1
|
Salman A, Song WK, Storm T, McClements ME, MacLaren RE. CRISPR targeting of SNPs associated with age-related macular degeneration in ARPE-19 cells: a potential model for manipulating the complement system. Gene Ther 2025; 32:132-141. [PMID: 40102632 PMCID: PMC11946884 DOI: 10.1038/s41434-025-00522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/10/2025] [Accepted: 02/14/2025] [Indexed: 03/20/2025]
Abstract
Age-related Macular degeneration (AMD) is a major cause of vision loss and is linked to several predisposing single nucleotide polymorphisms (SNPs). CRISPR-mediated genome editing offers the potential to target negatively associated SNPs in an allele-specific manner, necessitating the need for a relevant cell model. The ARPE-19 cell line, with its stable monolayer growth and retinal pigment epithelium (RPE) characteristics, serves as an ideal model for AMD studies. Chronic inflammation and complement system dysregulation are implicated in AMD pathogenesis. Most genetic variations associated with AMD are in complement genes, suggesting their regulatory role. In this study, we conducted targeted PCRs to identify AMD-related SNPs in ARPE-19 cells and used CRISPR constructs to assess allele-specific activity. Guide RNA sequences were cloned into an EF-1-driven SpCas9 vector and packaged into lentivirus. Targeting efficiencies were evaluated with TIDE analysis, and allele-specificity was measured with NGS analysis 30 days post-transduction. Our results showed varying targeting efficiencies depending on guide RNA efficacy. For example, TIDE analysis of CFH SNPs rs1061170 and rs1410996 revealed efficiencies of 35.5% and 33.8%, respectively. CFB SNP rs4541862 showed efficiencies from 3% to 36.7%, and rs641153 ranged from 3.4% to 23.8%. Additionally, allele-specific targeting of AMD-related SNPs rs1061170, rs1410996, rs4541862, and rs641153 ranged from 48% to 52% in heterozygous differentiated ARPE-19 cells. These findings demonstrate the potential to manipulate the complement system in an AMD model by targeting disease-associated SNPs in an allele-specific manner, offering a promising therapeutic approach.
Collapse
Affiliation(s)
- Ahmed Salman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Won Kyung Song
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Gangnum Yonsei Eye Clinic, Seoul, Republic of South Korea
| | - Tina Storm
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Robert E MacLaren
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
2
|
Tega Y, Kubo Y, Miura H, Ri K, Tomise A, Akanuma SI, Hosoya KI. Carrier-Mediated Process of Putrescine Elimination at the Rat Blood-Retinal Barrier. Int J Mol Sci 2023; 24:ijms24109003. [PMID: 37240348 DOI: 10.3390/ijms24109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Putrescine is a bioactive polyamine. Its retinal concentration is strictly controlled to maintain a healthy sense of vision. The present study investigated putrescine transport at the blood-retinal barrier (BRB) to gain a better understanding of the mechanisms of putrescine regulation in the retina. Our microdialysis study showed that the elimination rate constant during the terminal phase was significantly greater (1.90-fold) than that of [14C]D-mannitol, which is a bulk flow marker. The difference in the apparent elimination rate constants of [3H]putrescine and [14C]D-mannitol was significantly decreased by unlabeled putrescine and spermine, suggesting active putrescine transport from the retina to the blood across the BRB. Our study using model cell lines of the inner and outer BRB showed that [3H]putrescine transport was time-, temperature-, and concentration-dependent, suggesting the involvement of carrier-mediated processes in putrescine transport at the inner and outer BRB. [3H]Putrescine transport was significantly reduced under Na+-free, Cl--free, and K+-replacement conditions, and attenuated by polyamines or organic cations such as choline, a choline transporter-like protein (CTL) substrate. Rat CTL1 cRNA-injected oocytes exhibited marked alterations in [3H]putrescine uptake, and CTL1 knockdown significantly reduced [3H]putrescine uptake in model cell lines, suggesting the possible participation of CTL1 in putrescine transport at the BRB.
Collapse
Affiliation(s)
- Yuma Tega
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshiyuki Kubo
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Kaga 2-11-1, Tokyo 173-8605, Japan
| | - Hiroaki Miura
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kairi Ri
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ayaka Tomise
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
3
|
Tega Y, Takeuchi T, Nagano M, Makino R, Kubo Y, Akanuma SI, Hosoya KI. Characterization of LysoTracker Red uptake by in vitro model cells of the outer blood-retinal barrier: Implication of lysosomal trapping with cytoplasmic vacuolation and cytotoxicity. Drug Metab Pharmacokinet 2023; 51:100510. [PMID: 37451173 DOI: 10.1016/j.dmpk.2023.100510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 07/18/2023]
Abstract
Lysosomal trapping, a physicochemical process in which lipophilic cationic compounds are sequestered in lysosomes, can affect drug disposition and cytotoxicity. To better understand lysosomal trapping at the outer blood-retinal barrier (BRB), we investigated the distribution of LysoTracker Red (LTR), a probe compound for lysosomal trapping, in conditionally immortalized rat retinal pigment epithelial (RPE-J) cells. LTR uptake by RPE-J cells was dependent on temperature and attenuated by ammonium chloride and protonophore, which decreased the pH gradient between the lysosome and cytoplasm, suggesting lysosomal trapping of LTR in RPE-J cells. The involvement of lysosomal trapping in response to cationic drugs, including neuroprotectants such as desipramine and memantine, was also suggested by an inhibition study of LTR uptake. Chloroquine, which is known to show ocular toxicity, induced cytoplasmic vacuolization in RPE-J cells with a half-maximal effective concentration of 1.35 μM. This value was 59 times lower than the median lethal concentration (= 79.1 μM) of chloroquine, suggesting that vacuolization was not a direct trigger of cell death. These results are helpful for understanding the lysosomal trapping of cationic drugs, which is associated with drug disposition and cytotoxicity in the outer BRB.
Collapse
Affiliation(s)
- Yuma Tega
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Toshinari Takeuchi
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Masatoshi Nagano
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Reina Makino
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan.
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| |
Collapse
|
4
|
Yamashita K, Ostrovidov S, Raut B, Hori T, Nashimoto Y, Nagai N, Abe T, Kaji H. Minimally Invasive Sub-Retinal Transplantation of RPE-J Cells on a Biodegradable Composite PCL/Collagen Nanosheet. Cell Transplant 2023; 32:9636897231165117. [PMID: 37039377 PMCID: PMC10103099 DOI: 10.1177/09636897231165117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
Retinal cells are irreparably damaged by diseases such as age-related macular degeneration (AMD). A promising method to restore partial or whole vision is through cell-based transplantation to the damaged location. However, cell transplantation using conventional vitreous surgery is an invasive procedure that may induce infections and has a high failure rate of cell engraftment. In this study, we describe the fabrication of a biodegradable composite nanosheet used as a substrate to support retinal pigment epithelial (RPE-J) cells, which can be grafted to the sub-retinal space using a minimally invasive approach. The nanosheet was fabricated using polycaprolactone (PCL) and collagen in 80:20 weight ratio, and had size of 200 µm in diameter and 300 nm in thickness. These PCL/collagen nanosheets showed excellent biocompatibility and mechanical strength in vitro. Using a custom designed 27-gauge glass needle, we successfully transplanted an RPE-J cell loaded nanosheet into the sub-retinal space of a rat model with damaged photoreceptors. The cell loaded nanosheet did not trigger immunological reaction within 2 weeks of implantation and restored the retinal environment. Thus, this composite PCL/collagen nanosheet holds great promise for organized cell transplantation, and the treatment of retinal diseases.
Collapse
Affiliation(s)
- Kazuya Yamashita
- Department of Finemechanics, Graduate
School of Engineering, Tohoku University, Sendai, Japan
| | - Serge Ostrovidov
- Institute of Biomaterials and
Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Bibek Raut
- Weldon School of Biomedical
Engineering, Purdue University, West Lafayette, IN, USA
| | - Takeshi Hori
- Institute of Biomaterials and
Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuji Nashimoto
- Institute of Biomaterials and
Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuhiro Nagai
- Division of Clinical Cell Therapy,
United Centers for Advanced Research and Translational Medicine, Tohoku University
Graduate School of Medicine, Sendai, Japan
| | - Toshiaki Abe
- Division of Clinical Cell Therapy,
United Centers for Advanced Research and Translational Medicine, Tohoku University
Graduate School of Medicine, Sendai, Japan
| | - Hirokazu Kaji
- Institute of Biomaterials and
Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
5
|
Malek G, Campisi J, Kitazawa K, Webster C, Lakkaraju A, Skowronska-Krawczyk D. Does senescence play a role in age-related macular degeneration? Exp Eye Res 2022; 225:109254. [PMID: 36150544 PMCID: PMC10032649 DOI: 10.1016/j.exer.2022.109254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022]
Abstract
Advanced age is the most established risk factor for developing age-related macular degeneration (AMD), one of the leading causes of visual impairment in the elderly, in Western and developed countries. Similarly, after middle age, there is an exponential increase in pathologic molecular and cellular events that can induce senescence, traditionally defined as an irreversible loss of the cells' ability to divide and most recently reported to also occur in select post-mitotic and terminally differentiated cells, such as neurons. Together these facts raise the question as to whether or not cellular senescence, may play a role in the development of AMD. A number of studies have reported the effect of ocular-relevant inducers of senescence using primarily in vitro models of poorly polarized, actively dividing retinal pigment epithelial (RPE) cell lines. However, in interpretating the data, the fidelity of these culture models to the RPE in vivo, must be considered. Fewer studies have explored the presence and/or impact of senescent cells in in vivo models that present with phenotypic features of AMD, leaving this an open field for further investigation. The goal of this review is to discuss current thoughts on the potential role of senescence in AMD development and progression, with consideration of the model systems used and their relevance to human disease.
