1
|
Faber GP, Nadav-Eliyahu S, Shav-Tal Y. Nuclear speckles - a driving force in gene expression. J Cell Sci 2022; 135:275909. [PMID: 35788677 DOI: 10.1242/jcs.259594] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear speckles are dynamic membraneless bodies located in the cell nucleus. They harbor RNAs and proteins, many of which are splicing factors, that together display complex biophysical properties dictating nuclear speckle formation and maintenance. Although these nuclear bodies were discovered decades ago, only recently has in-depth genomic analysis begun to unravel their essential functions in modulation of gene activity. Major advancements in genomic mapping techniques combined with microscopy approaches have enabled insights into the roles nuclear speckles may play in enhancing gene expression, and how gene positioning to specific nuclear landmarks can regulate gene expression and RNA processing. Some studies have drawn a link between nuclear speckles and disease. Certain maladies either involve nuclear speckles directly or dictate the localization and reorganization of many nuclear speckle factors. This is most striking during viral infection, as viruses alter the entire nuclear architecture and highjack host machinery. As discussed in this Review, nuclear speckles represent a fascinating target of study not only to reveal the links between gene positioning, genome subcompartments and gene activity, but also as a potential target for therapeutics.
Collapse
Affiliation(s)
- Gabriel P Faber
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shani Nadav-Eliyahu
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
2
|
Subnuclear targeting of the RNA-binding motif protein RBM6 to splicing speckles and nascent transcripts. Chromosome Res 2010; 18:851-72. [PMID: 21086038 DOI: 10.1007/s10577-010-9170-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
RNA-binding motif (RBM) proteins comprise a large family of RNA-binding proteins whose functions are poorly understood. Since some RBM proteins are candidate alternative splicing factors we examined whether one such member of the family, RBM6, exhibited a pattern of nuclear distribution and targeting consistent with this role. Using antibodies raised against mouse RBM6 to immunostain mammalian cell lines we found that the endogenous protein was both distributed diffusely in the nucleus and concentrated in a small number of nuclear foci that corresponded to splicing speckles/interchromatin granule clusters (IGCs). Tagged RBM6 was also targeted to IGCs, although it accumulated in large bodies confined to the IGC periphery. The basis of this distribution pattern was suggested by the targeting of tagged RBM6 in the giant nuclei (or germinal vesicles (GVs)) of Xenopus oocytes. In spread preparations of GV contents RBM6 was localized both to lampbrush chromosomes and to the surface of many oocyte IGCs, where it was confined to up to 50 discrete patches. Each patch of RBM6 labelling corresponded to a bead-like structure of 0.5-1 microm diameter that assembled de novo on the IGC surface. Assembly of these novel structures depended on the repetitive N-terminal region of RBM6, which acts as a multimerization domain. Without this domain, RBM6 was no longer excluded from the IGC interior but accumulated homogeneously within it. Assembly of IGC-surface structures in mammalian cell lines also depended on the oligomerization domain of RBM6. Oligomerization of RBM6 also had morphological effects on its other major target in GVs, namely the arrays of nascent transcripts visible in lampbrush chromosome transcription units. The presence of oligomerized RBM6 on many lampbrush loops caused them to appear as dense structures with a spiral morphology that appeared quite unlike normal, extended loops. This distribution pattern suggests a new role for RBM6 in the co-transcriptional packaging or processing of most nascent transcripts.
Collapse
|
3
|
Abstract
The binding of fluorescently tagged proteins to tandem DNA arrays has been instrumental in understanding nuclear organization and function. Through the use of more natural tandem DNA arrays, Hu et al. (Hu, Y., I. Kireev, M. Plutz, N. Ashourian, and A.S. Belmont. 2009. J. Cell Biol. 185:87–100) gain new insights into chromatin organization and dynamics, and into the association of splicing factors with active genes.
