1
|
Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol 2015. [DOI: 10.1134/s0026893315010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Ulianov SV, Gavrilov AA, Razin SV. Nuclear Compartments, Genome Folding, and Enhancer-Promoter Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:183-244. [DOI: 10.1016/bs.ircmb.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Abstract
The genome forms extensive and dynamic physical interactions with itself in the form of chromosome loops and bridges, thus exploring the three-dimensional space of the nucleus. It is now possible to examine these interactions at the molecular level, and we have gained glimpses of their functional implications. Chromosomal interactions can contribute to the silencing and activation of genes within the three-dimensional context of the nuclear architecture. Technical advances in detecting these interactions contribute to our understanding of the functional organization of the genome, as well as its adaptive plasticity in response to environmental changes during development and disease.
Collapse
Affiliation(s)
- Anita Göndör
- Department of Microbiology, Tumor and Cell Biology, Nobels väg 16, Box 280, Karolinska Institute, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
4
|
Using cells encapsulated in agarose microbeads to analyse nuclear structure and functions. Methods Mol Biol 2008. [PMID: 18951184 DOI: 10.1007/978-1-60327-461-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
It is now generally agreed that the nuclei of higher eukaryotes, and particularly of mammalian cells, are highly structured and that different aspects of this structure contribute to the regulation of function (1, 2). Despite the general consensus, the key mechanisms that link nuclear structure and function have proved elusive. A major reason for this is a lack of techniques that allow nuclei to be manipulated in a way that preserves the complex architectural features that are present in vivo. Historically, significant progress in understanding the makeup of nuclei from mammalian cells has been made using cells that are permeabilised in a physiological buffer after being encapsulated in agarose microbeads. By using such beads, cells are protected from shear forces that otherwise can degrade crucial elements of the architecture that it is essential to preserve.
Collapse
|
5
|
Hu HG, Scholten I, Gruss C, Knippers R. The distribution of the DEK protein in mammalian chromatin. Biochem Biophys Res Commun 2007; 358:1008-14. [PMID: 17524367 DOI: 10.1016/j.bbrc.2007.05.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/02/2007] [Indexed: 11/19/2022]
Abstract
DEK is an abundant and ubiquitous chromatin protein. Here we investigate whether DEK is regularly distributed in the chromatin of human HeLa cells. We show that DEK appears to be excluded from the heterochromatic compartment. However, DEK seems to colocalize with a subfraction of chromatin bearing acetylated histone H4. We examined certain DNA sequences in specifically immunoprecipitated chromatin for four selected human genes. We found that most of the investigated gene sequences were moderately enriched in immunoprecipitated chromatin. In contrast, a promoter-proximal element of the human TOP1 gene was highly enriched in the chromatin immunoprecipitates. This enrichment was lost when cells were treated with alpha-amanitin showing that DEK binds to this particular site only when the TOP1 gene is actively expressed. Our conclusion is that DEK could serve as an architectural protein at the promoter or enhancer sites of a subfraction of human genes.
Collapse
Affiliation(s)
- Hong-gang Hu
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
6
|
Philimonenko AA, Hodný Z, Jackson DA, Hozák P. The microarchitecture of DNA replication domains. Histochem Cell Biol 2005; 125:103-17. [PMID: 16247614 DOI: 10.1007/s00418-005-0090-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2005] [Indexed: 02/07/2023]
Abstract
Most DNA synthesis in HeLa cell nucleus is concentrated in discrete foci. These synthetic sites can be identified by electron microscopy after allowing permeabilized cells to elongate nascent DNA in the presence of biotin-dUTP. Biotin incorporated into nascent DNA can be then immunolabeled with gold particles. Two types of DNA synthetic sites/replication factories can be distinguished at ultrastructural level: (1) electron-dense structures--replication bodies (RB), and (2) focal replication sites with no distinct underlying structure--replication foci (RF). The protein composition of these synthetic sites was studied using double immunogold labeling. We have found that both structures contain (a) proteins involved in DNA replication (DNA polymerase alpha, PCNA), (b) regulators of the cell cycle (cyclin A, cdk2), and (c) RNA processing components like Sm and SS-B/La auto antigens, p80-coilin, hnRNPs A1 and C1/C2. However, at least four regulatory and structural proteins (Cdk1, cyclin B1, PML and lamin B1) differ in their presence in RB and RF. Moreover, in contrast to RF, RB have structural organization. For example, while DNA polymerase alpha, PCNA and hnRNP A1 were diffusely spread throughout RB, hnRNP C1/C2 was found only at the very outside. Surprisingly, RB contained only small amounts of DNA. In conclusion, synthetic sites of both types contain similar but not the same sets of proteins. RB, however, have more developed microarchitecture, apparently with specific functional zones. This data suggest possible differences in genome regions replicated by these two types of replication factories.
Collapse
Affiliation(s)
- Anatoly A Philimonenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20, Prague 4-Krc, Czech Republic
| | | | | | | |
Collapse
|
7
|
Radichev I, Parashkevova A, Anachkova B. Initiation of DNA replication at a nuclear matrix-attached chromatin fraction. J Cell Physiol 2005; 203:71-7. [PMID: 15493011 DOI: 10.1002/jcp.20203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is still unclear what nuclear components support initiation of DNA replication. To address this issue, we developed a cell-free replication system in which the nuclear matrix along with the residual matrix-attached chromatin was used as a substrate for DNA replication. We found out that initiation occurred at late G1 residual chromatin but not at early G1 chromatin and depended on cytosolic and nuclear factors present in S phase cells but not in G1 cells. Initiation of DNA replication occurred at discrete replication foci in a pattern typical for early S phase. To prove that the observed initiation takes place at legitimate DNA replication origins, the in vitro synthesized nascent DNA strands were isolated and analyzed. It was shown that they were enriched in sequences from the core origin region of the early firing, dihydrofolate reductase origin of replication ori-beta and not in distal to the origin sequences. A conclusion is drawn that initiation of DNA replication occurs at discrete sub-chromosomal structures attached to the nuclear matrix.
