1
|
Ouyang JPT, Shukla S, Bensalah M, Parker R. DM1 repeat-expanded RNAs confer RNA toxicity as individual nuclear-retained RNAs. Cell Rep 2025; 44:115582. [PMID: 40238630 DOI: 10.1016/j.celrep.2025.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Repeat expansions of short nucleotide sequences underlie over 40 neuromuscular diseases, including myotonic dystrophy type 1 (DM1). The DM1 CUG repeat RNA is thought to accumulate in RNA nuclear foci that sequester RNA-binding proteins, including muscleblind-like splicing regulator 1 (MBNL1). To understand the composition and formation of such nuclear foci, we employed quantitative imaging in a patient-derived myotube model. We find that most "foci" are comprised of single RNAs and that these single RNA species contribute to the sequestration of MBNL1 protein. Rare foci can contain upwards of 25 distinct RNA species, but these foci form from transcriptional bursting and dissociate with time. Last, we find that multimeric CUG repeat RNA foci are dependent upon MBNL proteins. Altogether, these observations argue that the persistence of nuclear-retained CUG RNAs, independent of higher-order RNA assemblies, titrates MBNL1 and contributes to disease progression.
Collapse
Affiliation(s)
- John Paul Tsu Ouyang
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA
| | - Siddharth Shukla
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Mona Bensalah
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
2
|
Smith CS, Preibisch S, Joseph A, Abrahamsson S, Rieger B, Myers E, Singer RH, Grunwald D. Nuclear accessibility of β-actin mRNA is measured by 3D single-molecule real-time tracking. ACTA ACUST UNITED AC 2015; 209:609-19. [PMID: 26008747 PMCID: PMC4442804 DOI: 10.1083/jcb.201411032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Imaging single proteins or RNAs allows direct visualization of the inner workings of the cell. Typically, three-dimensional (3D) images are acquired by sequentially capturing a series of 2D sections. The time required to step through the sample often impedes imaging of large numbers of rapidly moving molecules. Here we applied multifocus microscopy (MFM) to instantaneously capture 3D single-molecule real-time images in live cells, visualizing cell nuclei at 10 volumes per second. We developed image analysis techniques to analyze messenger RNA (mRNA) diffusion in the entire volume of the nucleus. Combining MFM with precise registration between fluorescently labeled mRNA, nuclear pore complexes, and chromatin, we obtained globally optimal image alignment within 80-nm precision using transformation models. We show that β-actin mRNAs freely access the entire nucleus and fewer than 60% of mRNAs are more than 0.5 µm away from a nuclear pore, and we do so for the first time accounting for spatial inhomogeneity of nuclear organization.
Collapse
Affiliation(s)
- Carlas S Smith
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Stephan Preibisch
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 Howard Hughes Medical Institute Janelia Farm, Ashburn, VA 20147 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Aviva Joseph
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sara Abrahamsson
- Howard Hughes Medical Institute Janelia Farm, Ashburn, VA 20147 The Rockefeller University, New York, NY 10065
| | - Bernd Rieger
- Department of Imaging Sciences, Technical University Delft, Delft 2628CJ, Netherlands
| | - Eugene Myers
- Howard Hughes Medical Institute Janelia Farm, Ashburn, VA 20147 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 Howard Hughes Medical Institute Janelia Farm, Ashburn, VA 20147
| | - David Grunwald
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
3
|
Tripathi V, Fei J, Ha T, Prasanth KV. RNA fluorescence in situ hybridization in cultured mammalian cells. Methods Mol Biol 2015; 1206:123-36. [PMID: 25240892 DOI: 10.1007/978-1-4939-1369-5_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
It is now clear that long noncoding RNAs (lncRNAs) regulate a number of aspects of nuclear organization and gene expression. An important tool for the study of the distribution and function of lncRNAs is RNA fluorescence in situ hybridization (RNA-FISH). The protocols presented in this chapter describe this method in detail and also mention a number of critical points that must be considered when performing this technique.
Collapse
Affiliation(s)
- Vidisha Tripathi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | | | | | | |
Collapse
|
4
|
Abstract
The passage of mRNA molecules from the site of synthesis, through the nucleoplasm and the nuclear pore, en route to the cytoplasm, might appear straightforward. Nonetheless, several decades of detailed examination of this pathway, from high resolution electron microscopy in fixed specimens, through the development of immuno-detection techniques and fluorescence toolkits, to the current era of live-cell imaging, show this to be an eventful journey. In addition to mRNAs, several species of noncoding RNAs travel and function in the nucleus, some being retained within throughout their lifetime. This review will highlight the nucleoplasmic paths taken by mRNAs and noncoding RNAs in eukaryotic cells with special focus on live-cell data and in concurrence with the biophysical nature of the nucleus.
Collapse
Affiliation(s)
- Jonathan Sheinberger
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | | |
Collapse
|
5
|
Eberwine J, Lovatt D, Buckley P, Dueck H, Francis C, Kim TK, Lee J, Lee M, Miyashiro K, Morris J, Peritz T, Schochet T, Spaethling J, Sul JY, Kim J. Quantitative biology of single neurons. J R Soc Interface 2012; 9:3165-83. [PMID: 22915636 PMCID: PMC3481569 DOI: 10.1098/rsif.2012.0417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The building blocks of complex biological systems are single cells. Fundamental insights gained from single-cell analysis promise to provide the framework for understanding normal biological systems development as well as the limits on systems/cellular ability to respond to disease. The interplay of cells to create functional systems is not well understood. Until recently, the study of single cells has concentrated primarily on morphological and physiological characterization. With the application of new highly sensitive molecular and genomic technologies, the quantitative biochemistry of single cells is now accessible.