Collapse
Affiliation(s)
- James G McNally
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Funatsu T. [Single-molecule imaging and quantification of mRNAs in a living cell]. YAKUGAKU ZASSHI 2009; 129:265-72. [PMID: 19252383 DOI: 10.1248/yakushi.129.265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In eukaryotic cells, pre-mRNA molecules contain multiple intron sequences that are removed by splicing reactions. Truncated ftz pre-mRNA containing one intron and two exons, which mimics RNA under the post-transcriptional splicing, was synthesized and labeled with a fluorescent dye in vitro and then injected to the nucleus of Cos7 cell. The injected pre-mRNAs accumulated in 'speckles' in an intron-dependent manner and were spliced and exported to the cytoplasm with a half-time of about 10 min. Dissociation of pre-mRNAs in speckles exhibited rapid diffusion and slow dissociation of about 100 s. The slow dissociation required metabolic energy of ATP. Some pre-mRNAs shuttled between speckles and nucleoplasm, suggesting that pre-mRNAs repeatedly associated with and dissociated from speckles until introns were removed. These results suggest that speckles function as a checkpoint for whether or not mRNAs are appropriately processed. Next, mature mRNAs of truncated beta-globin were synthesized, fluorescently labeled in vitro, and injected to the nucleus. The trajectories of single mRNA molecules in the nucleus were visualized using video-rate confocal microscopy. Approximately half the mRNAs moved by Brownian motion in the nucleoplasm, except the nucleoli, with an apparent diffusion coefficient of 0.2 mum(2)/s, about 1/150 of that in water. The remaining mRNAs were stationary with an average residence time of about 30 s. These results indicate that mRNAs are transported to nuclear pores by Brownian motion. Finally, intrinsic c-fos mRNA was fluorescently labeled with Cy3-2'O-methyl oligo RNA probes and its concentration was measured by fluorescence correlation spectroscopy.
Collapse
Affiliation(s)
- Takashi Funatsu
- Laboratory of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Intracellular organization of the pre-mRNA splicing machinery during Hyacinthus orientalis L. pollen development. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s00497-008-0086-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Dirks RW. Combination DNA/RNA FISH and immunophenotyping. CURRENT PROTOCOLS IN CYTOMETRY 2008; Chapter 8:Unit 8.7. [PMID: 18770745 DOI: 10.1002/0471142956.cy0807s06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit presents methods for combining immunophenotyping with DNA/RNA FISH. The approach is used in so-called genotype/phenotype analysis to identify chromosomal aberrations in sub-populations of cells present in heterogenous populations. Combining RNA and DNA detection with identification of cellular proteins is quite difficult. This series of protocols is provided to enable the successful application of the combination of these techniques.
Collapse
Affiliation(s)
- R W Dirks
- Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
7
|
Single-cell c-myc gene expression in relationship to nuclear domains. Chromosome Res 2008; 16:325-43. [DOI: 10.1007/s10577-007-1196-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/17/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
|
8
|
Ishihama Y, Tadakuma H, Tani T, Funatsu T. The dynamics of pre-mRNAs and poly(A)+ RNA at speckles in living cells revealed by iFRAP studies. Exp Cell Res 2007; 314:748-62. [PMID: 18053984 DOI: 10.1016/j.yexcr.2007.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 11/19/2022]
Abstract
Speckles are subnuclear domains where pre-mRNA splicing factors accumulate in the interchromatin space. To investigate the dynamics of mRNAs at speckles, fluorescently labeled Drosophila Fushitarazu (ftz) pre-mRNAs were microinjected into the nuclei of Cos7 cells and the dissociation kinetics of pre-mRNAs from speckles was analyzed using photobleaching techniques. The microinjected ftz pre-mRNAs accumulated in speckles in an intron-dependent manner and were spliced and exported to the cytoplasm with a half-time of about 10 min. Dissociation of the accumulated pre-mRNAs in speckles exhibited rapid diffusion and slow-dissociation of about 100 s. The slow-dissociation required metabolic energy of ATP. Two types of splice-defective mutated mRNAs dissociated from the speckle with a time constant similar to that of wild-type mRNA, indicating that slow-dissociation was not coupled to the splicing reaction. Furthermore, some pre-mRNAs shuttled between speckles and nucleoplasm, suggesting that pre-mRNAs repeatedly associated with and dissociated from speckles until introns were removed. Next, endogenous poly(A)+ RNA was visualized by injecting Cy3-labeled 2'O-methyl oligo(U)22 probes. Some poly(A)+ RNA distributed diffusely within the nucleus, but some of them accumulated in speckles and dissociated at time constant of about 100 s.
