different biomaterials differentially influence the differentiation and mineralized matrix formation of human DPSC. Based on the present results, promising biomaterial candidates for bone-related tissue engineering applications in combination with DPSC can be selected.
Collapse
Affiliation(s)
- Christian Apel
- Department of Biohybrid and Medical Textiles, Institute of Applied Medical Engineering, Helmholtz-Institute of Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Patricia Buttler
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, Aachen, Germany
| | - Jochen Salber
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr Universität Bochum, Bochum, Germany
| | - Anandhan Dhanasingh
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Sabine Neuss
- Institute of Pathology, RWTH Aachen University, Aachen, Germany.,Helmholtz Institute of Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
30
|
Novel Calcium Phosphate Cement with Metformin-Loaded Chitosan for Odontogenic Differentiation of Human Dental Pulp Cells. Stem Cells Int 2018; 2018:7173481. [PMID: 30598667 PMCID: PMC6288571 DOI: 10.1155/2018/7173481] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
Metformin is an old and widely accepted first-line drug for treating type 2 diabetes. Our previous studies demonstrate that metformin can stimulate the osteo/odontogenic differentiation of human-induced pluripotent stem cell-derived mesenchymal stem cells and human dental pulp cells (DPCs). Due to the rapid dilution of metformin from the defect area, the aim of this study was to develop a drug delivery system with controlled release of metformin to promote cell viability and odontogenic differentiation of DPCs favoring dentin regeneration. Calcium phosphate cement (CPC) containing chitosan and metformin as a scaffold was synthesized. DPCs were seeded onto the scaffold, and the viability and proliferation were evaluated at several time points. For osteogenic differentiation analysis, alkaline phosphatase (ALP) activity was tested, cells were stained with Alizarin Red, and the expression of odontogenic markers was evaluated by real-time polymerase chain reaction. DPCs remained viable and attached well to the CPC-chitosan composite scaffold. Moreover, the addition of metformin to the CPC-chitosan composite did not adversely affect cell proliferation, compared to that of CPC control. Our data further revealed that the novel CPC-chitosan-metformin composite enhanced the odontogenic differentiation of DPCs, as evidenced by higher ALP activity, elevated expression of odontoblastic markers, and strong mineral deposition. These results suggest that the new CPC-chitosan-metformin composite is a highly promising scaffold with the potential for tissue engineering applications including dentin regeneration.
Collapse
|
31
|
Maher A, Núñez-Toldrà R, Carrio N, Ferres-Padro E, Ali H, Montori S, Al Madhoun A. The Effect of Commercially Available Endodontic Cements and Biomaterials on Osteogenic Differentiation of Dental Pulp Pluripotent-Like Stem Cells. Dent J (Basel) 2018; 6:48. [PMID: 30248979 PMCID: PMC6313531 DOI: 10.3390/dj6040048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/03/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023] Open
Abstract
The aim of this study is to compare the osteogenic differentiation capacity of the dental pulp pluripotent-like stem cells (DPPSCs) using conditional media pretreated with ProRoot-MTA, Biodentine (BD) or the newly manufactured pure Portland cement Med-PZ (MZ). DPPSCs, isolated from human third molars, are the most relevant cell model to draw conclusions about the role of biomaterials on dental tissue regeneration. Cytotoxicity, alkaline phosphatase (ALP) activity, and calcium deposition analysis were evaluated at different differentiation time points. Gene expression of key osteogenic markers (RUNX2, Collagen I and Osteocalcin) was determined by qRT-PCR analysis. The osteogenic capacity of cells cultured in conditioned media prepared from MZ or MTA cements was comparable. BD conditioned media supported cell proliferation but failed to induce osteogenesis. Relative to controls and other cements, high osteogenic gene expression was observed in cultures pre-treated with the novel endodontic cement MZ. In conclusion, the in vitro behavior of a MZ- endodontic cement was evaluated, showing similar enhanced cell proliferation compared to other commercially available cements but with an enhanced osteogenic capacity with prospective potential as a novel cement for endodontic treatments.
Collapse
Affiliation(s)
- Atari Maher
- UIC Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, St Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain.
| | - Raquel Núñez-Toldrà
- UIC Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, St Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain.
| | - Neus Carrio
- UIC Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, St Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain.
| | - Eduard Ferres-Padro
- Oral and Maxillofacial Surgery Department, Fundació Hospital de Nens de Barcelona, 08017 Barcelona, Spain.
| | - Hamad Ali
- Department of Medical Laboratory Sciences (MLS), Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, 90805 Sulaibikhat, Kuwait.
| | - Sheyla Montori
- UIC Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, St Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain.
| | - Ashraf Al Madhoun
- Functional Genomics Unit, Research Division, Dasman Diabetes Institute, 15462 Dasman, Kuwait.
| |
Collapse
|
32
|
Yagi Mendoza H, Yokoyama T, Tanaka T, Ii H, Yaegaki K. Regeneration of insulin-producing islets from dental pulp stem cells using a 3D culture system. Regen Med 2018; 13:673-687. [PMID: 30028236 DOI: 10.2217/rme-2018-0074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM In this study, we aimed to establish the differentiation protocol of dental pulp stem cells (DPSCs) into pancreatic islets using a 3D structure. MATERIALS & METHODS DPSCs were differentiated in a 3D culture system using a stepwise protocol. Expression of β-cell markers, glucose-stimulated insulin secretion, and PI3K/AKT and WNT pathways were compared between monolayer-cultured pancreatic cells and islets. RESULTS Islet formation increased insulin and C-peptide production, and enhanced the expression of pancreatic markers. Glucose-dependent secretion of insulin was increased by islets. Pancreatic endocrine markers, transcriptional factors, and the PI3K/AKT and WNT pathways were also upregulated. CONCLUSION Pancreatic islets were generated from DPSCs in a 3D culture system. This system could provide novel strategies for controlling diabetes through regenerative medicine.