Collapse
Affiliation(s)
- James Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, 36th and Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The development of cellular diversity within any organism depends on the timely and correct expression of differing subsets of genes within each tissue type. Many techniques exist which allow a global, average analysis of RNA expression; however, RNA-FISH permits the sensitive detection of specific transcripts within individual cells while preserving the cellular morphology. The technique can provide insight into the spatial and temporal organization of gene transcription as well the relationship of gene expression and mature RNA distribution to nuclear and cellular compartments. It can also reveal the intercellular variation of gene expression within a given tissue. Here, we describe RNA-FISH methodologies that allow the detection of nascent transcripts within the cell nucleus as well as protocols that allow the detection of RNA alongside DNA or proteins. Such techniques allow the placing of gene transcription within a functional context of the whole cell.
Collapse
Affiliation(s)
- Jill M Brown
- MRC Molecular Haematology Unit, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, Headington, Oxford, UK.
| | | |
Collapse
|
7
|
Platani M, Lamond AI. Nuclear organisation and subnuclear bodies. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2008; 35:1-22. [PMID: 15113077 DOI: 10.1007/978-3-540-74266-1_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Melpomeni Platani
- Wellcome Trust Biocentre, MSI/WTB Complex, DD1 5EH, Dundee, Scotland, United Kingdom
| | | |
Collapse
|
8
|
Royo H, Basyuk E, Marty V, Marques M, Bertrand E, Cavaillé J. Bsr, a nuclear-retained RNA with monoallelic expression. Mol Biol Cell 2007; 18:2817-27. [PMID: 17507654 PMCID: PMC1949380 DOI: 10.1091/mbc.e06-10-0920] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The imprinted Dlk1-Gtl2 and Prader-Willi syndrome (PWS) regions are characterized by a complex noncoding transcription unit spanning arrays of tandemly repeated C/D RNA genes. These noncoding RNAs (ncRNAs) are thought to play an essential but still poorly understood role. To better understand the intracellular fate of these large ncRNAs, fluorescence in situ hybridization was carried out at the rat Dlk1-Gtl2 domain. This locus contains a approximately 100-kb-long gene cluster comprising 86 homologous RBII-36 C/D RNA gene copies, all of them intron-encoded within the ncRNA gene Bsr. Here, we demonstrate that the Bsr gene is monoallelically expressed in primary rat embryonic fibroblasts as well as in hypothalamic neurons and yields a large amount of unspliced and spliced RNAs at the transcription site, mostly as elongated RNA signals. Surprisingly, spliced Bsr RNAs released from the transcription site mainly concentrate as numerous, stable nuclear foci that do not colocalize with any known subnuclear structures. On drug treatments, a fraction of Bsr RNA relocalizes to the cytoplasm and associates with stress granules (SGs), but not with P-bodies, pointing to a potential link between SGs and the metabolism of ncRNA. Thus, Bsr might represent a novel type of nuclear-retained transcript.
Collapse
Affiliation(s)
- Hélène Royo
- *Laboratoire de Biologie Moléculaire Eucaryote-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5095, Institut d'Exploration Fonctionnelle des Génomes 109, 31062 Cedex Toulouse, France; and
| | - Eugenia Basyuk
- Institut Génétique Moléculaire Montpellier-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535, Université Montpellier II, 34293 Montpellier Cedex 5, France
| | - Virginie Marty
- *Laboratoire de Biologie Moléculaire Eucaryote-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5095, Institut d'Exploration Fonctionnelle des Génomes 109, 31062 Cedex Toulouse, France; and
| | - Maud Marques
- *Laboratoire de Biologie Moléculaire Eucaryote-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5095, Institut d'Exploration Fonctionnelle des Génomes 109, 31062 Cedex Toulouse, France; and
| | - Edouard Bertrand
- Institut Génétique Moléculaire Montpellier-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5535, Université Montpellier II, 34293 Montpellier Cedex 5, France
| | - Jérôme Cavaillé
- *Laboratoire de Biologie Moléculaire Eucaryote-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5095, Institut d'Exploration Fonctionnelle des Génomes 109, 31062 Cedex Toulouse, France; and
| |
Collapse
|
9
|
Sparano BA, Koide K. Fluorescent sensors for specific RNA: a general paradigm using chemistry and combinatorial biology. J Am Chem Soc 2007; 129:4785-94. [PMID: 17385867 DOI: 10.1021/ja070111z] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we describe a new paradigm for the development of small molecule-based RNA sensors. We prepared a series of potential PET (photoinduced electron transfer) sensors on the basis of 2',7'-dichlorofluorescein (DCF) fluorophore conjugated with two aniline derivatives as electron donors (quenchers). NMR and fluorescent spectroscopic analyses of these DCF derivatives revealed the correlation between the conformations, the PET, and the fluorescent intensities of these DCF derivatives, enabling us to select a sensor candidate. RNA aptamers were raised against the aniline-based quencher via in vitro selection (SELEX). One of these aptamers enhanced the fluorescence intensity of the DCF-aniline conjugate in a concentration-dependent manner. To demonstrate the power and generality of this approach, additional in vitro selection was performed and aptamers from this selection were found to have similar activities. These results show that one can develop fluorescence-inducing reporter RNA and morph it into remotely related sequences without prior structural insight into RNA-ligand binding.
