1
|
Shyian M, Albert B, Zupan AM, Ivanitsa V, Charbonnet G, Dilg D, Shore D. Fork pausing complex engages topoisomerases at the replisome. Genes Dev 2019; 34:87-98. [PMID: 31805522 PMCID: PMC6938670 DOI: 10.1101/gad.331868.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022]
Abstract
In this study, Shyian et al. set out to address mechanistically how the evolutionarily conserved fork pausing complex acts at proteinaceous replication fork barriers (RFBs) to promote fork passage and genome stability. Using several molecular and cell-based assays, the authors propose that forks pause at proteinaceous RFBs through a “sTOP” mechanism (“slowing down with topoisomerases I–II”), which also contributes to protecting cells from topoisomerase-blocking agents. Replication forks temporarily or terminally pause at hundreds of hard-to-replicate regions around the genome. A conserved pair of budding yeast replisome components Tof1–Csm3 (fission yeast Swi1–Swi3 and human TIMELESS–TIPIN) act as a “molecular brake” and promote fork slowdown at proteinaceous replication fork barriers (RFBs), while the accessory helicase Rrm3 assists the replisome in removing protein obstacles. Here we show that the Tof1–Csm3 complex promotes fork pausing independently of Rrm3 helicase by recruiting topoisomerase I (Top1) to the replisome. Topoisomerase II (Top2) partially compensates for the pausing decrease in cells when Top1 is lost from the replisome. The C terminus of Tof1 is specifically required for Top1 recruitment to the replisome and fork pausing but not for DNA replication checkpoint (DRC) activation. We propose that forks pause at proteinaceous RFBs through a “sTOP” mechanism (“slowing down with topoisomerases I–II”), which we show also contributes to protecting cells from topoisomerase-blocking agents.
Collapse
Affiliation(s)
- Maksym Shyian
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 4, CH-1211, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 4, CH-1211, Switzerland
| | - Andreja Moset Zupan
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 4, CH-1211, Switzerland
| | - Vitalii Ivanitsa
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 4, CH-1211, Switzerland
| | - Gabriel Charbonnet
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 4, CH-1211, Switzerland
| | - Daniel Dilg
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 4, CH-1211, Switzerland
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 4, CH-1211, Switzerland
| |
Collapse
|
2
|
Shi R, Liang F, Song Q, Luo Y, Ghosh M. A Blockwise Consistency Method for Parameter Estimation of Complex Models. SANKHYA. SERIES B. [METHODOLOGICAL.] 2018; 80:179-223. [PMID: 33833478 PMCID: PMC8026010 DOI: 10.1007/s13571-018-0183-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 10/27/2022]
Abstract
The drastic improvement in data collection and acquisition technologies has enabled scientists to collect a great amount of data. With the growing dataset size, typically comes a growing complexity of data structures and of complex models to account for the data structures. How to estimate the parameters of complex models has put a great challenge on current statistical methods. This paper proposes a blockwise consistency approach as a potential solution to the problem, which works by iteratively finding consistent estimates for each block of parameters conditional on the current estimates of the parameters in other blocks. The blockwise consistency approach decomposes the high-dimensional parameter estimation problem into a series of lower-dimensional parameter estimation problems, which often have much simpler structures than the original problem and thus can be easily solved. Moreover, under the framework provided by the blockwise consistency approach, a variety of methods, such as Bayesian and frequentist methods, can be jointly used to achieve a consistent estimator for the original high-dimensional complex model. The blockwise consistency approach is illustrated using two high-dimensional problems, variable selection and multivariate regression. The results of both problems show that the blockwise consistency approach can provide drastic improvements over the existing methods. Extension of the blockwise consistency approach to many other complex models is straightforward.
Collapse
Affiliation(s)
- Runmin Shi
- Department of Statistics, University of Florida, Gainesville, FL 32611
| | - Faming Liang
- Department of Statistics, Purdue University, West Lafayette, IN 47906
| | - Qifan Song
- Department of Statistics, Purdue University, West Lafayette, IN 47907
| | - Ye Luo
- Department of Economics, University of Florida, Gainesville, FL 32611
| | - Malay Ghosh
- University of Florida, Gainesville, FL 32611
| |
Collapse
|
3
|
Mosesso P, Pepe G, Ottavianelli A, Schinoppi A, Cinelli S. Cytogenetic evidence that DNA topoisomerase II is not involved in radiation induced chromsome-type aberrations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:14-8. [PMID: 26520368 DOI: 10.1016/j.mrgentox.2015.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 11/17/2022]
Abstract
ICRF-187 (Cardioxane™, Chiron) is a catalytic inhibitor of DNA topoisomerase II (Topo II), proposed to act by blocking Topo II-mediated DNA cleavage without stabilizing DNA-Topo II-"cleavable complexes". In this study ICRF-187 was used to evaluate the potential involvement of DNA topoisomerase II in the formation of the radiation-induced chromosome-type aberrations in the G0 phase of the cell cycle in human lymphocytes from three healthy male donors. This is based on many evidences that DNA topoisomerases are involved in DNA recombination, mainly of illegitimate type (non-homologous) both in vitro and in vivo. The results obtained clearly indicated that ICRF-187 did not induce per se any chromosomal damage. When challenged with the non-catalytic Topo II poison VP-16 (etoposide), which acts by stabilizing the "cleavable complex" generating "protein concealed" DSB's and thus chromosomal aberrations, it completely abolished the significant induction of chromosome-type aberrations and formation of dicentric chromosomes. This indicates that ICRF-187 acts effectively as catalytic inhibitor of Topo II. On the other hand, when X-ray treatments were challenged with ICRF-187 using experimental conditions as for VP-16 treatments, no modification of the incidence of chromosome-type aberrations and dicentric chromosomes was observed. On this basis, we conclude that Topo II is not involved in the formation of X-ray-induced chromosome-type aberrations and dicentric chromosomes in human lymphocytes in the G0 phase of the cell cycle.
Collapse
Affiliation(s)
- P Mosesso
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell'Università s.n.c., 01100 Viterbo, Italy.
| | - G Pepe
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell'Università s.n.c., 01100 Viterbo, Italy
| | - A Ottavianelli
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell'Università s.n.c., 01100 Viterbo, Italy
| | - A Schinoppi
- Dipartimento di Scienze Ecologiche e Biologiche, Università degli Studi della Tuscia, Largo dell'Università s.n.c., 01100 Viterbo, Italy
| | - S Cinelli
- Research Toxicology Centre, Via Tito Speri 12/14, 00040, Pomezia, Roma, Italy
| |
Collapse
|
4
|
Vaidya A, Jain S, Jain AK, Prashanthakumar BR, Kashaw SK, Agrawal RK. Computational analysis of quinoline derivatives as potent topoisomerase-II inhibitors. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1131-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Jain A, Bacolla A, Del Mundo IM, Zhao J, Wang G, Vasquez KM. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells. Nucleic Acids Res 2013; 41:10345-57. [PMID: 24049074 PMCID: PMC3905860 DOI: 10.1093/nar/gkt804] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA.
Collapse
Affiliation(s)
- Aklank Jain
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, USA
| | | | | | | | | | | |
Collapse
|
6
|
Ramamoorthy M, Tadokoro T, Rybanska I, Ghosh AK, Wersto R, May A, Kulikowicz T, Sykora P, Croteau DL, Bohr VA. RECQL5 cooperates with Topoisomerase II alpha in DNA decatenation and cell cycle progression. Nucleic Acids Res 2011; 40:1621-35. [PMID: 22013166 PMCID: PMC3287182 DOI: 10.1093/nar/gkr844] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
DNA decatenation mediated by Topoisomerase II is required to separate the interlinked sister chromatids post-replication. SGS1, a yeast homolog of the human RecQ family of helicases interacts with Topoisomerase II and plays a role in chromosome segregation, but this functional interaction has yet to be identified in higher organisms. Here, we report a physical and functional interaction of Topoisomerase IIα with RECQL5, one of five mammalian RecQ helicases, during DNA replication. Direct interaction of RECQL5 with Topoisomerase IIα stimulates the decatenation activity of Topoisomerase IIα. Consistent with these observations, RECQL5 co-localizes with Topoisomerase IIα during S-phase of the cell cycle. Moreover, cells with stable depletions of RECQL5 display a slow proliferation rate, a G2/M cell cycle arrest and late S-phase cycling defects. Metaphase spreads generated from RECQL5-depleted cells exhibit undercondensed and entangled chromosomes. Further, RECQL5-depleted cells activate a G2/M checkpoint and undergo apoptosis. These phenotypes are similar to those observed when Topoisomerase II catalytic activity is inhibited. These results reveal an important role for RECQL5 in the maintenance of genomic stability and a new insight into the decatenation process.