Collapse
Affiliation(s)
- Hiromi Yagi Mendoza
- Department of Oral Health, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi, Chiyoda ku, 102-8159 Tokyo, Japan
| | - Tomomi Yokoyama
- Department of Oral Health, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi, Chiyoda ku, 102-8159 Tokyo, Japan
| | - Tomoko Tanaka
- Department of Oral Health, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi, Chiyoda ku, 102-8159 Tokyo, Japan
| | - Hisataka Ii
- Department of Oral Health, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi, Chiyoda ku, 102-8159 Tokyo, Japan
| | - Ken Yaegaki
- Department of Oral Health, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi, Chiyoda ku, 102-8159 Tokyo, Japan
| |
Collapse
|
33
|
Xiao J, Yang D, Li Q, Tian W, Guo W. The establishment of a chemically defined serum-free culture system for human dental pulp stem cells. Stem Cell Res Ther 2018; 9:191. [PMID: 29996915 PMCID: PMC6042457 DOI: 10.1186/s13287-018-0928-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/03/2018] [Accepted: 06/13/2018] [Indexed: 02/05/2023] Open
Abstract
Background The concept of establishing a dental stem cell (DSC) bank for oral and maxillofacial regeneration has become of great interest but it remains at a primitive stage. The routine application of serum-containing conditions for human DSC (hDSC) culture is in great controversy considering that the animal-originated serum can cause serious ethical concerns and lead to increasingly irrelevant variables, errors, and poor repeatability of experiment results. Thus, this study aimed to establish a safe, stable and efficient hDSC serum-free culturing system for future DSC bank usage. Methods Dental pulp stem cells (DPSCs) from human permanent tooth pulp were isolated, expanded, passaged, and divided into two groups according to their culture conditions: group 1 was the serum-containing medium (SCM) group; and group 2 was the serum-free Essential 8 medium (E8) group. DPSCs were characterized first, followed by cell proliferation, pluripotency, and migration study in SCM and E8 medium. Results Human DPSCs (hDPSCs) in E8 medium demonstrated greater proliferation, pluripotency, migration ability and less apoptosis. hDPSCs could be successfully induced to the adipogenic, osteogenic, neurogenic, and chondrogenic lineages in E8 group. Real-time polymerase chain reaction indicated that the expression of PPAR-γ, RUNX2, OCN and MAP-2 was higher in E8 group. Conclusions Compared with serum-containing medium, E8 medium exhitibed higher ability in maintaining the cell proliferation, pluripotency, migration, and stability. This new serum-free culture environment might be applicable for hDSC culture in the future.
Collapse
Affiliation(s)
- Jingyi Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering, Chengdu, China.,Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Dawei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering, Chengdu, China. .,Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, People's Republic of China.
| | - Weihua Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & National Engineering, Chengdu, China. .,Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
34
|
Liu W, Xie Y, Gao T, Huang F, Wang L, Ding L, Wang W, Liu S, Dai J, Wang B. Reflection and observation: cell-based screening failing to detect HBV in HUMSCs derived from HBV-infected mothers underscores the importance of more stringent donor eligibility to reduce risk of transmission of infectious diseases for stem cell-based medical products. Stem Cell Res Ther 2018; 9:177. [PMID: 29973264 PMCID: PMC6030788 DOI: 10.1186/s13287-018-0920-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In cell-based therapy, the transmission of communicable diseases imposes a substantial threat to recipients. In this study, we investigated whether cell-based screening could detect hepatitis B virus (HBV) in human umbilical cord-derived mesenchymal stem cells (HUMSCs) isolated from HBV-infected donors to understand the susceptibility of HUMSCs to HBV infection. METHODS HBV assay was performed in HUMSCs derived from healthy and HBV-infected donors with enzyme-linked immunosorbent assay (ELISA), fluorescence quantitative PCR (FQ-PCR) assay, and droplet digital PCR (ddPCR) assay. Further, HBV DNA was assayed in HUMSCs derived from healthy donors after incubation with human sera containing a high titer of HBV using FQ-PCR. RESULTS HBV antigen/antibody and DNA failed to be detected using ELISA, FQ-PCR, and ddPCR. After incubation with HBV infection sera, HBV DNA could be detected, but below the valid titer of the assay kit. The HBV DNA levels in HBV-incubated HUMSCs gradually decreased with medium change every 2 days and then significantly decreased, not even detected after passage. CONCLUSIONS The current cell-based screening methods could not detect HBV in HUMSCs derived from HBV-infected donors, indicating the importance of more stringent donor eligibility to reduce the risk of transmission of communicable diseases in cell-based therapy. To solve the problem of an occult HBV window period in donor eligibility determination, we recommend that the donors undergo another HBV serological test 3 months after the first serological communicable disease screening.