Collapse
Affiliation(s)
- Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Koji Kitazawa
- Buck Institute for Research on Aging, Novato, CA, USA; Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Corey Webster
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Aparna Lakkaraju
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California, San Francisco, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
6
|
Bharti K, den Hollander AI, Lakkaraju A, Sinha D, Williams DS, Finnemann SC, Bowes-Rickman C, Malek G, D'Amore PA. Cell culture models to study retinal pigment epithelium-related pathogenesis in age-related macular degeneration. Exp Eye Res 2022; 222:109170. [PMID: 35835183 PMCID: PMC9444976 DOI: 10.1016/j.exer.2022.109170] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
Age-related macular degeneration (AMD) is a disease that affects the macula - the central part of the retina. It is a leading cause of irreversible vision loss in the elderly. AMD onset is marked by the presence of lipid- and protein-rich extracellular deposits beneath the retinal pigment epithelium (RPE), a monolayer of polarized, pigmented epithelial cells located between the photoreceptors and the choroidal blood supply. Progression of AMD to the late nonexudative "dry" stage of AMD, also called geographic atrophy, is linked to progressive loss of areas of the RPE, photoreceptors, and underlying choriocapillaris leading to a severe decline in patients' vision. Differential susceptibility of macular RPE in AMD and the lack of an anatomical macula in most lab animal models has promoted the use of in vitro models of the RPE. In addition, the need for high throughput platforms to test potential therapies has driven the creation and characterization of in vitro model systems that recapitulate morphologic and functional abnormalities associated with human AMD. These models range from spontaneously formed cell line ARPE19, immortalized cell lines such as hTERT-RPE1, RPE-J, and D407, to primary human (fetal or adult) or animal (mouse and pig) RPE cells, and embryonic and induced pluripotent stem cell (iPSC) derived RPE. Hallmark RPE phenotypes, such as cobblestone morphology, pigmentation, and polarization, vary significantly betweendifferent models and culture conditions used in different labs, which would directly impact their usability for investigating different aspects of AMD biology. Here the AMD Disease Models task group of the Ryan Initiative for Macular Research (RIMR) provides a summary of several currently used in vitro RPE models, historical aspects of their development, RPE phenotypes that are attainable in these models, their ability to model different aspects of AMD pathophysiology, and pros/cons for their use in the RPE and AMD fields. In addition, due to the burgeoning use of iPSC derived RPE cells, the critical need for developing standards for differentiating and rigorously characterizing RPE cell appearance, morphology, and function are discussed.
Collapse
Affiliation(s)
- Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, NIH, Bethesda, MD, USA.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; AbbVie, Genomics Research Center, Cambridge, MA, USA.
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, USA.
| | - Debasish Sinha
- Department of Ophthalmology, Cell Biology and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - David S Williams
- Stein Eye Institute, Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Silvia C Finnemann
- Center of Cancer, Genetic Diseases, and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| | - Catherine Bowes-Rickman
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Patricia A D'Amore
- Mass Eye and Ear, Departments of Ophthalmology and Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Looking into the Eyes—In Vitro Models for Ocular Research. Int J Mol Sci 2022; 23:ijms23169158. [PMID: 36012421 PMCID: PMC9409455 DOI: 10.3390/ijms23169158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Animal research undoubtedly provides scientists with virtually unlimited data but inflicts pain and suffering on animals. Currently, legislators and scientists alike are promoting alternative in vitro approaches allowing for an accurate evaluation of processes occurring in the body without animal sacrifice. Historically, one of the most infamous animal tests is the Draize test, mainly performed on rabbits. Even though this test was considered the gold standard for around 50 years, the Draize test fails to mimic human response mainly due to human and rabbit eye physiological differences. Therefore, many alternative assays were developed to evaluate ocular toxicity and drug effectiveness accurately. Here we review recent achievements in tissue engineering of in vitro 2D, 2.5D, 3D, organoid and organ-on-chip ocular models, as well as in vivo and ex vivo models in terms of their advantages and limitations.
Collapse
|
8
|
Yazdani M. Uncontrolled Oxygen Levels in Cultures of Retinal Pigment Epithelium: Have We Missed the Obvious? Curr Eye Res 2022; 47:651-660. [PMID: 35243933 DOI: 10.1080/02713683.2022.2050264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Retinal pigment epithelium (RPE) is the outermost layer of retina located between the photoreceptor cells and the choroid. This highly-polarized monolayer provides critical support for the functioning of the other parts of the retina, especially photoreceptors. Methods of culturing RPE have been under development since its establishment in 1920s. Despite considering various factors, oxygen (O2) levels in RPE microenvironments during culture preparation and experimental procedure have been overlooked. O2 is a crucial parameter in the cultures, and therefore, maintaining RPE cells at O2 levels different from their native environment (70-90 mm Hg of O2) could have unintended consequences. Owing to the importance of the topic, lack of sufficient discussion in the literature and to encourage future research, this paper will focus on uncontrolled O2 level in cultures of RPE cells.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| |
Collapse
|
9
|
Baba K, Goyal V, Tosini G. Circadian Regulation of Retinal Pigment Epithelium Function. Int J Mol Sci 2022; 23:2699. [PMID: 35269840 PMCID: PMC8910459 DOI: 10.3390/ijms23052699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a single layer of cells located between the choriocapillaris vessels and the light-sensitive photoreceptors in the outer retina. The RPE performs physiological processes necessary for the maintenance and support of photoreceptors and visual function. Among the many functions performed by the RPE, the timing of the peak in phagocytic activity by the RPE of the photoreceptor outer segments that occurs 1-2 h. after the onset of light has captured the interest of many investigators and has thus been intensively studied. Several studies have shown that this burst in phagocytic activity by the RPE is under circadian control and is present in nocturnal and diurnal species and rod and cone photoreceptors. Previous investigations have demonstrated that a functional circadian clock exists within multiple retinal cell types and RPE cells. However, the anatomical location of the circadian controlling this activity is not clear. Experimental evidence indicates that the circadian clock, melatonin, dopamine, and integrin signaling play a key role in controlling this rhythm. A series of very recent studies report that the circadian clock in the RPE controls the daily peak in phagocytic activity. However, the loss of the burst in phagocytic activity after light onset does not result in photoreceptor or RPE deterioration during aging. In the current review, we summarized the current knowledge on the mechanism controlling this phenomenon and the physiological role of this peak.
Collapse
Affiliation(s)
| | | | - Gianluca Tosini
- Department of Pharmacology & Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA; (K.B.); (V.G.)
| |
Collapse
|
10
|
Comprehensive Evidence of Carrier-Mediated Distribution of Amantadine to the Retina across the Blood-Retinal Barrier in Rats. Pharmaceutics 2021; 13:pharmaceutics13091339. [PMID: 34575415 PMCID: PMC8469395 DOI: 10.3390/pharmaceutics13091339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022] Open
Abstract
Amantadine, a drug used for the blockage of NMDA receptors, is well-known to exhibit neuroprotective effects. Accordingly, assessment of amantadine transport at retinal barriers could result in the application of amantadine for retinal diseases such as glaucoma. The objective of this study was to elucidate the retinal distribution of amantadine across the inner and outer blood–retinal barrier (BRB). In vivo blood-to-retina [3H]amantadine transport was investigated by using the rat retinal uptake index method, which was significantly reduced by unlabeled amantadine. This result indicated the involvement of carrier-mediated processes in the retinal distribution of amantadine. In addition, in vitro model cells of the inner and outer BRB (TR-iBRB2 and RPE-J cells) exhibited saturable kinetics (Km in TR-iBRB2 cells, 79.4 µM; Km in RPE-J cells, 90.5 and 9830 µM). The inhibition of [3H]amantadine uptake by cationic drugs/compounds indicated a minor contribution of transport systems that accept cationic drugs (e.g., verapamil), as well as solute carrier (SLC) organic cation transporters. Collectively, these outcomes suggest that carrier-mediated transport systems, which differ from reported transporters and mechanisms, play a crucial role in the retinal distribution of amantadine across the inner/outer BRB.
Collapse
|
11
|
New In Vitro Cellular Model for Molecular Studies of Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms22126440. [PMID: 34208617 PMCID: PMC8235468 DOI: 10.3390/ijms22126440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/13/2021] [Indexed: 02/05/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited form of retinal degeneration characterized by primary rod photoreceptor cell death followed by cone loss. Mutations in several genes linked to the disease cause increased levels of cyclic guanosine monophosphate (cGMP) and calcium ion influxes. The purpose of this project was to develop a new in vitro photoreceptor degeneration model for molecular studies of RP. 661W cells were genetically modified to stably express the neural retina leucine zipper (NRL) transcription factor. One clone (661W-A11) was selected based on the expression of Nrl target genes. 661W-A11 showed a significant increase in expression of rod-specific genes but not of cone-specific genes, compared with 661W cells. Zaprinast was used to inhibit phosphodiesterase 6 (PDE6) activity to mimic photoreceptor degeneration in vitro. The activation of cell death pathways resulting from PDE6 inhibition was confirmed by detection of decreased viability and increased intracellular cGMP and calcium, as well as activation of protein kinase G (PKG) and calpains. In this new in vitro system, we validated the effects of previously published neuroprotective drugs. The 661W-A11 cells may serve as a new model for molecular studies of RP and for high-throughput drug screening.
Collapse
|
12
|
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, Williams DS. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020; 78:100846. [PMID: 32105772 PMCID: PMC8941496 DOI: 10.1016/j.preteyeres.2020.100846] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Riboflavin transport mediated by riboflavin transporters (RFVTs/SLC52A) at the rat outer blood-retinal barrier. Drug Metab Pharmacokinet 2019; 34:380-386. [PMID: 31601465 DOI: 10.1016/j.dmpk.2019.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022]
Abstract
The previous in vivo study revealed the carrier-mediated transport of riboflavin (vitamin B2) across the blood-retinal barrier (BRB). In the present study, the blood-to-retina supply of riboflavin across the outer BRB was assessed in RPE-J cells, a rat-derived in vitro cell model of the outer BRB that is formed by the retinal pigment epithelial cells. In the directional uptake analysis on collagen-coated Transwell® inserts, RPE-J cells showed higher basal-to-cell (B-to-C) uptake (22.8 μL/mg protein) of [3H]riboflavin than apical-to-cell (A-to-C) uptake (13.5 μL/mg protein). RPE-J cells showed concentration- and temperature-dependent uptake of [3H]riboflavin with a Km of 297 nM, suggesting the involvement of carrier-mediated process in the blood-to-retina transport of riboflavin across the outer BRB. In RPE-J cells, [3H]riboflavin uptake was affected under a K+-replacement condition while no effect was observed under a choline-replacement condition and at different pH values. Uptake of [3H]riboflavin by RPE-J cells was markedly reduced by riboflavin, flavin adenine dinucleotide (FAD), and lumichrome with no significant effect noted for other vitamins. The obtained results suggested the involvement of riboflavin transporters (SLC52A/RFVT) at the outer BRB, and this is supported by the expression and knockdown analyses of rRFVT2 (Slc52a2) and rRFVT3 (Slc52a3).