Collapse
Affiliation(s)
- Mahesh Ramamoorthy
- Laboratory of Molecular Gerontology, Biomedical Research Center, 251 Bayview Boulevard, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vaidya A, Jain AK, Kumar P, Kashaw SK, Agrawal RK. Predicting anti-cancer activity of quinoline derivatives: CoMFA and CoMSIA approach. J Enzyme Inhib Med Chem 2011; 26:854-61. [DOI: 10.3109/14756366.2011.567195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ankur Vaidya
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, India
| | - Abhishek Kumar Jain
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, India
| | - Prashantha Kumar
- Department of Pharmaceutical Sciences, JSS College of Pharmacy, Ooty, India
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, India
| | - Ram Kishore Agrawal
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, India
| |
Collapse
|
8
|
Abstract
PURPOSE To develop a model for the initiation of human tumourigenesis that is consistent with various observations that are difficult to reconcile with current models. CONCLUSIONS A novel model of tumourigenesis was developed that includes three basic postulates: (1) tumourigenesis is initiated by recombinogenic DNA lesions, (2) potentially recombinogenic DNA lesions in transcribed regions of the genome can be converted into chromosomal rearrangements and (3) chromosomal rearrangements alone are insufficient for tumourigenesis but can initiate a mutator/recombinator phenotype.
Collapse
Affiliation(s)
- I R Radford
- Radiation Oncology Division, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia.
| |
Collapse
|
9
|
Barea F, Tessaro S, Bonatto D. In silico analyses of a new group of fungal and plant RecQ4-homologous proteins. Comput Biol Chem 2008; 32:349-58. [PMID: 18701350 DOI: 10.1016/j.compbiolchem.2008.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 06/22/2008] [Accepted: 07/02/2008] [Indexed: 11/27/2022]
Abstract
Bacterial and eukaryotic RecQ helicases comprise a family of homologous proteins necessary for maintaining genomic integrity during the cell cycle and DNA repair. There is one known bacterial RecQ helicase, and five eukaryotic RecQ helicases that have been described: RecQ1p, RecQ4p, RecQ5p, Bloom, and Werner. While the biochemical functions of Bloom and Werner helicases are well understood, the same is not true for RecQ4p helicase. RecQ4p mutations lead to pathologies like Rothmund-Thompson syndrome (RTS), RAPADILINO, and Baller-Gerold syndrome (BGS). Until now, RecQ4p helicases had only been described in metazoans, and their presence in organisms like fungi and plants were not known. Thus far only one RecQ-homologous protein (Sgs1p), similar to Bloom helicase, has been described in fungal genomes. In the present study we employed an in silico approach, and successfully identified and characterized a second RecQ helicase from the genomes of different fungal and two plant species that shows similarity to metazoan RecQ4 proteins. An in-depth phylogenetic analysis of these new fungal and plant RecQ4-like sequences (termed Hrq1p) indicated that they are orthologous to the metazoan RecQ4p. We employed hydrophobic cluster analysis (HCA) and three-dimensional modeling of selected Hrq1p sequences to compare conserved regions among Hrq1p, human RecQ4p and bacterial RecQp. The results indicated that Hrq1p sequences, as previously observed for metazoan RecQ4 proteins, probably act in genomic maintenance and/or chromatin remodeling in fungal and plant cells.
Collapse
Affiliation(s)
- Fernanda Barea
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
10
|
Valenti A, Perugino G, D'Amaro A, Cacace A, Napoli A, Rossi M, Ciaramella M. Dissection of reverse gyrase activities: insight into the evolution of a thermostable molecular machine. Nucleic Acids Res 2008; 36:4587-97. [PMID: 18614606 PMCID: PMC2504306 DOI: 10.1093/nar/gkn418] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reverse gyrase is a peculiar DNA topoisomerase, specific of thermophilic microorganisms, which induces positive supercoiling into DNA molecules in an ATP-dependent reaction. It is a modular enzyme and comprises an N-terminal helicase-like module fused to a C-terminal topoisomerase IA-like domain. The exact molecular mechanism of this unique reaction is not understood, and a fundamental mechanistic question is how its distinct steps are coordinated. We studied the cross-talk between the components of this molecular motor and probed communication between the DNA-binding sites and the different activities (DNA relaxation, ATP hydrolysis and positive supercoiling). We show that the isolated ATPase and topoisomerase domains of reverse gyrase form specific physical interactions, retain their own DNA binding and enzymatic activities, and when combined cooperate to achieve the unique ATP-dependent positive supercoiling activity. Our results indicate a mutual effect of both domains on all individual steps of the reaction. The C-terminal domain shows ATP-independent topoisomerase activity, which is repressed by the N-terminal domain in the full-length enzyme; experiments with the isolated domains showed that the C-terminal domain has stimulatory influence on the ATPase activity of the N-terminal domain. In addition, the two domains showed a striking reciprocal thermostabilization effect.
Collapse
Affiliation(s)
- Anna Valenti
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
de la Tour CB, Amrani L, Cossard R, Neuman KC, Serre MC, Duguet M. Mutational analysis of the helicase-like domain of Thermotoga maritima reverse gyrase. J Biol Chem 2008; 283:27395-27402. [PMID: 18614530 DOI: 10.1074/jbc.m800867200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reverse gyrase is a unique type IA topoisomerase that is able to introduce positive supercoils into DNA in an ATP-dependent process. ATP is bound to the helicase-like domain of the enzyme that contains most of the conserved motifs found in helicases of the SF1 and SF2 superfamilies. In this paper, we have investigated the role of the conserved helicase motifs I, II, V, VI, and Q by generating mutants of the Thermotoga maritima reverse gyrase. We show that mutations in motifs I, II, V, and VI completely eliminate the supercoiling activity of reverse gyrase and that a mutation in the Q motif significantly reduces this activity. Further analysis revealed that for most mutants, the DNA binding and cleavage properties are not significantly changed compared with the wild type enzyme, whereas their ATPase activity is impaired. These results clearly show that the helicase motifs are tightly involved in the coupling of ATP hydrolysis to the topoisomerase activity. The zinc finger motif located at the N-terminal end of reverse gyrases was also mutated. Our results indicate that this motif plays an important role in DNA binding.
Collapse
Affiliation(s)
| | - Laila Amrani
- Université Paris-Sud 11, UMR8621 Institut de Génétique et Microbiologie, 91405 Orsay Cedex, France
| | - Raynald Cossard
- Université Paris-Sud 11, UMR8621 Institut de Génétique et Microbiologie, 91405 Orsay Cedex, France
| | - Keir C Neuman
- Université Paris-Sud 11, UMR8621 Institut de Génétique et Microbiologie, 91405 Orsay Cedex, France
| | - Marie Claude Serre
- Université Paris-Sud 11, UMR8621 Institut de Génétique et Microbiologie, 91405 Orsay Cedex, France
| | - Michel Duguet
- Université Paris-Sud 11, UMR8621 Institut de Génétique et Microbiologie, 91405 Orsay Cedex, France
| |
Collapse
|
12
|
Scocca JR, Shapiro TA. A mitochondrial topoisomerase IA essential for late theta structure resolution in African trypanosomes. Mol Microbiol 2007; 67:820-9. [PMID: 18179422 DOI: 10.1111/j.1365-2958.2007.06087.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Trypanosomes and Leishmania, protozoans that cause major human diseases, have a topologically intricate mitochondrial DNA (kinetoplast or kDNA) in the form of a network of thousands of interlocked circles. This unusual system provides a useful reporter for studying topoisomerase functions in vivo. We now find that these organisms have three type IA topoisomerases, one of which is phylogenetically distinctive and which we designate topoisomerase IA(mt). In Trypanosoma brucei topoisomerase IA(mt) immunolocalizes within the mitochondrion close to the kDNA disk in patterns that vary with the cell cycle. When expression of TOPIA(mt) is silenced by RNAi there is a striking accumulation of kDNA late theta structure replication intermediates, with subsequent loss of kDNA networks and halt in cell growth. This essential enzyme provides clear molecular evidence for the obligatory role of a type IA enzyme in the resolution of late theta structures in vivo. With no close orthologue in humans it also offers a target for the rational development of selectively toxic new antiprotozoal therapies.