Collapse
Affiliation(s)
- Wei Liu
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Tianyun Gao
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Feifei Huang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Liudi Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Lijun Ding
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Wenqing Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Shuo Liu
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing, 100190 China
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| |
Collapse
|
35
|
Martellucci S, Manganelli V, Santacroce C, Santilli F, Piccoli L, Sorice M, Mattei V. Role of Prion protein-EGFR multimolecular complex during neuronal differentiation of human dental pulp-derived stem cells. Prion 2018; 12:117-126. [PMID: 29644924 DOI: 10.1080/19336896.2018.1463797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cellular prion protein (PrPC) is expressed in a wide variety of stem cells in which regulates their self-renewal as well as differentiation potential. In this study we investigated the presence of PrPC in human dental pulp-derived stem cells (hDPSCs) and its role in neuronal differentiation process. We show that hDPSCs expresses early PrPC at low concentration and its expression increases after two weeks of treatment with EGF/bFGF. Then, we analyzed the association of PrPC with gangliosides and EGF receptor (EGF-R) during neuronal differentiation process. PrPC associates constitutively with GM2 in control hDPSCs and with GD3 only after neuronal differentiation. Otherwise, EGF-R associates weakly in control hDPSCs and more markedly after neuronal differentiation. To analyze the functional role of PrPC in the signal pathway mediated by EGF/EGF-R, a siRNA PrP was applied to ablate PrPC and its function. The treatment with siRNA PrP significantly prevented Akt and ERK1/2 phosphorylation induced by EGF. Moreover, siRNA PrP treatment significantly prevented neuronal-specific antigens expression induced by EGF/bFGF, indicating that cellular prion protein is essential for EGF/bFGF-induced hDPSCs differentiation. These results suggest that PrPC interact with EGF-R within lipid rafts, playing a role in the multimolecular signaling complexes involved in hDPSCs neuronal differentiation.
Collapse
Affiliation(s)
- Stefano Martellucci
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy.,b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| | - Valeria Manganelli
- b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| | - Costantino Santacroce
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy
| | - Francesca Santilli
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy
| | - Luca Piccoli
- c Department of Science Dentistry and Maxillofacial - "Sapienza" University , Viale Regina Elena 287/A, Rome , Italy
| | - Maurizio Sorice
- b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| | - Vincenzo Mattei
- a Laboratory of Experimental Medicine and Environmental Pathology - Rieti University Hub "Sabina Universitas" , Via Angelo Maria Ricci 35/A, Rieti , Italy.,b Department of Experimental Medicine - "Sapienza" University , Viale Regina Elena 324, Rome , Italy
| |
Collapse
|
36
|
Roa-Mansergas X, Fadó R, Atari M, Mir JF, Muley H, Serra D, Casals N. CPT1C promotes human mesenchymal stem cells survival under glucose deprivation through the modulation of autophagy. Sci Rep 2018; 8:6997. [PMID: 29725060 PMCID: PMC5934389 DOI: 10.1038/s41598-018-25485-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are widely used in regenerative medicine. In some applications, they must survive under low nutrient conditions engendered by avascularity. Strategies to improve hMSCs survival may be of high relevance in tissue engineering. Carnitine palmitoyltransferase 1 C (CPT1C) is a pseudoenzyme exclusively expressed in neurons and cancer cells. In the present study, we show that CPT1C is also expressed in hMSCs and protects them against glucose starvation, glycolysis inhibition, and oxygen/glucose deprivation. CPT1C overexpression in hMSCs did not increase fatty acid oxidation capacity, indicating that the role of CPT1C in these cells is different from that described in tumor cells. The increased survival of CPT1C-overexpressing hMSCs observed during glucose deficiency was found to be the result of autophagy enhancement, leading to a greater number of lipid droplets and increased intracellular ATP levels. In fact, inhibition of autophagy or lipolysis was observed to completely block the protective effects of CPT1C. Our results indicate that CPT1C-mediated autophagy enhancement in glucose deprivation conditions allows a greater availability of lipids to be used as fuel substrate for ATP generation, revealing a new role of CPT1C in stem cell adaptation to low nutrient environments.
Collapse
Affiliation(s)
- Xavier Roa-Mansergas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), 08195, Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), 08195, Sant Cugat del Vallès, Spain
| | - Maher Atari
- Regenerative Medicine Institute, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
| | - Joan F Mir
- Department of Biochemistry and Physiology, Faculty of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Helena Muley
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), 08195, Sant Cugat del Vallès, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, Faculty of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), 08195, Sant Cugat del Vallès, Spain. .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
37
|
Fan JR, Lee HT, Lee W, Lin CH, Hsu CY, Hsieh CH, Shyu WC. Potential role of CBX7 in regulating pluripotency of adult human pluripotent-like olfactory stem cells in stroke model. Cell Death Dis 2018; 9:502. [PMID: 29717132 PMCID: PMC5931587 DOI: 10.1038/s41419-018-0519-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
The adult olfactory mucosa, a highly regenerative tissue with unique life-long neurogenesis ability, is thought to harbor a naïve yet tightly controlled stem cell population. It will provide unique benefits in various stem cell-based therapies, such as stroke treatment. Here, we identified a subpopulation of adult pluripotent-like olfactory stem cells (APOSCs), which were modulated by an epigenetic repressor of CBX7. APOSCs form a floating sphere, express pluripotency markers Nanog, Oct-4, Sox-2, and SSEA-4 and show alkaline phosphatase activity. In addition, APOSCs display self-renewal and a pluripotent potential to differentiate into all three germ layers. Moreover, APOSCs coexpress pluripotency markers with CBX7. Within their natural niche, APOSCs from CBX7+/+ mice responded promptly to either spontaneous or injury-induced tissue regeneration. However, APOSCs from CBX7−/− mice manifested an impaired self-renewal and differentiation potential. Similarly, in vitro-cultivated CBX7−/− APOSCs underwent premature senescence, whereas CBX7+/+ APOSCs still actively divided, indicating that CBX7 is required for the self-renewal of APOSCs. Intracerebral implantation of APOSCs improved the stroke-mediated neurological dysfunction in rodents. These findings indicate that CBX7 plays a critical role in the regenerative properties of APOSCs and indicate the safety and feasibility of implantation of autologous APOSCs in stroke treatment.
