1
|
Aureli M, Mauri L, Carsana EV, Dobi D, Breviario S, Lunghi G, Sonnino S. Gangliosides and Cell Surface Ganglioside Metabolic Enzymes in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:305-332. [DOI: 10.1007/978-3-031-12390-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Assunção-Silva RC, Mendes-Pinheiro B, Patrício P, Behie LA, Teixeira FG, Pinto L, Salgado AJ. Exploiting the impact of the secretome of MSCs isolated from different tissue sources on neuronal differentiation and axonal growth. Biochimie 2018; 155:83-91. [PMID: 30077816 DOI: 10.1016/j.biochi.2018.07.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/31/2018] [Indexed: 01/01/2023]
Abstract
Cell transplantation using Mesenchymal stem cell (MSC) secretome have recently been presented as a possible free-based therapy for CNS related disorders. MSC secretome is rich in several bio-factors that act synergically towards the repair of damaged tissues, thus making it an ideal candidate for regenerative applications. Great effort is currently being made to map the molecules that compose the MSC secretome. Previous proteomic characterization of the secretome (in the form of conditioned media - CM) of MSCs derived from adipose tissue (ASC), bone-marrow (BMSC) and umbilical cord (HUCPVC) was performed by our group, where proteins relevant for neuroprotection, neurogenic, neurodifferentiation, axon guidance and growth functions were identified. Moreover, we have found significant differences among the expression of several molecules, which may indicate that their therapeutic outcome might be distinct. Having this in mind, in the present study, the neuroregulatory potential of ASC, BMSC and HUCPVC CM in promoting neurodifferentiation and axonal outgrowth was tested in vitro, using human telencephalon neuroprogenitor cells and dorsal root ganglion explants, respectively. The CM from the three MSC populations induced neuronal differentiation from human neural progenitor cells, as well as neurite outgrowth from dorsal root ganglion explants. Moreover, all the MSC populations promoted the same extent of neurodifferentiation, while ASC CM demonstrated higher potential in promoting axonal growth.
Collapse
Affiliation(s)
- Rita Catarina Assunção-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4701-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; BnML, Behavioral and Molecular Lab, Braga, Portugal.
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4701-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4701-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; BnML, Behavioral and Molecular Lab, Braga, Portugal.
| | - Leo A Behie
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | - Fábio Gabriel Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4701-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4701-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; BnML, Behavioral and Molecular Lab, Braga, Portugal.
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4701-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
3
|
Liao RF, Zhong ZL, Ye MJ, Han LY, Ye DQ, Chen JJ. Identification of Mutations in Myocilin and Beta-1,4-galactosyltransferase 3 Genes in a Chinese Family with Primary Open-angle Glaucoma. Chin Med J (Engl) 2017; 129:2810-2815. [PMID: 27900994 PMCID: PMC5146788 DOI: 10.4103/0366-6999.194641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Glaucoma is a major cause of irreversible blindness worldwide. There is evidence showing that a subset of the disease is genetically determined. In this study, we screened for mutations in chromosome 1q-linked open-angle glaucoma (GLC1A) in a Chinese family with primary open-angle glaucoma (POAG). METHODS A total of 23 members from five generations of a family were enrolled and underwent thorough ophthalmologic examinations. In addition, 200 unrelated healthy Chinese controls were also recruited as normal control. GLC1A gene was amplified by polymerase chain reaction, and DNA sequencing was performed to screen for mutations. RESULTS Six members were diagnosed as POAG, with severe clinical manifestations, and history of high intraocular pressures. The mean age of disease onset was 26.3 years. However, the others were asymptomatic. In six affected and three asymptomatic members, gene sequencing revealed a mutation c.C1456T in exon 3 of myocilin gene (MYOC). Furthermore, we also identified a novel mutation c.G322A in beta-1,4-galactosyltransferase 3 (B4GALT3) gene in all six affected and three asymptomatic members, which was not reported previously in POAG patients. The two newly identified variants were absent in other family members as well as controls. CONCLUSION The mutations c.1456C < T (p.L486F) in MYOC and c.322G < A (p.V108I) in B4GALT3 are likely responsible for the pathogenesis of POAG in this family.
Collapse
Affiliation(s)
- Rong-Feng Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University; Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Zi-Lin Zhong
- Department of Ophthalmology of Shanghai Tenth People's Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200092, China
| | - Min-Jie Ye
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Li-Yun Han
- Department of Ophthalmology of Shanghai Tenth People's Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200092, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jian-Jun Chen
- Department of Ophthalmology of Shanghai Tenth People's Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
4
|
Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, Serra SC, Silva NA, Manadas B, Sousa N, Salgado AJ. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis. Stem Cells Dev 2016; 25:1073-83. [PMID: 27226274 DOI: 10.1089/scd.2016.0048] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials.