Collapse
|
14
|
Lynn SA, Keeling E, Dewing JM, Johnston DA, Page A, Cree AJ, Tumbarello DA, Newman TA, Lotery AJ, Ratnayaka JA. A convenient protocol for establishing a human cell culture model of the outer retina. F1000Res 2018; 7:1107. [PMID: 30271583 PMCID: PMC6137423 DOI: 10.12688/f1000research.15409.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
The retinal pigment epithelium (RPE) plays a key role in the pathogenesis of several blinding retinopathies. Alterations to RPE structure and function are reported in Age-related Macular Degeneration, Stargardt and Best disease as well as pattern dystrophies. However, the precise role of RPE cells in disease aetiology remains incompletely understood. Many studies into RPE pathobiology have utilised animal models, which only recapitulate limited disease features. Some studies are also difficult to carry out in animals as the ocular space remains largely inaccessible to powerful microscopes. In contrast, in-vitro models provide an attractive alternative to investigating pathogenic RPE changes associated with age and disease. In this article we describe the step-by-step approach required to establish an experimentally versatile in-vitro culture model of the outer retina incorporating the RPE monolayer and supportive Bruch's membrane (BrM). We show that confluent monolayers of the spontaneously arisen human ARPE-19 cell-line cultured under optimal conditions reproduce key features of native RPE. These models can be used to study dynamic, intracellular and extracellular pathogenic changes using the latest developments in microscopy and imaging technology. We also discuss how RPE cells from human foetal and stem-cell derived sources can be incorporated alongside sophisticated BrM substitutes to replicate the aged/diseased outer retina in a dish. The work presented here will enable users to rapidly establish a realistic in-vitro model of the outer retina that is amenable to a high degree of experimental manipulation which will also serve as an attractive alternative to using animals. This in-vitro model therefore has the benefit of achieving the 3Rs objective of reducing and replacing the use of animals in research. As well as recapitulating salient structural and physiological features of native RPE, other advantages of this model include its simplicity, rapid set-up time and unlimited scope for detailed single-cell resolution and matrix studies.
Collapse
Affiliation(s)
- Savannah A. Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - David A. Johnston
- Biomedical Imaging Unit, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Anton Page
- Biomedical Imaging Unit, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Angela J. Cree
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - David A. Tumbarello
- Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| |
Collapse
|
15
|
Kinoshita Y, Nogami K, Jomura R, Akanuma SI, Abe H, Inouye M, Kubo Y, Hosoya KI. Investigation of Receptor-Mediated Cyanocobalamin (Vitamin B 12) Transport across the Inner Blood-Retinal Barrier Using Fluorescence-Labeled Cyanocobalamin. Mol Pharm 2018; 15:3583-3594. [PMID: 29966424 DOI: 10.1021/acs.molpharmaceut.8b00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The blood-to-retina supply of cyanocobalamin (vitamin B12) across the blood-retinal barrier (BRB) was investigated by synthesizing a fluorescence-labeled cyanocobalamin (Cy5-cyanocobalamin). In the in vivo analysis following internal jugular injection of Cy5-cyanocobalamin, confocal microscopy showed the distribution of Cy5-cyanocobalamin in the inner plexiform layer (IPL), the outer plexiform layer (OPL), and the retinal pigment epithelium (RPE). In the in vitro analysis with TR-iBRB2 cells, an in vitro model cell line of the inner BRB, Cy5-cyanocobalamin uptake by TR-iBRB2 cells exhibited a time-dependent increase after preincubation with transcobalamin II (TCII) protein, during its residual uptake without preincubation with TCII protein. The Cy5-cyanocobalamin uptake by TR-iBRB2 cells was significantly reduced in the presence of unlabeled cyanocobalamin, chlorpromazine, and chloroquine and was also significantly reduced under Ca2+-free conditions. Confocal microscopy of the TR-iBRB2 cells showed fluorescence signals of Cy5-cyanocobalamin and GFP-TCII protein, and these signals merged with each other. The RT-PCR, Western blot, and immunohistochemistry clearly suggested the expression of TCII receptor (TCII-R) in the inner and outer BRB. These results suggested the involvement of receptor-mediated endocytosis in the blood-to-retina transport of cyanocobalamin at the inner BRB with implying its possible involvement at the outer BRB.
Collapse
Affiliation(s)
- Yuri Kinoshita
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | | | - Ryuta Jomura
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | | | | | - Yoshiyuki Kubo
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| |
Collapse
|
16
|
Akanuma SI, Yamakoshi A, Sugouchi T, Kubo Y, Hartz AMS, Bauer B, Hosoya KI. Role of l-Type Amino Acid Transporter 1 at the Inner Blood-Retinal Barrier in the Blood-to-Retina Transport of Gabapentin. Mol Pharm 2018; 15:2327-2337. [PMID: 29688723 DOI: 10.1021/acs.molpharmaceut.8b00179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gabapentin is an antiseizure drug that is known to also have beneficial effects on the retinal cells. To use gabapentin in retinal pharmacotherapy, it is critical to understand gabapentin distribution in the retina. The purpose of this study was to clarify the kinetics of gabapentin influx transport across the inner and outer blood-retinal barrier (BRB), which regulates the exchange of compounds/drugs between the circulating blood and the retina. In vivo blood-to-retina gabapentin transfer was evaluated by the rat carotid artery injection technique. In addition, gabapentin transport was examined using in vitro models of the inner (TR-iBRB2 cells) and outer BRB (RPE-J cells). The in vivo [3H]gabapentin transfer to the rat retina across the BRB was significantly reduced in the presence of unlabeled gabapentin, suggesting transporter-mediated blood-to-retina distribution of gabapentin. Substrates of the Na+-independent l-type amino acid transporter 1 (LAT1), such as 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH), also significantly inhibited the in vivo [3H]gabapentin transfer. [3H]Gabapentin uptake in TR-iBRB2 and RPE-J cells exhibited Na+-independent and saturable kinetics with a Km of 735 and 507 μM, respectively. Regarding the effect of various transporter substrates/inhibitors on gabapentin transport in these cells, LAT1 substrates significantly inhibited [3H]gabapentin uptake in TR-iBRB2 and RPE-J cells. In addition, preloaded [3H]gabapentin release from TR-iBRB2 and RPE-J cells was trans-stimulated by LAT1 substrates through the obligatory exchange mechanism as LAT1. Immunoblot analysis indicates the protein expression of LAT1 in TR-iBRB2 and RPE-J cells. These results imply that LAT1 at the inner and outer BRB takes part in gabapentin transport between the circulating blood and retina. Moreover, treatment of LAT1-targeted small interfering RNA to TR-iBRB2 cells significantly reduced both the level of LAT1 protein expression and [3H]gabapentin uptake activities in TR-iBRB2 cells. In conclusion, data from the present study indicate that LAT1 at the inner BRB is involved in retinal gabapentin transfer, and also suggest that LAT1 mediates gabapentin transport in the RPE cells.
Collapse
Affiliation(s)
- Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Sugitani , 2630 Toyama , Japan
| | - Atsuko Yamakoshi
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Sugitani , 2630 Toyama , Japan
| | - Takeshi Sugouchi
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Sugitani , 2630 Toyama , Japan
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Sugitani , 2630 Toyama , Japan
| | - Anika M S Hartz
- Sanders-Brown Center on Aging , University of Kentucky , Lexington , KY 40536 , United States.,Department of Pharmacology and Nutritional Sciences, College of Medicine , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Sugitani , 2630 Toyama , Japan
| |
Collapse
|
17
|
Abstract
PURPOSE To investigate the blood-to-retina verapamil transport at the blood-retinal barrier (BRB). METHODS EverFluor FL Verapamil (EFV) was adopted as the fluorescent probe of verapamil, and its transport across the BRB was investigated with common carotid artery infusion in rats. EFV transport at the inner and outer BRB was investigated with TR-iBRB2 cells and RPE-J cells, respectively. RESULTS The signal of EFV was detected in the retinal tissue during the weak signal of cell impermeable compound. In TR-iBRB2 cells, the localization of EFV differed from that of LysoTracker® Red, a lysosomotropic agent, and was not altered by acute treatment with NH4Cl. In RPE-J cells, the punctate distribution of EFV was partially observed, and this was reduced by acute treatment with NH4Cl. EFV uptake by TR-iBRB2 cells was temperature-dependent and membrane potential- and pH-independent, and was significantly reduced by NH4Cl treatment during no significant effect obtained by different extracellular pH and V-ATPase inhibitor. The EFV uptake by TR-iBRB2 cells was inhibited by cationic drugs, and inhibited by verapamil in a concentration-dependent manner with an IC50 of 98.0 μM. CONCLUSIONS Our findings provide visual evidence to support the significance of carrier-mediated transport in the blood-to-retina verapamil transport at the BRB.
Collapse
|
18
|
Rimpelä AK, Reinisalo M, Hellinen L, Grazhdankin E, Kidron H, Urtti A, del Amo EM. Implications of melanin binding in ocular drug delivery. Adv Drug Deliv Rev 2018; 126:23-43. [PMID: 29247767 DOI: 10.1016/j.addr.2017.12.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/04/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Pigmented ocular tissues contain melanin within the intracellular melanosomes. Drugs bind to melanin at varying extent that ranges from no binding to extensive binding. Binding may lead to drug accumulation to the pigmented tissues and prolonged drug retention in the melanin containing cells. Therefore, melanin binding is an important feature that affects ocular drug delivery and biodistribution, but this topic has not been reviewed since 1998. In this review, we present current knowledge on ocular melanin, melanosomes and binding of drugs to pigmented cells and tissues. In vitro, in vivo and in silico methods in the field were critically evaluated, because the literature in this field can be confusing if the reader does not properly understand the methodological aspects. Literature analysis includes a comprehensive table of literature data on melanin binding of drugs. Furthermore, we aimed to give some insights beyond the current literature by making a chemical structure based classification model for melanin binding of drugs and kinetic simulations that revealed significant interplay between melanin binding and drug permeability across the melanosomal and plasma membranes. Overall, more mechanistic and systematic research is needed before the impact of melanin binding on ocular drug delivery can be properly understood and predicted.