Collapse
Affiliation(s)
- Jia-Rong Fan
- Translational Medicine Research Center, and Department of Neurology, China Medical University Hospital, Taichung, 40440, Taiwan
| | - Hsu-Tung Lee
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, 40421, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wei Lee
- Translational Medicine Research Center, and Department of Neurology, China Medical University Hospital, Taichung, 40440, Taiwan
| | - Chen-Huan Lin
- Translational Medicine Research Center, and Department of Neurology, China Medical University Hospital, Taichung, 40440, Taiwan
| | - Chun Y Hsu
- Graduate Institute of Biomedical Science, China Medical University Hospital, Taichung, 40440, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Science, China Medical University Hospital, Taichung, 40440, Taiwan.
| | - Woei-Cherng Shyu
- Translational Medicine Research Center, and Department of Neurology, China Medical University Hospital, Taichung, 40440, Taiwan. .,Graduate Institute of Biomedical Science, China Medical University Hospital, Taichung, 40440, Taiwan. .,Department of Occupational Therapy, Asia University, Taichung, Taiwan.
| |
Collapse
|
38
|
Pisal RV, Suchanek J, Siller R, Soukup T, Hrebikova H, Bezrouk A, Kunke D, Micuda S, Filip S, Sullivan G, Mokry J. Directed reprogramming of comprehensively characterized dental pulp stem cells extracted from natal tooth. Sci Rep 2018; 8:6168. [PMID: 29670257 PMCID: PMC5906561 DOI: 10.1038/s41598-018-24421-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to extensively characterise natal dental pulp stem cells (nDPSC) and assess their efficiency to generate human induced pluripotent stem cells (hiPSC). A number of distinguishing features prompted us to choose nDPSC over normal adult DPSC, in that they differed in cell surface marker expression and initial doubling time. In addition, nDPSC expressed 17 out of 52 pluripotency genes we analysed, and the level of expression was comparable to human embryonic stem cells (hESC). Ours is the first group to report comprehensive characterization of nDPSC followed by directed reprogramming to a pluripotent stem cell state. nDPSC yielded hiPSC colonies upon transduction with Sendai virus expressing the pluripotency transcription factors POU5F1, SOX2, c-MYC and KLF4. nDPSC had higher reprogramming efficiency compared to human fibroblasts. nDPSC derived hiPSCs closely resembled hESC in terms of their morphology, expression of pluripotency markers and gene expression profiles. Furthermore, nDPSC derived hiPSCs differentiated into the three germ layers when cultured as embryoid bodies (EB) and by directed differentiation. Based on our findings, nDPSC present a unique marker expression profile compared with adult DPSC and possess higher reprogramming efficiency as compared with dermal fibroblasts thus proving to be more amenable for reprogramming.
Collapse
Affiliation(s)
- Rishikaysh V Pisal
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Jakub Suchanek
- Department of Dentistry, Faculty Hospital in Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Richard Siller
- Norwegian Center for Stem Cell Research, University of Oslo, 0317, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Tomas Soukup
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Hana Hrebikova
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Ales Bezrouk
- Department of Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - David Kunke
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Stanislav Filip
- Department of Oncology and Radiotherapy, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic
| | - Gareth Sullivan
- Norwegian Center for Stem Cell Research, University of Oslo, 0317, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.,Institute of Immunology, Oslo University Hospital-Rikshospitalet, PO Box 4950 Nydalen, Oslo, 0424, Norway.,Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Blindern, 0317, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, 0424, Nydalen, Norway
| | - Jaroslav Mokry
- Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, 500 03, Hradec Kralove, Czech Republic.