Collapse
Affiliation(s)
- Jane R Scocca
- Division of Clinical Pharmacology, Department of Medicine and of Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
13
|
Rossignol JM, Jacquet M, Arimondo PB. «DNA, more than just a ladder» A tribute to Michel Duguet (1943–2005). Biochimie 2007; 89:423-6. [PMID: 17418930 DOI: 10.1016/j.biochi.2007.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/22/2007] [Indexed: 11/29/2022]
Affiliation(s)
- Jean-Michel Rossignol
- Laboratoire de Génétique et Biologie Cellulaire, UMR CNRS/UVSQ/EPHE 8159, Université de Versailles St Quentin, Versailles, France.
| | | | | |
Collapse
|
14
|
Viard T, de la Tour CB. Type IA topoisomerases: a simple puzzle? Biochimie 2006; 89:456-67. [PMID: 17141394 DOI: 10.1016/j.biochi.2006.10.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 10/20/2006] [Indexed: 11/30/2022]
Abstract
Type IA topoisomerases are enzymes that can modify DNA topology. They form a distinct family of proteins present in all domains of life, from bacteria to archaea and higher eukaryotes. They are composed of two domains: a core domain containing all the conserved motifs involved in the trans-esterification reactions, and a carboxyl-terminal domain that is highly variable in size and sequence. The latter appears to interact with other proteins, defining the physiological use of the topoisomerase activity. The evolutionary relevance of this topoisomerase-cofactor complex, also known as the "toposome", as well as its enzymatic consequences are discussed in this review.
Collapse
Affiliation(s)
- Thierry Viard
- Nicholas Cozzarelli Laboratory, Molecular and Cell Biology Department, 16 Barker Hall, University of California, Berkeley, CA 94720-3204, USA.
| | | |
Collapse
|
15
|
Wagner M, Price G, Rothstein R. The absence of Top3 reveals an interaction between the Sgs1 and Pif1 DNA helicases in Saccharomyces cerevisiae. Genetics 2006; 174:555-73. [PMID: 16816432 PMCID: PMC1602079 DOI: 10.1534/genetics.104.036905] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 06/30/2006] [Indexed: 12/25/2022] Open
Abstract
RecQ DNA helicases and Topo III topoisomerases have conserved genetic, physical, and functional interactions that are consistent with a model in which RecQ creates a recombination-dependent substrate that is resolved by Topo III. The phenotype associated with Topo III loss suggests that accumulation of a RecQ-created substrate is detrimental. In yeast, mutation of the TOP3 gene encoding Topo III causes pleiotropic defects that are suppressed by deletion of the RecQ homolog Sgs1. We searched for gene dosage suppressors of top3 and identified Pif1, a DNA helicase that acts with polarity opposite to that of Sgs1. Pif1 overexpression suppresses multiple top3 defects, but exacerbates sgs1 and sgs1 top3 defects. Furthermore, Pif1 helicase activity is essential in the absence of Top3 in an Sgs1-dependent manner. These data clearly demonstrate that Pif1 helicase activity is required to counteract Sgs1 helicase activity that has become uncoupled from Top3. Pif1 genetic interactions with the Sgs1-Top3 pathway are dependent upon homologous recombination. We also find that Pif1 is recruited to DNA repair foci and that the frequency of these foci is significantly increased in top3 mutants. Our results support a model in which Pif1 has a direct role in the prevention or repair of Sgs1-induced DNA damage that accumulates in top3 mutants.
Collapse
Affiliation(s)
- Marisa Wagner
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032-2704, USA
| | | | | |
Collapse
|
16
|
Duguet M, Serre MC, Bouthier de La Tour C. A universal type IA topoisomerase fold. J Mol Biol 2006; 359:805-12. [PMID: 16647715 DOI: 10.1016/j.jmb.2006.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 04/05/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
A class of enzymes, called DNA topoisomerases, is responsible for controlling the topological state of cellular DNA. Among these, type IA topoisomerases form a vast family that is present in all living organisms, including higher eukaryotes, in which they play important roles in genome stability. The known 3D structures of three of these enzymes indicate that they share a common toroidal architecture. We previously showed that the toroidal structure could be split off from the core enzyme of Thermotoga maritima topoisomerase I by limited proteolysis. This structure is produced by the association of two tandemly repeated elementary folds in a head-to-tail orientation. By using a combination of structural and sequence data analysis, we show that the elementary fold of about 150 amino acid residues, referred to as the topofold, is likely to be present in the whole topoisomerase IA family. Within each enzyme, the successive topofolds share two conserved sequence motifs located at the base of the ring, and referred to as the MI and MII motifs. However, the overall sequences of the folds have largely diverged. By contrast, secondary and tertiary structures appear remarkably conserved. We suggest that this twofold repeat has evolved by gene duplication/fusion from an ancestral topofold.
Collapse
Affiliation(s)
- Michel Duguet
- Laboratoire d'Enzymologie des Acides Nucléiques, Institut de Génétique et Microbiologie, Université Paris-Sud, Unité Mixte de Recherche 8621, Centre National de la Recherche Scientifique, 91405 Orsay, France
| | | | | |
Collapse
|
17
|
Abstract
The papillomavirus (PV) E1 helicase plays a direct role in recruiting cellular DNA replication factors, such as replication protein A or polymerase alpha-primase, to replicate PV genomes. Here, E1 is shown to bind to human topoisomerase I and stimulate its relaxation activity up to sevenfold. The interaction between E1 and topoisomerase I was mapped to the E1 DNA binding domain and C terminus. These findings imply a mechanism for the recruitment of topoisomerase I to PV DNA replication forks and for stimulating topoisomerase I to allow for efficient relaxation of the torsional stress induced by replication fork progression.
Collapse
Affiliation(s)
- Randolph V Clower
- Department of Microbiology & Immunology, The School of Medicine and Biomedical Sciences, University at Buffalo, 213 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
18
|
Baran V, Kovárová H, Klíma J, Hozák P, Motlík J. Re-localization of nuclear DNA helicase II during the growth period of bovine oocytes. Histochem Cell Biol 2005; 125:155-64. [PMID: 16187064 DOI: 10.1007/s00418-005-0075-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2005] [Indexed: 11/27/2022]
Abstract
Nuclear DNA helicase II (NDH II) is the bovine homolog of human RNA helicase A. The aim of this study was to compare NDH II localization between somatic cells (bovine embryonal fibroblasts) and female germ cells (oocytes), with the main focus on the dynamic changes in the redistribution of NDH II during the growth phase of the bovine oocytes. The fine granular staining of NDH II was spread in the whole nucleoplasm of fibroblasts, excluding the reticulated nucleoli. In contrast, the large reticulated nucleoli of the growing oocytes isolated from early antral follicles exhibited strong positivity for NDH II together with the immunostaining signals of upstream binding factor (UBF) and RNA polymerase I subunit (PAF53), documenting the high synthetic activity of these nucleoli. At the time of termination of oocyte growth, NDH II was preferentially located at the nucleolar periphery together with proteins of fibrillar centres. In fully grown oocytes, NDH II was still present in the thin periphery shell around the compact nucleolar core. The semiquantitative RT-PCR revealed that the average signal of NDH II mRNA in fully grown oocytes was only at 40% level in comparison with growing oocytes. Western blot analysis further confirmed that a 140 kD NDH II protein was abundant in growing oocytes, while the signal was substantially weaker in fully grown oocytes. The significant decrease in NDH II gene expression and in NDH II mRNA translation correlates with a termination of the oocyte growth. Altogether, the results demonstrate that NDH II expression parallels the activity of ribosomal RNA biosynthesis in the bovine growing oocytes.