Collapse
Affiliation(s)
- Yo Ishihama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | |
Collapse
|
9
|
Wegel E, Vallejos RH, Christou P, Stöger E, Shaw P. Large-scale chromatin decondensation induced in a developmentally activated transgene locus. J Cell Sci 2005; 118:1021-31. [PMID: 15713746 DOI: 10.1242/jcs.01685] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The high molecular weight (HMW) glutenin-encoding genes in wheat are developmentally activated in the endosperm at about 8 days after anthesis. We have investigated the physical changes that occur in these genes in two transgenic lines containing about 20 and 50 copies each of the HMW glutenin genes together with their promoters. Using fluorescence in-situ hybridisation (FISH) and confocal imaging, we demonstrate that, in non-expressing tissue, each transgene locus consists of one or two highly condensed sites, which decondense into many foci upon activation of transcription in endosperm nuclei. Initiation of transcription can precede decondensation but not vice versa. We show that, in one of the lines, cytoplasmic transcript levels are high after onset of transcription but disappear by 14 days after anthesis, whereas small interfering RNAs, which indicate post-transcriptional gene silencing (PTGS), are detected at this stage. However, the transcript levels remain high at the transcription sites, most of the transgene copies are transcriptionally active and transcriptional activity in the nucleus ceases only with cell death at the end of endosperm development.
Collapse
MESH Headings
- Cell Nucleus/metabolism
- Chromatin/chemistry
- Chromatin/metabolism
- Chromatin/ultrastructure
- Cytoplasm/metabolism
- DNA/metabolism
- DNA Methylation
- DNA Primers/chemistry
- Flow Cytometry
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Gene Silencing
- Genes, Plant
- Glutens/genetics
- Image Processing, Computer-Assisted
- In Situ Hybridization
- In Situ Hybridization, Fluorescence
- Metaphase
- Microscopy, Confocal
- Plant Physiological Phenomena
- Plant Roots/metabolism
- Plants, Genetically Modified
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Seeds/metabolism
- Time Factors
- Transcription, Genetic
- Transformation, Genetic
- Transgenes
- Triticum/genetics
- Triticum/metabolism
Collapse
Affiliation(s)
- Eva Wegel
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | | | | | | | | |
Collapse
|
10
|
Molenaar C, Abdulle A, Gena A, Tanke HJ, Dirks RW. Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells. ACTA ACUST UNITED AC 2004; 165:191-202. [PMID: 15117966 PMCID: PMC2172041 DOI: 10.1083/jcb.200310139] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many of the protein factors that play a role in nuclear export of mRNAs have been identified, but still little is known about how mRNAs are transported through the cell nucleus and which nuclear compartments are involved in mRNA transport. Using fluorescent 2'O-methyl oligoribonucleotide probes, we investigated the mobility of poly(A)+ RNA in the nucleoplasm and in nuclear speckles of U2OS cells. Quantitative analysis of diffusion using photobleaching techniques revealed that the majority of poly(A)+ RNA move throughout the nucleus, including in and out of speckles (also called SC-35 domains), which are enriched for splicing factors. Interestingly, in the presence of the transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole, the association of poly(A)+ RNA with speckles remained dynamic. Our results show that RNA movement is energy dependent and that the proportion of nuclear poly(A)+ RNA that resides in speckles is a dynamic population that transiently interacts with speckles independent of the transcriptional status of the cell. Rather than the poly(A)+ RNA within speckles serving a stable structural role, our findings support the suggestion of a more active role of these regions in nuclear RNA metabolism and/or transport.