Collapse
Affiliation(s)
- Ilian Radichev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | |
Collapse
|
8
|
Eda H, Ishii Y, Obayashi M, Harada S, Ito S, Fujita T, Ikeda M, Kusano S, Kitamura R, Suzuki C, Hara T, Watanabe M, Satoh H, Sugihara K, Yanagi K. Monoclonal antibodies against regions topologically surrounding the homodimeric beta-barrel interface of Epstein-Barr virus nuclear antigen-1. Virus Res 2004; 109:87-94. [PMID: 15826916 DOI: 10.1016/j.virusres.2004.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/15/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA-1) is essential for maintenance of EBV latency. Four mouse monoclonal antibodies (mAbs) against the part of the EBNA-1 sequence (amino acids 451-641) containing the domain that forms a homodimeric eight-stranded beta-barrel were generated and characterized, examined for immunocytochemical staining, immunoblotting and isoelectric focusing of EBNA-1 proteins, and used to examine interactions between EBNA-1 polypeptides by far-Western blot assays. Far-Western blot analyses using the mAbs suggest that both the beta-strand (aa 593-604) and alpha helix (aa 568-582) are essential for EBNA-1 dimerization, consistent with yeast two-hybrid studies of mutant EBNA-1 polypeptides. These mAbs should be useful for studies on the structure and function of EBNA-1 proteins.
Collapse
Affiliation(s)
- Hiroyuki Eda
- Herpesvirus Laboratory Department of Virology I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
During S phase, DNA replication begins at numerous sites throughout the genome. Textbooks would have us believe that each replication fork tracks along the immobile DNA until it runs into the adjacent fork, but recent results question this view. Various studies show that replication forks are concentrated in immobile 'factory' units throughout the nucleus. Each factory contains as many as 40 different replication forks and associated polymerases. These findings suggest that newly synthesized DNA is extruded as each template moves like a conveyor through the factory.
Collapse
Affiliation(s)
- P Hozák
- CRC Nuclear Structure and Function Research Group, Sir William Dunn School of Pathology, University of Oxford, UK
| | | |
Collapse
|
10
|
Philimonenko VV, Flechon JE, Hozák P. The nucleoskeleton: a permanent structure of cell nuclei regardless of their transcriptional activity. Exp Cell Res 2001; 264:201-10. [PMID: 11262177 DOI: 10.1006/excr.2001.5150] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nuclear matrix or nucleoskeleton is thought to provide structural basis for intranuclear order. However, the nature of this structure is still uncertain because of numerous technical difficulties in its visualization. To reveal the "real" morphology of the nucleoskeleton, and to identify possible sources of structural artifacts, three methods of nucleoskeleton preparations were compared. The nucleoskeleton visualized by all these techniques consists of identical elements: nuclear lamina and an inner network comprising core filaments and the "diffuse" nucleoskeleton. We then tested if the nucleoskeleton is a stable structure or a transient transcription-dependent structure. Incubation with transcription inhibitors (alpha-amanitin, actinomycin D, and DRB) for various periods of time had no obvious effect on the morphology of the nucleoskeleton. A typical nucleoskeleton structure was observed also in a physiological model-in transcriptionally inactive mouse 2-cell embryos and in active 8- to 16-cell embryos. Our data suggest that the nucleoskeleton is a permanent structure of the cell nucleus regardless of the nuclear transcriptional state, and the principal architecture of the nucleoskeleton is identical throughout the interphase.
Collapse
Affiliation(s)
- V V Philimonenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská 1083, Prague 4-Krc, 142 20, Czech Republic
| | | | | |
Collapse
|
11
|
Kennedy BK, Barbie DA, Classon M, Dyson N, Harlow E. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev 2000; 14:2855-68. [PMID: 11090133 PMCID: PMC317063 DOI: 10.1101/gad.842600] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using methods that conserve nuclear architecture, we have reanalyzed the spatial organization of the initiation of mammalian DNA synthesis. Contrary to the commonly held view that replication begins at hundreds of dispersed nuclear sites, primary fibroblasts initiate synthesis in a limited number of foci that contain replication proteins, surround the nucleolus, and overlap with previously identified internal lamin A/C structures. These foci are established in early G(1)-phase and also contain members of the retinoblastoma protein family. Later, in S-phase, DNA replication sites distribute to regions located throughout the nucleus. As this progression occurs, association with the lamin structure and pRB family members is lost. A similar temporal progression is found in all the primary cells we have examined but not in most established cell lines, indicating that the immortalization process modifies spatial control of DNA replication. These findings indicate that in normal mammalian cells, the onset of DNA synthesis is coordinately regulated at a small number of previously unrecognized perinucleolar sites that are selected in early G(1)-phase.
Collapse
Affiliation(s)
- B K Kennedy
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
12
|
Abstract
To duplicate their genomes, eukaryotic cells have to overcome some formidable chemical and topological hurdles, considering the number of nucleotides that have to be polymerized faithfully and the sheer physical size of the DNA molecules that have to be disentangled and partitioned in an orderly way. This article tackles one particular aspect of the process: the organization of the apparatus that advances the replicative growing forks along the DNA molecule. Here, I suggest a solution to the difficulty of separating the daughter molecules in an orderly way and propose an alternative to the current models, which reconciles the use of a single polarity of synthesis by the DNA polymerases with the need for parallel polymerization of two strands of opposite polarity.
Collapse
Affiliation(s)
- A Falaschi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99. I 34012, Trieste, Italy.
| |
Collapse
|
13
|
Masuzawa N, Urata Y, Yagi K, Ashihara T. Constrained, Random, and Independent Motion of Texas-Red-labeled Chromatin in Living Interphase PtK2 Cells. Acta Histochem Cytochem 2000. [DOI: 10.1267/ahc.33.419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Naoko Masuzawa
- First Department of Pathology, Kyoto Prefectural University of Medicine
| | - Yoji Urata
- First Department of Pathology, Kyoto Prefectural University of Medicine
| | - Katsumi Yagi
- Department of Mathematics, Kyoto Prefectural University of Medicine
| | - Tsukasa Ashihara
- First Department of Pathology, Kyoto Prefectural University of Medicine
| |
Collapse
|
14
|
Mishra RK, Karch F. Boundaries that demarcate structural and functional domains of chromatin. J Biosci 1999. [DOI: 10.1007/bf02941252] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Kricka LJ, Stanley PE. Assays using digital fluorescence: 1985-1998. LUMINESCENCE 1999; 14:271-9. [PMID: 10512992 DOI: 10.1002/(sici)1522-7243(199909/10)14:5<271::aid-bio549>3.0.co;2-o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Luminescence continues to provide comprehensive literature surveys which will be published in most issues. These are a continuation of the literature surveys begun in 1986 in the Journal of Bioluminescence and Chemiluminescence which, up until 1998, encompassed more than 6000 references cited by year or specialized topic. With this newly named journal these searches are expanding to reflect the journal's wider scope. In future we will cover all fundamental and applied aspects of biological and chemical luminescence and include not only bioluminescence and chemiluminescence but also fluorescence, time resolved fluorescence, electrochemiluminescence, phosphorescence, sonoluminescence, lyoluminescence and triboluminescence. The compilers would be pleased to receive any comments from the readership. Contact by e-mail: L.J. Kricka: larry_kricka@path1a.med.upenn.edu or P.E. Stanley: Stanley@LUMIWEB.COM Copyright 1999 John Wiley & Sons, Ltd.