Collapse
Affiliation(s)
- Ana O Pires
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Barbara Mendes-Pinheiro
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Fábio G Teixeira
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Sandra I Anjo
- 3 Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra , Coimbra, Portugal .,4 CNC-Center for Neurosciences and Cell Biology, University of Coimbra , Coimbra, Portugal
| | - Silvina Ribeiro-Samy
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Eduardo D Gomes
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Sofia C Serra
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Nuno A Silva
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Bruno Manadas
- 4 CNC-Center for Neurosciences and Cell Biology, University of Coimbra , Coimbra, Portugal
| | - Nuno Sousa
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Antonio J Salgado
- 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga, Portugal .,2 ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Teixeira FG, Panchalingam KM, Assunção-Silva R, Serra SC, Mendes-Pinheiro B, Patrício P, Jung S, Anjo SI, Manadas B, Pinto L, Sousa N, Behie LA, Salgado AJ. Modulation of the Mesenchymal Stem Cell Secretome Using Computer-Controlled Bioreactors: Impact on Neuronal Cell Proliferation, Survival and Differentiation. Sci Rep 2016; 6:27791. [PMID: 27301770 PMCID: PMC4908397 DOI: 10.1038/srep27791] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/19/2016] [Indexed: 01/09/2023] Open
Abstract
In recent years it has been shown that the therapeutic benefits of human mesenchymal stem/stromal cells (hMSCs) in the Central Nervous System (CNS) are mainly attributed to their secretome. The implementation of computer-controlled suspension bioreactors has shown to be a viable route for the expansion of these cells to large numbers. As hMSCs actively respond to their culture environment, there is the hypothesis that one can modulate its secretome through their use. Herein, we present data indicating that the use of computer-controlled suspension bioreactors enhanced the neuroregulatory profile of hMSCs secretome. Indeed, higher levels of in vitro neuronal differentiation and NOTCH1 expression in human neural progenitor cells (hNPCs) were observed when these cells were incubated with the secretome of dynamically cultured hMSCs. A similar trend was also observed in the hippocampal dentate gyrus (DG) of rat brains where, upon injection, an enhanced neuronal and astrocytic survival and differentiation, was observed. Proteomic analysis also revealed that the dynamic culturing of hMSCs increased the secretion of several neuroregulatory molecules and miRNAs present in hMSCs secretome. In summary, the appropriate use of dynamic culture conditions can represent an important asset for the development of future neuro-regenerative strategies involving the use of hMSCs secretome.
Collapse
Affiliation(s)
- Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Krishna M Panchalingam
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Rita Assunção-Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Sunghoon Jung
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Sandra I Anjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.,Biocant - Biotechnology Innovation Center, Cantanhede, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| | - Leo A Behie
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Lab, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Aureli M, Murdica V, Loberto N, Samarani M, Prinetti A, Bassi R, Sonnino S. Exploring the link between ceramide and ionizing radiation. Glycoconj J 2015; 31:449-59. [PMID: 25129488 DOI: 10.1007/s10719-014-9541-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of radiotherapy is to eradicate cancer cells with ionizing radiation; tumor cell death following irradiation can be induced by several signaling pathways, most of which are triggered as a consequence of DNA damage, the primary and major relevant cell response to radiation. Several lines of evidence demonstrated that ceramide, a crucial sensor and/or effector of different signalling pathways promoting cell cycle arrest, death and differentiation, is directly involved in the molecular mechanisms underlying cellular response to irradiation. Most of the studies strongly support a direct relationship between ceramide accumulation and radiation-induced cell death, mainly apoptosis; for this reason, defining the contribution of the multiple metabolic pathways leading to ceramide formation and the causes of its dysregulated metabolism represent the main goal in order to elucidate the ceramide-mediated signaling in radiotherapy. In this review, we summarize the current knowledge concerning the different routes leading to ceramide accumulation in radiation-induced cell response with particular regard to the role of the enzymes involved in both ceramide neogenesis and catabolism. Emphasis is placed on sphingolipid breakdown as mechanism of ceramide generation activated following cell irradiation; the functional relevance of this pathway, and the role of glycosphingolipid glycohydrolases as direct targets of ionizing radiation are also discussed. These new findings add a further attractive point of investigation to better define the complex interplay between sphingolipid metabolism and radiation therapy.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090, Segrate, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Sun X, Wu Y, Wang Y, Xue Q, Cheng X, Zhang G, Zhu Y, Wang X. β-1,4-Galactosyltransferase-I activates proliferation and participates in intercellular contacts of lymphocytes. Hum Immunol 2014; 75:1019-25. [DOI: 10.1016/j.humimm.2014.08.199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022]
|
8
|
Gangliosides and Cell Surface Ganglioside Glycohydrolases in the Nervous System. ADVANCES IN NEUROBIOLOGY 2014; 9:223-44. [DOI: 10.1007/978-1-4939-1154-7_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Aureli M, Samarani M, Loberto N, Bassi R, Murdica V, Prioni S, Prinetti A, Sonnino S. The Glycosphingolipid Hydrolases in the Central Nervous System. Mol Neurobiol 2013; 50:76-87. [DOI: 10.1007/s12035-013-8592-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/08/2013] [Indexed: 12/27/2022]
|
10
|
The functional interaction between CDK11p58 and β-1,4-galactosyltransferase I involved in astrocyte activation caused by lipopolysaccharide. Inflammation 2013; 35:1365-77. [PMID: 22527143 DOI: 10.1007/s10753-012-9450-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glial cells are mediating the main activation of the central nervous system (CNS), being astrocytes the mayor glial cells in the brain. Glial activation may result beneficial since it could promote tissue repair and pathogen elimination. However, excessive glial activation mechanism can also have do harm to the tissue. β-1,4-Galactosyltransferase I (β-1,4-GalT-I) is a key inflammatory mediator that participates in the initiation and maintenance of inflammatory reaction in some diseases. Moreover, CDK11(p58) has been reported to be associated with β-1,4-GalT-I. We have found that CDK11(p58) and β-1,4-GalT-I are induced in lipopolysaccharide (LPS)-challenged rat primary astrocytes in a affinis dose- and time-dependent manner. CDK11(p58) regulates the expression of β-1,4-GalT-I by interacting with it. After the knockdown of CDK11(p58) expression, the expression of β-1,4-GalT-I decreases, and astrocyte activation downregulates. Inversely, the expression of β-1,4-GalT-I increases, and astrocyte activation enhances due to the overexpression of CDK11(p58). Knockdown of β-1,4-GalT-I reduces the activation potentiation caused by the overexpression of CDK11(p58), illustrating the function of CDK11(p58) to promote astrocyte activation depends on β-1,4-GalT-I. The interaction between CDK11(p58) and β-1,4-GalT-I to upregulate astrocyte activation is related to activating p38 and JNK pathways. These findings indicated that the functional interaction between CDK11(p58) and β-1,4-GalT-I may play an important role during astrocyte activation after LPS administration.