Collapse
Affiliation(s)
- Brian A Sparano
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
10
|
Wegel E, Vallejos RH, Christou P, Stöger E, Shaw P. Large-scale chromatin decondensation induced in a developmentally activated transgene locus. J Cell Sci 2005; 118:1021-31. [PMID: 15713746 DOI: 10.1242/jcs.01685] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The high molecular weight (HMW) glutenin-encoding genes in wheat are developmentally activated in the endosperm at about 8 days after anthesis. We have investigated the physical changes that occur in these genes in two transgenic lines containing about 20 and 50 copies each of the HMW glutenin genes together with their promoters. Using fluorescence in-situ hybridisation (FISH) and confocal imaging, we demonstrate that, in non-expressing tissue, each transgene locus consists of one or two highly condensed sites, which decondense into many foci upon activation of transcription in endosperm nuclei. Initiation of transcription can precede decondensation but not vice versa. We show that, in one of the lines, cytoplasmic transcript levels are high after onset of transcription but disappear by 14 days after anthesis, whereas small interfering RNAs, which indicate post-transcriptional gene silencing (PTGS), are detected at this stage. However, the transcript levels remain high at the transcription sites, most of the transgene copies are transcriptionally active and transcriptional activity in the nucleus ceases only with cell death at the end of endosperm development.
Collapse
MESH Headings
- Cell Nucleus/metabolism
- Chromatin/chemistry
- Chromatin/metabolism
- Chromatin/ultrastructure
- Cytoplasm/metabolism
- DNA/metabolism
- DNA Methylation
- DNA Primers/chemistry
- Flow Cytometry
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Gene Silencing
- Genes, Plant
- Glutens/genetics
- Image Processing, Computer-Assisted
- In Situ Hybridization
- In Situ Hybridization, Fluorescence
- Metaphase
- Microscopy, Confocal
- Plant Physiological Phenomena
- Plant Roots/metabolism
- Plants, Genetically Modified
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Seeds/metabolism
- Time Factors
- Transcription, Genetic
- Transformation, Genetic
- Transgenes
- Triticum/genetics
- Triticum/metabolism
Collapse
Affiliation(s)
- Eva Wegel
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | | | | | | | | |
Collapse
|
11
|
Bridger JM, Kalla C, Wodrich H, Weitz S, King JA, Khazaie K, Kräusslich HG, Lichter P. Nuclear RNAs confined to a reticular compartment between chromosome territories. Exp Cell Res 2005; 302:180-93. [PMID: 15561100 DOI: 10.1016/j.yexcr.2004.07.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/30/2004] [Indexed: 12/15/2022]
Abstract
RNA polymerase II transcripts are confined to nuclear compartments. A detailed analysis of the nuclear topology of RNA from individual genes was performed for transcripts from the marker gene coding for chloramphenicol acetyltransferase, expressed at a high level from the HTLV-1 LTR promoter. The construct was transfected into A293 cells where the RNA was organized as an extensive reticular network. We also studied the RNA distribution from combinations of neighboring HIV and bacterial resistance genes that co-integrated within the genome of COS-7 cells-revealing spherical or track-like accumulations of RNA that were extensively branched. There were many nuclei with distinct but overlapping RNA accumulations. Since the coding genes localized at the overlapping points, the RNAs are synthesized at a common region and diverge. The correlation between the frequency of the separation of the transcripts and the physical distance of the respective genes suggests a subcompartmentalization in the microenvironment of genes on the basis of geometric parameters. Thus, the more distant the genes are on the same chromosome, the more likely they are confined to separated subcompartments of an extensive reticular system. Co-delineation of the RNA transcripts with Cajal bodies and chromosome territories indicated the organization of nuclear RNA transcripts in a reticular interchromosome domain compartment.
Collapse
Affiliation(s)
- Joanna M Bridger
- Abteilung Molekulare Genetik, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Molenaar C, Abdulle A, Gena A, Tanke HJ, Dirks RW. Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells. ACTA ACUST UNITED AC 2004; 165:191-202. [PMID: 15117966 PMCID: PMC2172041 DOI: 10.1083/jcb.200310139] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many of the protein factors that play a role in nuclear export of mRNAs have been identified, but still little is known about how mRNAs are transported through the cell nucleus and which nuclear compartments are involved in mRNA transport. Using fluorescent 2'O-methyl oligoribonucleotide probes, we investigated the mobility of poly(A)+ RNA in the nucleoplasm and in nuclear speckles of U2OS cells. Quantitative analysis of diffusion using photobleaching techniques revealed that the majority of poly(A)+ RNA move throughout the nucleus, including in and out of speckles (also called SC-35 domains), which are enriched for splicing factors. Interestingly, in the presence of the transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole, the association of poly(A)+ RNA with speckles remained dynamic. Our results show that RNA movement is energy dependent and that the proportion of nuclear poly(A)+ RNA that resides in speckles is a dynamic population that transiently interacts with speckles independent of the transcriptional status of the cell. Rather than the poly(A)+ RNA within speckles serving a stable structural role, our findings support the suggestion of a more active role of these regions in nuclear RNA metabolism and/or transport.