| |
Collapse
|
39
|
Soancă A, Lupse M, Moldovan M, Pall E, Cenariu M, Roman A, Tudoran O, Surlin P, Șorițău O. Applications of inflammation-derived gingival stem cells for testing the biocompatibility of dental restorative biomaterials. Ann Anat 2018; 218:28-39. [PMID: 29604386 DOI: 10.1016/j.aanat.2018.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Normal or inflamed gingival tissues are regarded as a source of mesenchymal stem cells (MSCs) abundant and easily accessible through minimally invasive dental procedures. Due to the proximity of dental resin composites to gingival tissues and to the possible local cytotoxic effect of the eluted components, gingiva-derived MSCs could be used to investigate the biocompatibility of dental biomaterials. PURPOSE The present research aimed to isolate (MSCs) from inflamed and normal gingiva, to fully characterize them and to observe their behavior in relation with some commercial resin composite materials and one experimental material. MATERIAL AND METHODS Following their isolation, putative MSCs from both gingival sources were grown under the same culture conditions and characterized by immunophenotyping of cell surface antigens by flow-cytometry and transcription factors by immunocytochemical staining. Moreover, stemness gene expression was evaluated by RT-PCR analysis. Multipotent mesenchymal differentiation potential was investigated. Osteogenic and neurogenic differentiated cells were highlighted by immunocytochemical staining, chondrogenic cells by cytochemical staining, and adipocytes by cytochemical staining and spectrophotometry, respectively. Resin composite cytotoxicity was evaluated by cell membrane fluorescent labeling with PKH 26 and MTT assay. The results of PKH labeling were statistically analysed using two-way RM ANOVA with Bonferroni post-tests. For MTT assay, two-way RM ANOVA with Bonferroni post-tests and unpaired t test with Welch's correction were used. RESULTS A similar expression pattern of surface markers was observed. The cells were positive for CD105, CD73, CD90, CD49e, CD29, CD44 and CD166 and negative for CD45, CD34, CD14, CD79, HLA-DR and CD117 indicating a mesenchymal stem cell phenotype. The qRT-PCR analysis revealed a low gene expression for NOG, BMP4 and Oct3/4 and an increased expression for Nanog in both cells lines. Immunocytochemical analysis highlighted a more intense protein expression for Nanog, Oct3/4 and Sox-2 in MSCs derived from normal gingiva than from inflamed gingiva. Multipotent differentiation capacity of MSCs isolated from both sources was highlighted. The tested materials had no hazardous effect on MSCs as the two cell lines developed well onto resin composite substrates. Cell counting revealed some significant differences in the number of PKH-labeled MSCs at some experimental moments. Also, some differences in cell viability were recorded indicating better developmental conditions offered by some of the tested biomaterials. CONCLUSIONS The experimental resin composite behaved like the most biocompatible commercial material. Inflamed gingiva-derived MSCs retain their stem cell properties and could be used as a valuable cell line for testing dental biomaterials.
Collapse
Affiliation(s)
- A Soancă
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 15 V. Babeş St., 400012 Cluj-Napoca, Romania
| | - M Lupse
- Department of Infectious Diseases, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 23 Iuliu Moldovan St., 400349 Cluj-Napoca, Romania
| | - M Moldovan
- Raluca Ripan Institute for Research in Chemistry, Babes-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - E Pall
- Department of Veterinary Reproduction, Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - M Cenariu
- Department of Veterinary Reproduction, Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - A Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 15 V. Babeş St., 400012 Cluj-Napoca, Romania.
| | - O Tudoran
- Department of Functional Genomics and Experimental Pathology, Prof. Dr. Ion Chiricuţă Oncology Institute, 34-36 Republicii St., 400015 Cluj-Napoca, Romania
| | - P Surlin
- Department of Periodontology, University of Medicine and Pharmacy, 2 Petru Rareş St., 200349 Craiova, Romania
| | - O Șorițău
- Laboratory of Radiotherapy, Tumor and Radiobiology, Prof. Dr. Ion Chiricuţă Oncology Institute, 34-36 Republicii St., 400015 Cluj-Napoca, Romania
| |
Collapse
|
40
|
Yi X, Wang W, Xie Q. Adenosine receptors enhance the ATP-induced odontoblastic differentiation of human dental pulp cells. Biochem Biophys Res Commun 2018; 497:850-856. [PMID: 29454963 DOI: 10.1016/j.bbrc.2018.02.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/14/2018] [Indexed: 01/12/2023]
Abstract
Purinergic signaling regulates various biological processes through the activation of adenosine receptors (ARs) and P2 receptors. ATP induces the odontoblastic differentiation of human dental pulp cells (HDPCs) via P2 receptors. However, there is no information available about the roles of ARs in HDPC odontoblastic differentiation induced by ATP. Here, we found that HDPCs treated with ATP showed higher activity of ADORA1 (A1R), ADORA2B (A2BR), and ADORA3 (A3R). Inhibition of A1R and A2BR attenuated ATP-induced odontoblastic differentiation of HDPCs, whereas activation of the two receptors enhanced the odontoblastic differentiation induced by ATP. However, activation of ARs by adenosine did not induce the odontoblastic differentiation of HDPCs independently without induction of ATP. Our study indicates a positive role for ARs in ATP-induced odontoblastic differentiation of HDPCs, and demonstrates that ATP-induced odontoblastic differentiation of HDPCs may be due to the combined administration of ARs and P2 receptors. This study provides new insights into the molecular mechanisms of pulpal injury repair induced by ATP.