Collapse
Affiliation(s)
- Chris Molenaar
- Dept. of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Netherlands
| | | | | | | | | |
Collapse
|
11
|
Ali GS, Golovkin M, Reddy ASN. Nuclear localization and in vivo dynamics of a plant-specific serine/arginine-rich protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:883-93. [PMID: 14675452 DOI: 10.1046/j.1365-313x.2003.01932.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Serine/arginine-rich (SR) proteins in non-plant systems are known to play important roles in both constitutive and alternative splicing of pre-messenger RNAs (pre-mRNAs). Recently, we isolated a novel SR protein (SR45), which interacts with U1 snRNP 70K protein, a key protein involved in 5' splice site recognition. SR45 is found only in plants and is unique in having two SR domains separated by an RNA recognition motif (RRM). To study the localization and dynamics of SR45, we expressed it as a fusion to green fluorescent protein (GFP) in cultured cells and transgenic Arabidopsis plants. The SR45 is localized exclusively to nuclei. In interphase nuclei, GFP-SR45 was found both in speckles and nucleoplasm. The speckles exhibited intranuclear movements and changes in morphology. Inhibition of transcription and protein phosphorylation resulted in redistribution of SR45 to bigger speckles. The change in the number and morphology of speckles caused by inhibition of transcription was blocked by an inhibitor of phosphatases. These results indicate that transcription activity of the cell and protein (de)phosphorylation regulate the intranuclear distribution of SR45.
Collapse
Affiliation(s)
- Gul Shad Ali
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
12
|
Görisch SM, Richter K, Scheuermann MO, Herrmann H, Lichter P. Diffusion-limited compartmentalization of mammalian cell nuclei assessed by microinjected macromolecules. Exp Cell Res 2003; 289:282-94. [PMID: 14499629 DOI: 10.1016/s0014-4827(03)00265-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to investigate the accessibility of the nucleoplasm for macromolecules with different physical properties, we microinjected FITC-conjugated dextrans of different sizes as well as anionic FITC-dextrans and FITC-poly-L-lysine into mammalian cell nuclei. Small dextrans displayed a homogeneous nuclear distribution. With increasing molecular mass (42 to 2500 kDa), FITC-dextrans were progressively excluded from chromatin regions, accumulating in and thereby outlining an apparently extended interchromatin space. Anionic FITC-dextrans (500 kDa) showed complete exclusion from labeled chromatin regions, while the positively charged FITC-poly-L-lysine was to some extent present within the chromatin regions. Moreover, the FITC-poly-L-lysine preferentially localized at the nuclear periphery. We also found a size-dependent exclusion of FITC-dextrans from nucleoli regions, while the FITC-poly-L-lysine accumulated in the nucleoli. Thus, the distinct and restricted nuclear accessibility for macromolecules is dependent on molecule size and electrical charge.
Collapse
Affiliation(s)
- Sabine M Görisch
- Division of Molecular Genetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
13
|
DeSousa D, Mukhopadhyay M, Pelka P, Zhao X, Dey BK, Robert V, Pélisson A, Bucheton A, Campos AR. A novel double-stranded RNA-binding protein, disco interacting protein 1 (DIP1), contributes to cell fate decisions during Drosophila development. J Biol Chem 2003; 278:38040-50. [PMID: 12829713 DOI: 10.1074/jbc.m303512200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the identification of the Disco Interacting Protein 1 (DIP1) gene isolated in a yeast interaction trap screen using the zinc finger protein disconnected (disco) as a bait. DIP1 encodes a protein containing two double-stranded RNA binding domains (dsRBD). Consistent with the presence of dsRBD, DIP1 binds dsRNA or structured RNAs in Northwestern assays. DIP1 is found in nuclear subdomains resembling speckles known to accumulate transcription and splicing factors. In early embryos, nuclear localization of DIP1 protein coincides with the onset of zygotic gene expression. Later in development DIP1 expression is decreased in dividing cells in different tissues. Overexpression of DIP1 in the eye-antennal imaginal disc, early in embryonic and larval development, causes the formation of supernumerary structures in the head capsule. A role for DIP1 in epigenetic mechanisms that lead to the establishment and/or maintenance of cell fate specification is discussed.