Collapse
Affiliation(s)
- Chris Molenaar
- Dept. of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Netherlands
| | | | | | | | | |
Collapse
|
13
|
Abstract
Intense research in recent years has shown that many pre-mRNA processing events are co-transcriptional or at least begin during RNA synthesis by RNA polymerase II (Pol II). But is it important that pre-mRNA processing occurs co-transcriptionally? Whereas Pol II directs 5' capping of mRNA by binding to and recruiting all three capping activities to transcription units, co-transcriptional splicing is not obligatory. In some cases, such as alternative splicing, splicing may occur post-transcriptionally owing to the slower kinetics of splicing unfavorable introns. Despite recent models in which splicing factors are bound directly to the C-terminal domain (CTD) of Pol II, little evidence supports that view. Instead, interactions between snRNPs and transcription elongation factors provide the strongest molecular evidence for a physical link between transcription and splicing. Transcription termination depends on polyadenylation signals, but, like splicing, polyadenylation per se probably begins co-transcriptionally and continues post-transcriptionally. Nascent RNA plays an important role in determining which transcripts are polyadenylated and which alternative terminal exon is used. A recent addition to co-transcriptional RNA processing is a possible RNA surveillance step prior to release of the mRNP from the transcription unit, which appears to coordinate nuclear transport with mRNA processing and may be mediated by components of the nuclear exosome.
Collapse
Affiliation(s)
- Karla M Neugebauer
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
14
|
Shopland LS, Johnson CV, Lawrence JB. Evidence that all SC-35 domains contain mRNAs and that transcripts can be structurally constrained within these domains. J Struct Biol 2002; 140:131-9. [PMID: 12490161 DOI: 10.1016/s1047-8477(02)00507-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fundamental question of mRNA metabolism concerns the spatial organization of the steps involved in generating mature transcripts and their relationship to SC-35 domains, nuclear compartments enriched in mRNA metabolic factors and poly A+ RNA. Because poly A+ RNA in SC-35 domains remains after transcription inhibition, a prevailing view has been that most or all SC-35 domains do not contain protein-encoding mRNAs but stable RNAs with nuclear functions and thus that these compartments do not have direct roles in mRNA synthesis or transport. However, the transcription, splicing, and transport of transcripts from a specific gene have been shown to occur in association with two of these 15-30 nuclear compartments. Here we show that virtually all SC-35 domains can contain specific mRNAs and that these persist in SC-35 domains after treatment with three different transcription-inhibitory drugs. This suggests perturbation of an mRNA transport step that normally occurs in SC-35 domains and is post-transcriptional but still dependent on ongoing transcription. Finally, even after several hours of transcription arrest, these transcripts do not disperse from SC-35 domains, indicating that they are structurally constrained within them. Our findings importantly suggest a spatially direct role for all SC-35 domains in the coupled steps of mRNA metabolism and transport.
Collapse
Affiliation(s)
- Lindsay S Shopland
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North (S3-138), Worcester, MA 01655-0002, USA
| | | | | |
Collapse
|
15
|
Mühlemann O, Mock-Casagrande CS, Wang J, Li S, Custódio N, Carmo-Fonseca M, Wilkinson MF, Moore MJ. Precursor RNAs harboring nonsense codons accumulate near the site of transcription. Mol Cell 2001; 8:33-43. [PMID: 11511358 DOI: 10.1016/s1097-2765(01)00288-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Messenger RNAs containing premature termination codons (PTCs) are selectively eliminated by nonsense-mediated mRNA decay (NMD). Paradoxically, although cytoplasmic ribosomes are the only known species capable of PTC recognition, in mammals many PTC-containing mRNAs are apparently eliminated prior to release from the nucleus. To determine whether PTCs can influence events within the nucleus proper, we studied the immunoglobulin (Ig)-mu and T cell receptor (TCR)-beta genes using fluorescent in situ hybridization (FISH). Alleles containing PTCs, but not those containing a missense mutation or a frameshift followed by frame-correcting mutations, exhibited elevated levels of pre-mRNA, which accumulated at or near the site of transcription. Our data indicate that mRNA reading frame can influence events at or near the site of gene transcription.
Collapse
Affiliation(s)
- O Mühlemann
- Howard Hughes Medical Institute, W.M. Keck Center for Cellular Visualization, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Pre-mRNA is transcribed primarily from genes located at the interface between chromatin domains and the interchromatin space. After partial or complete processing and complexing with nuclear proteins, the transcripts leave their site of synthesis and travel through the interchromatin space to the nuclear pores for export to the cytoplasm. It is unclear whether transcripts are tethered within the interchromatin space and move toward the nuclear pores using a metabolic energy-requiring, directed mechanism or, alternatively, move randomly by a diffusion-based process. We discuss here recent progress in understanding this step of gene expression, including our experiments tracking the movement of intranuclear poly(A) RNA in living cells. Our results and those of others are most consistent with a model in which newly synthesized mRNAs diffuse throughout the interchromatin space until they randomly encounter and are captured by the export machinery. Because the export machinery appears to preferentially bind transport-competent mRNAs (complexed with the correct complement of nuclear proteins), this diffusion-based model for intranuclear RNA movement potentially allows for a significant level of posttranscriptional control of gene expression.