Collapse
|
11
|
Liu W, Cui Z, Wang Y, Zhu X, Fan J, Bao G, Qiu J, Xu D. Elevated expression of β1,4-galactosyltransferase-I in cartilage and synovial tissue of patients with osteoarthritis. Inflammation 2012; 35:647-55. [PMID: 21750942 DOI: 10.1007/s10753-011-9357-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is considered a complex illness, characterized by cartilage degeneration, secondary synovial membrane inflammation, and subchondral bone sclerosis. Previous studies have shown β1,4-galactosylransferase-I (β1,4-GalT-I) to be a key inflammatory mediator that participates in the initiation and maintenance of inflammatory reaction in diseases. In the present study, we investigated the expression and possible biological function of β1,4-GalT-I in the cartilage and synovial tissue of OA patients. Cartilage and synovial tissue samples from OA patients and healthy controls were stained for β1,4-GalT-I. Reverse transcription-polymerase chain reaction was used to observe the expression of β1,4-GalT-I, and western blot was carried out for E-selectin. The interaction between β1,4-GalT-I and E-selectin was analyzed by double labeling immunohistochemistry and immunoprecipitation. The expression of β1,4-GalT-I increased in the cartilage and synovial tissue of OA patients compared with healthy controls. E-selectin was overexpressed and was correlated with β1,4-GalT-I in OA cartilage and synovial tissue. These data suggest that β1,4-GalT-I may play an important role in the inflammatory processes in cartilage and synovial tissue of patients with OA.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Xu D, Cui Z, Liu W, Tao R, Tao T, Shen A, Wang Y. Tumor necrosis factor-α up-regulates the expression of β1,4-galactosyltransferase-I in human fibroblast-like synoviocytes. Inflammation 2012; 34:531-8. [PMID: 20886274 DOI: 10.1007/s10753-010-9260-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
β1,4-Galactosyltransferase-I (β1,4-GalT-I), which transfers galactose to the terminal N-acetylglucosamine of N- and O-linked glycans in a β1,4-linkage, is considered to be the major galactosyltransferase among the seven members of the subfamily responsible for β4 galactosylation. We previously reported, for the first time, that β1,4-GalT-I may play an important role in the inflammatory processes in synovial tissue of patients with rheumatoid arthritis (RA). In this study, we analyzed whether β1,4-GalT-I expression correlates with the expression of tumor necrosis factor-α (TNF-α) in RA. We show firstly the overexpression and co-localization of β1,4-GalT-I and TNF-α in synovial tissue of RA patients. Then, lipopolysaccharide (LPS) induces β1,4-GalT-I mRNA up-regulation in fibroblast-like synoviocytes (FLSs) through endogenous TNF-α overexpression. In addition, we observed that not only endogenous TNF-α but also exogenous TNF-α induced β1,4-GalT-I mRNA production in FLSs, and TNF-α-knockdown reverses the up-regulation of β1,4-GalT-I in FLSs induced by LPS or TNF-α. These results suggest that TNF-α contributes to the up-regulation of β1,4-GalT-I mRNA in human FLSs.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Shao B, Li C, Yang H, Shen A, Wu X, Yuan Q, Wu X, Kang L, Liu Z, Zhang G, Lu X, Cheng C. The relationship between Src-suppressed C kinase substrate and β-1,4 galactosyltransferase-I in the process of lipopolysaccharide-induced TNF-α secretion in rat primary astrocytes. Cell Mol Neurobiol 2011; 31:1047-56. [PMID: 21573722 PMCID: PMC11498370 DOI: 10.1007/s10571-011-9704-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 04/28/2011] [Indexed: 01/03/2023]
Abstract
Src-suppressed C kinase substrate (SSeCKS), a protein kinase C substrate, is a major lipopolysaccharide (LPS) response protein. In addition, β-1,4 Galactosyltransferase-I (β-1,4-GalT-I) also plays an important role in the inflammation reactions of nervous system. It was reported that both SSeCKS and β-1,4-GalT-I were involved in the LPS-induced tumor necrosis factor-alpha (TNF-α) expression in rat primary astrocytes. However, the functional interaction between SSeCKS and β-1,4-GalT-I in the LPS-induced TNF-α secretion remains unclear. Therefore, in this study, using the inflammation model of astrocytes treated by LPS in vitro, we found that the changed expressions of SSeCKS and β-1,4-GalT-I participated in LPS-induced TNF-α secretion through p38, JNK, and ERK signal transduction pathways in rat primary astrocytes. Knockdown by small-interfering RNAs (siRNAs) or overexpression of SSeCKS and β-1,4-GalT-I could influence Mitogen-activated protein kinases (MAPKs) signaling pathways activation and TNF-α secretion. Besides, we confirmed that knockdown of SSeCKS could prevent the induction of β-1,4-GalT-I in this process. Inversely, β-1,4-GalT-I had no significant effect on SSeCKS expression in the same way. In summary, our data indicated that SSeCKS could regulate LPS-induced TNF-α secretion through β-1,4-GalT-I in rat primary astrocytes.