Collapse
Affiliation(s)
- Vladimír Baran
- Institute of Animal Physiology, Slovak Academy of Sciences, Kosice, Slovakia
| | | | | | | | | |
Collapse
|
19
|
Marcon E, Moens PB. The evolution of meiosis: recruitment and modification of somatic DNA-repair proteins. Bioessays 2005; 27:795-808. [PMID: 16015600 DOI: 10.1002/bies.20264] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several DNA-damage detection and repair mechanisms have evolved to repair double-strand breaks induced by mutagens. Later in evolutionary history, DNA single- and double-strand cuts made possible immune diversity by V(D)J recombination and recombination at meiosis. Such cuts are induced endogenously and are highly regulated and controlled. In meiosis, DNA cuts are essential for the initiation of homologous recombination, and for the formation of joint molecule and crossovers. Many proteins that function during somatic DNA-damage detection and repair are also active during homologous recombination. However, their meiotic functions may be altered from their somatic roles through localization, posttranslational modifications and/or interactions with meiosis-specific proteins. Presumably, somatic repair functions and meiotic recombination diverged during evolution, resulting in adaptations specific to sexual reproduction. (c) 2005 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Edyta Marcon
- Department of Biology, York University, Toronto, Canada
| | | |
Collapse
|
20
|
Ahmad F, Stewart E. The N-terminal region of the Schizosaccharomyces pombe RecQ helicase, Rqh1p, physically interacts with Topoisomerase III and is required for Rqh1p function. Mol Genet Genomics 2005; 273:102-14. [PMID: 15702347 DOI: 10.1007/s00438-005-1111-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 01/03/2005] [Indexed: 11/29/2022]
Abstract
The Schizosaccharomyces pombe rqh1+ gene encodes a member of the RecQ DNA helicase family. Members of this protein family are essential for the maintenance of genetic integrity. Thus, mutations in the genes encoding the human RecQ homologues Blm, Wrn and RecQ4 cause Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome, respectively-diseases which result from genome instability. S. pombe cells that lack a functional rqh1+ gene show reduced viability and display defective chromosome segregation, particularly after UV irradiation or S-phase arrest. In this study we used an rqh1+ deletion series to show that the N-terminal portion of Rqh1 is essential for Rqh1 function. Moreover, the conserved Helicase and RNaseD C-terminal (HRDC) domain of Rqh1 also plays a role in allowing cells to tolerate exposure to DNA damaging agents and the S-phase inhibitor hydroxyurea (HU). We also demonstrate that Topoisomerase III (Top3) binds to a site within the first 322 N-terminal amino acids of Rqh1 and that this binding correlates with Rqh1 function. Genetic analysis of rqh1- top3delta mutants reveals that, in the presence of functional or partially functional Rqh1 protein, Top3 is required to maintain genome integrity and cell viability.
Collapse
Affiliation(s)
- Fouzia Ahmad
- School of Biological Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|
21
|
Bakshi RP, Shapiro TA. RNA interference of Trypanosoma brucei topoisomerase IB: both subunits are essential. Mol Biochem Parasitol 2004; 136:249-55. [PMID: 15478803 DOI: 10.1016/j.molbiopara.2004.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Type IB topoisomerases are enzymes essential for the orderly synthesis of nucleic acids and are the molecular target for antitumor camptothecins. In dozens of organisms, including eukaryotes, bacteria, and viruses, this enzyme is monomeric. However, we previously found that topoisomerase IB in trypanosomes is a heteromultimer, comprised of two distinct subunits encoded by separate genes. A large 90 kDa subunit contains the DNA binding domain and a small 36 kDa subunit contains the catalytic domain. In this study we use RNA interference to silence each of the subunits separately. For each subunit, tetracycline-induced expression of double-stranded RNA results in drastic reduction of cognate mRNA and protein. For the large subunit, nucleic acid biosynthesis (as monitored by the incorporation of radiolabeled precursors into DNA and RNA) is halved by 39 h, and cell growth halts by 72 h, after induction. The steady state level of both nuclear and mitochondrial mRNAs is reduced. Virtually identical results are obtained by silencing the small subunit. Interestingly, although interference is specific at the level of mRNA, silencing of one subunit leads to a profound reduction in the level of protein for both subunits, suggesting that survival, or perhaps synthesis, of each subunit depends upon the presence of the other. These findings underscore the essential nature of type IB topoisomerase activity in Trypanosoma brucei and its suitability as a target for rational drug design.
Collapse
Affiliation(s)
- Rahul P Bakshi
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
22
|
Marple T, Li H, Hasty P. A genotoxic screen: rapid analysis of cellular dose-response to a wide range of agents that either damage DNA or alter genome maintenance pathways. Mutat Res 2004; 554:253-66. [PMID: 15450423 DOI: 10.1016/j.mrfmmm.2004.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 05/04/2004] [Accepted: 05/07/2004] [Indexed: 04/30/2023]
Abstract
SNP analysis has come to the forefront of genomics since the mouse and human genomes have been sequenced. High throughput functional screens are necessary to evaluate these sequence databases. Described here is a genotoxic screen: a rapid method that determines the cellular dose-response to a wide range of agents that either damage DNA or alter basic cellular pathways important for maintaining genomic integrity. Importantly, a single person utilizing standard tissue culture equipment may perform these assays composed of 20 agents that attack genomic integrity or maintenance at many different levels. Thus, a small lab may perform this screen to determine the integrity of a wide range of DNA repair, chromatin metabolism, and response pathways without the limitations of investigator bias. A genotoxic screen will be useful when analyzing cells with either known genetic alterations (generated directly by the investigator or derived from individuals with known mutations) or unknown genetic alterations (cells with spontaneous mutations such as cancer-derived cells). Screening many genotoxins at one time will aid in determining the biological importance of these altered genes. Here we show the dose-response curves of mouse embryonic stem (ES) cells and HeLa cells exposed to 20 genotoxic agents. ES cells were chosen since they are amenable to genetic alteration by the investigator. HeLa cells were chosen since they were derived from cancer and are commonly used. Comparing the dose-response curves of these two cell lines show their relative sensitivity to these agents and helps define their genotoxic profile. As a part of phenomics, a large genotoxic profile database for cancer-derived cells, when integrated with other databases such as expression profiles and comparative genomic hybridization, may aid in maximizing the effectiveness of developing anti-cancer protocols.
Collapse
Affiliation(s)
- Teresa Marple
- The Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, 78245-3207, USA
| | | | | |
Collapse
|
23
|
Napoli A, Valenti A, Salerno V, Nadal M, Garnier F, Rossi M, Ciaramella M. Reverse Gyrase Recruitment to DNA after UV Light Irradiation in Sulfolobus solfataricus. J Biol Chem 2004; 279:33192-8. [PMID: 15190074 DOI: 10.1074/jbc.m402619200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Induction of DNA damage triggers a complex biological response concerning not only repair systems but also virtually every cell function. DNA topoisomerases regulate the level of DNA supercoiling in all DNA transactions. Reverse gyrase is a peculiar DNA topoisomerase, specific to hyperthermophilic microorganisms, which contains a helicase and a topoisomerase IA domain that has the unique ability to introduce positive supercoiling into DNA molecules. We show here that reverse gyrase of the archaean Sulfolobus solfataricus is mobilized to DNA in vivo after UV irradiation. The enzyme, either purified or in cell extracts, forms stable covalent complexes with UV-damaged DNA in vitro. We also show that the reverse gyrase translocation to DNA in vivo and the stabilization of covalent complexes in vitro are specific effects of UV light irradiation and do not occur with the intercalating agent actinomycin D. Our results suggest that reverse gyrase might participate, directly or indirectly, in the cell response to UV light-induced DNA damage. This is the first direct evidence of the recruitment of a topoisomerase IA enzyme to DNA after the induction of DNA damage. The interaction between helicase and topoisomerase activities has been previously proposed to facilitate aspects of DNA replication or recombination in both Bacteria and Eukarya. Our results suggest a general role of the association of such activities in maintaining genome integrity and a mutual effect of DNA topology and repair.
Collapse
Affiliation(s)
- Alessandra Napoli
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Van Laar ES, Weitman S, MacDonald JR, Waters SJ. Antitumor activity of irofulven monotherapy and in combination with mitoxantrone or docetaxel against human prostate cancer models. Prostate 2004; 59:22-32. [PMID: 14991863 DOI: 10.1002/pros.10351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Irofulven (6-hydroxymethylacylfulvene, HMAF, MGI 114) is a novel antitumor agent currently undergoing clinical trials in hormone-refractory prostate cancer. This report examines the efficacy of irofulven alone or in combination with mitoxantrone or docetaxel against androgen-independent prostate cancer cell lines. METHODS To elucidate the activity of irofulven monotherapy and in combination, PC-3 and DU-145 cell lines were utilized in cellular viability assessments and tumor growth inhibition studies. RESULTS Viability assays with irofulven and mitoxantrone show additive to synergistic activity. Furthermore, irofulven and mitoxantrone in combination exhibit enhanced antitumor activity against PC-3 and DU-145 xenografts. Additive combination effects are also observed when irofulven and docetaxel were tested against PC-3 xenografts and curative activity (8/10 CR) is observed in DU-145 xenografts. CONCLUSIONS These studies demonstrate that irofulven displays strong activity as monotherapy and in combination with mitoxantrone or docetaxel against androgen-independent prostate cancer in vitro and in vivo; thus, supporting the clinical investigation of irofulven against hormone-refractory prostate cancer.