Collapse
Affiliation(s)
- Xiaosong Yi
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China; Center for Oral Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology, China
| | - Wei Wang
- Department of Stomatology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Qiufei Xie
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China; Center for Oral Functional Diagnosis, Treatment and Research, Peking University School and Hospital of Stomatology, China.
| |
Collapse
|
41
|
Al Madhoun A, Alkandari S, Ali H, Carrio N, Atari M, Bitar MS, Al-Mulla F. Chemically Defined Conditions Mediate an Efficient Induction of Mesodermal Lineage from Human Umbilical Cord- and Bone Marrow- Mesenchymal Stem Cells and Dental Pulp Pluripotent-Like Stem Cells. Cell Reprogram 2018; 20:9-16. [PMID: 29412734 DOI: 10.1089/cell.2017.0028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The human umbilical cord Wharton's Jelly- and the bone marrow- mesenchymal stem cells (WJ-MSCs and BM-MSCs, respectively) and the newly identified dental pulp pluripotent-like stem cells (DPPSCs) are new sources for stem cells with prospective use in cell regeneration and therapy. These cells are self-renewable, can be differentiated into several lineages, and can potentiate the immune responses. We hypothesized that three-dimensional (3D) culture conditions and directed differentiation using specific signaling regulators will enhance an efficient generation of mesoderm (MD) lineage independent from the origin or source of the stem cells. For a period of 3-days, cell aggregates were generated in a serum-free media containing ascorbic acid, retinoic acid, and keratinocyte growth factor; sonic hedgehog and bone morphogenic protein-4 signaling were inhibited using small molecules. In all cell types used, the biochemical and molecular analysis revealed a time course-dependent induction of the mesodermal, but not endodermal or ectodermal makers. In this study, we utilized a novel and efficient serum-free protocol to differentiate WJ-MSCs, BM-MSCs, and DPPSCs into MD-cells. Successful development of an efficient differentiation protocol can further be utilized and expanded on to obtain MD- derivative cell lineages.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
| | - Sarah Alkandari
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
| | - Hamad Ali
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
- 2 Department of Medical Laboratory Sciences (MLS), Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University , Kuwait
| | - Neus Carrio
- 3 Regenerative Medicine Research Institute , UIC Barcelona, Barcelona, Spain
| | - Maher Atari
- 3 Regenerative Medicine Research Institute , UIC Barcelona, Barcelona, Spain
| | - Milad S Bitar
- 4 Department of Pharmacology and Toxicology, Health Sciences Center, Kuwait University , Kuwait
| | - Fahd Al-Mulla
- 1 Functional Genomic Unit, Research Division, Dasman Diabetes Institute , Dasman, Kuwait
| |
Collapse
|
42
|
Rodas-Junco BA, Canul-Chan M, Rojas-Herrera RA, De-la-Peña C, Nic-Can GI. Stem Cells from Dental Pulp: What Epigenetics Can Do with Your Tooth. Front Physiol 2017; 8:999. [PMID: 29270128 PMCID: PMC5724083 DOI: 10.3389/fphys.2017.00999] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
Adult stem cells have attracted scientific attention because they are able to self-renew and differentiate into several specialized cell types. In this context, human dental tissue-derived mesenchymal stem cells (hDT-MSCs) have emerged as a possible solution for repairing or regenerating damaged tissues. These cells can be isolated from primary teeth that are naturally replaced, third molars, or other dental tissues and exhibit self-renewal, a high proliferative rate and a great multilineage potential. However, the cellular and molecular mechanisms that determine lineage specification are still largely unknown. It is known that a change in cell fate requires the deletion of existing transcriptional programs, followed by the establishment of a new developmental program to give rise to a new cell lineage. Increasing evidence indicates that chromatin structure conformation can influence cell fate. In this way, reversible chemical modifications at the DNA or histone level, and combinations thereof can activate or inactivate cell-type-specific gene sequences, giving rise to an alternative cell fates. On the other hand, miRNAs are starting to emerge as a possible player in establishing particular somatic lineages. In this review, we discuss two new and promising research fields in medicine and biology, epigenetics and stem cells, by summarizing the properties of hDT-MSCs and highlighting the recent findings on epigenetic contributions to the regulation of cellular differentiation.
Collapse
Affiliation(s)
- Beatriz A Rodas-Junco
- CONACYT-Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Michel Canul-Chan
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Rafael A Rojas-Herrera
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Geovanny I Nic-Can
- CONACYT-Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingeniería, Universidad Autónoma de Yucatán, Mérida, Mexico
| |
Collapse
|
43
|
Humanity in a Dish: Population Genetics with iPSCs. Trends Cell Biol 2017; 28:46-57. [PMID: 29054332 DOI: 10.1016/j.tcb.2017.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are powerful tools for investigating the relationship between genotype and phenotype. Recent publications have described iPSC cohort studies of common genetic variants and their effects on gene expression and cellular phenotypes. These in vitro quantitative trait locus (QTL) studies are the first experiments in a new paradigm with great potential: iPSC-based functional population genetic studies. iPSC collections from large cohorts are currently under development to facilitate the next wave of these studies, which have the potential to discover the effects of common genetic variants on cellular phenotypes and to uncover the molecular basis of common genetic diseases. Here, we describe the recent advances in this developing field, and provide a road map for future in vitro functional population genetic studies and trial-in-a-dish experiments.