Collapse
|
16
|
Wei X, Somanathan S, Samarabandu J, Berezney R. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 1999; 146:543-58. [PMID: 10444064 PMCID: PMC2150559 DOI: 10.1083/jcb.146.3.543] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1998] [Accepted: 06/25/1999] [Indexed: 11/22/2022] Open
Abstract
Transcription sites are detected by labeling nascent transcripts with BrUTP in permeabilized 3T3 mouse fibroblasts followed by laser scanning confocal microscopy. Inhibition and enzyme digestion studies confirm that the labeled sites are from RNA transcripts and that RNA polymerase I (RP I) and II (RP II) are responsible for nucleolar and extranucleolar transcription, respectively. An average of 2,000 sites are detected per nucleus with over 90% in the extranucleolar compartment where they are arranged in clusters and three-dimensional networklike arrays. The number of transcription sites, their three-dimensional organization and arrangement into functional zones (Wei et al. 1998) is strikingly maintained after extraction for nuclear matrix. Significant levels of total RP II mediated transcription sites (45%) were associated with splicing factor-rich nuclear speckles even though the speckles occupied <10% of the total extranucleolar space. Moreover, the vast majority of nuclear speckles (>90%) had moderate to high levels of associated transcription activity. Transcription sites were found along the periphery as well as inside the speckles themselves. These spatial relations were confirmed in optical sections through individual speckles and after in vivo labeling of nascent transcripts. Our results demonstrate that nuclear speckles and their surrounding regions are major sites of RP II-mediated transcription in the cell nucleus, and support the view that both speckle- and nonspeckle-associated regions of the nucleus contain sites for the coordination of transcription and splicing processes.
Collapse
Affiliation(s)
- Xiangyun Wei
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Suryanarayan Somanathan
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Jagath Samarabandu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Ronald Berezney
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| |
Collapse
|
17
|
Abstract
Models for replication and transcription often display polymerases that track like locomotives along their DNA templates. However, recent evidence supports an alternative model in which DNA and RNA polymerases are immobilized by attachment to larger structures, where they reel in their templates and extrude newly made nucleic acids. These polymerases do not act independently; they are concentrated in discrete "factories," where they work together on many different templates. Evidence for models involving tracking and immobile polymerases is reviewed.
Collapse
Affiliation(s)
- P R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
18
|
Manders EM, Kimura H, Cook PR. Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J Cell Biol 1999; 144:813-21. [PMID: 10085283 PMCID: PMC2148202 DOI: 10.1083/jcb.144.5.813] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Individual chromosomes are not directly visible within the interphase nuclei of most somatic cells; they can only be seen during mitosis. We have developed a method that allows DNA strands to be observed directly in living cells, and we use it to analyze how mitotic chromosomes form. A fluorescent analogue (e.g., Cy5-dUTP) of the natural precursor, thymidine triphosphate, is introduced into cells, which are then grown on the heated stage of a confocal microscope. The analogue is incorporated by the endogenous enzymes into DNA. As the mechanisms for recognizing and removing the unusual residues do not prevent subsequent progress around the cell cycle, the now fluorescent DNA strands can be followed as they assemble into chromosomes, and segregate to daughters and granddaughters. Movies of such strands in living cells suggest that chromosome axes follow simple recognizable paths through their territories during G2 phase, and that late replicating regions maintain their relative positions as prophase chromosomes form. Quantitative analysis confirms that individual regions move little during this stage of chromosome condensation. As a result, the gross structure of an interphase chromosome territory is directly related to that of the prophase chromosome.
Collapse
Affiliation(s)
- E M Manders
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | | | | |
Collapse
|
19
|
Zink D, Bornfleth H, Visser A, Cremer C, Cremer T. Organization of early and late replicating DNA in human chromosome territories. Exp Cell Res 1999; 247:176-88. [PMID: 10047460 DOI: 10.1006/excr.1998.4311] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It has been suggested that DNA organized into replication foci during S-phase remains stably aggregated in non-S-phase cells and that these stable aggregates provide fundamental units of nuclear or chromosome architecture [C. Meng and R. Berezney (1991) J. Cell Biol. 115, 95a; E. Sparvoli et al. (1994) J. Cell Sci. 107, 3097-3103; D. A. Jackson and A. Pombo (1998) J. Cell Biol. 140, 1285-1295; D. Zink et al. (1998) Hum. Genet. 112, 241-251]. To test this hypothesis, early and late replicating DNA of human diploid fibroblasts was labeled specifically by incorporating two different thymidine analogs [J. Aten (1992) Histochem. J. 24, 251-259; A. E. Visser (1998) Exp. Cell Res. 243, 398-407], during distinct time segments of S-phase. On mitotic chromosomes the amount and spatial distribution of early and late replicating DNA corresponded to R/G-banding patterns. After labeling cells were grown for several cell cycles. During this growth period individual replication labeled chromosomes were distributed into an environment of unlabeled chromosomes. The nuclear territories of chromosomes 13 and 15 were identified by additional chromosome painting. The distribution of early and late replicating DNA was analyzed for both chromosomes in quiescent (G0) cells or at G1. Early and late replicating DNA occupied distinct foci within chromosome territories, displaying a median overlap of only 5-10%. There was no difference in this regard between G1 and G0 cells. Chromosome 13 and 15 territories displayed a similar structural rearrangement in G1 cells compared to G0 cells resulting in the compaction of the territories. The findings demonstrate that early and late replicating foci are maintained during subsequent cell cycles as distinctly separated units of chromosome organization. These findings are compatible with the hypothesis that DNA organized into replicon clusters remains stably aggregated in non-S-phase cells.