Collapse
|
19
|
Shams Najafabadi H, Soheili ZS, Samiei S, Ahmadieh H, Ranaei Pirmardan E, Masoumi M. Isolation, Characterization, and Establishment of Spontaneously Immortalized Cell Line HRPE-2S With Stem Cell Properties. J Cell Physiol 2016; 232:2626-2640. [PMID: 27943290 DOI: 10.1002/jcp.25729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/08/2016] [Indexed: 11/10/2022]
Abstract
The retinal pigment epithelium is a monolayer of highly specialized pigmented cells located between the neural retina and the Bruch's membrane of the choroid. RPE cells play a crucial role in the maintenance and function of the underlying photoreceptors. This study introduces a spontaneously arising human retinal pigment epithelial cell line, HRPE-2S, which was isolated from primary RPE cell culture of 2 days old male donor. We characterized morphology and functional properties of the new cell line. The immortalized cell line was maintained in culture for more than 70 passages and 240 divisions. The average doubling time of the cells was approximately 22 h and got freezed at 26th passage. The cell line expressed RPE-specific markers RPE65 and cell junction protein ZO1 as an epithelial cell marker. It also expressed CHX10, PAX6, Nestin, SOX2 as stem and retinal progenitor cell markers. Ki67 as a marker of cell proliferation was expressed in all HRPE-2S cells. It represented typical epithelial cobblestone morphology and did not phenotypically change through several passages. Stem cell-like aggregations (neurospheres) were observed in SEM microscopy. The cells represented high mitotic index. They could be viable under hypoxic conditions and serum deprivation. According to functional studies, the cell line exhibited stem cell-like behaviors with particular emphasis on its self-renewal capacity. LDH isoenzymes expression pattern confirmed the same cellular source for both of the HRPE-2S cells and primary RPE cells. Characteristics of HRPE-2S cells promise it as an in vitro model for RPE stem cell-based researches. J. Cell. Physiol. 232: 2626-2640, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hoda Shams Najafabadi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahram Samiei
- Blood Transfusion Research Center High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hamid Ahmadieh
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Masoumi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
20
|
Ranaei Pirmardan E, Soheili ZS, Samiei S, Ahmadieh H, Mowla SJ, Ezzati R, Naseri M. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments. Exp Cell Res 2016; 347:332-8. [DOI: 10.1016/j.yexcr.2016.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/02/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
|
21
|
Shafaie S, Hutter V, Cook MT, Brown MB, Chau DYS. In Vitro Cell Models for Ophthalmic Drug Development Applications. Biores Open Access 2016; 5:94-108. [PMID: 27158563 PMCID: PMC4845647 DOI: 10.1089/biores.2016.0008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering is a rapidly expanding field that aims to establish feasible techniques to fabricate biologically equivalent replacements for diseased and damaged tissues/organs. Emerging from this prospect is the development of in vitro representations of organs for drug toxicity assessment. Due to the ever-increasing interest in ocular drug delivery as a route for administration as well as the rise of new ophthalmic therapeutics, there is a demand for physiologically accurate in vitro models of the eye to assess drug delivery and safety of new ocular medicines. This review summarizes current existing ocular models and highlights the important factors and limitations that need to be considered during their use.
Collapse
Affiliation(s)
- Sara Shafaie
- Department of Pharmacy, Pharmacology, and Postgraduate Medicine, The Research Center in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire , Hertfordshire, United Kingdom
| | - Victoria Hutter
- Department of Pharmacy, Pharmacology, and Postgraduate Medicine, The Research Center in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire , Hertfordshire, United Kingdom
| | - Michael T Cook
- Department of Pharmacy, Pharmacology, and Postgraduate Medicine, The Research Center in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire , Hertfordshire, United Kingdom
| | - Marc B Brown
- Department of Pharmacy, Pharmacology, and Postgraduate Medicine, The Research Center in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire, United Kingdom.; MedPharm Ltd., Guildford, Surrey, United Kingdom
| | - David Y S Chau
- Department of Pharmacy, Pharmacology, and Postgraduate Medicine, The Research Center in Topical Drug Delivery and Toxicology, School of Life and Medical Sciences, University of Hertfordshire , Hertfordshire, United Kingdom
| |
Collapse
|
22
|
Heller JP, Kwok JCF, Vecino E, Martin KR, Fawcett JW. A Method for the Isolation and Culture of Adult Rat Retinal Pigment Epithelial (RPE) Cells to Study Retinal Diseases. Front Cell Neurosci 2015; 9:449. [PMID: 26635529 PMCID: PMC4654064 DOI: 10.3389/fncel.2015.00449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022] Open
Abstract
Diseases such as age-related macular degeneration (AMD) affect the retinal pigment epithelium (RPE) and lead to the death of the epithelial cells and ultimately blindness. RPE transplantation is currently a major focus of eye research and clinical trials using human stem cell-derived RPE cells are ongoing. However, it remains to be established to which extent the source of RPE cells for transplantation affects their therapeutic efficacy and this needs to be explored in animal models. Autotransplantation of RPE cells has attractions as a therapy, but existing protocols to isolate adult RPE cells from rodents are technically difficult, time-consuming, have a low yield and are not optimized for long-term cell culturing. Here, we report a newly devised protocol which facilitates reliable and simple isolation and culture of RPE cells from adult rats. Incubation of a whole rat eyeball in 20 U/ml papain solution for 50 min yielded 4 × 10(4) viable RPE cells. These cells were hexagonal and pigmented upon culture. Using immunostaining, we demonstrated that the cells expressed RPE cell-specific marker proteins including cytokeratin 18 and RPE65, similar to RPE cells in vivo. Additionally, the cells were able to produce and secrete Bruch's membrane matrix components similar to in vivo situation. Similarly, the cultured RPE cells adhered to isolated Bruch's membrane as has previously been reported. Therefore, the protocol described in this article provides an efficient method for the rapid and easy isolation of high quantities of adult rat RPE cells. This provides a reliable platform for studying the therapeutic targets, testing the effects of drugs in a preclinical setup and to perform in vitro and in vivo transplantation experiments to study retinal diseases.
Collapse
Affiliation(s)
- Janosch P. Heller
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College LondonLondon, UK
| | - Jessica C. F. Kwok
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| | - Elena Vecino
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
- Department of Cellular Biology, University of the Basque CountryLeioa, UPV/EHU, Bizkaia, Spain
| | - Keith R. Martin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
- Department of Ophthalmology, NIHR Biomedical Research Centre and Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of CambridgeCambridge, UK
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridge, UK
| |
Collapse
|
23
|
Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Prog Retin Eye Res 2015; 48:1-39. [PMID: 26113213 DOI: 10.1016/j.preteyeres.2015.06.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/21/2022]
|
24
|
Shelby SJ, Feathers KL, Ganios AM, Jia L, Miller JM, Thompson DA. MERTK signaling in the retinal pigment epithelium regulates the tyrosine phosphorylation of GDP dissociation inhibitor alpha from the GDI/CHM family of RAB GTPase effectors. Exp Eye Res 2015; 140:28-40. [PMID: 26283020 DOI: 10.1016/j.exer.2015.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 10/25/2022]
Abstract
Photoreceptor outer segments (OS) in the vertebrate retina undergo a process of continual renewal involving shedding of disc membranes that are cleared by phagocytic uptake into the retinal pigment epithelium (RPE). In dystrophic Royal College of Surgeons (RCS) rats, OS phagocytosis is blocked by a mutation in the gene encoding the receptor tyrosine kinase MERTK. To identify proteins tyrosine-phosphorylated downstream of MERTK in the RPE, MALDI-mass spectrometry with peptide-mass fingerprinting was used in comparative studies of RCS congenic and dystrophic rats. At times corresponding to peak phagocytic activity, the RAB GTPase effector GDP dissociation inhibitor alpha (GDI1) was found to undergo tyrosine phosphorylation only in congenic rats. In cryosections of native RPE/choroid, GDI1 colocalized with MERTK and the intracellular tyrosine-kinase SRC. In cultured RPE-J cells, and in transfected heterologous cells, MERTK stimulated SRC-mediated tyrosine phosphorylation of GDI1. In OS-fed RPE-J cells, GDI1 colocalized with MERTK and SRC on apparent phagosomes located near the apical membrane. In addition, both GDI1 and RAB5, a regulator of vesicular transport, colocalized with ingested OS. Taken together, these findings identify a novel role of MERTK signaling in membrane trafficking in the RPE that is likely to subserve mechanisms of phagosome formation.
Collapse
Affiliation(s)
- Shameka J Shelby
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA; Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA
| | - Kecia L Feathers
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA
| | - Anna M Ganios
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lin Jia
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA
| | - Jason M Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA
| | - Debra A Thompson
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA; Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, 1000 Wall St., Ann Arbor, MI 48105, USA.
| |
Collapse
|
25
|
Yanai A, Laver CRJ, Gregory-Evans CY, Liu RR, Gregory-Evans K. Enhanced functional integration of human photoreceptor precursors into human and rodent retina in an ex vivo retinal explant model system. Tissue Eng Part A 2015; 21:1763-71. [PMID: 25693608 DOI: 10.1089/ten.tea.2014.0669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinal disease is the major cause of irreversible blindness in developed countries. Transplantation of photoreceptor precursor cells (PPCs) derived from human embryonic stem cells (hESCs) is a promising and widely applicable approach for the treatment of these blinding conditions. Previously, it has been shown that after transplantation into the degenerating retina, the percentage of PPCs that undergo functional integration is low. The factors that inhibit PPC engraftment remain largely unknown, in part, because so many adverse factors could be at play during in vivo experiments. To advance our knowledge in overcoming potential adverse effects and optimize PPC transplantation, we have developed a novel ex vivo system. Harvested neural retina was placed directly on top of cultured retinal pigment epithelial (RPE) cells from a number of different sources. To mimic PPC transplantation into the subretinal space, hESC-derived PPCs were inserted between the retinal explant and underlying RPE. Explants cocultured with hESC-derived RPE maintained normal gross morphology and viability for up to 2 weeks, whereas the explants cultured on ARPE19 and RPE-J failed by 7 days. Furthermore, the proportion of PPCs expressing ribbon synapse-specific proteins BASSOON and RIBEYE was significantly higher when cocultured with hESC-derived RPE (20% and 10%, respectively), than when cocultured with ARPE19 (only 6% and 2%, respectively). In the presence of the synaptogenic factor thrombospondin-1 (TSP-1), the proportion of BASSOON-positive and RIBEYE-positive PPCs cocultured with hESC-derived RPE increased to ∼30% and 15%, respectively. These data demonstrate the utility of an ex vivo model system to define factors, such as TSP-1, which could influence integration efficiency in future in vivo experiments in models of retinal degeneration.