Collapse
Affiliation(s)
- Bai Shao
- Department of Neurosurgery, Affiliated Dongtai Hospital of Nantong University, Medical College, Nantong University, Yancheng, 224200 Jiangsu People’s Republic of China
| | - Chunmiao Li
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Huiguang Yang
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Aiguo Shen
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xiaohong Wu
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Qin Yuan
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xiujie Wu
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Lihua Kang
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Zhiqiang Liu
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Guowei Zhang
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xiang Lu
- Department of Geriatics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011 Jiangsu People’s Republic of China
| | - Chun Cheng
- Department of Neurosurgery, Affiliated Dongtai Hospital of Nantong University, Medical College, Nantong University, Yancheng, 224200 Jiangsu People’s Republic of China
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| |
Collapse
|
14
|
Remodeling of sphingolipids by plasma membrane associated enzymes. Neurochem Res 2010; 36:1636-44. [PMID: 21181265 DOI: 10.1007/s11064-010-0360-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 12/16/2022]
Abstract
The sphingolipid plasma membrane content and pattern is the result of several processes, among which the main, in term of quantity, are: neo-biosynthesis in endoplasmic reticulum and Golgi apparatus, membrane turnover with final catabolism in lysosomes and membrane shedding. In addition to this, past and recent data suggest that the head group of sphingolipids can be opportunely modified at the plasma membrane level, probably inside specific membrane lipid domains, by the action of enzymes involved in the sphingolipids metabolism, working directly at the cell surface. The number of membrane enzymes, hydrolases and transferases, acting on membrane sphingolipids is growing very rapidly. In this report we describe some properties of these enzymes.
Collapse
|
15
|
β1,4-Galactosyltransferase-I contributes to the inflammatory processes in synovial tissue of patients with rheumatoid arthritis. Inflamm Res 2010; 59:1009-18. [PMID: 20490888 DOI: 10.1007/s00011-010-0217-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/15/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE AND DESIGN The aim of the study is to examine the expression and possible biological function of β1,4-galactosyltransferase-I (β1,4-GalT-I) in synovial tissue from rheumatoid arthritis (RA) patients. METHODS Synovial tissue samples from twelve RA patients were stained for β1,4-GalT-I. Samples from seven patients with osteoarthritis (OA) and eight healthy people were obtained as controls. Real-time PCR or western blot analysis was used to observe the expression of β1,4-GalT-I and E-selectin. Cellular colocalization of β1,4-GalT-I, galactose-containing glycans and other molecules was analyzed by double immunofluorescence. RESULTS Expression of β1,4-GalT-I and galactose-containing glycans increased in synovial tissue of RA patients compared with OA patients and healthy controls. Most galactose-containing glycans and β1,4-GalT-I were expressed in inflammatory cells. E-selectin overexpressed and was correlated with galactose-containing glycans in RA synovial tissue. CONCLUSION These results suggested that β1,4-GalT-I may play an important role in the inflammatory processes in synovial tissue of patients with rheumatoid arthritis.
Collapse
|
16
|
Yang H, Hu L, Chen J, Zhu J, Tao T, Zhang F, Li X, He X, Shen A, Cheng C. Lipopolysaccharide induced upregulation of beta-1,4-galactosyltransferase-I in Schwann cell. Inflammation 2010; 32:279-86. [PMID: 19548074 DOI: 10.1007/s10753-009-9131-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
beta4 Galactosylation of glycoproteins is one of the most important post-translational modifications. Recent studies have demonstrated that aberrant galactosylation associates with some inflammation diseases. beta-1,4-galactosyltransferase-I (beta-1,4-GalT-I), which transfers galactose to the terminal N-acetylglucosamine of N- and O-linked glycans in a beta-1,4- linkage, considered to be the major galactosyltransferse among the seven members of the subfamily responsible for beta4 galactosylation. In the present study, we investigated the expression of beta-1,4-GalT-I in Schwann cells under Lipopolysaccharide (LPS) treatment. RT-PCR revealed that the beta-1,4-GalT-I mRNA was significant increased as early as 2 h after LPS stimulation. Immunofluorescence showed that beta-1,4-GalT-I was located in Golgi apparatus and membrane of Schwann cells. With the 1 microg/ml LPS treatment, expression levels of beta-1,4-GalT-I was much higher compared with control group. In addition, lectin blot indicated that the beta4 galactosylation of glycoproteins such as integrin alpha5 was enhanced, which may due to the induced beta-1,4-GalT-I expression. These results suggested that beta-1,4-GalT-I may play an important role in adhesion and migration of Schwann cells during inflammation.
Collapse
Affiliation(s)
- Huiguang Yang
- Department of Orthopaedics, Affiliated Jiangyin Renmin Hospital of Nantong University, Key Laboratory for Neuroregeneration of JiangSu Province, Nantong University, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang H, Yan M, Cheng C, Jiang J, Zhang L, Liu J, Zhou Z, Shen A. Expression of beta-1,4-galactosyltransferase I in rat Schwann cells. J Cell Biochem 2009; 108:75-86. [PMID: 19530228 DOI: 10.1002/jcb.22229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glycosylation is one of the most important post-translational modifications. It is clear that the single step of beta-1,4-galactosylation is performed by a family of beta-1,4-galactosyltransferases (beta-1,4-GalTs), and that each member of this family may play a distinct role in different tissues and cells. In the present study, real-time PCR revealed that the beta-1,4-GalT I mRNA reached peaks at 2 weeks after sciatic nerve crush and 3 days after sciatic nerve transection. Combined in situ hybridization for beta-1,4-GalT I mRNA and immunohistochemistry for S100 showed that beta-1,4-GalT I mRNAs were mainly located in Schwann cells after sciatic nerve injury. In conclusion, beta-1,4-GalT I might play important roles in Schwann cells during the regeneration and degeneration of the injured sciatic nerve. In other pathology, such as inflammation, we found that LPS administration affected beta-1,4-GalT I mRNA expression in sciatic nerve in a time- and dose-dependent manner, and beta-1,4-GalT I mRNA is expressed mainly in Schwann cells. These results indicated that beta-1,4-GalT I plays an important role in the inflammation reaction induced by intraperitoneal injection of LPS. Similarly, we found that beta-1,4-GalT I in Schwann cells in vitro was affected in a time- and concentration-dependent manner in response to LPS stimulation. All these results suggest that beta-1,4-GalT I play an important role in Schwann cells in vivo and vitro during pathology. In addition, beta-1,4-GalT I production was drastically suppressed by U0126 (ERK inhibitor), SB203580 (p38 inhibitor), or SP600125 (SAPK/JNK inhibitor), which indicated that Schwann cells which regulated beta-1,4-GalT I expression after LPS stimulation were via ERK, SAPK/JNK, and P38 MAP kinase signal pathways.