Collapse
Affiliation(s)
- D Zink
- Institut für Anthropologie und Humangenetik, LMU München, Goethestrasse 31, München, D-80336, Germany.
| | | | | | | | | |
Collapse
|
20
|
Krude T. Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. Exp Cell Res 1999; 247:148-59. [PMID: 10047457 DOI: 10.1006/excr.1998.4342] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synchronization effects of the plant amino acid mimosine on proliferating higher eukaryotic cells are still controversial. Here, I show that 0.5 mM mimosine can induce a cell cycle arrest of human somatic cells in late G1 phase, before establishment of active DNA replication forks. The DNA content of nuclei isolated from mimosine-treated cells was determined by flow cytometry. The presence or absence of DNA replication forks in these isolated nuclei was then detected by DNA replication run-on assays in vitro. Treatment of asynchronously proliferating HeLa or EJ30 cells for 24 h with 0.5 mM mimosine resulted in a population synchronized in late G1 phase. S phase entry was inhibited by 0.5 mM mimosine in cells released from a block in mitosis or from quiescence. When added to early S phase cells, 0.5 mM mimosine did not prevent S phase transit, but delayed progression through late stages of S phase after a lag of 4 h, eventually resulting in a G1 phase population by preventing entry into the subsequent S phase. In contrast, lower concentrations of mimosine (0.1-0.2 mM) failed to prevent S phase entry, resulting in cells containing active DNA replication foci. The G1 phase arrest by 0.5 mM mimosine was reversible upon mimosine withdrawal. This synchronization protocol using 0.5 mM mimosine can be exploited for studying the initiation of human DNA replication in vitro.
Collapse
Affiliation(s)
- T Krude
- Wellcome/CRC Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, United Kingdom.
| |
Collapse
|
21
|
Ma H, Samarabandu J, Devdhar RS, Acharya R, Cheng PC, Meng C, Berezney R. Spatial and temporal dynamics of DNA replication sites in mammalian cells. J Biophys Biochem Cytol 1998; 143:1415-25. [PMID: 9852140 PMCID: PMC2132991 DOI: 10.1083/jcb.143.6.1415] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluorescence microscopic analysis of newly replicated DNA has revealed discrete granular sites of replication (RS). The average size and number of replication sites from early to mid S-phase suggest that each RS contains numerous replicons clustered together. We are using fluorescence laser scanning confocal microscopy in conjunction with multidimensional image analysis to gain more precise information about RS and their spatial-temporal dynamics. Using a newly improved imaging segmentation program, we report an average of approximately 1,100 RS after a 5-min pulse labeling of 3T3 mouse fibroblast cells in early S-phase. Pulse-chase-pulse double labeling experiments reveal that RS take approximately 45 min to complete replication. Appropriate calculations suggest that each RS contains an average of 1 mbp of DNA or approximately 6 average-sized replicons. Double pulse-double chase experiments demonstrate that the DNA sequences replicated at individual RS are precisely maintained temporally and spatially as the cell progresses through the cell cycle and into subsequent generations. By labeling replicated DNA at the G1/S borders for two consecutive cell generations, we show that the DNA synthesized at early S-phase is replicated at the same time and sites in the next round of replication.
Collapse
Affiliation(s)
- H Ma
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Ali RB, Teo AK, Oh HK, Chuang LS, Ayi TC, Li BF. Implication of localization of human DNA repair enzyme O6-methylguanine-DNA methyltransferase at active transcription sites in transcription-repair coupling of the mutagenic O6-methylguanine lesion. Mol Cell Biol 1998; 18:1660-9. [PMID: 9488483 PMCID: PMC108881 DOI: 10.1128/mcb.18.3.1660] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA lesions that halt RNA polymerase during transcription are preferentially repaired by the nucleotide excision repair pathway. This transcription-coupled repair is initiated by the arrested RNA polymerase at the DNA lesion. However, the mutagenic O6-methylguanine (6MG) lesion which is bypassed by RNA polymerase is also preferentially repaired at the transcriptionally active DNA. We report here a plausible explanation for this observation: the human 6MG repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is present as speckles concentrated at active transcription sites (as revealed by polyclonal antibodies specific for its N and C termini). Upon treatment of cells with low dosages of N-methylnitrosourea, which produces 6MG lesions in the DNA, these speckles rapidly disappear, accompanied by the formation of active-site methylated MGMT (the repair product of 6MG by MGMT). The ability of MGMT to target itself to active transcription sites, thus providing an effective means of repairing 6MG lesions, possibly at transcriptionally active DNA, indicates its crucial role in human cancer and chemotherapy by alkylating agents.
Collapse
Affiliation(s)
- R B Ali
- Chemical Carcinogenesis Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
23
|
Nakagawa A, Kobayashi N, Muramatsu T, Yamashina Y, Shirai T, Hashimoto MW, Ikenaga M, Mori T. Three-dimensional visualization of ultraviolet-induced DNA damage and its repair in human cell nuclei. J Invest Dermatol 1998; 110:143-8. [PMID: 9457909 DOI: 10.1046/j.1523-1747.1998.00100.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The two major forms of DNA damage produced by 254 nm UV light are cyclobutane pyrimidine dimer (CPD) and (6-4) photoproduct (6-4PP). Both photolesions are repaired in normal human cells by nucleotide excision repair; however, little is known about where CPD or 6-4PP are repaired in relation to the various subnuclear structures. This study aimed to produce a three-dimensional demonstration of UV-induced DNA damage and its repair in human cell nuclei. We first investigated the repair kinetics of CPD and 6-4PP using an enzyme-linked immunosorbent assay with damage-specific monoclonal antibodies in normal human and xeroderma pigmentosum complementation group C cells. We also examined the kinetics of repair DNA synthesis (unscheduled DNA synthesis) using a quantitative immunofluorescence method with anti-5-bromo-2'-deoxyuridine antibodies. We confirmed the normal repair in normal human cells and the impaired repair in xeroderma pigmentosum complementation group C cells. Then, using laser scanning confocal microscopy, we succeeded in forming a three-dimensional visualization of the nuclear localization of CPD, 6-4PP, and unscheduled DNA synthesis in individual human cells. The typical three-dimensional images of photolesions or unscheduled DNA synthesis at various repair times reflected the repair kinetics obtained by enzyme-linked immunosorbent assay or immunofluorescence very well. The important finding is that the punctate, not diffusely spread, nuclear localization of unrepaired 6-4PP was found 2 h after irradiation. Similarly, the focal nuclear localization of unscheduled DNA synthesis was observed during both the first and the second 3 h repair periods. The present results suggest that both 6-4PP and CPD are nonrandomly repaired from nuclei in normal human cells.