Collapse
Affiliation(s)
- Emily S Van Laar
- Research and Development Department, MGI Pharma, Inc., Bloomington, Minnesota 55437, USA.
| | | | | | | |
Collapse
|
25
|
Rocha EPC, Fralick J, Vediyappan G, Danchin A, Norris V. A strand-specific model for chromosome segregation in bacteria. Mol Microbiol 2003; 49:895-903. [PMID: 12890016 DOI: 10.1046/j.1365-2958.2003.03606.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chromosome separation and segregation must be executed within a bacterial cell in which the membrane and cytoplasm are highly structured. Here, we develop a strand-specific model based on each of the future daughter chromosomes being associated with a different set of structures or hyperstructures in an asymmetric cell. The essence of the segregation mechanism is that the genes on the same strand in the parental cell that are expressed together in a hyperstructure continue to be expressed together and segregate together in the daughter cell. The model therefore requires an asymmetric distribution of classes of genes and of binding sites and other structures on the strands of the parental chromosome. We show that the model is consistent with the asymmetric distribution of highly expressed genes and of stress response genes in Escherichia coli and Bacillus subtilis. The model offers a framework for interpreting data from genomics.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Unité Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris 15, France
| | | | | | | | | |
Collapse
|
26
|
Serra V, von Zglinicki T, Lorenz M, Saretzki G. Extracellular superoxide dismutase is a major antioxidant in human fibroblasts and slows telomere shortening. J Biol Chem 2003; 278:6824-30. [PMID: 12475988 DOI: 10.1074/jbc.m207939200] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is good evidence that telomere shortening acts as a biological clock in human fibroblasts, limiting the number of population doublings a culture can achieve. Oxidative stress also limits the growth potential of human cells, and recent data show that the effect of mild oxidative stress is mediated by a stress-related increased rate of telomere shortening. Thus, fibroblast strains have donor-specific antioxidant defense, telomere shortening rate, and growth potential. We used low-density gene expression array analysis of fibroblast strains with different antioxidant potentials and telomere shortening rates to identify gene products responsible for these differences. Extracellular superoxide dismutase was identified as the strongest candidate, a correlation that was confirmed by Northern blotting. Over-expression of this gene in human fibroblasts with low antioxidant capacity increased total cellular superoxide dismutase activity, decreased the intracellular peroxide content, slowed the telomere shortening rate, and elongated the life span of these cells under normoxia and hyperoxia. These results identify extracellular superoxide dismutase as an important antioxidant gene product in human fibroblasts, confirm the causal role of oxidative stress for telomere shortening, and strongly suggest that the senescence-like arrest under mild oxidative stress is telomere-driven.
Collapse
Affiliation(s)
- Violeta Serra
- Institute of Pathology and Research Laboratory Cardiology, Charité Hospital, D-10098 Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Serre MC, Duguet M. Enzymes That Cleave and Religate DNA at High Temperature: The Same Story with Different Actors. ACTA ACUST UNITED AC 2003; 74:37-81. [PMID: 14510073 DOI: 10.1016/s0079-6603(03)01010-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Marie-Claude Serre
- Laboratoire d'Enzymologie des Acides Nucléiques, Institut de Génétique et Microbiologie, Université Paris-Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
28
|
Olavarrieta L, Martínez-Robles ML, Hernández P, Krimer DB, Schvartzman JB. Knotting dynamics during DNA replication. Mol Microbiol 2002; 46:699-707. [PMID: 12410827 DOI: 10.1046/j.1365-2958.2002.03217.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The topology of plasmid DNA changes continuously as replication progresses. But the dynamics of the process remains to be fully understood. Knotted bubbles form when topo IV knots the daughter duplexes behind the fork in response to their degree of intertwining. Here, we show that knotted bubbles can form during unimpaired DNA replication, but they become more evident in partially replicated intermediates containing a stalled fork. To learn more about the dynamics of knot formation as replication advances, we used two-dimensional agarose gel electrophoresis to identify knotted bubbles in partially replicated molecules in which the replication fork stalled at different stages of the process. The number and complexity of knotted bubbles rose as a function of bubble size, suggesting that knotting is affected by both precatenane density and bubble size.
Collapse
Affiliation(s)
- L Olavarrieta
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas (CSIC), Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
González-Barrera S, García-Rubio M, Aguilera A. Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics 2002; 162:603-14. [PMID: 12399375 PMCID: PMC1462300 DOI: 10.1093/genetics/162.2.603] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have made a comparative analysis of double-strand-break (DSB)-induced recombination and spontaneous recombination under low- and high-transcription conditions in yeast. We constructed two different recombination substrates, one for the analysis of intermolecular gene conversions and the other for intramolecular gene conversions and inversions. Such substrates were based on the same leu2-HOr allele fused to the tet promoter and containing a 21-bp HO site. Gene conversions and inversions were differently affected by rad1, rad51, rad52, and rad59 single and double mutations, consistent with the actual view that such events occur by different recombination mechanisms. However, the effect of each mutation on each type of recombination event was the same, whether associated with transcription or induced by the HO-mediated DSB. Both the highly transcribed DNA and the HO-cut sequence acted as recipients of the gene conversion events. These results are consistent with the hypothesis that transcription promotes initiation of recombination along the DNA sequence being transcribed. The similarity between transcription-associated and DSB-induced recombination suggests that transcription promotes DNA breaks.
Collapse
|
30
|
Shor E, Gangloff S, Wagner M, Weinstein J, Price G, Rothstein R. Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae. Genetics 2002; 162:647-62. [PMID: 12399378 PMCID: PMC1462310 DOI: 10.1093/genetics/162.2.647] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In budding yeast, loss of topoisomerase III, encoded by the TOP3 gene, leads to a genomic instability phenotype that includes slow growth, hyper-sensitivity to genotoxic agents, mitotic hyper-recombination, increased chromosome missegregation, and meiotic failure. Slow growth and other defects of top3 mutants are suppressed by mutation of SGS1, which encodes the only RecQ helicase in S. cerevisiae. sgs1 is epistatic to top3, suggesting that the two proteins act in the same pathway. To identify other factors that function in the Sgs1-Top3 pathway, we undertook a genetic screen for non-sgs1 suppressors of top3 defects. We found that slow growth and DNA damage sensitivity of top3 mutants are suppressed by mutations in RAD51, RAD54, RAD55, and RAD57. In contrast, top3 mutants show extreme synergistic growth defects with mutations in RAD50, MRE11, XRS2, RDH54, and RAD1. We also analyzed recombination at the SUP4-o region, showing that in a rad51, rad54, rad55, or rad57 background top3Delta does not increase recombination to the same degree as in a wild-type strain. These results suggest that the presence of the Rad51 homologous recombination complex in a top3 background facilitates creation of detrimental intermediates by Sgs1. We present a model wherein Rad51 helps recruit Sgs1-Top3 to sites of replicative damage.
Collapse
Affiliation(s)
- Erika Shor
- Department of Genetics and Development, Columbia University College of Physicians & Surgeons, New York, New York 10032-2704, USA
| | | | | | | | | | | |
Collapse
|
31
|
Pichierri P, Franchitto A, Mosesso P, Palitti F. Werner's syndrome protein is required for correct recovery after replication arrest and DNA damage induced in S-phase of cell cycle. Mol Biol Cell 2001; 12:2412-21. [PMID: 11514625 PMCID: PMC58603 DOI: 10.1091/mbc.12.8.2412] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Revised: 05/15/2001] [Accepted: 06/07/2001] [Indexed: 11/11/2022] Open
Abstract
Werner's syndrome (WS) is a rare autosomal recessive disorder that arises as a consequence of mutations in a gene coding for a protein that is a member of RecQ family of DNA helicases, WRN. The cellular function of WRN is still unclear, but on the basis of the cellular phenotypes of WS and of RecQ yeast mutants, its possible role in controlling recombination and/or in maintenance of genomic integrity during S-phase has been envisaged. With the use of two drugs, camptothecin and hydroxyurea, which produce replication-associated DNA damage and/or inhibit replication fork progression, we find that WS cells have a slower rate of repair associated with DNA damage induced in the S-phase and a reduced induction of RAD51 foci. As a consequence, WS cells undergo apoptotic cell death more than normal cells, even if they arrest and resume DNA synthesis at an apparently normal rate. Furthermore, we report that WS cells show a higher background level of DNA strand breaks and an elevated spontaneous induction of RAD51 foci. Our findings support the hypothesis that WRN could be involved in the correct resolution of recombinational intermediates that arise from replication arrest due to either DNA damage or replication fork collapse.