Collapse
Affiliation(s)
- Anat Yanai
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R J Laver
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ran R Liu
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Laver CRJ, Metcalfe AL, Szczygiel L, Yanai A, Sarunic MV, Gregory-Evans K. Bimodal in vivo imaging provides early assessment of stem-cell-based photoreceptor engraftment. Eye (Lond) 2015; 29:681-90. [PMID: 25771816 DOI: 10.1038/eye.2015.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/23/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Subretinal transplantation of stem-cell-derived photoreceptor precursor cells (PPCs) is a promising and innovative approach to treating a range of blinding diseases. However, common barriers to efficient preclinical transplantation comes in the form of suboptimal graft architecture, limited graft survival, and immune-rejection, each of which cannot be assessed using conventional in vivo imaging (i.e., rodent ophthalmoscopy). With the majority of PPCs reported to die within the first few weeks after transplantation, understanding the mechanisms of graft failure, and ultimately devising preventative methods, currently relies on lengthy end point histology. To address these limitations, we hypothesized that combining two imaging modalities, optical coherence tomography (OCT) and fluorescence confocal scanning laser ophthalmoscopy (fcSLO), could provide a more rapid and comprehensive view of PPC engraftment. METHODS Human ESC-derived PPCs were transplanted into 15 retinal dystrophic rats that underwent bimodal imaging at 0, 8, and 15 days posttransplant. RESULTS Bimodal imaging provided serial detection of graft: placement, architecture, and survival; each undetectable under ophthalmoscopy. Bimodal imaging determined graft placement to be either: subretinal (n=7), choroidal (n=4), or vitreal (n=4) indicating neural retinal perforation. Graft architecture was highly variable at the time of transplantation, with notable redistribution over time, while complete, or near complete, graft loss was observed in the majority of recipients after day 8. Of particular importance was detection of vitreal aggregates overlying the graft-possibly an indicator of host-site inflammation and rejection. CONCLUSION Early real-time feedback of engraftment has the potential to greatly increase efficiency of preclinical trials in cell-based retinal therapeutics.
Collapse
Affiliation(s)
- C R J Laver
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - A L Metcalfe
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - L Szczygiel
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - A Yanai
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - M V Sarunic
- School of Engineering Science, Faculty of Applied Science, Simon Fraser University, Burnaby, BC, Canada
| | - K Gregory-Evans
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
27
|
Nambi KSN, Majeed SA, Taju G, Sivasubbu S, Raj NS, Madan N, Hameed ASS. Development and use of retinal pigmented epithelial cell line from zebrafish (Danio rerio) for evaluating the toxicity of ultraviolet-B. Zebrafish 2014; 12:21-32. [PMID: 25517103 DOI: 10.1089/zeb.2014.1012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Danio rerio retinal pigmented epithelial (DrRPE) cell line, derived from the RPE tissue, was established and characterized. The cells were able to grow at a wide range of temperatures from 25°C to 32°C in Leibovitz's L-15 medium. The DrRPE cell line consists of epithelial cells with a diameter of 15-19 μm. The cell line was characterized by mitochondrial 12S rRNA gene, immunocytochemical analysis, and karyotyping. DrRPE cells treated with 10 μM of all-trans-retinol for 24 h readily formed lipid droplets. DrRPE cells were irradiated with narrowband ultraviolet-B (UV-B) radiation at different time periods of 0, 10, 20, and 40 min. The cells were subsequently examined for changes in morphology, cell viability, phagocytotic activity, mitochondrial distribution, nuclei morphology, generation of reactive oxygen species, and expression of apoptotic-related genes p53 and Cas3 by quantitative polymerase chain reaction. The results demonstrate that UV-B radiation can cause a considerable decrease in DrRPE cell viability as well as in phagocytotic activity. In addition, the results demonstrate that UV-B radiation can induce the degradation of mitochondria and DNA in cultured DrRPE cells.
Collapse
Affiliation(s)
- Kalaiselvi S Nathiga Nambi
- 1 OIE Reference Laboratory for WTD, PG and Research Department of Zoology, C. Abdul Hakeem College , Vellore, India
| | | | | | | | | | | | | |
Collapse
|
28
|
Lehmann GL, Benedicto I, Philp NJ, Rodriguez-Boulan E. Plasma membrane protein polarity and trafficking in RPE cells: past, present and future. Exp Eye Res 2014; 126:5-15. [PMID: 25152359 DOI: 10.1016/j.exer.2014.04.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 10/24/2022]
Abstract
The retinal pigment epithelium (RPE) comprises a monolayer of polarized pigmented epithelial cells that is strategically interposed between the neural retina and the fenestrated choroid capillaries. The RPE performs a variety of vectorial transport functions (water, ions, metabolites, nutrients and waste products) that regulate the composition of the subretinal space and support the functions of photoreceptors (PRs) and other cells in the neural retina. To this end, RPE cells display a polarized distribution of channels, transporters and receptors in their plasma membrane (PM) that is remarkably different from that found in conventional extra-ocular epithelia, e.g. intestine, kidney, and gall bladder. This characteristic PM protein polarity of RPE cells depends on the interplay of sorting signals in the RPE PM proteins and sorting mechanisms and biosynthetic/recycling trafficking routes in the RPE cell. Although considerable progress has been made in our understanding of the RPE trafficking machinery, most available data have been obtained from immortalized RPE cell lines that only partially maintain the RPE phenotype and by extrapolation of data obtained in the prototype Madin-Darby Canine Kidney (MDCK) cell line. The increasing availability of RPE cell cultures that more closely resemble the RPE in vivo together with the advent of advanced live imaging microscopy techniques provides a platform and an opportunity to rapidly expand our understanding of how polarized protein trafficking contributes to RPE PM polarity.
Collapse
Affiliation(s)
- Guillermo L Lehmann
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, 1300 York Ave, New York, NY 100652, USA
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, 1300 York Ave, New York, NY 100652, USA
| | - Nancy J Philp
- Thomas Jefferson University, Department of Pathology, Anatomy, and Cell Biology, Philadelphia, PA 19107, USA.
| | - Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, 1300 York Ave, New York, NY 100652, USA.
| |
Collapse
|
29
|
Vellonen KS, Malinen M, Mannermaa E, Subrizi A, Toropainen E, Lou YR, Kidron H, Yliperttula M, Urtti A. A critical assessment of in vitro tissue models for ADME and drug delivery. J Control Release 2014; 190:94-114. [DOI: 10.1016/j.jconrel.2014.06.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/22/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022]
|
30
|
Kuznetsova AV, Kurinov AM, Aleksandrova MA. Cell models to study regulation of cell transformation in pathologies of retinal pigment epithelium. J Ophthalmol 2014; 2014:801787. [PMID: 25177495 PMCID: PMC4142280 DOI: 10.1155/2014/801787] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/16/2014] [Accepted: 06/30/2014] [Indexed: 11/25/2022] Open
Abstract
The retinal pigment epithelium (RPE) plays a key role in the development of many eye diseases leading to visual impairment and even blindness. Cell culture models of pathological changes in the RPE make it possible to study factors responsible for these changes and signaling pathways coordinating cellular and molecular mechanisms of cell interactions under pathological conditions. Moreover, they give an opportunity to reveal target cells and develop effective specific treatment for degenerative and dystrophic diseases of the retina. In this review, data are presented on RPE cell sources for culture models, approaches to RPE cell culturing, phenotypic changes of RPE cells in vitro, the role of signal pathways, and possibilities for their regulation in pathological processes.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow 119334, Russia
| | - Alexander M. Kurinov
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow 119334, Russia
| | - Maria A. Aleksandrova
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow 119334, Russia
| |
Collapse
|
31
|
Bertolotti E, Neri A, Camparini M, Macaluso C, Marigo V. Stem cells as source for retinal pigment epithelium transplantation. Prog Retin Eye Res 2014; 42:130-44. [PMID: 24933042 DOI: 10.1016/j.preteyeres.2014.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 12/27/2022]
Abstract
Inherited maculopathies, age related macular degeneration and some forms of retinitis pigmentosa are associated with impaired function or loss of the retinal pigment epithelium (RPE). Among potential treatments, transplantation approaches are particularly promising. The arrangement of RPE cells in a well-defined tissue layer makes the RPE amenable to cell or tissue sheet transplantation. Different cell sources have been suggested for RPE transplantation but the development of a clinical protocol faces several obstacles. The source should provide a sufficient number of cells to at least recover the macula area. Secondly, cells should be plastic enough to be able to integrate in the host tissue. Tissue sheets should be considered as well, but the substrate on which RPE cells are cultured needs to be carefully evaluated. Immunogenicity can also be an obstacle for effective transplantation as well as tumorigenicity of not fully differentiated cells. Finally, ethical concerns may represent drawbacks when embryo-derived cells are proposed for RPE transplantation. Here we discuss different cell sources that became available in recent years and their different properties. We also present data on a new source of human RPE. We provide a protocol for RPE differentiation of retinal stem cells derived from adult ciliary bodies of post-mortem donors. We show molecular characterization of the in vitro differentiated RPE tissue and demonstrate its functionality based on a phagocytosis assay. This new source may provide tissue for allogenic transplantation based on best matches through histocompatibility testing.