Collapse
Affiliation(s)
- A Nakagawa
- Department of Dermatology, Nara Medical University, Kashihara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cardoso MC, Joseph C, Rahn HP, Reusch R, Nadal-Ginard B, Leonhardt H. Mapping and use of a sequence that targets DNA ligase I to sites of DNA replication in vivo. J Cell Biol 1997; 139:579-87. [PMID: 9348276 PMCID: PMC2141708 DOI: 10.1083/jcb.139.3.579] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mammalian nucleus is highly organized, and nuclear processes such as DNA replication occur in discrete nuclear foci, a phenomenon often termed "functional organization" of the nucleus. We describe the identification and characterization of a bipartite targeting sequence (amino acids 1-28 and 111-179) that is necessary and sufficient to direct DNA ligase I to nuclear replication foci during S phase. This targeting sequence is located within the regulatory, NH2-terminal domain of the protein and is dispensable for enzyme activity in vitro but is required in vivo. The targeting domain functions position independently at either the NH2 or the COOH termini of heterologous proteins. We used the targeting sequence of DNA ligase I to visualize replication foci in vivo. Chimeric proteins with DNA ligase I and the green fluorescent protein localized at replication foci in living mammalian cells and thus show that these subnuclear functional domains, previously observed in fixed cells, exist in vivo. The characteristic redistribution of these chimeric proteins makes them unique markers for cell cycle studies to directly monitor entry into S phase in living cells.
Collapse
Affiliation(s)
- M C Cardoso
- Department of Nephrology, Hypertension, and Genetics, Franz Volhard Clinic, Max Delbrück Center for Molecular Medicine, Humboldt University, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Neri LM, Riederer BM, Valmori A, Capitani S, Martelli AM. Different concentrations of Mg++ ions affect nuclear matrix protein distribution during thermal stabilization of isolated nuclei. J Histochem Cytochem 1997; 45:1317-28. [PMID: 9313794 DOI: 10.1177/002215549704501001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nuclear matrix, a proteinaceous network believed to be a scaffolding structure determining higher-order organization of chromatin, is usually prepared from intact nuclei by a series of extraction steps. In most cell types investigated the nuclear matrix does not spontaneously resist these treatments but must be stabilized before the application of extracting agents. Incubation of isolated nuclei at 37C or 42C in buffers containing Mg++ has been widely employed as stabilizing agent. We have previously demonstrated that heat treatment induces changes in the distribution of three nuclear scaffold proteins in nuclei prepared in the absence of Mg++ ions. We studied whether different concentrations of Mg++ (2.0-5 mM) affect the spatial distribution of nuclear matrix proteins in nuclei isolated from K562 erythroleukemia cells and stabilized by heat at either 37C or 42C. Five proteins were studied, two of which were RNA metabolism-related proteins (a 105-kD component of splicing complexes and an RNP component), one a 126-kD constituent of a class of nuclear bodies, and two were components of the inner matrix network. The localization of proteins was determined by immunofluorescent staining and confocal scanning laser microscope. Mg++ induced significant changes of antigen distribution even at the lowest concentration employed, and these modifications were enhanced in parallel with increase in the concentration of the divalent cation. The different sensitivity to heat stabilization and Mg++ of these nuclear proteins might reflect a different degree of association with the nuclear scaffold and can be closely related to their functional or structural role.
Collapse
Affiliation(s)
- L M Neri
- Istituto di Anatomia Umana Normale, Università di Ferrara, Italy
| | | | | | | | | |
Collapse
|
26
|
Krude T, Musahl C, Laskey RA, Knippers R. Human replication proteins hCdc21, hCdc46 and P1Mcm3 bind chromatin uniformly before S-phase and are displaced locally during DNA replication. J Cell Sci 1996; 109 ( Pt 2):309-18. [PMID: 8838654 DOI: 10.1242/jcs.109.2.309] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the Mcm-protein family have recently been shown to be involved in restricting DNA replication to a single cycle in Xenopus laevis egg extracts. In this study, we extended these observations to human somatic cells and analysed the localisation of the human Mcm-proteins Cdc21, Cdc46 and P1Mcm3 in replicating HeLa cell nuclei. These Mcm-proteins are entirely nuclear in interphase cells and apparently exist in two populations: a nucleosolic population, and a population bound to a nuclear structure, most likely chromatin. The bound population is detected throughout the nucleus in late G1 and early S, and at discrete subnuclear sites following further progression of S-phase. We use high resolution confocal microscopy to determine the subnuclear sites of chromatin-bound Mcm proteins in comparison to the sites of replicating DNA. Importantly, hCdc21, hCdc46 and P1Mcm3 do not colocalise with replication foci, instead these proteins appear to coincide with subnuclear sites of unreplicated chromatin. During progression of S-phase hCdc21, hCdc46 and P1Mcm3 are displaced from their site on chromatin at the time when this site is replicated. Consequently, early replicating sites do not contain bound hCdc21, hCdc46 or P1Mcm3 during later stages of S-phase. Furthermore, G2 nuclei and condensed chromatin in mitotic cells do not contain bound hCdc21, hCdc46 or P1Mcm3. Thus, the human Mcm-proteins Cdc21, Cdc46 and P1Mcm3 are not concentrated at sites of DNA replication. Instead, they appear to be present only on unreplicated chromatin and are displaced from replicating chromatin, consistent with a role in monitoring unreplicated chromatin and ensuring only a single round of DNA replication per cell cycle.
Collapse
Affiliation(s)
- T Krude
- Wellcome/CRC Institute, Cambridge, UK.
| | | | | | | |
Collapse
|
27
|
Berezney R, Mortillaro MJ, Ma H, Wei X, Samarabandu J. The nuclear matrix: a structural milieu for genomic function. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:1-65. [PMID: 8575878 DOI: 10.1016/s0074-7696(08)61228-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
While significant progress has been made in elucidating molecular properties of specific genes and their regulation, our understanding of how the whole genome is coordinated has lagged behind. To understand how the genome functions as a coordinated whole, we must understand how the nucleus is put together and functions as a whole. An important step in that direction occurred with the isolation and characterization of the nuclear matrix. Aside from the plethora of functional properties associated with these isolated nuclear structures, they have enabled the first direct examination and molecular cloning of specific nuclear matrix proteins. The isolated nuclear matrix can be used for providing an in vitro model for understanding nuclear matrix organization in whole cells. Recent development of high-resolution and three-dimensional approaches for visualizing domains of genomic organization and function in situ has provided corroborative evidence for the nuclear matrix as the site of organization for replication, transcription, and post-transcriptional processing. As more is learned about these in situ functional sites, appropriate experiments could be designed to test molecular mechanisms with the in vitro nuclear matrix systems. This is illustrated in this chapter by the studies of nuclear matrix-associated DNA replication which have evolved from biochemical studies of in vitro nuclear matrix systems toward three-dimensional computer image analysis of replication sites for individual genes.