Collapse
Affiliation(s)
- P Pichierri
- Laboratorio di Citogenetica Molecolare e Mutagenesi, DABAC, Università degli Studi della Tuscia, 01100 Viterbo, Italy
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- A C Déclais
- Department of Biochemistry, CRC Nucleic Acid Structure Research Group, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | |
Collapse
|
33
|
Muñoz P, Baus F, Piette J. Ku antigen is required to relieve G2 arrest caused by inhibition of DNA topoisomerase II activity by the bisdioxopiperazine ICRF-193. Oncogene 2001; 20:1990-9. [PMID: 11360183 DOI: 10.1038/sj.onc.1204262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2000] [Revised: 01/09/2001] [Accepted: 01/15/2001] [Indexed: 11/09/2022]
Abstract
Ku antigen is necessary for DNA double-strand break (DSB) repair through its ability to bind DNA ends with high affinity and to recruit the catalytic subunit of DNA-PK to the DSBs. Ku-deficient cells are hypersensitive to agents causing DSBs in DNA but also to the DNA topoisomerase II (topo II) inhibitor ICRF-193, which does not induce DSBs. This suggests a new role of Ku antigen, that is independent of DSB repair by DNA-PK. Here we characterize the basis for the hypersensitivity of Ku-deficient cells to ICRF-193. Chromosome condensation and segregation, which are dependent on topo II, but also the catalytic activity of topo II in late S-G2 were inhibited to a comparable extent when ICRF-193 was applied to Ku-deficient cells or wild-type cells. However, mutant cells arrested in G2 by ICRF-193 treatment were unable to progress into M phase upon drug removal, although drug-trapped topo II complexes were removed from DNA and the two isoforms of topo II recovered their catalytic activity as in wild-type cells. The reversibility of G2 arrest was recovered by complementation of mutant cells with a human Ku86 cDNA. Notably, chromosome condensation was abnormal in Ku-deficient cells after suppression of the G2 arrest by caffeine, even in the absence of ICRF-193. These results reflect the involvement of Ku-antigen in the cellular response to topo II inhibition, more particularly in relieving G2 arrest caused by topo II inhibition in late S/G2 and the subsequent recovery of chromosome condensation.
Collapse
Affiliation(s)
- P Muñoz
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, IFR 24, CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | | | | |
Collapse
|
34
|
DNA damage and its processing with aging: Human premature aging syndromes as model systems. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1566-3124(01)04033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Hammond LA, Hilsenbeck SG, Eckhardt SG, Marty J, Mangold G, MacDonald JR, Rowinsky EK, Von Hoff DD, Weitman S. Enhanced antitumour activity of 6-hydroxymethylacylfulvene in combination with topotecan or paclitaxel in the MV522 lung carcinoma xenograft model. Eur J Cancer 2000; 36:2430-6. [PMID: 11094320 DOI: 10.1016/s0959-8049(00)00302-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
6-Hydroxymethylacylfulvene (HMAF; MGI 114; Irofulven) is a semisynthetic analogue of the toxin illudin S, which is a product of the Omphalotus mushroom. MGI 114 induces cytotoxicity against a broad range of solid tumours in vivo, including the drug-refractory MV522 human lung cancer xenograft. In this study, the potential application of MGI 114 in the treatment of lung cancer was explored by evaluating the activity of MGI 114 in combination with either topotecan (TPT) or paclitaxel. Groups of eight nude mice bearing MV522 xenografts were treated with MGI 114, TPT or paclitaxel as single agents and with MGI 114 in combination with TPT or paclitaxel. MGI 114 was administered at doses of 2.5 and 5.0 mg/kg intraperitoneally (i.p.) daily on days 1-5, while TPT and paclitaxel were administered at doses of 0.5 or 1.0 mg/kg and 20 mg/kg, respectively, i.p. on days 1-5. In the single-agent studies, MGI 114, TPT and paclitaxel all resulted in decreased final tumour weights compared with vehicle-treated controls. As single agents, TPT, at the 0.5 mg/kg dose level, and paclitaxel, at the 20 mg/kg dose level, produced partial shrinkages (PSs). All combinations of MGI 114, and either TPT or paclitaxel, produced decrements in final tumour weights compared with monotherapy with the same doses of MGI 114, TPT and paclitaxel. Although all animals treated with the combination of MGI 114 and paclitaxel experienced PSs or complete shrinkages (CSs) (or died), analysis of the time to tumour doubling revealed that the combination of MGI 114 and TPT at 2.5 and 0.5 mg/kg, respectively, was synergistic. These results suggest that cytotoxic activity is enhanced when MGI 114 is combined with either TPT or paclitaxel, and clinical trials to further evaluate these combination regimens are warranted.
Collapse
Affiliation(s)
- L A Hammond
- Institute for Drug Development, Cancer Therapy and Research Center, San Antonio, TX 78245-3217, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pichierri P, Franchitto A, Mosesso P, Palitti F. Werner's syndrome cell lines are hypersensitive to camptothecin-induced chromosomal damage. Mutat Res 2000; 456:45-57. [PMID: 11087895 DOI: 10.1016/s0027-5107(00)00109-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Werner's syndrome (WS) is a recessive human genetic disorder associated with an elevated incidence of many types of cancer. The WS gene product, WRNp, belongs to the RecQ family of DNA helicases and is required for the maintenance of genomic stability in human cells. A possible interaction between helicases and topoisomerases that could co-operate in many aspects of DNA metabolism such as progression of the replication forks, recombination and repair has been recently suggested. In addition, sgs1 gene product in yeast, homologous to WS gene, has been shown to physically interact with topoisomerase types I and II. Earlier data from our laboratory suggested that WRN helicase might play a role in a G2 recombinational pathway of double strand breaks (DSBs) repair, co-operating with topoisomerase II. In this work, the effect of the topoisomerase I inhibitor camptothecin in WS cells has been investigated at the chromosomal level. The data from the present work suggest that the inhibition of topoisomerase I activity by camptothecin results in a higher induction of chromosomal damage in WS cell lines in the G2-phase and in the S-phase of the cell cycle compared to normal cells, perhaps associated with the defects in DNA replication synthesis.
Collapse
Affiliation(s)
- P Pichierri
- Università degli Studi della Tuscia, DABAC, Laboratorio di Citogenetica Molecolare e Mutagenesi, Via S. Camillo de Lellis, I-01100 Viterbo, Italy
| | | | | | | |
Collapse
|
37
|
Edwards TK, Saleem A, Shaman JA, Dennis T, Gerigk C, Oliveros E, Gartenberg MR, Rubin EH. Role for nucleolin/Nsr1 in the cellular localization of topoisomerase I. J Biol Chem 2000; 275:36181-8. [PMID: 10967121 DOI: 10.1074/jbc.m006628200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleolin functions in ribosome biogenesis and contains an acidic N terminus that binds nuclear localization sequences. In previous work we showed that human nucleolin associates with the N-terminal region of human topoisomerase I (Top1). We have now mapped the topoisomerase I interaction domain of nucleolin to the N-terminal 225 amino acids. We also show that the Saccharomyces cerevisiae nucleolin ortholog, Nsr1p, physically interacts with yeast topoisomerase I, yTop1p. Studies of isogenic NSR1(+) and Deltansr1 strains indicate that NSR1 is important in determining the cellular localization of yTop1p. Moreover, deletion of NSR1 reduces sensitivity to camptothecin, an antineoplastic topoisomerase I inhibitor. By contrast, Deltansr1 cells are hypersensitive to the topoisomerase II-targeting drug amsacrine. These findings indicate that nucleolin/Nsr1 is involved in the cellular localization of Top1 and that this localization may be important in determining sensitivity to drugs that target topoisomerases.