Collapse
Affiliation(s)
- Evelina Bertolotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Neri
- Ophthalmology, S.Bi.Bi.T. Department, University of Parma, Parma, Italy
| | - Monica Camparini
- Ophthalmology, S.Bi.Bi.T. Department, University of Parma, Parma, Italy
| | - Claudio Macaluso
- Ophthalmology, S.Bi.Bi.T. Department, University of Parma, Parma, Italy
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
32
|
Mazzoni F, Safa H, Finnemann SC. Understanding photoreceptor outer segment phagocytosis: use and utility of RPE cells in culture. Exp Eye Res 2014; 126:51-60. [PMID: 24780752 DOI: 10.1016/j.exer.2014.01.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 12/21/2022]
Abstract
RPE cells are the most actively phagocytic cells in the human body. In the eye, RPE cells face rod and cone photoreceptor outer segments at all times but contribute to shedding and clearance phagocytosis of distal outer segment tips only once a day. Analysis of RPE phagocytosis in situ has succeeded in identifying key players of the RPE phagocytic mechanism. Phagocytic processes comprise three distinct phases, recognition/binding, internalization, and digestion, each of which is regulated separately by phagocytes. Studies of phagocytosis by RPE cells in culture allow specifically analyzing and manipulating these distinct phases to identify their molecular mechanisms. Here, we compare similarities and differences of primary, immortalized, and stem cell-derived RPE cells in culture to RPE cells in situ with respect to phagocytic function. We discuss in particular potential pitfalls of RPE cell culture phagocytosis assays. Finally, we point out considerations for phagocytosis assay development for future studies.
Collapse
Affiliation(s)
- Francesca Mazzoni
- Department of Biological Sciences, Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Bronx, NY 10458, USA
| | - Hussein Safa
- Department of Biological Sciences, Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Bronx, NY 10458, USA
| | - Silvia C Finnemann
- Department of Biological Sciences, Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Bronx, NY 10458, USA.
| |
Collapse
|
33
|
Rizzolo LJ. Barrier properties of cultured retinal pigment epithelium. Exp Eye Res 2014; 126:16-26. [PMID: 24731966 DOI: 10.1016/j.exer.2013.12.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 12/13/2022]
Abstract
The principal function of an epithelium is to form a dynamic barrier that regulates movement between body compartments. Each epithelium is specialized with barrier functions that are specific for the tissues it serves. The apical surface commonly faces a lumen, but the retinal pigment epithelium (RPE) appears to be unique by a facing solid tissue, the sensory retina. Nonetheless, there exists a thin (subretinal) space that can become fluid filled during pathology. RPE separates the subretinal space from the blood supply of the outer retina, thereby forming the outer blood-retinal barrier. The intricate interaction between the RPE and sensory retina presents challenges for learning how accurately culture models reflect native behavior. The challenge is heightened by findings that detail the variation of RPE barrier proteins both among species and at different stages of the life cycle. Among the striking differences is the expression of claudin family members. Claudins are the tight junction proteins that regulate ion diffusion across the spaces that lie between the cells of a monolayer. Claudin expression by RPE varies with species and life-stage, which implies functional differences among commonly used animal models. Investigators have turned to transcriptomics to supplement functional studies when comparing native and cultured tissue. The most detailed studies of the outer blood-retinal barrier have focused on human RPE with transcriptome and functional studies reported for human fetal, adult, and stem-cell derived RPE.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Departments of Surgery and of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, 310 Cedar Street, New Haven, CT 06520-8062, USA.
| |
Collapse
|
34
|
Adijanto J, Philp NJ. Cultured primary human fetal retinal pigment epithelium (hfRPE) as a model for evaluating RPE metabolism. Exp Eye Res 2014; 126:77-84. [PMID: 24485945 DOI: 10.1016/j.exer.2014.01.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction has been shown to contribute to age-related and proliferative retinal diseases. Over the past decade, the primary human fetal RPE (hfRPE) culture model has emerged as an effective tool for studying RPE function and mechanisms of retinal diseases. This model system has been rigorously characterized and shown to closely resemble native RPE cells at the genomic and protein level, and that they are capable of accomplishing the characteristic functions of a healthy native RPE (e.g., rod phagocytosis, ion and fluid transport, and retinoid cycle). In this review, we demonstrated that the metabolic activity of the RPE is an indicator of its health and state of differentiation, and present the hfRPE culture model as a valuable in vitro system for evaluating RPE metabolism in the context of RPE differentiation and retinal disease.
Collapse
Affiliation(s)
- Jeffrey Adijanto
- Thomas Jefferson University, Dept. of Pathology, Anatomy, & Cell Biology, 1020 Locust Street, Rm315, Philadelphia, PA 19107, USA.
| | - Nancy J Philp
- Thomas Jefferson University, Dept. of Pathology, Anatomy, & Cell Biology, 1020 Locust Street, Rm315, Philadelphia, PA 19107, USA.
| |
Collapse
|
35
|
Bonilha VL. Retinal pigment epithelium (RPE) cytoskeleton in vivo and in vitro. Exp Eye Res 2013; 126:38-45. [PMID: 24090540 DOI: 10.1016/j.exer.2013.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 12/31/2022]
Abstract
The retinal pigment epithelium (RPE) constitutes a monolayer of cuboidal cells that interact apically with the interphotoreceptor matrix (IPM) and outer segments of the photoreceptor cells and basally with the subjacent Bruch's membrane. This highly polarized structure is maintained by the cytoskeleton of individual cells and their interactions at the basolateral junctional complexes that stabilize this epithelial structure. This RPE complex network of filaments, tubules and associated proteins is modeled by the cellular environment, the RPE intercellular interactions, and by its interactions with the extracellular matrix. This is a review of the key features of the RPE cytoskeleton in vivo and in vitro.
Collapse
Affiliation(s)
- Vera L Bonilha
- Department of Ophthalmic Research, The Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue i31, Cleveland, OH 44195, USA.
| |
Collapse
|
36
|
Hu J, Bok D. The use of cultured human fetal retinal pigment epithelium in studies of the classical retinoid visual cycle and retinoid-based disease processes. Exp Eye Res 2013; 126:46-50. [PMID: 24060345 DOI: 10.1016/j.exer.2013.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022]
Abstract
Human fetal retinal pigment epithelium (hfRPE), when harvested by mechanical dissection and cultured initially under low calcium conditions, will proliferate and tolerate cryopreservation for future use. Cryopreserved cells can be subsequently thawed and cultured in standard calcium and in the presence of appropriate nutrients to a high state of differentiation, allowing recapitulation of multiple in vivo functions. In this review we briefly discuss some of our previous studies of the classical retinoid visual cycle and introduce current studies in our laboratory that involve two new areas of investigation; the dynamic response of the receptor for retinol binding protein, STRA6 to the addition of holo-retinol binding protein to the culture medium and the protective complement-based response of hfRPE to the ingestion of toxic byproducts of the visual cycle. This response is studied in the context of genotyped hfRPE expressing either predisposing or protective variants of complement factor H.
Collapse
Affiliation(s)
- Jane Hu
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Dean Bok
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Abstract
Retinal pigment epithelial (RPE) cells are among the most actively phagocytic cells in nature. Primary RPE and stable RPE cell lines provide experimental model systems that possess the same phagocytic machinery as RPE in situ. Upon experimental challenge with isolated photoreceptor outer segment fragments (POS), these cells promptly and efficiently recognize, bind, internalize, and digest POS. Here, we describe experimental procedures to isolate POS from porcine eyes and to feed POS to RPE cells in culture. Furthermore, we describe three different and complementary methods to quantify total POS uptake by RPE cells and to discriminate surface-bound from engulfed POS.
Collapse
Affiliation(s)
- Yingyu Mao
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | | |
Collapse
|
38
|
Du J, Shi QS, Sun Y, Liu PF, Zhu MJ, Du LF, Duan YR. Enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly l-lysine nanoparticles loading platelet-derived growth factor BB small interfering RNA by ultrasound and/or microbubbles to rat retinal pigment epithelium cells. J Gene Med 2011; 13:312-23. [PMID: 21674734 DOI: 10.1002/jgm.1574] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND A novel small interfering RNA (siRNA) delivery method based on the combined use of nanoparticles (NPs) with ultrasound (US) and/or microbubbles (MBs) was introduced in the present study. We investigated the efficacy and safety of US and/or MBs-enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly l-lysine (mPEG-PLGA-PLL) NPs loading platelet-derived growth factor BB (PDGF-BB) siRNA to rat retinal pigment epithelium (RPE)-J cells. METHODS The effect of US and/or MBs on the delivery of NPs containing Cy3-labeled siRNA was evaluated by fluorescence microscopy and flow cytometry. Potential toxicity of NPs and cell viability under different conditions of US and/or MBs were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. RESULTS The results obtained showed that low intensity US or 15-20% MBs could increase the delivery efficiency of a lower concentration of mPEG-PLGA-PLL NPs loading siRNA to RPE-J cells, whereas the combination of US with MBs under the optimal conditions for the enhancement of NPs delivery did not further increase the cellular uptake of NPs compared to either US or MBs alone (p = 0.072 and p = 0.488, respectively). Under the optimal condition for US-enhanced NPs delivery, the enhanced PDGF-BB gene silencing with a combination of US and NPs encapsulating siRNA resulted in a significant decrease of mRNA and protein expression levels compared to NPs alone. CONCLUSIONS US and/or MBs could be used safely to enhance the delivery of NPs loading siRNA to rat RPE-J cells. A combination of the chemical (mPEG-PLGA-PLL NPs loading siRNA) and physical (US) approaches could more effectively downregulate the mRNA and protein expression of PDGF-BB.