Collapse
Affiliation(s)
- R Berezney
- Department of Biological Sciences, State University of New York at Buffalo 14260, USA
| | | | | | | | | |
Collapse
|
28
|
Leonhardt H, Cardoso MC. Targeting and association of proteins with functional domains in the nucleus: the insoluble solution. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162B:303-35. [PMID: 8557490 DOI: 10.1016/s0074-7696(08)62620-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mammalian nucleus is highly organized into distinct functional domains separating different biochemical processes such as transcription, RNA processing, DNA synthesis, and ribosome assembly. A number of proteins known to participate in these processes were found to be specifically localized at their corresponding functional domains. A distinct targeting sequence, necessary and sufficient for the localization to DNA replication foci, was identified in the N-terminal, regulatory domain of DNA methyltransferase and DNA ligase I and might play a role in the coordination of DNA replication and DNA methylation. The fact that the targeting sequence is absent in lower eukaryotic and prokaryotic DNA ligase I homologs suggests that "targeting" is a rather recent development in evolution. Finally, targeting sequences have also been identified in some splicing factors and in viral proteins, which are responsible for their localization to the speckled compartment and to the nucleolus, respectively. These higher levels of organization are likely to contribute to the regulation and coordination of the complex and interdependent biochemical processes in the mammalian nucleus.
Collapse
Affiliation(s)
- H Leonhardt
- Humboldt Universität Berlin, Franz-Volhard-Klinik am Max-Delbrück-Centrum für Molekulare Medizin, Department of Nephrology, Hypertension, and Genetics, Germany
| | | |
Collapse
|
29
|
Abstract
Most models for transcription and replication involve polymerases that track along the template. We review here experiments that suggest an alternative in which polymerization occurs as the template slides past a polymerase fixed to a large structure in the eukaryotic nucleus--a "factory" attached to a nucleoskeleton. This means that higher-order structure dictates how and when DNA is replicated or transcribed.
Collapse
Affiliation(s)
- D A Jackson
- CRC Nuclear Structure and Function Research Group, Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | |
Collapse
|
30
|
Fernandes DJ, Catapano CV. The nuclear matrix as a site of anticancer drug action. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:539-76. [PMID: 8575887 DOI: 10.1016/s0074-7696(08)61238-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many nuclear functions, including the organization of the chromatin within the nucleus, depend upon the presence of a nuclear matrix. Nuclear matrix proteins are involved in the formation of chromatin loops, control of DNA supercoiling, and regulation and coordination of transcriptional and replicational activities within individual loops. Various structural and functional components of the nuclear matrix represent potential targets for anticancer agents. Alkylating agents and ionizing radiation interact preferentially with nuclear matrix proteins and matrix-associated DNA. Other chemotherapeutic agents, such as fludarabine phosphate and topoisomerase II-active drugs, interact specifically with matrix-associated enzymes, such as DNA primase and the DNA topoisomerase II alpha isozyme. The interactions of these agents at the level of the nuclear matrix may compromise multiple nuclear functions and be relevant to their antitumor activities.
Collapse
Affiliation(s)
- D J Fernandes
- Department of Experimental Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston 29425, USA
| | | |
Collapse
|
31
|
van Driel R, Wansink DG, van Steensel B, Grande MA, Schul W, de Jong L. Nuclear domains and the nuclear matrix. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:151-89. [PMID: 8575880 DOI: 10.1016/s0074-7696(08)61231-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This overview describes the spatial distribution of several enzymatic machineries and functions in the interphase nucleus. Three general observations can be made. First, many components of the different nuclear machineries are distributed in the nucleus in a characteristic way for each component. They are often found concentrated in specific domains. Second, nuclear machineries for the synthesis and processing of RNA and DNA are associated with an insoluble nuclear structure, called nuclear matrix. Evidently, handling of DNA and RNA is done by immobilized enzyme systems. Finally, the nucleus seems to be divided in two major compartments. One is occupied by compact chromosomes, the other compartment is the space between the chromosomes. In the latter, transcription takes place at the surface of chromosomal domains and it houses the splicing machinery. The relevance of nuclear organization for efficient gene expression is discussed.
Collapse
Affiliation(s)
- R van Driel
- E. C. Slater Instituut, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Meaking WS, Edgerton J, Wharton CW, Meldrum RA. Electroporation-induced damage in mammalian cell DNA. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1264:357-62. [PMID: 8547324 DOI: 10.1016/0167-4781(95)00177-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Electroporation induced damage in the DNA of HL60 cells has been investigated by alkaline elution techniques. DNA damage is minimised by reducing the total charge applied (i.e., voltage x capacitance). Reduction of either of these electrical parameters, however, compromises the induced permeability of the cells to small molecules. The data presented concerning the effects of voltage and capacitance on DNA damage and the permeability of cells can be used to specify optimum conditions for electroporation in which DNA damage is minimised. The duration for which the current is applied can be seen to have a significant effect on the level of DNA damage. A modest temperature rise may occur when an electric charge is passed through electroporation buffer, but this event alone does not induce DNA damage in cells. The effect of voltage upon the permeability of HL60 cells to fluorescent-labelled molecules of varying molecular weight is reported.
Collapse
Affiliation(s)
- W S Meaking
- School of Biochemistry, University of Birmingham, Edgbaston, UK
| | | | | | | |
Collapse
|
33
|
Dirks RW, Daniël KC, Raap AK. RNAs radiate from gene to cytoplasm as revealed by fluorescence in situ hybridization. J Cell Sci 1995; 108 ( Pt 7):2565-72. [PMID: 7593297 DOI: 10.1242/jcs.108.7.2565] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes for Epstein-Barr virus, human cytomegalovirus immediate early antigen and luciferase are abundantly transcribed in Namalwa, rat 9G and X1 cells, respectively. The EBV transcripts and HCMV-IE transcripts are extensively spliced, while in the luciferase transcript only a small intron sequence has to be spliced out. EBV transcripts are hardly localized in the cytoplasm while the luciferase and HCMV-IE transcripts are present in the cytoplasm and translated into proteins. We have correlated these characteristics with nuclear RNA distribution patterns as seen by fluorescence in situ hybridization. Transcripts of the HCMV-IE transcription unit were shown to be present in a main nuclear signal in the form of a track or elongated dot and as small nuclear RNA signals that radiate from this site towards the cytoplasm. A similar distribution pattern of small RNA signals was observed for transcripts of the luciferase gene, whereas the main nuclear signal was always observed as a dot and never as a track or elongated dot. In Namalwa cells, EBV transcripts were only present as track-like signals. The results suggest that when the extent for splicing is high, unspliced or partially spliced mRNAs begin to occupy elongated dot or track-like domains in the vicinity of the gene. When the extent of splicing is low, splicing is completed co-transcriptionally, leading to a bright dot-like signal. The presence of small nuclear spots in addition to the main signal correlates with cytoplasmic mRNA expression. The small spots most likely represent, therefore, mRNAs in transport to the cytoplasm.