Collapse
Affiliation(s)
- T K Edwards
- Departments of Medicine/Pharmacology, Cancer Institute of New Jersey/Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Weitman S, Barrera H, Moore R, Gonzalez C, Marty J, Hilsenbeck S, MacDonald JR, Waters SJ, Von Hoff D. MGI 114: augmentation of antitumor activity when combined with topotecan. J Pediatr Hematol Oncol 2000; 22:306-14. [PMID: 10959900 DOI: 10.1097/00043426-200007000-00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE 6-Hydroxymethylacylfulvene (HMAF; MGI 114; Irofulven) is a semisynthetic analogue of the mushroom toxin illudin S that has been shown to be a potent cytotoxic agent with an improved therapeutic index compared with its parent compound. The studies were conducted to evaluate the antitumor activity of MGI 114 as a single agent and in combination with topotecan against pediatric solid tumor cell lines and xenograft models. MATERIALS AND METHODS In vitro studies were designed to determine the cytotoxic potential of MGI 114 using the MTT assay and 13 pediatric tumor cell lines. In addition, combination in vitro studies were performed with MGI 114 and topotecan to generate isoeffect plots. Single agent and combination in vivo studies were also performed using MGI 114 against rhabdomyosarcoma and neuroblastoma xenograft models. RESULTS After a 1-hour exposure to MGI 114, the mean IC50 (+/-standard error of mean) for medulloblastoma, neuroblastoma, Ewing sarcoma/primitive neuroectodermal tumor, and rhabdomyosarcoma cell lines were 1.58+/-0.51, 1.60+/-0.82, 1.18+/-0.08, and 3.99+/-1.69 microg/mL, respectively. When tumor cells were exposed concurrently to MGI 114 and topotecan, evidence of synergy was observed in 10 of 12 (83%) cell lines. Single agent and combination in vivo studies with MGI 114 showed that this agent had substantial, and at times curative, antitumor activity against rhabdomyosarcoma and neuroblastoma xenograft tumors. CONCLUSIONS These data suggest that MGI 114 has significant efficacy as a single agent in preclinical studies against pediatric tumors. In addition, based on previous reports and the results presented here, combining MGI 114 with topotecan appears to be an attractive approach to the treatment of pediatric malignancies. After completion of the pediatric phase I studies of MGI 114, consideration should be given to phase II single agent and phase I combination studies with a topoisomerase I inhibitor such as topotecan or irinotecan.
Collapse
Affiliation(s)
- S Weitman
- Institute for Drug Development, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Déclais AC, Marsault J, Confalonieri F, de La Tour CB, Duguet M. Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling. J Biol Chem 2000; 275:19498-504. [PMID: 10748189 DOI: 10.1074/jbc.m910091199] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reverse gyrases are atypical topoisomerases present in hyperthermophiles and are able to positively supercoil a circular DNA. Despite a number of studies, the mechanism by which they perform this peculiar activity is still unclear. Sequence data suggested that reverse gyrases are composed of two putative domains, a helicase-like and a topoisomerase I, usually in a single polypeptide. Based on these predictions, we have separately expressed the putative domains and the full-length polypeptide of Sulfolobus acidocaldarius reverse gyrase as recombinant proteins in Escherichia coli. We show the following. (i) The full-length recombinant enzyme sustains ATP-dependent positive supercoiling as efficiently as the wild type reverse gyrase. (ii) The topoisomerase domain exhibits a DNA relaxation activity by itself, although relatively low. (iii) We failed to detect helicase activity for both the N-terminal domain and the full-length reverse gyrase. (iv) Simple mixing of the two domains reconstitutes positive supercoiling activity at 75 degrees C. The cooperation between the domains seems specific, as the topoisomerase domain cannot be replaced by another thermophilic topoisomerase I, and the helicase-like cannot be replaced by a true helicase. (v) The helicase-like domain is not capable of promoting stoichiometric DNA unwinding by itself; like the supercoiling activity, unwinding requires the cooperation of both domains, either separately expressed or in a single polypeptide. However, unwinding occurs in the absence of ATP and DNA cleavage, indicating a structural effect upon binding to DNA. These results suggest that the N-terminal domain does not directly unwind DNA but acts more likely by driving ATP-dependent conformational changes within the whole enzyme, reminiscent of a protein motor.
Collapse
Affiliation(s)
- A C Déclais
- Laboratoire d'Enzymologie des Acides Nucléiques, Institut de Génétique et Microbiologie, UMR 8621 CNRS, Bât. 400, Université de Paris Sud, Centre d'Orsay, 91 405 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
41
|
Abstract
Replicative senescence is tied into organismal aging processes in more than one respect, and telomeres appear to be the major trigger of replicative senescence under many conditions in vitro and in vivo. However, the structure-function relationships in telomeres, the mechanisms of telomere shortening with advancing replicative age, and the regulation of senescence by telomeres are far from understood. Combining recent data on telomere structure, function of telomere-binding proteins, and sensitivity of telomeres to oxidative damage, an integrative model of telomere shortening and signaling is developed. The model suggests that t-loop formation hinders access of repair proteins to telomeres, leading to accumulation of a basic sites and single-strand breaks. These might contribute to accelerated telomere shortening by transient stalling of replication as well as, if present in high concentrations, to a relief of torsional tension which might destabilize the telomeric loop structure. As a result, the single-stranded G-rich overhang, which is present at the very ends of telomeres but is normally protected at the base of the telomeric loop, will be exposed to the nucleoplasm. Free G-rich telomeric single strands are a strong inductor of the p53 pathway, and exposure of the overhangs seems to be the first step in the signal transduction cascade to replicative senescence.
Collapse
Affiliation(s)
- T von Zglinicki
- Institute of Pathology, Charité, Humboldt University Berlin, Germany.
| |
Collapse
|
42
|
Pichierri P, Franchitto A, Mosesso P, Proietti de Santis L, Balajee AS, Palitti F. Werner's syndrome lymphoblastoid cells are hypersensitive to topoisomerase II inhibitors in the G2 phase of the cell cycle. Mutat Res 2000; 459:123-33. [PMID: 10725663 DOI: 10.1016/s0921-8777(99)00065-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Werner's syndrome (WS) is a rare autosomal recessive human disorder and the patients exhibit many symptoms of accelerated ageing in their early adulthood. The gene (WRN) responsible for WS has been biochemically characterised as a 3'-5' helicase and is homologous to a number of RecQ superfamily of helicases. The yeast SGS1 helicase is considered as a human WRN homologue and SGS1 physically interacts with topoisomerases II and III. In view of this, it has been hypothesised that the WRN gene may also interact with topoisomerases II and III. The purpose of this study is to determine whether the loss of function of WRN protein alters the sensitivity of WS cells to agents that block the action of topoisomerase II. This study deals with the comparison of the chromosomal damage induced by the two anti-topoisomerase II drugs, VP-16 and amsacrine, in both G1 and G2 phases of the cell cycle, in lymphoblastoid cells from WS patients and from a healthy donor. Our results show that the WS cell lines are hypersensitive to chromosome damage induced by VP-16 and amsacrine only in the G2 phase of the cell cycle. No difference either in the yield of the induced aberrations or SCEs was found after treatment of cells at G1 stage. These data might suggest that in WS cells, because of the mutation of the WRN protein, the inhibition of topoisomerase II activity results in a higher rate of misrepair, probably due to some compromised G2 phase processes involving the WRN protein.
Collapse
Affiliation(s)
- P Pichierri
- Dipartimento di Agrobiologia ed Agrochimica, Università della Tuscia, Via S. Camillo de Lellis s.n.c., 01100 Viterbo, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Bétermier M, Duharcourt S, Seitz H, Meyer E. Timing of developmentally programmed excision and circularization of Paramecium internal eliminated sequences. Mol Cell Biol 2000; 20:1553-61. [PMID: 10669733 PMCID: PMC85339 DOI: 10.1128/mcb.20.5.1553-1561.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramecium internal eliminated sequences (IESs) are short AT-rich DNA elements that are precisely eliminated from the germ line genome during development of the somatic macronucleus. They are flanked by one 5'-TA-3' dinucleotide on each side, a single copy of which remains at the donor site after excision. The timing of their excision was examined in synchronized conjugating cells by quantitative PCR. Significant amplification of the germ line genome was observed prior to IES excision, which starts 12 to 14 h after initiation of conjugation and extends over a 2- to 4-h period. Following excision, two IESs were shown to form extrachromosomal circles that can be readily detected on Southern blots of genomic DNA from cells undergoing macronuclear development. On these circular molecules, covalently joined IES ends are separated by one copy of the flanking 5'-TA-3' repeat. The similar structures of the junctions formed on the excised and donor molecules point to a central role for this dinucleotide in IES excision.