Collapse
Affiliation(s)
- J C Politz
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, 377 Plantation Street, Worcester, Massachusetts, 01605, USA
| | | |
Collapse
|
17
|
Melcák I, Cermanová S, Jirsová K, Koberna K, Malínský J, Raska I. Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs. Mol Biol Cell 2000; 11:497-510. [PMID: 10679009 PMCID: PMC14788 DOI: 10.1091/mbc.11.2.497] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the present study, the spatial organization of intron-containing pre-mRNAs of Epstein-Barr virus (EBV) genes relative to location of splicing factors is investigated. The intranuclear position of transcriptionally active EBV genes, as well as of nascent transcripts, is found to be random with respect to the speckled accumulations of splicing factors (SC35 domains) in Namalwa cells, arguing against the concept of the locus-specific organization of mRNA genes with respect to the speckles. Microclusters of splicing factors are, however, frequently superimposed on nascent transcript sites. The transcript environment is a dynamic structure consisting of both nascent and released transcripts, i.e., the track-like transcript environment. Both EBV sequences of the chromosome 1 homologue are usually associated with the track, are transcriptionally active, and exhibit in most cases a polar orientation. In contrast to nascent transcripts (in the form of spots), the association of a post-transcriptional pool of viral pre-mRNA (in the form of tracks) with speckles is not random and is further enhanced in transcriptionally silent cells when splicing factors are sequestered in enlarged accumulations. The transcript environment reflects the intranuclear transport of RNA from the sites of transcription to SC35 domains, as shown by concomitant mapping of DNA, RNA, and splicing factors. No clear vectorial intranuclear trafficking of transcripts from the site of synthesis toward the nuclear envelope for export into the cytoplasm is observed. Using Namalwa and Raji cell lines, a correlation between the level of viral gene transcription and splicing factor accumulation within the viral transcript environment has been observed. This supports a concept that the level of transcription can alter the spatial relationship among intron-containing genes, their transcripts, and speckles attributable to various levels of splicing factors recruited from splicing factor reservoirs. Electron microscopic in situ hybridization studies reveal that the released transcripts are directed toward reservoirs of splicing factors organized in clusters of interchromatin granules. Our results point to the bidirectional intranuclear movement of macromolecular complexes between intron-containing genes and splicing factor reservoirs: the recruitment of splicing factors to transcription sites and movement of released transcripts from DNA loci to reservoirs of splicing factors.
Collapse
MESH Headings
- Biological Transport
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/ultrastructure
- Cell Nucleus/virology
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Directed RNA Polymerases/antagonists & inhibitors
- DNA-Directed RNA Polymerases/metabolism
- Genes, Viral/genetics
- Genome, Viral
- Herpesvirus 4, Human/genetics
- Heterogeneous-Nuclear Ribonucleoproteins
- Humans
- Introns/genetics
- Microscopy, Confocal
- Microscopy, Electron
- Microscopy, Fluorescence
- Nuclear Proteins/metabolism
- Plasmids/genetics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonucleoproteins/metabolism
- Serine-Arginine Splicing Factors
- Spliceosomes/genetics
- Spliceosomes/metabolism
- Spliceosomes/ultrastructure
- Transcription, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- I Melcák
- Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of Czech Republic, Czech Republic
| | | | | | | | | | | |
Collapse
|
18
|
Szeles A, Falk KI, Imreh S, Klein G. Visualization of alternative Epstein-Barr virus expression programs by fluorescent in situ hybridization at the cell level. J Virol 1999; 73:5064-9. [PMID: 10233969 PMCID: PMC112551 DOI: 10.1128/jvi.73.6.5064-5069.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) transforms human B lymphocytes into immortalized lymphoblastoid cell lines (LCLs). They regularly express six virally encoded nuclear proteins (EBNA1 to EBNA6) and three membrane proteins (LMP1, LMP2A, and LMP2B). In contrast, EBV-carrying Burkitt lymphoma (BL) cells in vivo and derived type I cell lines that maintain the BL phenotype express only EBNA1. During prolonged in vitro culturing, most EBV-carrying BL lines drift toward a more immunoblastic (type II or III) phenotype. Their viral antigen expression is upregulated in parallel. We have used fluorescent in situ hybridization to visualize viral transcripts in type I and III BL lines and LCLs. In type I cells, EBNA1 is encoded by a monocistronic message that originates from the Qp promoter. In type III cells, the EBNA1 transcript is spliced from a giant polycistronic message that originates from one of several alternative Wp or Cp promoters and encodes all six EBNAs. We have obtained a "track" signal with a BamHI W DNA probe that could hybridize with the polycistronic but not with the monocistronic message in two type III BL lines (Namalwa-Cl8 and MUTU III) and three LCLs (LCL IB4-D, LCL-970402, and IARC-171). A BamHI K probe that can hybridize to both the monocistronic and the polycistronic message visualized the same pattern in the type III BLs and the LCLs as the BamHI W probe. A positive signal was obtained with the BamHI K but not the BamHI W probe in the type I BL lines MUTU I and Rael. The RNA track method can thus distinguish between cells that use a type III and those that use a type I program. The former cells hybridize with both the W and the K probes, but the latter cells hybridize with only the K probe. Our findings may open the way for studies of the important but still unanswered question of whether cells with type I latency arise from immunoblasts with a full type III program or are generated by a separate pathway during primary infection.