Collapse
Affiliation(s)
- Dorothy DeSousa
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Catez F, Lim JH, Hock R, Postnikov YV, Bustin M. HMGN dynamics and chromatin function. Biochem Cell Biol 2003; 81:113-22. [PMID: 12897844 DOI: 10.1139/o03-040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies indicate that most nuclear proteins, including histone H1 and HMG are highly mobile and their interaction with chromatin is transient. These findings suggest that the structure of chromatin is dynamic and the protein composition at any particular chromatin site is not fixed. Here we discuss how the dynamic behavior of the nucleosome binding HMGN proteins affects the structure and function of chromatin. The high intranuclear mobility of HMGN insures adequate supply of protein throughout the nucleus and serves to target these proteins to their binding sites. Transient interactions of the proteins with nucleosomes destabilize the higher order chromatin, enhance the access to nucleosomal DNA, and impart flexibility to the chromatin fiber. While roaming the nucleus, the HMGN proteins encounter binding partners and form metastable multiprotein complexes, which modulate their chromatin interactions. Studies with HMGN proteins underscore the important role of protein dynamics in chromatin function.
Collapse
Affiliation(s)
- Frédéric Catez
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
15
|
Snaar SP, Verdijk P, Tanke HJ, Dirks RW. Kinetics of HCMV immediate early mRNA expression in stably transfected fibroblasts. J Cell Sci 2002; 115:321-8. [PMID: 11839784 DOI: 10.1242/jcs.115.2.321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Compelling evidence supports an intimate link in time and space between eukaryotic pre-mRNA synthesis and processing and nucleocytoplasmic transport of mature mRNA. In this study, we analyzed the kinetic behavior of these processes in a quantitative manner. We used FISH and confocal scanning laser microscopy to detect transcripts produced by an inducible human cytomegalovirus immediate early (HCMV-IE) expression system. Upon induction, a large amount of pre-mRNA accumulated in nuclear foci at or near their transcription sites and, at later time, throughout the nucleoplasm. Inhibition of RNA polymerase II activity resulted in a rapid decrease in the number of transcripts in the nuclear RNA foci (half time ∼two minutes), indicating that accumulated transcripts were rapidly spliced and then released. The dispersed nucleoplasmic transcripts exited the nucleus with a half time of ∼10 minutes. Both processes were temperature dependent, suggesting that mRNA export is an active process. RNA polymerase II activation revealed that production of mature HCMV IE mRNAs required less than five minutes. Transcripts radiated from the gene at an average speed of ∼0.13 μm2/sec from this time on. Thus, it appears that these processes are tightly linked in time and space, with the splicing reaction as a rate-limiting factor.
Collapse
Affiliation(s)
- Sabine P Snaar
- Department of Molecular Cell Biology, Laboratory for Cytochemistry and Cytometry, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
16
|
Hattinger CM, Jochemsen AG, Tanke HJ, Dirks RW. Induction of p21 mRNA synthesis after short-wavelength UV light visualized in individual cells by RNA FISH. J Histochem Cytochem 2002; 50:81-9. [PMID: 11748297 DOI: 10.1177/002215540205000109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Expression of the cyclin-dependent kinase inhibitor gene p21 is induced after DNA damage and plays a role in cell survival. The exact mechanism of induction is not known, but enhancement of mRNA stability has recently been implicated as an important factor. To obtain further insight into the dynamics of p21 gene expression at the individual cell level, normal fibroblasts, GM1492 fibroblasts from a Bloom's syndrome patient, and U2OS osteosarcoma cells were UVC irradiated, fixed at different time points, and subjected to mRNA fluorescence in situ hybridization (FISH) and immunocytochemical staining. In mock-irradiated normal fibroblasts, a subfraction of cells revealed low levels of p21 mRNA synthesis. After UVC treatment, p21 transcripts accumulated over time in nuclear locations other than transcription foci. At 6 hr after irradiation, almost 50% of the cells displayed p21 mRNA in three different distribution patterns within the nuclei. The highest frequency of cells with cytoplasmic accumulation of p21 mRNA was seen at 17 hr after UVC treatment. We conclude that increased p21 gene transcription and possibly stabilization of newly synthesized p21 mRNA contribute to elevated levels of p21 protein after UVC irradiation. (J Histochem Cytochem 50:81-89, 2002)
Collapse
Affiliation(s)
- Claudia M Hattinger
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
17
|
Bell P, Montaner LJ, Maul GG. Accumulation and intranuclear distribution of unintegrated human immunodeficiency virus type 1 DNA. J Virol 2001; 75:7683-91. [PMID: 11462040 PMCID: PMC115003 DOI: 10.1128/jvi.75.16.7683-7691.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2001] [Accepted: 05/09/2001] [Indexed: 12/12/2022] Open
Abstract
The RNA genome of human immunodeficiency virus type 1 (HIV-1) is converted into DNA after infection in order to integrate into the host cell DNA. However, a large number of these reverse-transcribed genomes remain unintegrated in the nucleus of infected cells. Currently, there are no data available about the intranuclear distribution pattern of unintegrated HIV-1 DNA in relation to nuclear structures as observed on the single-cell level. In the present study, we investigated the intranuclear fate of unintegrated viral DNA in cell lines expressing CD4 and coreceptors (HOS-CD4.CCR5 and U373-MAGI-CXCR4(CEM)) infected with HIV-1 (strain 89.6). We used a novel approach to distinguish in situ unintegrated from integrated viral DNA by performing fluorescent in situ hybridization on cells in which stress-induced chromosome condensation had been induced, a procedure that contracts chromosomes independent of the cell cycle. Cells infected for 15 h accumulated large amounts of HIV-1 DNA which was located between the condensed chromosome strands, allowing the identification of this viral DNA as unintegrated. In contrast, in HeLa/LAV, a cell line carrying integrated HIV-1 genomes, the great majority of viral DNA colocalized with the cellular DNA. We show that unintegrated HIV-1 DNA does not evenly distribute within the host cell nucleus but tends to aggregate into clusters containing many copies of the viral genomes. The formation of these DNA clusters was independent of viral DNA replication and thus appeared to result solely from multiple infections. The DNA aggregates remained in the nuclei of infected cells for at least 25 h after the infection was stopped. The emergence of transcription sites, which most likely denote sites of the integrated provirus, lagged clearly behind the accumulation of viral DNA. These transcription foci could not be linked to unintegrated DNA molecules, suggesting that this DNA type is unable to transcribe, at least at levels comparable to those of integrated DNA. Neither unintegrated HIV-1 DNA nor transcription foci nor integrated DNA was observed to associate with nuclear domain 10 (ND10), a nuclear structure known to represent the site where several DNA viruses replicate and transcribe. Also, HIV-1 does not modify ND10 at early or late times of infection. There was no specific association of HIV-1 transcripts with splicing factor SC35 domains, in contrast to what has been reported for a number of both cellular and viral genes. Surprisingly, unintegrated HIV-1 DNA was found to accumulate within or in close association with SC35 domains, demonstrating a specific distribution of the viral DNA within the host cell nucleus. Taken together, our results demonstrate that unintegrated proviral HIV-1 DNA does not randomly localize within infected cells but preferentially aggregates in the nucleus within SC35 domains.