Collapse
Affiliation(s)
- R W Dirks
- Department of Cytochemistry and Cytometry, Sylvius Laboratories, University of Leiden, The Netherlands
| | | | | |
Collapse
|
34
|
Meller VH, Fisher PA, Berrios M. Intranuclear distribution of DNA topoisomerase II and chromatin. Chromosome Res 1995; 3:255-60. [PMID: 7606364 DOI: 10.1007/bf00713051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Domain-specific anti-Drosophila DNA topoisomerase II antibodies were generated, affinity purified and used for confocal laser scanning immunofluorescence microscopy. Except for the nucleolus, DNA topoisomerase II is distributed throughout interphase nuclei. In adult accessory glands as well as third instar larval neural ganglion and imaginal disk nuclei, DNA topoisomerase II shows areas of co-localization with chromatin adjacent to areas of extrachromosomal distribution. These observations made in a variety of tissues under different fixation conditions and with a number of molecular probes support the notion that DNA topoisomerase II is a component of a substantially extrachromosomal network that functions to organize interphase chromatin within nuclei.
Collapse
Affiliation(s)
- V H Meller
- Department of Pharmacological Sciences, University Medical Center, State University of New York at Stony Brook 11794-8651, USA
| | | | | |
Collapse
|
35
|
Meller VH, Fisher PA. Nuclear distribution of Drosophila DNA topoisomerase II is sensitive to both RNase and DNase. J Cell Sci 1995; 108 ( Pt 4):1651-7. [PMID: 7615683 DOI: 10.1242/jcs.108.4.1651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear distribution of Drosophila DNA topoisomerase II was determined by immunoblot analysis after nuclease digestion and cell fractionation. About 60% of DNA topoisomerase II could be removed from nuclei by RNase A, about 70% by DNase I, and about 90% by incubation with both enzymes together or with micrococcal nuclease. Nuclease treatment of nuclei did not affect the distribution of lamins Dm1 and Dm2 or other nuclear proteins similarly. Nuclease-mediated solubilization of DNA topoisomerase II from Drosophila nuclei was also dependent on NaCl concentration. Solubilization was not efficient below 100 mM NaCl. Sucrose velocity gradient ultracentrifugation demonstrated that DNA topoisomerase II solubilized from nuclei by either RNase A or DNase I migrated at about 9 S, as expected for the homodimer. Results of chemical crosslinking supported this observation. We conclude that DNA topoisomerase II has both RNA- and DNA-dependent anchorages in Drosophila embryo nuclei.
Collapse
Affiliation(s)
- V H Meller
- Department of Pharmacological Sciences, State University of New York at Stony Brook 11794-8651, USA
| | | |
Collapse
|
36
|
Tomilin N, Solovjeva L, Krutilina R, Chamberland C, Hancock R, Vig B. Visualization of elementary DNA replication units in human nuclei corresponding in size to DNA loop domains. Chromosome Res 1995; 3:32-40. [PMID: 7704413 DOI: 10.1007/bf00711159] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Newly synthesized DNA in mammalian nuclei is concentrated in discrete nuclear granules called replication foci. These foci may be visualized using antibodies against 5-bromodeoxyuridine. In the early S-phase cells 100-250 foci are usually detected. On average, individual foci range between 0.5 and 2 microns in diameter and can be seen as clusters of more than ten average-sized (60-100 kb) synchronously activated replicons. In this study, employing minor modifications of the previous methods, we report the visualization of small replication foci of about 0.3 micron diameter (mini-foci). Some foci are clustered into folded chains consisting of 2-40 subunits. DNA content of one mini-focus is estimated to be 50-120 kb and there are 500-1500 mini-foci per cell in the early S-phase. Experimentally induced decrease in replicon size does not affect the size of mini-foci, suggesting that these represent elementary units of DNA replication in mammalian nuclei and are probably identical to the basic structural DNA loop domains.
Collapse
Affiliation(s)
- N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St Petersburg
| | | | | | | | | | | |
Collapse
|
37
|
Hozák P, Jackson DA, Cook PR. Replication factories and nuclear bodies: the ultrastructural characterization of replication sites during the cell cycle. J Cell Sci 1994; 107 ( Pt 8):2191-202. [PMID: 7983177 DOI: 10.1242/jcs.107.8.2191] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sites of replication in synchronized HeLa cells were visualized by light and electron microscopy; cells were permeabilized and incubated with biotin-16-dUTP, and incorporation sites were immunolabelled. Electron microscopy of thick resinless sections from which approximately 90% chromatin had been removed showed that most DNA synthesis occurs in specific dense structures (replication factories) attached to a diffuse nucleoskeleton. These factories appear at the end of G1-phase and quickly become active; as S-phase progresses, they increase in size and decrease in number like sites of incorporation seen by light microscopy. Electron microscopy of conventional thin sections proved that these factories are a subset of nuclear bodies; they changed in the same characteristic way and contained DNA polymerase alpha and proliferating cell nuclear antigen. As replication factories can be observed and labelled in non-permeabilized cells, they cannot be aggregation artifacts. Some replication occurs outside factories at discrete sites on the diffuse skeleton; it becomes significant by mid S-phase and later becomes concentrated beneath the lamina.
Collapse
Affiliation(s)
- P Hozák
- CRC Nuclear Structure and Function Research Group, Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | |
Collapse
|
38
|
Jackson DA, Hassan AB, Errington RJ, Cook PR. Sites in human nuclei where damage induced by ultraviolet light is repaired: localization relative to transcription sites and concentrations of proliferating cell nuclear antigen and the tumour suppressor protein, p53. J Cell Sci 1994; 107 ( Pt 7):1753-60. [PMID: 7983145 DOI: 10.1242/jcs.107.7.1753] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The repair of damage induced in DNA by ultraviolet light involves excision of the damaged sequence and synthesis of new DNA to repair the gap. Sites of such repair synthesis were visualized by incubating permeabilized HeLa or MRC-5 cells with the DNA precursor, biotin-dUTP, in a physiological buffer; then incorporated biotin was immunolabeled with fluorescent antibodies. Repair did not take place at sites that reflected the DNA distribution; rather, sites were focally concentrated in a complex pattern. This pattern changed with time; initially intense repair took place at transcriptionally active sites but when transcription became inhibited it continued at sites with little transcription. Repair synthesis in vitro also occurred in the absence of transcription. Repair sites generally contained a high concentration of proliferating cell nuclear antigen but not the tumour-suppressor protein, p53.