Collapse
Affiliation(s)
- Jing Du
- Department of Ultrasound, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Kennelly KP, Wallace DM, Holmes TM, Hankey DJ, Grant TS, O'Farrelly C, Keegan DJ. Preparation of pre-confluent retinal cells increases graft viability in vitro and in vivo: a mouse model. PLoS One 2011; 6:e21365. [PMID: 21738643 PMCID: PMC3126823 DOI: 10.1371/journal.pone.0021365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 05/30/2011] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Graft failure remains an obstacle to experimental subretinal cell transplantation. A key step is preparing a viable graft, as high levels of necrosis and apoptosis increase the risk of graft failure. Retinal grafts are commonly harvested from cell cultures. We termed the graft preparation procedure "transplant conditions" (TC). We hypothesized that culture conditions influenced graft viability, and investigated whether viability decreased following TC using a mouse retinal pigment epithelial (RPE) cell line, DH01. METHODS Cell viability was assessed by trypan blue exclusion. Levels of apoptosis and necrosis in vitro were determined by flow cytometry for annexin V and propidium iodide and Western blot analysis for the pro- and cleaved forms of caspases 3 and 7. Graft viability in vivo was established by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and cleaved caspase 3 immunolabeling of subretinal allografts. RESULTS Pre-confluent cultures had significantly less nonviable cells than post-confluent cultures (6.6%±0.8% vs. 13.1%±0.9%, p<0.01). Cell viability in either group was not altered significantly following TC. Caspases 3 and 7 were not altered by levels of confluence or following TC. Pre-confluent cultures had low levels of apoptosis/necrosis (5.6%±1.1%) that did not increase following TC (4.8%±0.5%). However, culturing beyond confluence led to progressively increasing levels of apoptosis and necrosis (up to 16.5%±0.9%). Allografts prepared from post-confluent cultures had significantly more TUNEL-positive cells 3 hours post-operatively than grafts of pre-confluent cells (12.7%±3.1% vs. 4.5%±1.4%, p<0.001). Subretinal grafts of post-confluent cells also had significantly higher rates of cleaved caspase 3 than pre-confluent grafts (20.2%±4.3% vs. 7.8%±1.8%, p<0.001). CONCLUSION Pre-confluent cells should be used to maximize graft cell viability.
Collapse
Affiliation(s)
- Kevin P Kennelly
- Catherine McAuley Clinical Research Centre, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
40
|
Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res 2011; 30:296-323. [PMID: 21704180 DOI: 10.1016/j.preteyeres.2011.06.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 02/02/2023]
Abstract
The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier by regulating the movement of solutes between the fenestrated capillaries of the choroid and the photoreceptor layer of the retina. Blood-tissue barriers use various mechanisms to accomplish their tasks including membrane pumps, transporters, and channels, transcytosis, metabolic alteration of solutes in transit, and passive but selective diffusion. The last category includes tight junctions, which regulate transepithelial diffusion through the spaces between neighboring cells of the monolayer. Tight junctions are extraordinarily complex structures that are dynamically regulated. Claudins are a family of tight junctional proteins that lend tissue specificity and selectivity to tight junctions. This review discusses how the claudins and tight junctions of the RPE differ from other epithelia and how its functions are modulated by the neural retina. Studies of RPE-retinal interactions during development lend insight into this modulation. Notably, the characteristics of RPE junctions, such as claudin composition, vary among species, which suggests the physiology of the outer retina may also vary. Comparative studies of barrier functions among species should deepen our understanding of how homeostasis is maintained in the outer retina. Stem cells provide a way to extend these studies of RPE-retinal interactions to human RPE.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Department of Surgery and Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| | | | | | | |
Collapse
|
41
|
Aruta C, Giordano F, De Marzo A, Comitato A, Raposo G, Nandrot EF, Marigo V. In vitro differentiation of retinal pigment epithelium from adult retinal stem cells. Pigment Cell Melanoma Res 2010; 24:233-40. [PMID: 21232026 DOI: 10.1111/j.1755-148x.2010.00793.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the limitations in molecular and functional studies of the retinal pigment epithelium (RPE) has been the lack of an in vitro system retaining all the features of in vivo RPE cells. Retinal pigment epithelium cell lines do not show characteristics typical of a functional RPE, such as pigmentation and expression of specific markers. The present study was aimed at the development of culture conditions to differentiate, in vitro, retinal stem cells (RSC), derived from the adult ciliary body, into a functional RPE. Retinal stem cells were purified from murine eyes, grown as pigmented neurospheres and induced to differentiate into RPE on an extracellular matrix substrate using specific culture conditions. After 7-15 days of culture, pigmented cells with an epithelial morphology showed a polarized organization and a capacity for phagocytosis. We detected different stages of melanogenesis in cells at 7 days of differentiation, whereas RPE at 15 days contained only mature melanosomes. These data suggest that our protocol to differentiate RPE in vitro can provide a useful model for molecular and functional studies.
Collapse
Affiliation(s)
- Claudia Aruta
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Chuang JZ, Chou SY, Sung CH. Chloride intracellular channel 4 is critical for the epithelial morphogenesis of RPE cells and retinal attachment. Mol Biol Cell 2010; 21:3017-28. [PMID: 20610659 PMCID: PMC2929995 DOI: 10.1091/mbc.e09-10-0907] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A plasmid-based transfection method was used to cell-autonomously silence chloride intracellular channel 4 (CLIC4) in RPE in situ. These results show CLIC4 is critical for epithelial morphogenesis and retinal attachment. Novel candidate targets for retinal detachment therapy have also been identified. Retinal detachment is a sight-threatening condition. The molecular mechanism underlying the adhesion between the RPE and photoreceptors is poorly understood because the intimate interactions between these two cell types are impossible to model and study in vitro. In this article, we show that chloride intracellular channel 4 (CLIC4) is enriched at apical RPE microvilli, which are interdigitated with the photoreceptor outer segment. We used a novel plasmid-based transfection method to cell-autonomously suppress CLIC4 in RPE in situ. CLIC4 silenced RPE cells exhibited a significant loss of apical microvilli and basal infoldings, reduced retinal adhesion, and epithelial-mesenchymal transition. Ectopically expressing ezrin failed to rescue the morphological changes exerted by CLIC4 silencing. Neural retinas adjacent to the CLIC4-suppressed RPE cells display severe dysplasia. Finally, a high level of aquaporin 1 unexpectedly appeared at the apical surfaces of CLIC4-suppressed RPE cells, together with a concomitant loss of basal surface expression of monocarboxylate transporter MCT3. Our results suggested that CLIC4 plays an important role in RPE-photoreceptor adhesion, perhaps by modulating the activity of cell surface channels/transporters. We propose that these changes may be attributable to subretinal fluid accumulation in our novel retinal detachment animal model.
Collapse
Affiliation(s)
- Jen-Zen Chuang
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
43
|
Liggett TE, Griffiths TD, Gaillard ER. Isolation and characterization of a spontaneously immortalized bovine retinal pigmented epithelial cell line. BMC Cell Biol 2009; 10:33. [PMID: 19413901 PMCID: PMC3152772 DOI: 10.1186/1471-2121-10-33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 05/04/2009] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The Retinal Pigmented Epithelium (RPE) is juxtaposed with the photoreceptor outer segments of the eye. The proximity of the photoreceptor cells is a prerequisite for their survival, as they depend on the RPE to remove the outer segments and are also influenced by RPE cell paracrine factors. RPE cell death can cause a progressive loss of photoreceptor function, which can diminish vision and, over time, blindness ensues. Degeneration of the retina has been shown to induce a variety of retinopathies, such as Stargardt's disease, Cone-Rod Dystrophy (CRD), Retinitis Pigmentosa (RP), Fundus Flavimaculatus (FFM), Best's disease and Age-related Macular Degeneration (AMD). We have cultured primary bovine RPE cells to gain a further understanding of the mechanisms of RPE cell death. One of the cultures, named tRPE, surpassed senescence and was further characterized to determine its viability as a model for retinal diseases. RESULTS The tRPE cell line has been passaged up to 150 population doublings and was shown to be morphologically similar to primary cells. They have been characterized to be of RPE origin by reverse transcriptase PCR and immunocytochemistry using the RPE-specific genes RPE65 and CRALBP and RPE-specific proteins RPE65 and Bestrophin. The tRPE cells are also immunoreactive to vimentin, cytokeratin and zonula occludens-1 antibodies. Chromosome analysis indicates a normal diploid number. The tRPE cells do not grow in suspension or in soft agar. After 3H thymidine incorporation, the cells do not appear to divide appreciably after confluency. CONCLUSION The tRPE cells are immortal, but still exhibit contact inhibition, serum dependence, monolayer growth and secrete an extra-cellular matrix. They retain the in-vivo morphology, gene expression and cell polarity. Additionally, the cells endocytose exogenous melanin, A2E and purified lipofuscin granules. This cell line may be a useful in-vitro research model for retinal maculopathies.
Collapse
Affiliation(s)
- Thomas E Liggett
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
- Current address: Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - T Daniel Griffiths
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Elizabeth R Gaillard
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
44
|
Catanuto P, Espinosa-Heidmann D, Pereira-Simon S, Sanchez P, Salas P, Hernandez E, Cousins SW, Elliot SJ. Mouse retinal pigmented epithelial cell lines retain their phenotypic characteristics after transfection with human papilloma virus: a new tool to further the study of RPE biology. Exp Eye Res 2008; 88:99-105. [PMID: 19013153 DOI: 10.1016/j.exer.2008.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 11/26/2022]
Abstract
Development of immortalized mouse retinal pigmented epithelial cell (RPE) lines that retain many of their in vivo phenotypic characteristics, would aid in studies of ocular diseases including age related macular degeneration (AMD). RPE cells were isolated from 18-month-old (estrogen receptor knockout) ERKOalpha and ERKObeta mice and their C57Bl/6 wildtype littermates. RPE65 and cellular retinaldehyde binding protein (CRALBP) expression, in vivo markers of RPE cells, were detected by real-time RT-PCR and western analysis. We confirmed the presence of epithelial cell markers, ZO1, cytokeratin 8 and 18 by immunofluorescence staining. In addition, we confirmed the distribution of actin filaments and the expression of ezrin. To develop cell lines, RPE cells were isolated, propagated and immortalized using human papilloma virus (HPV) 16 (E6/E7). RPE-specific markers and morphology were assessed before and after immortalization. In wildtype littermate controls, there was no evidence of any alterations in the parameters that we examined including MMP-2, TIMP-2, collagen type IV, and estrogen receptor (ER)alpha and ERbeta protein expression and ER copy number ratio. Therefore, immortalized mouse RPE cell lines that retain their in vivo phenotype can be isolated from either pharmacologically or genetically manipulated mice, and may be used to study RPE cell biology.