Collapse
Affiliation(s)
- Huiguang Yang
- Department of Orthopaedics, Affiliated Jiangying Hospital of Nantong University, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Han Y, Zhou X, Ji Y, Shen A, Sun X, Hu Y, Wu Q, Wang X. Expression of beta-1,4-galactosyltransferase-I affects cellular adhesion in human peripheral blood CD4+ T cells. Cell Immunol 2009; 262:11-7. [PMID: 20202494 DOI: 10.1016/j.cellimm.2009.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/23/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
beta-1,4-galactosyltransferase-I (beta-1,4-GalT-I) has two isoforms that differ only in the length of their cytoplasmic domains. In this study, we found that both the long and short isoforms of beta-1,4-GalT-I were expressed in human CD4(+) T lymphocytes, and localized in the cytoplasm and on the plasma membrane. The expression level of beta-1,4-GalT-I was increased in CD4(+) T cells after stimulation with interleukin (IL)-2, and was further increased after stimulation with IL-2+IL-12, but decreased after stimulation with IL-2+IL-4 when compared to stimulation with IL-2 alone. We also demonstrated that the cellular adhesion of CD4(+) T cells was significantly increased upon cytokine stimulation, and was inhibited by alpha-lactalbumin, indicating that the increase in adhesion was positively correlated with the expression and activity of long beta-1,4-GalT-I. Collectively, the data suggest that beta-1,4-GalT-I plays a role in the cellular adhesion of CD4(+) T cells.
Collapse
Affiliation(s)
- Yu Han
- Department of Microbiology and Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen J, Wang H, Yang H, Huang X, Zhu J, Hu L, Qian J, Yang J, Zhou D, Ni X, Shen A, Cheng C. beta-1,4-Galactosyltransferase-I participates in lipopolysaccharide induced reactive microgliosis. Neurotoxicology 2009; 30:1107-13. [PMID: 19540263 DOI: 10.1016/j.neuro.2009.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 11/29/2022]
Abstract
beta-1,4-Galactosyltransferase-I (beta-1,4-GalT-I) is one of the best studied glycosyltransferases. Previous studies demonstrated that beta-1,4-GalT-I was a major galactosyltransferase responsible for selectin-ligand biosynthesis and that inflammatory responses of beta-1,4-GalT-I deficient mice were impaired. Our previous study suggest that beta-1,4-GalT-I may play an important role in regulating immune cell migration into the inflammatory site. In this study, we investigate beta-1,4-GalT-I may play an important role in mediating microgliosis. The results of this study demonstrated that beta-1,4-GalT-I was strongly induced in the ventral midbrain by intranigral injection of LPS. Most galactose-containing glycans and beta-1,4-GalT-I were expressed in microglia. Moreover, an Ab against beta-1,4-GalT-I attenuated both LPS-induced microglial activation and phagocytosis. We therefore suggest that beta-1,4-GalT-I may play an important role in regulating immune cell migration into the inflammatory site and mediating microgliosis.
Collapse
Affiliation(s)
- Jianping Chen
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yan M, Cheng C, Ding F, Jiang J, Gao L, Xia C, Shen A. The expression patterns of beta1,4 galactosyltransferase I and V mRNAs, and Galbeta1-4GlcNAc group in rat gastrocnemius muscles post sciatic nerve injury. Glycoconj J 2008; 25:685-701. [PMID: 18512149 DOI: 10.1007/s10719-008-9129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 03/20/2008] [Accepted: 03/26/2008] [Indexed: 11/28/2022]
Abstract
Glycosylation is one of the most important post-translational modifications. It is clear that the single step of beta1,4-galactosylation is performed by a family of beta1,4-galactosyltransferases (beta1,4-GalTs), and that each member of this family may play a distinct role in different tissues and cells. beta1,4-GalT I and V are involved in the biosynthesis of N-linked oligosaccharides and play roles in sciatic nerve regeneration after sciatic nerve injury. In the present study, the expression of beta1,4-galactosyltransferase (beta1,4-GalT) I, V mRNAs and Galbeta1-4GlcNAc group were examined in rat gastrocnemius muscles after sciatic nerve crush and transection. Real time PCR revealed that beta1,4-GalT I and V mRNAs expressed at a high level in normal gastrocnemius muscles and decreased gradually from 6 h, reached the lowest level at 2 weeks, then restored gradually to relatively normal level at 4 weeks after sciatic nerve crush. In contrast, in sciatic nerve transection model, beta1,4-GalT I and V mRNAs decreased gradually from 6 h, and remained on a low level at 4 weeks in gastrocnemius muscles after sciatic nerve transection. In situ hybridization indicated that beta1,4-GalT I and V mRNAs localized in numerous myocytes and muscle satellite cells under normal conditions and at 4 weeks after sciatic nerve crush, and in a few muscle satellite cells at 4 weeks after sciatic nerve transection. Furthermore, lectin blotting showed that the expression level of the Galbeta1-4GlcNAc group decreased from 6 h, reached the lowest level at 2 weeks, and restored to relatively normal level at 4 weeks after sciatic nerve crush. RCA-I lectin histochemistry demonstrated that Galbeta1-4GlcNAc group localized in numerous membranes of myocytes and muscle satellite cells in normal and at 4 weeks after sciatic nerve crush, and in a few muscle satellite cells at 2 and 4 weeks after sciatic nerve transection. These results indicated that the expressions of beta1,4-GalT I, V mRNAs and Galbeta1-4GlcNAc group were involved in the process of denervation and reinnervation, which suggests that beta1,4-GalT I, V mRNAs and Galbeta1-4GlcNAc group may play an important role in the muscle regeneration.