Collapse
Affiliation(s)
- D A Jackson
- CRC Nuclear Structure and Function Research Group, Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | |
Collapse
|
39
|
Jackson DA, Balajee AS, Mullenders L, Cook PR. Sites in human nuclei where DNA damaged by ultraviolet light is repaired: visualization and localization relative to the nucleoskeleton. J Cell Sci 1994; 107 ( Pt 7):1745-52. [PMID: 7983144 DOI: 10.1242/jcs.107.7.1745] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The repair of damage induced in DNA by ultraviolet light involves excision of the damage and then repair synthesis to fill the gap. We investigated the sites of repair synthesis using MRC-5 fibroblasts and HeLa cells in G1 phase. Cells were encapsulated in agarose microbeads to protect them during manipulation, irradiated, incubated to allow repair to initiate, and permeabilized with streptolysin O to allow entry of labelled triphosphates; [32P]dTTP was incorporated into acid-insoluble material in a dose-dependent manner. Incubation with biotin-16-dUTP allowed sites of incorporation to be indirectly immunolabeled using a FITC-conjugated antibody; sites were not diffusely spread throughout nuclei but concentrated in discrete foci. This is similar to sites of S phase activity that are attached to an underlying nucleoskeleton. After treatment with an endonuclease, most repaired DNA electroeluted from beads with chromatin fragments; this was unlike nascent DNA made during S phase and suggests that repaired DNA is not as closely associated with the skeleton. However, the procedure destroyed repair activity, so repaired DNA might be attached in vivo through a polymerase that was removed electrophoretically. Therefore this approach cannot be used to determine decisively whether repair sites are associated with a skeleton in vivo.
Collapse
Affiliation(s)
- D A Jackson
- CRC Nuclear Structure and Function Research Group, Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | |
Collapse
|
40
|
Hassan AB, Cook PR. Does transcription by RNA polymerase play a direct role in the initiation of replication? J Cell Sci 1994; 107 ( Pt 6):1381-7. [PMID: 7525619 DOI: 10.1242/jcs.107.6.1381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerases have been implicated in the initiation of replication in bacteria. The conflicting evidence for a role in initiation in eukaryotes is reviewed.
Collapse
Affiliation(s)
- A B Hassan
- CRC Nuclear Structure and Function Research Group, Sir William Dunn School of Pathology, University of Oxford, UK
| | | |
Collapse
|
41
|
Wansink DG, Manders EE, van der Kraan I, Aten JA, van Driel R, de Jong L. RNA polymerase II transcription is concentrated outside replication domains throughout S-phase. J Cell Sci 1994; 107 ( Pt 6):1449-56. [PMID: 7962188 DOI: 10.1242/jcs.107.6.1449] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription and replication are, like many other nuclear functions and components, concentrated in nuclear domains. Transcription domains and replication domains may play an important role in the coordination of gene expression and gene duplication in S-phase. We have investigated the spatial relationship between transcription and replication in S-phase nuclei after fluorescent labelling of nascent RNA and nascent DNA, using confocal immunofluorescence microscopy. Permeabilized human bladder carcinoma cells were labelled with 5-bromouridine 5′-triphosphate and digoxigenin-11-deoxyuridine 5′-triphosphate to visualize sites of RNA synthesis and DNA synthesis, respectively. Transcription by RNA polymerase II was localized in several hundreds of domains scattered throughout the nucleoplasm in all stages of S-phase. This distribution resembled that of nascent DNA in early S-phase. In contrast, replication patterns in late S-phase consisted of fewer, larger replication domains. In double-labelling experiments we found that transcription domains did not colocalize with replication domains in late S-phase nuclei. This is in agreement with the notion that late replicating DNA is generally not actively transcribed. Also in early S-phase nuclei, transcription domains and replication domains did not colocalize. We conclude that nuclear domains exist, large enough to be resolved by light microscopy, that are characterized by a high activity of either transcription or replication, but never both at the same time. This probably means that as soon as the DNA in a nuclear domain is being replicated, transcription of that DNA essentially stops until replication in the entire domain is completed.
Collapse
Affiliation(s)
- D G Wansink
- E.C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Boyko V, Mudrak O, Svetlova M, Negishi Y, Ariga H, Tomilin N. A major cellular substrate for protein kinases, annexin II, is a DNA-binding protein. FEBS Lett 1994; 345:139-42. [PMID: 8200445 DOI: 10.1016/0014-5793(94)00419-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have screened a human cDNA expression library in lambda gt11 for clones encoding Alu-binding proteins using direct binding of labeled Alu DNA to recombinant phage lysates fixed on a membrane, and isolated a clone 98% identical in sequence to the well-known substrate of protein kinases, annexin II, which was suggested earlier to play a role in transduction of mitogenic signals and DNA replication. A diagnostic property of annexins is their binding to phospholipids in the presence of calcium ions, and we have found that the interaction of proteins of human nuclear extracts with Alu subsequences is suppressed by Ca/phosphatidylserine liposomes, suggesting overlapping of Ca/phospholipid- and DNA-binding domains in annexin II.
Collapse
Affiliation(s)
- V Boyko
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg
| | | | | | | | | | | |
Collapse
|
43
|
Hassan AB, Errington RJ, White NS, Jackson DA, Cook PR. Replication and transcription sites are colocalized in human cells. J Cell Sci 1994; 107 ( Pt 2):425-34. [PMID: 7515893 DOI: 10.1242/jcs.107.2.425] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HeLa cells synchronized at different stages of the cell cycle were permeabilized and incubated with analogues of nucleotide triphosphates; then sites of incorporation were immunolabeled with the appropriate fluorescent probes. Confocal microscopy showed that sites of replication and transcription were not diffusely spread throughout nuclei, reflecting the distribution of euchromatin; rather, they were concentrated in ‘foci’ where many polymerases act together. Transcription foci aggregated as cells progressed towards the G1/S boundary; later they dispersed and became more diffuse. Replication was initiated only at transcription sites; later, when heterochromatin was replicated in enlarged foci, these remained sites of transcription. This illustrates the dynamic nature of nuclear architecture and suggests that transcription may be required for the initiation of DNA synthesis.
Collapse
Affiliation(s)
- A B Hassan
- CRC Nuclear Structure and Function Research Group, Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | | | |
Collapse
|