Collapse
Affiliation(s)
- Paola Catanuto
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida 33136, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chang Y, Finnemann SC. Tetraspanin CD81 is required for the alpha v beta5-integrin-dependent particle-binding step of RPE phagocytosis. J Cell Sci 2007; 120:3053-63. [PMID: 17684062 PMCID: PMC3237194 DOI: 10.1242/jcs.006361] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Retinal pigment epithelial (RPE) cells are among the most active phagocytes in the body. Every morning, circadian shedding of outer segment fragments by photoreceptor cells activates a synchronized phagocytic response by RPE cells that is critical for vision. RPE cells require alpha v beta5 integrin receptors for particle binding that triggers engulfment. Here, we show that tetraspanins CD81 and CD9 reside in a complex specifically with alpha v beta5 integrin but not the engulfment receptors Mer tyrosine kinase and CD36 at the apical, phagocytic surface of RPE cells. Function blocking and RNA silencing of CD81 but not of CD9 specifically diminish particle binding. CD81 but not CD9 overexpression is sufficient to increase particle binding and surface levels of alpha v beta5 integrin. Wild-type and mutant RPE cells defective in particle engulfment equally reduce and increase particle binding in response to CD81 inhibition and CD81 overexpression, respectively. By striking contrast, neither CD81 inhibition nor CD81 overexpression has any effect on particle binding by RPE lacking alpha v beta5 integrin. These results identify a novel and important role for CD81 in phagocytosis. CD81 does not function as a binding receptor by itself but promotes outer segment particle binding through functional interaction specifically with alpha v beta5 integrin.
Collapse
Affiliation(s)
- Yongen Chang
- Dyson Vision Research Institute, Department of Ophthalmology, Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Silvia C. Finnemann
- Department of Physiology and Biophysics, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10021, USA
- Author for correspondence ()
| |
Collapse
|
46
|
Kitagawa M. A Sveinsson's chorioretinal atrophy-associated missense mutation in mouse Tead1 affects its interaction with the co-factors YAP and TAZ. Biochem Biophys Res Commun 2007; 361:1022-6. [PMID: 17689488 DOI: 10.1016/j.bbrc.2007.07.129] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 10/23/2022]
Abstract
Sveinsson's chorioretinal atrophy (SCRA) is an autosomal dominant eye disease characterized by bilateral chorioretinal degeneration. A missense mutation in the gene encoding the transcription factor TEAD1/TEF-1 (Y421H) is genetically linked to SCRA, but the mechanisms of pathology remain unclear. To study the molecular mechanisms underlying SCRA, a missense mutation corresponding to Y421H in human TEAD1 was introduced into mouse Tead1 (Y410H), and a functional analysis of the mutant protein was performed in RPE-J cells. The missense mutation reduced the ability of Tead1 to interact with the co-factors YAP and TAZ, but not with the co-factors Vgl-1, -2, and -3, in a mammalian two-hybrid assay. A GST pull-down assay showed that the direct interaction between Tead1 and YAP or TAZ was lost owing to the mutation. Amino acid substitutions at position 410 of Tead1 revealed the essentiality of this tyrosine residue to the interaction. The Y410H mutation also abolished the transcriptional activity of Tead1 under the co-expression of YAP or TAZ. These results suggest that SCRA pathogenesis may be due to a loss-of-function of TEAD1 affecting the regulation of its target genes.
Collapse
Affiliation(s)
- Michinori Kitagawa
- Division of Molecular Neurobiology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
47
|
Karl MO, Valtink M, Bednarz J, Engelmann K. Cell culture conditions affect RPE phagocytic function. Graefes Arch Clin Exp Ophthalmol 2006; 245:981-91. [PMID: 17177038 DOI: 10.1007/s00417-006-0451-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Revised: 08/30/2006] [Accepted: 09/11/2006] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Changes in the phenotype of retinal pigment epithelium (RPE) cells in vitro are associated with medium conditions and changes in function. Main goals in RPE tissue engineering are cell propagation in serum-free defined culture conditions, resulting in cells exhibiting differentiated morphology and functioning in vitro. METHODS To compare the effects of various media and supplements on cell function, an optimized high-throughput phagocytosis assay was developed. Adult human SV40-RPE cells were cultured. Test media included: MEM(E), DMEM, F99, SFM and hSFM, with or without supplements. SNAFL-2 labelled OS were added to RPE in vitro for 4 h and phagocytic binding and uptake were measured. RESULTS RPE phagocytosis was of different magnitude depending on the serum-free basic cell culture media in the following order: hSFM, SFM > DMEM, MEM > F99. Choroid-conditioned medium (ChCM) decreased phagocytosis dose dependently. Whereas 1% retinal extract (RE) supplementation increased, higher concentrations decreased phagocytosis. Addition of 10% FCS increased phagocytosis. 15% ChCM quenched the stimulation induced by 10% FCS, an effect which could be reversed by the addition of 1% RE. CONCLUSIONS Cell culture media and RPE environmental factors exert substantial and differential alteration of RPE phagocytic ability. Phagocytosis in a serum-free defined medium is superior to unsupplemented basic media, but still differs from serum-supplemented media (F99RPE) designed for cell propagation. We conclude that media SFM or hSFM promoted phagocytosis most, and application of FCS or 1% RE supports phagocytosis. Unknown factors from neighbouring tissues (retina and choroid) affect phagocytosis differently, suggesting a role in retinal pathogenesis. The results will support identification of specific environmental factors and facilitate design of cell culture media.
Collapse
Affiliation(s)
- Mike O Karl
- Department of Ophthalmology, Cornea Bank, University Eye Clinic Eppendorf, Martinistrasse 52, Hamburg 20246, Germany.
| | | | | | | |
Collapse
|
48
|
Ferrington DA, Tran TN, Lew KL, Van Remmen H, Gregerson DS. Different death stimuli evoke apoptosis via multiple pathways in retinal pigment epithelial cells. Exp Eye Res 2006; 83:638-50. [PMID: 16682026 DOI: 10.1016/j.exer.2006.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 02/01/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
Loss of retinal pigment epithelial (RPE) cells via apoptosis plays a prominent role in several retinal degenerative diseases, such as age-related macular degeneration, and with light damage. Strategies for preservation of vision that would interrupt the apoptotic cascade require understanding the molecular events associated with apoptosis. This study investigated the susceptibility of RPE to caspase-dependent and -independent apoptotic pathways when challenged with different stimuli, including oxidants, anti-Fas antibody, and activated cytotoxic T lymphocytes (CTLs). These experiments used novel RPE cell lines developed from wildtype and heterozygous mice with reduced levels of either Mn superoxide dismutatse (SOD) or CuZnSOD. Peroxide and 4-hydroxynonenal induced apoptosis through both caspase-independent and -dependent pathways, respectively. With both oxidants, translocation of apoptosis inducing factor into the nucleus was observed. Cells containing reduced levels of CuZnSOD were the most susceptible to oxidant-induced cell death. Targeted killing by CTLs and activation of the Fas death receptor induced caspase-dependent apoptosis. These results show stimulus-specific activation of either the caspase-dependent or -independent pathway. Since cultured RPE express the protein components required for different apoptotic pathways, they provide a good model system for studying molecular events associated with multiple signals that lead to cell death.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology, University of Minnesota, 380 Lions Research Building, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
49
|
Abstract
The retinal pigment epithelium (RPE) lying distal to the retina regulates the extracellular environment and provides metabolic support to the outer retina. RPE abnormalities are closely associated with retinal death and it has been claimed several of the most important diseases causing blindness are degenerations of the RPE. Therefore, the study of the RPE is important in Ophthalmology. Although visualisation of the RPE is part of clinical investigations, there are a limited number of methods which have been used to investigate RPE function. One of the most important is a study of the current generated by the RPE. In this it is similar to other secretory epithelia. The RPE current is large and varies as retinal activity alters. It is also affected by drugs and disease. The RPE currents can be studied in cell culture, in animal experimentation but also in clinical situations. The object of this review is to summarise this work, to relate it to the molecular membrane mechanisms of the RPE and to possible mechanisms of disease states.
Collapse
Affiliation(s)
- Geoffrey B Arden
- Department of Optometry and Visual Science, Henry Wellcome Laboratiories for Visual Sciences, City University, London, UK.
| | | |
Collapse
|
50
|
Rak DJ, Hardy KM, Jaffe GJ, McKay BS. Ca++-switch induction of RPE differentiation. Exp Eye Res 2006; 82:648-56. [PMID: 16289163 DOI: 10.1016/j.exer.2005.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 08/25/2005] [Accepted: 09/11/2005] [Indexed: 10/25/2022]
Abstract
Cultured retinal pigment epithelial (RPE) cells are commonly used as a model of the tissue to study their involvement in visual diseases. Unfortunately, cultured RPE often lose their differentiated phenotype reducing their usefulness as a model of the RPE in vivo. In this study, we used a Ca++-switch protocol to initiate the patterned expression of several phenotypic and functional markers of RPE differentiation. Cultured RPE cells from adult donors were maintained through at least six serial passages prior to assay to minimize their differentiated properties. The cells were then subjected to the Ca++-switch protocol and maintained at confluence for up to 4 months. Paired control and Ca++-switch cells were examined for phenotype, pigmentation, and the expression of tyrosinase, CRABP, myocilin, and bestrophin by western blot analysis. The Ca++-switch protocol led to a rapid restriction of N-cadherin to lateral cell borders, and to expression of tyrosinase by day 4. After 8 weeks, the experimental RPE monolayers began to accumulate visible pigment, and after 12 weeks CRABP expression was observed. Myocilin was observed at 4 months after the Ca++-switch but bestrophin was not detected at any time point. Our results suggest this protocol may drive epithelial morphogenesis in RPE cells. We note two specific differences in cells plated in low Ca++, reduced spreading on the substrate and coordinated development of cadherin adhesion when the Ca++-concentration is returned to normal. Thus, we suggest that this method produces phenotypic changes through multiple cell signalling pathways.
Collapse
Affiliation(s)
- Daniel J Rak
- Department of Ophthalmology, The University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|