Collapse
|
44
|
Dong N, Liu Y, Zhang T, Zhao L, Tian J, Ruan J. Different expression patterns of Lin28 and Lin28b in mouse molar development. Arch Oral Biol 2017; 82:280-285. [DOI: 10.1016/j.archoralbio.2017.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 01/16/2023]
|
45
|
Chen L, Liu L, Wu C, Yang R, Chang J, Wei X. The extracts of bredigite bioceramics enhanced the pluripotency of human dental pulp cells. J Biomed Mater Res A 2017; 105:3465-3474. [DOI: 10.1002/jbm.a.36191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/07/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Lihong Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology; Affiliated Stomatological Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road; Guangzhou 510055 China
| | - Lu Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology; Affiliated Stomatological Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road; Guangzhou 510055 China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 China
| | - Ruiqi Yang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology; Affiliated Stomatological Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road; Guangzhou 510055 China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 China
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology; Affiliated Stomatological Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road; Guangzhou 510055 China
| |
Collapse
|
46
|
Singh M, Kakkar A, Sharma R, Kharbanda OP, Monga N, Kumar M, Chowdhary S, Airan B, Mohanty S. Synergistic Effect of BDNF and FGF2 in Efficient Generation of Functional Dopaminergic Neurons from human Mesenchymal Stem Cells. Sci Rep 2017; 7:10378. [PMID: 28871128 PMCID: PMC5583182 DOI: 10.1038/s41598-017-11028-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022] Open
Abstract
To understand the process of neurogenesis, generation of functional dopaminergic (DAergic) neurons from human mesenchymal stem cells (hMSCs) is important. BDNF has been reported to be responsible for inducing neuronal maturation and functionality. Previously, we have reported the efficient generation of neurons from human bone marrow derived MSCs using FGF2 alone. We hypothesize that hMSCs from various tissues [(bone marrow (BM), adipose tissue (AD) and dental pulp (DP)], if treated with BDNF on 9th day of induction, alongwith FGF2 will generate functional DAergic neurons. Hence, cells were characterized at morphometric, transcription and translational levels for various markers like MAP2, TH, NGN2, PITX3, DAT, synaptophysin, Kv4.2 and SCN5A. Functionality of in vitro generated neurons was studied by calcium ion imaging. Result analysis depicted that BDNF has effect on expression of dopaminergic neuronal markers at gene and protein levels and functionality of neurons. Among these hMSCs, DP-MSC showed significantly better neuronal characteristics in terms of morphology, expression of neuronal markers and foremost, functionality of neurons. From the present study, therefore, we concluded that i) BDNF has additive effect on neuronal characteristics and functionality ii) DP-MSC are better MSC candidate to study DAergic neurogenesis and perform future studies.
Collapse
Affiliation(s)
- Manisha Singh
- Stem Cell Facility (DBT- Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Anupama Kakkar
- Stem Cell Facility (DBT- Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Rinkey Sharma
- Stem Cell Facility (DBT- Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - O P Kharbanda
- Department of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research (CDER), All India Institute of Medical Sciences, New Delhi, India
| | - Nitika Monga
- Department of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research (CDER), All India Institute of Medical Sciences, New Delhi, India
| | - Manish Kumar
- Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Balram Airan
- Department of Cardiothoracic and Vascular Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility (DBT- Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
47
|
McGarvey LP, Clarke R, Lundy FT. Cough sensors from dental pulp. Pulm Pharmacol Ther 2017; 47:16-20. [PMID: 28782711 DOI: 10.1016/j.pupt.2017.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
Mechanisms which alter sensory neural activity, in particular those rendering nerves hyper-responsive have been implicated in the pathophysiology of common clinical syndromes including chronic cough, itch and pain. However, experimental study of human sensory neurons is challenging because the cell bodies of peripheral neurons are housed in neuronal ganglia which are not accessible using peripheral biopsy techniques. While important advances have been made from studies conducted in animal models, there are interspecies differences. There is a need for development of a new generation of in vitro neuronal models based on human biology. In this article the propensity for human dental pulp stem cells to differentiate towards a neuronal phenotype and the potential of such a model to study altered sensory neural function will be discussed.
Collapse
Affiliation(s)
- Lorcan P McGarvey
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom.
| | - Rebecca Clarke
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
| | - Fionnuala T Lundy
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
48
|
Asghari Sana F, Çapkın Yurtsever M, Kaynak Bayrak G, Tunçay EÖ, Kiremitçi AS, Gümüşderelioğlu M. Spreading, proliferation and differentiation of human dental pulp stem cells on chitosan scaffolds immobilized with RGD or fibronectin. Cytotechnology 2017; 69:617-630. [PMID: 28653139 PMCID: PMC5507842 DOI: 10.1007/s10616-017-0072-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Nowadays, human dental pulp stem cells (hDPSCs) became more attractive for therapeutic purposes because of their high proliferation and differentiation potential. Thus, coupling the desired cellular characteristics of hDPSCs with good biomaterial properties of the chitosan scaffolds provide an interesting approach for tissue engineering applications. On the other hand, scaffold surface modification is also needed to promote stem cell adhesion since chitosan lacks adhesion motifs to support direct cell anchorage. In this study, hDPSCs were isolated from third molars of healthy female individuals (aged 16-25) with enzymatic digestion. For cell culture studies, the chitosan scaffolds which have approximately 9 mm diameter and 2 mm thickness with interconnected structure were prepared by freeze-drying. To support cellular attachment the scaffolds were covalently immobilized with either RGD (arginine-glycine-aspartic acid) or fibronectin (Fn) molecules. Cells were seeded on chitosan scaffolds with or without immobilized RGD and fibronectin. Cell attachment, spreading, adhesion behaviors and proliferation capacity were examined by scanning electron microscopy, immunofluorescence staining and PrestoBlue® assays, respectively. In addition, differentiation potential of hDPSCs on Fn immobilized chitosan scaffolds was determined with real time reverse transcriptase polymerase chain reaction analysis. The results showed that chitosan scaffolds were not able to support stem cell attachment. hDPSCs on chitosan scaffolds formed spheroids more quickly and the size of spheroids were smaller than on chitosan-RGD while Fn-immobilized chitosan scaffolds strongly supported cellular attachment but not odontogenic differentiation. The results suggest that the Fn-immobilized chitosan scaffolds may serve as good three-dimensional substrates for dental pulp stem cell attachment and proliferation. In the case of dental regeneration, they must be supported by appropriate biosignals to induce odontogenic differentiation.