Collapse
MESH Headings
- Amino Sugars/metabolism
- Animals
- Galactosyltransferases/genetics
- Gene Expression Regulation, Enzymologic/drug effects
- Glycoproteins/metabolism
- Injections, Intramuscular
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Plant Lectins/metabolism
- Plasmids/administration & dosage
- Plasmids/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/enzymology
- Satellite Cells, Skeletal Muscle/pathology
- Sciatic Neuropathy/enzymology
- Sciatic Neuropathy/genetics
- Sciatic Neuropathy/pathology
- Sciatic Neuropathy/physiopathology
- Time Factors
Collapse
Affiliation(s)
- Meijuan Yan
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Shen A, Chen J, Qian J, Zhu J, Hu L, Yan M, Zhou D, Gao Y, Yang J, Ding F, Cheng C. Elevated β1,4-galactosyltransferase-I induced by the intraspinal injection of lipopolysaccharide. Glycoconj J 2008; 26:19-31. [DOI: 10.1007/s10719-008-9158-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 06/02/2008] [Accepted: 06/06/2008] [Indexed: 11/24/2022]
|
22
|
Landers EA, Burkin HR, Bleck GT, Howell-Skalla L, Miller DJ. Porcine beta1,4-galactosyltransferase-I sequence and expression. Reprod Domest Anim 2008; 44:228-34. [PMID: 18673333 DOI: 10.1111/j.1439-0531.2007.01039.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Beta1,4-galactosyltransferase-I (B4GALT1), one of seven beta1,4-galactosyltransferases, is an enzyme commonly found in the trans-Golgi complex that adds galactose to oligosaccharides. In the three mammals studied to date, the B4GALT1 gene directs production of B4GALT1 protein using either of two transcription start sites. The product of the smaller transcript serves the traditional biosynthetic role in the Golgi. This form also complexes with alpha-lactalbumin, a mammary-specific protein, to form lactose synthase. In addition to a biosynthetic role, the protein translated from the longer transcript appears on the plasma membranes of some cells where it serves as a signalling receptor in cell-matrix interactions such as sperm-egg binding. The objective of this study was to sequence the protein-coding region of porcine B4GALT1 and examine the sequence for relationships to the bovine, human, murine and chicken B4GALT1 genes. The sequence for the 1203 base pair protein-coding region of porcine B4GALT1 was obtained. Analysis of the deduced protein sequences revealed that the transmembrane region displayed the highest identity between the four mammals. The catalytic domain was 84-88% identical between the porcine sequence and those of the bovine, human and mouse. The porcine protein had the lowest overall homology to the chicken amino acid sequence, 58% identity. Conservation of both transcription start sites in the porcine gene supports the existence of two isoforms. When compared to the other mammalian B4GALT1 genes, the porcine coding sequence contained a single threonine codon inserted into the region encoding the cytoplasmic domain. Two putative phosphorylation sites in the mouse cytoplasmic domain were conserved in the porcine sequence. Northern blots revealed a widely expressed 4.4 kb transcript that was more abundant in the mammary gland during lactation. These results are important for studies of the function of this unusual and important glycosyltransferase during glycoprotein biosynthesis, lactation and fertilization.
Collapse
Affiliation(s)
- E A Landers
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
23
|
Niu S, Fei M, Cheng C, Yan M, Gao S, Chen M, Wang H, Li X, Yu X, Qian J, Qin J, Zhao J, Gu J, Shen A. Altered β-1,4-galactosyltransferase I expression during early inflammation after spinal cord contusion injury. J Chem Neuroanat 2008; 35:245-56. [DOI: 10.1016/j.jchemneu.2008.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/08/2008] [Accepted: 01/08/2008] [Indexed: 01/16/2023]
|
24
|
Abstract
Cell-surface carbohydrate chains are known to contribute to cell migration, interaction, and proliferation. beta-1,4-galactosyltransferase-I (beta-1,4-GalT-I), which is one of the best-studied glycosyltransferases, plays a key role in the synthesis of type 2 chains in N-glycans and the core 2 branch in O-glycans. Recently, it has been reported that skin wound healing is significantly delayed in beta-1,4-GalT-I mice. However, the expression of beta-1,4-GalT-I and its biological function in the skin wound-healing process remain to be elucidated. We used real-time polymerase chain reaction to demonstrate that the expression of beta-1,4-GalT-I mRNA reached plateau values at 12 hours after skin was injured and remained elevated until 11 days after the injury. Furthermore, lectin blotting showed that beta-1,4-galactosylated carbohydrate chains were also increased after skin injury. A double-staining method combining lectin-fluorescent staining with RCA-I and immunofluorescence was first used to determine the cellular localization of beta-1,4-galactosylated carbohydrate chains. Morphological analysis showed that the chains were primarily expressed in neutrophils and partially expressed in macrophages, endothelial cells, and collagen. Our results suggest that beta-1,4-GalT-I and beta-1,4-galactosylated carbohydrate chains participate in leukocyte recruitment, angiogenesis, and collagen deposition in the skin wound-healing process.