Collapse
Affiliation(s)
- A Szeles
- Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
19
|
Snaar SP, Vincent M, Dirks RW. RNA polymerase II localizes at sites of human cytomegalovirus immediate-early RNA synthesis and processing. J Histochem Cytochem 1999; 47:245-54. [PMID: 9889260 DOI: 10.1177/002215549904700213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pre-mRNA synthesis in eukaryotic cells is preceded by the formation of a transcription initiation complex and binding of unphosphorylated RNA polymerase II (Pol II) at the promoter region of a gene. Transcription initiation and elongation are accompanied by the hyperphosphorylation of the carboxy-terminal domain (CTD) of Pol II large subunit. Recent biochemical studies provided evidence that RNA processing factors, including those required for splicing, associate with hyperphosphorylated CTDs forming "transcription factories." To directly visualize the existence of such factories, we simultaneously detected human cytomegalovirus immediate-early (IE) DNA and RNA with splicing factors and Pol II in rat 9G cells inducible for IE gene expression. Combined in situ hybridization and immunocytochemistry revealed that, after induction, both splicing factors and Pol II are present at the sites of IE mRNA synthesis and of IE mRNA processing that extend from the transcribing gene. Noninduced cells revealed no such associations. When IE mRNA-synthesizing cells were treated with a transcription inhibitor, these associations disappeared within 30 min. Our results show that the association of Pol II and splicing factors with IE DNA is dependent on its transcriptional activity and furthermore suggest that splicing factors are still associated with Pol II during active splicing.
Collapse
Affiliation(s)
- S P Snaar
- Department of Molecular Cell Biology, Laboratory for Cytochemistry and Cytometry, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | |
Collapse
|
20
|
Dirks RW, Raap AK. Staining of the midbody by an anti-digoxin-specific antibody. J Histochem Cytochem 1998; 46:779-82. [PMID: 9603791 DOI: 10.1177/002215549804600612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Using RNA in situ hybridization to reveal cytoplasmic localization patterns of mRNAs in cultured cells, we noted unexpected staining of a cytoplasmic component in telophase cells. Control experiments revealed that the anti-digoxin-specific antibody was responsible for this staining. Because the staining was observed only at a position where both daughter cells are still connected, we identified the stained component as the midbody. This was confirmed by double staining of cells with anti-digoxin and anti-alpha-tubulin antibodies. We concluded that anti-digoxin-specific antibody shows crossreactivity with a component present in the midbody.
Collapse
Affiliation(s)
- R W Dirks
- Department of Molecular Cell Biology, Laboratory of Cytochemistry and Cytometry, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
21
|
Abstract
The possible existence in eukaryotic cells of an internal, non-chromatin nuclear structural framework that facilitates gene readout as a set of spatially concerted reactions has become a popular but controversial theater of investigation. This article endeavors to present a circumspect review of the nuclear matrix concept as we presently know it, framed around two contrasting hypotheses: (1) that an internal nuclear framework actively enhances gene expression (in much the same way the cytoskeleton mediates cell locomotion, mitosis and intracellular vesicular traffic) versus (2) that the interphase chromosomes have fixed, inherited positions and that the DNA replication, transcripton and RNA processing machinery diffusionally arrives at sites of gene readout, with some aspects of nuclear structure thus being more a result than a cause of gene expression. On balance, the available information suggests that interactions among various gene expression machines may contribute to isolated nuclear matrix preparations. Some components of isolated nuclear matrix preparations may also reflect induced or reconfigured protein-protein associations. The protein characterization and ultrastructural analysis of the isolated nuclear matrix has advanced significantly in recent years, although controversies remain. Important new clues are now coming in from promising contemporary lines of research that report on nuclear structure in living cells.
Collapse
Affiliation(s)
- T Pederson
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA.
| |
Collapse
|
22
|
Jolly C, Robert-Nicoud M, Vourc'h C. Contribution of growing RNA molecules to the nuclear transcripts foci observed by FISH. Exp Cell Res 1998; 238:299-304. [PMID: 9457084 DOI: 10.1006/excr.1997.3838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The focal distributions of RNAs observed using fluorescence in situ hybridization (FISH) in the cell nucleus may correspond either to RNAs in the course of transcription or essentially to accumulation of full-length transcripts at the sites of transcription. To determine to what extent nuclear transcript foci represent growing RNA molecules, uninterrupted hsp70 transcripts were detected by FISH in heat-shocked human fibroblasts using two probes specific for the 5' or for the 3' end of the transcripts. By comparing the size of the signals obtained with each probe, we show that transcript foci mainly represent accumulations of full-length transcripts at their site of transcription. A major contribution of RNAs in the course of transcription to the transcript foci is observed only during the first minutes of gene induction. These observations suggest the existence of a rate-limiting step in the release of newly synthesized transcripts from their site of transcription, which is independent from the step of intron excision.
Collapse
Affiliation(s)
- C Jolly
- DyOGen, INSERM U309, Institut Albert Bonniot, La Tronche, France.