Collapse
Affiliation(s)
- Farzin Asghari Sana
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey
| | | | | | - Ekin Özge Tunçay
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Arlin S Kiremitçi
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
- Department of Restorative Dentistry, Hacettepe University, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Turkey.
- Department of Bioengineering, Hacettepe University, Ankara, Turkey.
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
49
|
Martínez-Sarrà E, Montori S, Gil-Recio C, Núñez-Toldrà R, Costamagna D, Rotini A, Atari M, Luttun A, Sampaolesi M. Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration. Stem Cell Res Ther 2017; 8:175. [PMID: 28750661 PMCID: PMC5531092 DOI: 10.1186/s13287-017-0621-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/13/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022] Open
Abstract
Background Dental pulp represents an easily accessible autologous source of adult stem cells. A subset of these cells, named dental pulp pluripotent-like stem cells (DPPSC), shows high plasticity and can undergo multiple population doublings, making DPPSC an appealing tool for tissue repair or maintenance. Methods DPPSC were harvested from the dental pulp of third molars extracted from young patients. Growth factors released by DPPSC were analysed using antibody arrays. Cells were cultured in specific differentiation media and their endothelial, smooth and skeletal muscle differentiation potential was evaluated. The therapeutic potential of DPPSC was tested in a wound healing mouse model and in two genetic mouse models of muscular dystrophy (Scid/mdx and Sgcb-null Rag2-null γc-null). Results DPPSC secreted several growth factors involved in angiogenesis and extracellular matrix deposition and improved vascularisation in all three murine models. Moreover, DPPSC stimulated re-epithelialisation and ameliorated collagen deposition and organisation in healing wounds. In dystrophic mice, DPPSC engrafted in the skeletal muscle of both dystrophic murine models and showed integration in muscular fibres and vessels. In addition, DPPSC treatment resulted in reduced fibrosis and collagen content, larger cross-sectional area of type II fast-glycolytic fibres and infiltration of higher numbers of proangiogenic CD206+ macrophages. Conclusions Overall, DPPSC represent a potential source of stem cells to enhance the wound healing process and slow down dystrophic muscle degeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0621-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ester Martínez-Sarrà
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, 08017, Spain.,Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Sheyla Montori
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, 08017, Spain
| | - Carlos Gil-Recio
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, 08017, Spain
| | - Raquel Núñez-Toldrà
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, 08017, Spain
| | - Domiziana Costamagna
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Alessio Rotini
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium.,Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, 66100, Italy.,Interuniversity Institute of Myology, Chieti, 66100, Italy
| | - Maher Atari
- Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, Barcelona, 08017, Spain
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium. .,Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, 27100, Italy.
| |
Collapse
|
50
|
The Protective Effect of Indole-3-Acetic Acid (IAA) on H 2O 2-Damaged Human Dental Pulp Stem Cells Is Mediated by the AKT Pathway and Involves Increased Expression of the Transcription Factor Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) and Its Downstream Target Heme Oxygenase 1 (HO-1). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8639485. [PMID: 28694916 PMCID: PMC5488230 DOI: 10.1155/2017/8639485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
Indole-3-acetic acid (IAA) is the most common plant hormone of the auxin class and is known to have many effects including cell proliferation enhancement and antioxidant property. However, no study has revealed its defensive effects against oxidative toxicity in human dental pulp stem cells (hDPSCs). In this study, we investigated the effects of IAA on hydrogen peroxide- (H2O2-) induced oxidative toxicity in hDPSCs. H2O2-induced cytotoxicity was attenuated after IAA treatment. Cell cycle analysis using FACS showed that the damaged cell cycle and increased number of apoptotic cells by H2O2 treatment were recovered after the treatment of IAA. The H2O2-mediated increased expression of the proapoptotic genes, BAX and p53, was attenuated by IAA treatment, while IAA treatment increased antiapoptotic genes, BCL-2 and ATF5 expression. The increases of cleaved caspase-3 and ROS by H2O2 were also decreased after treatment of IAA. To further investigate the mechanism of IAA, Nrf2-related antioxidant pathway was examined and the results showed that the level of Nrf2 and HO-1 expressions, stimulated by H2O2, decreased after treatment of IAA. Moreover, IAA treatment protected hDPSCs against H2O2-induced oxidative stress via increased expression of Nrf2 and HO-1, mediated by the AKT pathway.
Collapse
|