Collapse
|
25
|
Expression change of beta-1,4 galactosyltransferase I, V mRNAs and Galbeta1,4GlcNAc group in rat sciatic nerve after crush. J Mol Histol 2008; 39:317-28. [PMID: 18320333 DOI: 10.1007/s10735-008-9168-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 02/15/2008] [Indexed: 10/22/2022]
Abstract
Glycosylation is one of the most important post-translational modifications. It is clear that the single step of beta-1,4-galactosylation is performed by a family of beta-1,4-galactosyltransferases (beta-1,4-GalTs), and that each member of this family may play a distinct role in different tissues and cells. beta-1,4-GalT I and V are involved in the biosynthesis of N-linked oligosaccharides. In the present study, Real-time PCR revealed that the beta-1,4-GalT I and V mRNAs reached peaks at 2 w after sciatic nerve crush. In situ hybridization showed that at 1 d after sciatic nerve crush, the expression levels of beta-1,4-GalT I and V mRNAs were strong at the crush site, and decreased gradually from crush site to the distal segments. In addition, combined in situ hybridization for beta1,4-GalT I and V mRNAs and immunohistochemistry for S100 showed that beta1,4-GalT I and V mRNAs were mainly located in Schwann cells. Lectin blot showed that the expression of Galbeta1,4GlcNAc group increased at 6 h immediately, reached a peak at 12 h and remained elevated up to 4 w after sciatic nerve crush. In conclusion, beta1,4-GalT I and V might play important roles in the regeneration of the injured sciatic nerve, and upregulation of Galbeta1,4GlcNAc group might be correlated with the process of the sciatic nerve injury.
Collapse
|
26
|
Yan M, Xia C, Niu S, Cheng C, Shao X, Shen A. The role of TNF-alpha and its receptors in the production of beta-1,4-galactosyltransferase I mRNA by rat primary type-2 astrocytes. Cell Mol Neurobiol 2008; 28:223-36. [PMID: 17712626 PMCID: PMC11516523 DOI: 10.1007/s10571-007-9182-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Accepted: 07/28/2007] [Indexed: 01/02/2023]
Abstract
beta-1,4-galactosyltransferase I (beta-1,4-GalT I) plays an important role in the synthesis of the backbone structure of adhesion molecules involved in leukocyte-endothelial cell interaction. The expression of beta-1,4-GalT I mRNA increased in primary human endothelial cells after exposure to tumor necrosis factor-alpha (TNF-alpha). In the central nervous system (CNS), astrocytes play a pivotal role in immunity as immunocompetent cells by secreting cytokines and inflammatory mediators, there are two types of astrocytes. Type-1 astrocytes can secrete TNF-alpha when stimulated with Lipopolysaccharide (LPS), while the responses of type-2 astrocytes during inflammation are unknown. So we examined the expression change of beta-1,4-GalT I mRNA in type-2 astrocytes after exposure to TNF-alpha and LPS. Real-time PCR showed that TNF-alpha or LPS affected beta-1,4-GalT I mRNA expression in a time- and dose-dependent manner. RT-PCR analysis revealed that TNFR1 and TNFR2 were present in normal untreated type-2 astrocytes, and that TNF-alpha, TNFR1 and TNFR2 increased in type-2 astrocytes after exposure to TNF-alpha or LPS. Immunocytochemistry showed that TNFR1 was expressed in the cytoplasm, nucleus and processes of normal untreated type-2 astrocytes, and distributed mainly in the cytoplasm and processes after exposure to LPS. TNFR2 was mainly expressed in the nucleus of normal untreated type-2 astrocytes, and distributed mainly in the processes of type-2 astrocytes after exposure to LPS. Both anti-TNFR1 and anti-TNFR2 antibodies suppressed beta-1,4-GalT I mRNA expression induced by TNF-alpha or LPS. From these results, we conclude that TNF-alpha signaling via both TNFR1 and TNFR2 translocated from nucleus to cytoplasm or processes is sufficient to induce beta-1,4-GalT I mRNA. In addition, we observed that not only exogenous TNF-alpha but also TNF-alpha produced by type-2 astrocytes affected beta-1,4-GalT I mRNA production in type-2 astrocytes. These results suggest that an autocrine loop involving TNF-alpha contributes to the production of beta-1,4-GalT I mRNA in response to inflammation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies/pharmacology
- Astrocytes/cytology
- Astrocytes/enzymology
- Astrocytes/immunology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Encephalitis/immunology
- Encephalitis/metabolism
- Encephalitis/physiopathology
- Galactosyltransferases/genetics
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/immunology
- Lipopolysaccharides/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Meijuan Yan
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-Xiu Road, Nantong, Jiangsu Province 226001 P.R. China
- Department of Anatomy & Neurocytobiology Unit, Suzhou University, Suzhou, Jiangsu Province 215123 P.R. China
| | - Chunlin Xia
- Department of Anatomy & Neurocytobiology Unit, Suzhou University, Suzhou, Jiangsu Province 215123 P.R. China
| | - Shuqiong Niu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-Xiu Road, Nantong, Jiangsu Province 226001 P.R. China
| | - Chun Cheng
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-Xiu Road, Nantong, Jiangsu Province 226001 P.R. China
| | - Xiaoyi Shao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-Xiu Road, Nantong, Jiangsu Province 226001 P.R. China
| | - Aiguo Shen
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-Xiu Road, Nantong, Jiangsu Province 226001 P.R. China
| |
Collapse
|
27
|
The Role of TNF-α and its Receptors in the Production of β-1,4 Galactosyltransferase I and V mRNAs by Rat Primary Astrocytes. J Mol Neurosci 2007; 33:155-62. [DOI: 10.1007/s12031-007-0033-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 11/30/1999] [Accepted: 04/04/2007] [Indexed: 01/22/2023]
|
28
|
Qian J, Cheng C, Liu H, Chen J, Yan M, Niu S, Qin J, Sun L, Liu L, Gu J, Shen A. Expression of beta-1,4-galactosyltransferase-I in rat during inflammation. Inflammation 2007; 30:59-68. [PMID: 17372842 DOI: 10.1007/s10753-007-9022-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/22/2007] [Indexed: 01/24/2023]
Abstract
beta-1,4-Galactosyltransferase-I (beta-1,4-GalT-I) which is one of the best-studied glycosyltransferases, plays a key role in the synthesis of selectin ligands such as sialy Lewis (sLe( x )) and sulfated sLe( x ). Previous studies showed that inflammatory responses of beta-1,4-GalT-I-deficient mice were impaired because of the defect in selectin-ligand biosynthesis. However, the expression of beta-1,4-GalT-I during inflammation and its biological function remains to be elucidated. Real-time PCR showed that intraperitoneal administration of LPS strongly induced beta-1,4-GalT-I mRNA expression in the lung, heart, liver, spleen, kidney, lymph node, hippocampus, and testis, as well as in the cerebral cortex. In the rat lung, liver and testis, LPS stimulation of beta-1,4-GalT-I mRNA expression is time-dependent and biphasic. Lectin-fluorescent staining with RCA-I showed that LPS induced expression of galactose-containing glycans in rat lung and liver to the higher lever. Morphology analysis observed that galactose-containing glycans and beta-1,4-GalT-I mRNA was mostly expressed in neutrophils, macrophages and endothelial cells. These findings indicated that beta-1,4-GalT-I may play an important role in the inflammation reaction.