Collapse
Affiliation(s)
- M Bétermier
- UMR 8541 Centre National de la Recherche Scientifique, Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 75005 Paris, France.
| | | | | | | |
Collapse
|
44
|
Abstract
The RecQ family of DNA helicases includes at least three members in humans that are defective in genetic disorders associated with cancer predisposition and/or premature aging. Recent studies have shed light on the roles of RecQ helicases in suppressing 'promiscuous' genetic recombination and in ensuring accurate chromosome segregation. In particular, the biochemical properties of several family members have been characterised and functional interactions with other nuclear proteins have been defined.
Collapse
Affiliation(s)
- J K Karow
- Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | | | |
Collapse
|
45
|
Kelner MJ, McMorris TC, Estes L, Samson KM, Trani NA, MacDonald JR. Anti-leukemic action of the novel agent MGI 114 (HMAF) and synergistic action with topotecan. Leukemia 2000; 14:136-41. [PMID: 10637489 DOI: 10.1038/sj.leu.2401611] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The illudin derivative MGI 114 (6-hydroxymethylacylfulvene or HMAF) is currently in phase II chemotherapeutic clinical trials for a variety of solid tumors. The illudins were originally thought to be potentially useful agents for myeloid leukemias, because hematopoietic tumor cells were markedly sensitive whereas normal bone marrow progenitors were relatively resistant to the cytotoxic effects of illudins. Due to the marked preclinical efficacy of MGI 114 against a variety of solid tumor xenografts, the current phase II human trials are restricted to solid tumor (breast, lung, colon, ovarian, pancreas, prostate, etc) malignancies. The present studies were undertaken to evaluate the efficacy of MGI 114 in the HL60/MRI myeloid leukemia xenograft. In addition, because of the reported synergistic cytotoxic activity between MGI 114 and the topoisomerase I inhibitor topotecan towards pediatric human tumor cell lines, we tested the activity of MGI 114 and topotecan combinations against HL60 cells in vitro and the HL60/MRI myelocytic xenograft. Our results indicate that MGI 114 at maximum tolerated doses (MTD) of 7 mg/kg, five times per week for 3 weeks does display anti-myeloid leukemic properties in the HL60/MRI xenograft model which exceeds activity noted with other conventional agents (TGI > 70%). A marked therapeutic synergistic action was observed with MGI 114 and topotecan combinations of (1/2) MTD of each agent producing complete tumor remission in 50% of animals, without development of excessive or additive toxicity in animals. These results support further in vitro and clinical investigation into both the anti-myeloid leukemic activity of MGI-114, and the cooperative pharmacologic interaction noted between MGI-114 and topoisomerase I inhibitors. Leukemia (2000) 14, 136-141.
Collapse
Affiliation(s)
- M J Kelner
- Department of Pathology, University of California, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The phenomenon of posttranscriptional gene silencing (PTGS), which occurs when a transgene is introduced into a cell, is poorly understood. Here, the qde-3 gene, which is required for the activation and maintenance of gene silencing in the fungus Neurospora crassa, was isolated. Sequence analysis revealed that the qde-3 gene belongs to the RecQ DNA helicase family. The QDE3 protein may function in the DNA-DNA interaction between introduced transgenes or with an endogenous gene required for gene-silencing activation. In animals, genes that are homologous to RecQ protein, such as the human genes for Bloom's syndrome and Werner's syndrome, may also function in PTGS.
Collapse
Affiliation(s)
- C Cogoni
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena, 324, 00161 Roma, Italy.
| | | |
Collapse
|
47
|
Davies GP, Kemp P, Molineux IJ, Murray NE. The DNA translocation and ATPase activities of restriction-deficient mutants of Eco KI. J Mol Biol 1999; 292:787-96. [PMID: 10525405 DOI: 10.1006/jmbi.1999.3081] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eco KI, a type I restriction enzyme, specifies DNA methyltransferase, ATPase, endonuclease and DNA translocation activities. One subunit (HsdR) of the oligomeric enzyme contributes to those activities essential for restriction. These activities involve ATP-dependent DNA translocation and DNA cleavage. Mutations that change amino acids within recognisable motifs in HsdR impair restriction. We have used an in vivo assay to monitor the effect of these mutations on DNA translocation. The assay follows the Eco KI-dependent entry of phage T7 DNA from the phage particle into the host cell. Earlier experiments have shown that mutations within the seven motifs characteristic of the DEAD-box family of proteins that comprise known or putative helicases severely impair the ATPase activity of purified enzymes. We find that the mutations abolish DNA translocation in vivo. This provides evidence that these motifs are relevant to the coupling of ATP hydrolysis to DNA translocation. Mutations that identify an endonuclease motif similar to that found at the active site of type II restriction enzymes and other nucleases have been shown to abolish DNA nicking activity. When conservative changes are made at these residues, the enzymes lack nuclease activity but retain the ability to hydrolyse ATP and to translocate DNA at wild-type levels. It has been speculated that nicking may be necessary to resolve the topological problems associated with DNA translocation by type I restriction and modification systems. Our experiments show that loss of the nicking activity associated with the endonuclease motif of Eco KI has no effect on ATPase activity in vitro or DNA translocation of the T7 genome in vivo.
Collapse
Affiliation(s)
- G P Davies
- Institute of Cell & Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, United Kingdom
| | | | | | | |
Collapse
|
48
|
Balajee AS, Machwe A, May A, Gray MD, Oshima J, Martin GM, Nehlin JO, Brosh R, Orren DK, Bohr VA. The Werner syndrome protein is involved in RNA polymerase II transcription. Mol Biol Cell 1999; 10:2655-68. [PMID: 10436020 PMCID: PMC25497 DOI: 10.1091/mbc.10.8.2655] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)-dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40-60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II-dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid-protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype.
Collapse
Affiliation(s)
- A S Balajee
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The RecQ family of DNA helicases have been shown to be important for the maintenance of genomic integrity in all organisms analysed to date. In human cells, representatives of this family include the proteins defective in the cancer predisposition disorder Bloom's syndrome and the premature ageing condition, Werner's syndrome. Several pieces of evidence suggest that RecQ family helicases form associations with one or more of the cellular topoisomerases, and together these heteromeric complexes manipulate DNA structure to effect efficient DNA replication, genetic recombination, or both. Here, we propose that RecQ helicases are required for ensuring that structural abnormalities arising during replication, such as at sites where replication forks encounter DNA lesions, are corrected with high fidelity. In mutants defective in these proteins, not only is replication abnormal, but cells display aberrant responses to DNA-damaging agents or inhibitors of DNA synthesis. We suggest that RecQ helicases may be important for the integration of cellular responses to these insults, such as by linking cell cycle checkpoint responses to recombinational repair.
Collapse
Affiliation(s)
- R K Chakraverty
- Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, United Kingdom
| | | |
Collapse
|
50
|
Pantazis P, Han Z, Chatterjee D, Wyche J. Water-insoluble camptothecin analogues as potential antiviral drugs. J Biomed Sci 1999; 6:1-7. [PMID: 9933736 DOI: 10.1007/bf02256417] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In addition to being causative agents of infectious diseases in animals and humans, DNA viruses have served as models for the study of eukaryotic molecular mechanisms including replication and transcription. Studies of DNA virus functions utilizing cell-free systems and virus-infected cells in culture, in the presence of the anticancer drug camptothecin (CPT), have demonstrated that CPT is a potent inhibitor of replication, transcription and packaging of double-stranded DNA-containing adenoviruses, papovaviruses and herpesviruses, and the single- stranded DNA-containing autonomous parvoviruses. CPT inhibits viral functions by inhibiting topoisomer- ase I, a host cell enzyme required for initiation and completion of the viral functions. These findings indicate that CPT analogues could be developed for use as potent drugs against DNA viruses.
Collapse
Affiliation(s)
- P Pantazis
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, R.I., USA.
| | | | | | | |
Collapse
|