| | | | | |
Collapse
|
23
|
Lampel S, Bridger JM, Zirbel RM, Mathieu UR, Lichter P. Nuclear RNA accumulations contain released transcripts and exhibit specific distributions with respect to Sm antigen foci. DNA Cell Biol 1997; 16:1133-42. [PMID: 9364924 DOI: 10.1089/dna.1997.16.1133] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA polymerase II transcripts accumulate within mammalian nuclei at distinct sites and exhibit varying morphology. Certain RNA species are organized in elongated structures, whereas others appear as dot-like concentrations. To analyze the status of the RNA within these accumulations, we investigated the composition of accumulations derived from Epstein-Barr virus (EBV) genes, human papilloma virus 18 (HPV18) open reading frames E6 and E7, as well as heat shock protein 89a (hsp89alpha) and 89beta (hsp89beta) genes. No differential distribution of exon and intron sequences within concentrations of EBV RNA could be observed. Whereas accumulations of hsp89alpha and hsp89beta always coincided with Sm antigen foci, the RNA of EBV and HPV18 never co-localized with these foci. This excludes Sm antigen foci as the only sites of splicing and suggests gene-specific variation in the nuclear localization of transcripts. Two sets of experiments were performed to assess whether transcripts in the RNA accumulations are in statu nascendi or products released from a discrete gene locus. Because RNA transcripts derived from EBV genes, which are located on both ends of the genome, were all distributed along the entire length of the RNA signals, they cannot be derived from a highly decondensed genomic DNA extending throughout elongated RNA accumulations. Furthermore, removal of labeled RNA sequences and subsequent visualization of DNA confirmed the confinement of the genomic sequences to a small subregion of the area occupied by accumulated RNA. Therefore, this study supports the view of RNA accumulations as a stream of molecules that delineate a path from a dot-like gene locus toward the nuclear envelope for export into the cytoplasm.
Collapse
MESH Headings
- Autoantigens/analysis
- Burkitt Lymphoma
- Cell Fractionation
- Cell Nucleus/chemistry
- Cytoplasm/chemistry
- DNA, Viral/analysis
- DNA-Binding Proteins
- Exons/genetics
- Genes, Viral/genetics
- HeLa Cells
- Heat-Shock Proteins/genetics
- Herpesvirus 4, Human/genetics
- Humans
- Introns/genetics
- Nuclear Envelope/chemistry
- Oncogene Proteins, Viral/genetics
- Papillomaviridae/genetics
- RNA Precursors/analysis
- RNA Splicing
- RNA, Messenger/analysis
- RNA, Nuclear/analysis
- RNA, Viral/analysis
- Ribonucleoproteins, Small Nuclear
- Transcription, Genetic
- Tumor Cells, Cultured
- snRNP Core Proteins
Collapse
Affiliation(s)
- S Lampel
- Abteilung Organisation komplexer Genome, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
24
|
Ishov AM, Stenberg RM, Maul GG. Human cytomegalovirus immediate early interaction with host nuclear structures: definition of an immediate transcript environment. J Cell Biol 1997; 138:5-16. [PMID: 9214377 PMCID: PMC2139949 DOI: 10.1083/jcb.138.1.5] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1997] [Revised: 03/25/1997] [Indexed: 02/04/2023] Open
Abstract
The development of an induced transcript environment was investigated at the supramolecular level through comparative localization of the human cytomegalovirus immediate early (IE) transcripts and specific nuclear domains shortly after infection. Compact aggregates of IE transcripts form only adjacent to nuclear domain 10 (ND10), and the viral protein IE86 accumulates exclusively juxtaposed to the subpopulation of ND10 with transcripts. The stream of transcripts is funneled from ND10 into the spliceosome assembly factor SC35 domain through the accumulation of IE86 protein, which recruits some components of the basal transcription machinery. Concomitantly the IE72 protein binds to ND10 and later disperses them. The domain containing the zinc finger region of IE72 is essential for this dispersal. Positional analysis of proteins IE86 and IE72, IE transcripts, ND10, the spliceosome assembly factor SC35, and basal transcription factors defines spatially and temporally an immediate transcript environment, the basic components of which exist in the cell before viral infection, providing the structural environment for the virus to usurp.
Collapse
Affiliation(s)
- A M Ishov
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
25
|
Fay FS, Taneja KL, Shenoy S, Lifshitz L, Singer RH. Quantitative digital analysis of diffuse and concentrated nuclear distributions of nascent transcripts, SC35 and poly(A). Exp Cell Res 1997; 231:27-37. [PMID: 9056409 DOI: 10.1006/excr.1996.3460] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Digital imaging microscopy was used to analyze the spatial distribution and levels of newly synthesized RNA in relation to steady-state poly(A) RNA and to the splicing factor SC35. Transcription was monitored over time after microinjection of BrUTP and was detected using antibodies. Poly(A) RNA was detected with probes directly conjugated to fluorochromes, allowing direct detection of the hybrids. Objective methods were used to determine genuine signal. A defined threshold level to separate signal from noise was established for each nucleus. The nucleolus was used to determine poly(A) and SC35 background and the juxtanuclear cytoplasm was used for the BrUTP background. The remaining signal was segmented into high (concentrated) and low (diffuse) levels. Surprisingly, for all probes examined, most of the signal was not in concentrated areas, but rather was diffusely spread throughout the nucleoplasm. A minority (20-30%) of the SC35 signal was in concentrated areas ("speckles") and the rest was dispersed throughout the nucleoplasm. In addition, the concentrated areas had a mean intensity only twice the average. The amount and significance of the colocalization of the diffuse, or concentrated, areas of SC35 [or poly(A)] with BrUTP incorporation were analyzed. The image from one probe was translated with respect to the other in three dimensions to compare colocalization with random alignments. Both poly(A) and SC35 were found to have low colocalization with the total BrU signal. Sites of transcription were determined using an algorithm to find maxima of BrUTP signal within clusters. From 849 to as many as 3888 sites per nucleus were detected. A rim of hybridization to poly(A) coinciding with the nuclear envelope was eliminated by actinomycin treatment, suggesting that these transcripts were exiting from the nucleus. These results emphasize the importance of utilizing the full dynamic range of the image before drawing conclusions as to the distribution of nuclear components.