Collapse
Affiliation(s)
- Ji Qian
- Department of Microbiology and Immunology, Medical School of Nantong University (Former Nantong Medical College), Nantong 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Moissoglu K, Gelman IH. v-Src rescues actin-based cytoskeletal architecture and cell motility and induces enhanced anchorage independence during oncogenic transformation of focal adhesion kinase-null fibroblasts. J Biol Chem 2003; 278:47946-59. [PMID: 14500722 DOI: 10.1074/jbc.m302720200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ability of the focal adhesion kinase (FAK) to integrate signals from extracellular matrix and growth factor receptors requires the integrity of Tyr397, a major autophosphorylation site that mediates the Src homology 2-dependent binding of Src family kinases. However, the precise roles played by FAK in specific Src-induced pathways, especially as they relate to oncogenic transformation, remain unclear. Here, we investigate the role of FAK in v-Src-induced oncogenic transformation by transducing temperature-sensitive v-Src (ts72v-Src) into p53-null FAK+/+ or FAK-/- mouse embryo fibroblasts (MEF). At the permissive temperature (PT), ts72v-Src induced abundant tyrosine phosphorylation, morphological transformation and cytoskeletal rearrangement in FAK-/- MEF, including the restoration of cell polarity, typical focal adhesion complexes, and longitudinal F-actin stress fibers. v-Src rescued the haptotactic, linear directional, and invasive motility defects of FAK-/- cells to levels found in FAK+/+ or FAK+/+-[ts72v-Src] cells, and, in the case of monolayer wound healing motility, there was an enhancement. Src activation failed to increase the high basal tyrosine phosphorylation of the Crk-associated substrate, CAS, found in FAK-/- MEF, indicating that CAS phosphorylation alone is insufficient to induce motility in the absence of FAK- or v-Src-induced cytoskeletal remodeling. Compared with FAK+/+[ts72v-Src] controls, FAK-/-[ts72v-Src] clones exhibited 7-10-fold higher anchorage-independent proliferation that could not be attributed to variations in either v-Src protein level or stability. Re-expression of FAK diminished the colony-forming activities of FAK-/-[ts72v-Src] without altering ts72v-Src expression levels, suggesting that FAK attenuates Src-induced anchorage independence. Our data also indicate that the enhanced Pyk2 level found in FAK-/- MEF plays no role in v-Src-induced anchorage independence. Overall, our data indicate that FAK, although dispensable, attenuates v-Src-induced oncogenic transformation by modulating distinct signaling and cytoskeletal pathways.
Collapse
Affiliation(s)
- Konstadinos Moissoglu
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | |
Collapse
|
30
|
Shen A, Yan J, Ding F, Gu X, Zhu D, Gu J. Overexpression of beta-1,4-galactosyltransferase I in rat Schwann cells promotes the growth of co-cultured dorsal root ganglia. Neurosci Lett 2003; 342:159-62. [PMID: 12757889 DOI: 10.1016/s0304-3940(03)00271-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cell surface beta-1,4-galactosyltransferase I (beta-1,4-GalT-I) functions as one of the receptors of laminin during the neurite outgrowth on basal lamina by binding to N-linked oligosaccharides in the laminin E8 domain. In this study, we demonstrated that the purified rat Schwann cells transfected with the expression plasmid of beta-1,4-GalT-I cDNA transiently promoted outgrowth and elongation of the neurites from co-cultured rat dorsal root ganglia, while those transfected with the antisense expression plasmid of beta-1,4-GalT-I had the opposite effects. These results suggested that the expression of beta-1,4-GalT-I in Schwann cells of peripheral nerve might promote both growth of developmental neuron and regeneration of injured nerve.
Collapse
Affiliation(s)
- Aiguo Shen
- Box 103, Gene Research Center, Shanghai Medical College of Fudan University (Former Shanghai Medical University), 200032, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The laminins are a family of extracellular matrix glycoproteins expressed throughout developing neural tissues. The laminins are potent stimulators of neurite outgrowth in vitro for a variety of cell types, presumably reflecting an in vivo role in stimulating axon outgrowth. In recent years, the laminins have been shown to occur in several distinct isoforms; currently, the precise functional differences between the laminin variants are not well understood. A variety of neuronal surface receptors have been identified for one laminin isoform, laminin-1. These receptors include several members of the integrin family, as well as non-integrin laminin-binding proteins such as LBP-110, the 67 kDa laminin-receptor, alpha-dystroglycan, and beta 1,4 galactosyltransferase. Little is currently known about receptors for other laminin isoforms.
Collapse
Affiliation(s)
- S K Powell
- National Institute of Dental Research, national Institute of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|