Collapse
Affiliation(s)
- F S Fay
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | | | | | | | | |
Collapse
|
26
|
Romanov VI, Zolotukhin AS, Aleksandroff NN, Pinto da Silva P, Felber BK. Posttranscriptional regulation by Rev protein of human immunodeficiency virus type 1 results in nonrandom nuclear localization of gag mRNA. Virology 1997; 228:360-70. [PMID: 9123843 DOI: 10.1006/viro.1996.8398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression of the human immunodeficiency virus type 1 mRNAs containing the Rev-responsive element is regulated at the posttranscriptional level by the viral Rev protein. Rev increases the nucleocytoplasmic export of these mRNAs, leading to high expression. Using in situ hybridization and electron microscopy, we investigated the localization of a subgenomic gag mRNA in the absence and presence of Rev. In addition to the previously shown cytoplasmic accumulation of the Rev-dependent mRNA, we observed that in the presence of Rev the nuclear gag mRNA accumulates nonrandomly and forms specific localization patterns at the nuclear membrane and in the nucleoplasm. Cellular mRNAs for beta-actin and glyceraldehyde-3-phosphate dehydrogenase were not found to form such patterns. These data suggest that Rev leads the gag mRNA to specific subnuclear locations, which further supports the transport function of Rev.
Collapse
Affiliation(s)
- V I Romanov
- Membrane Biology Section, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | | | | | |
Collapse
|
27
|
Dirks RW, de Pauw ES, Raap AK. Splicing factors associate with nuclear HCMV-IE transcripts after transcriptional activation of the gene, but dissociate upon transcription inhibition: evidence for a dynamic organization of splicing factors. J Cell Sci 1997; 110 ( Pt 4):515-22. [PMID: 9067603 DOI: 10.1242/jcs.110.4.515] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Before being transported to the cytoplasm, intron-containing pre-mRNAs have to be spliced somewhere in the cell nucleus. Efficient splicing requires an ordered assembly of splicing factors onto the pre-mRNAs. To accomplish this, intron containing genes may be preferentially localized at nuclear sites enriched for splicing factors or alternatively, splicing factors may circulate throughout the nucleus and have the ability to associate with randomly positioned nascent transcripts. Combined detection of HCMV-IE mRNA/DNA and splicing factors in rat 9G cells that can be induced for IE gene expression shows that IE genes are not associated with speckled regions enriched for splicing factors when transcriptionally inactive, but ‘attract’ splicing factors when transcriptionally activated. This process proved reversible after transcription inhibition. IE transcripts appeared to be retained near the transcription site in track-like domains by splicing factors associated with them until splicing has been completed. Double-hybridization experiments revealed that a substantial part of the accumulated transcripts contain a poly(A) tail suggesting that most, if not all, IE transcripts are polyadenylated at the site of transcription. These results indicate that RNA processing may occur independent of the position of the gene in the cell nucleus relative to speckle domains.
Collapse
Affiliation(s)
- R W Dirks
- Department of Cytochemistry and Cytometry, Leiden University, The Netherlands.
| | | | | |
Collapse
|
28
|
Abstract
RNA in situ hybridization is a useful method for localizing specific mRNAs and studying the spatial and temporal organization of RNA transcription, processing and transport in cells. In this review, I describe methods of RNA in situ hybridization for tissue sections and cell preparations. Special emphasis is placed on the application of non-radioactive-labeled probes for multiparameter cell analysis. In addition, a summary of RNA in situ hybridization studies on RNA transport in the cytoplasm as well as in the nucleus of cells is given.
Collapse
Affiliation(s)
- R W Dirks
- Department of Cytochemistry and Cytometry, Sylvius Laboratories, Leiden University, Netherlands
| |
Collapse
|
29
|
Dirks RW, Raap AK. Cell-cycle-dependent gene expression studied by two-colour fluorescent detection of a mRNA and histone mRNA. Histochem Cell Biol 1995; 104:391-5. [PMID: 8574889 DOI: 10.1007/bf01458133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated whether a probe specific for histone H3 mRNA could be used as a marker to study cell-cycle dependency of gene expression by double-fluorescent RNA in situ hybridization (FISH). First, we showed that all S-phase cells in cell cultures having incorporated BrdU revealed histone H3 mRNA expression by RNA FISH, indicating that histone H3 expression is a reliable marker for S-phase cells. Second, we analysed whether the expression of human cytomegalovirus immediate early genes in rat 9G cells, which are known to be induced in an S-phase dependent way by cycloheximide, correlated with the expression of histone H3 mRNA. Double-hybridization experiments with a digoxigenin-labelled probe for IE mRNA and a fluoresceinated probe for histone H3 mRNA revealed that cells expressing IE mRNA also expressed histone H3 mRNA. Third, we examined the cell-cycle dependency of luciferase gene expression in X1 cells. Luciferase mRNA is heterogeneously expressed in X1 cell cultures, but cells expressing luciferase did not necessarily express histone H3 mRNA. This indicates that luciferase gene expression in X1 cells is not induced during S-phase. The results of our study show that histone H3 mRNA expression can be successfully used as a marker to establish cell-cycle dependency of gene expression by double-RNA FISH.
Collapse
Affiliation(s)
- R W Dirks
- Department of Cytochemistry and Cytometry, Sylvius Laboratories, University of Leiden, The Netherlands
| | | |
Collapse
|