Collapse
Affiliation(s)
- P Bell
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
18
|
Dye BT, Patton JG. An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles. Exp Cell Res 2001; 263:131-44. [PMID: 11161712 DOI: 10.1006/excr.2000.5097] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using fusions with green fluorescent protein (GFP), we have identified sequences in the polypyrimidine tract binding protein-associated splicing factor (PSF) that are involved in nuclear and subnuclear localization. Like other splicing factors, PSF localizes to the nucleus, is absent from nucleoli, and accumulates in punctate structures within the nucleus referred to as speckles. However, PSF lacks the known speckle localization domains that have been identified in other proteins. Instead, the localization of PSF to speckles is dependent on an RNA recognition motif (RRM). PSF comprises an N-terminal proline- and glutamine-rich domain, two RRMs (RRM1 and RRM2), and a C-terminal region that contains two nuclear localization signals, both of which are required for complete nuclear localization. Deletion of RRM2 led to a complete loss of speckle localization and resulted in diffuse accumulation of PSF in the nucleus, indicating that RRM2 is required for subnuclear localization. Thus, PSF appears to localize to speckles through a novel pathway that is dependent on its second RRM. Consistent with the use of a novel subnuclear targeting pathway, PSF redistributes to perinucleolar clusters upon the addition of a transcription inhibitor whereas other splicing factors display increased localization to speckles in the absence of transcription. A yeast two-hybrid screen identified four-and-a-half LIM-only protein 2 (FHL2) as a potential RRM2 interaction partner, indicating a possible role for zinc-finger or LIM domains in the localization of splicing factors to subnuclear speckles.
Collapse
Affiliation(s)
- B T Dye
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
19
|
Melcák I, Melcáková S, Kopský V, Vecerová J, Raska I. Prespliceosomal assembly on microinjected precursor mRNA takes place in nuclear speckles. Mol Biol Cell 2001; 12:393-406. [PMID: 11179423 PMCID: PMC30951 DOI: 10.1091/mbc.12.2.393] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2000] [Revised: 11/03/2000] [Accepted: 12/19/2000] [Indexed: 11/11/2022] Open
Abstract
Nuclear speckles (speckles) represent a distinct nuclear compartment within the interchromatin space and are enriched in splicing factors. They have been shown to serve neighboring active genes as a reservoir of these factors. In this study, we show that, in HeLa cells, the (pre)spliceosomal assembly on precursor mRNA (pre-mRNA) is associated with the speckles. For this purpose, we used microinjection of splicing competent and mutant adenovirus pre-mRNAs with differential splicing factor binding, which form different (pre)spliceosomal complexes and followed their sites of accumulation. Splicing competent pre-mRNAs are rapidly targeted into the speckles, but the targeting is temperature-dependent. The polypyrimidine tract sequence is required for targeting, but, in itself, is not sufficient. The downstream flanking sequences are particularly important for the targeting of the mutant pre-mRNAs into the speckles. In supportive experiments, the behavior of the speckles was followed after the microinjection of antisense deoxyoligoribonucleotides complementary to the specific domains of snRNAs. Under these latter conditions prespliceosomal complexes are formed on endogenous pre-mRNAs. We conclude that the (pre)spliceosomal complexes on microinjected pre-mRNA are formed inside the speckles. Their targeting into and accumulation in the speckles is a result of the cumulative loading of splicing factors to the pre-mRNA and the complexes formed give rise to the speckled pattern observed.
Collapse
Affiliation(s)
- I Melcák
- Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of Czech Republic, Prague
| | | | | | | | | |
Collapse
|
20
|
Calado A, Carmo-Fonseca M. Localization of poly(A)-binding protein 2 (PABP2) in nuclear speckles is independent of import into the nucleus and requires binding to poly(A) RNA. J Cell Sci 2000; 113 ( Pt 12):2309-18. [PMID: 10825302 DOI: 10.1242/jcs.113.12.2309] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclei of mammalian cells contain domains, termed nuclear speckles, which are enriched in splicing factors and poly(A) RNA. Although nuclear speckles are thought to represent reservoirs from which splicing factors are recruited to sites of transcription and splicing, the presence of poly(A) RNA in these structures remains enigmatic. An additional component of the speckles is poly(A) binding protein 2 (PABP2), a protein that binds with high affinity to nascent poly(A) tails, stimulating their extension and controlling their length. In this work we investigated whether PABP2 contributes to the targeting of poly(A) RNA to the speckles. The results show that localization of PABP2 in speckles is independent of import of the protein into the nucleus. Inhibition of transcription or poly(A) synthesis at the end of mitosis does not affect nuclear import of PABP2 but prevents its localization to speckles. Furthermore, PABP2 mutants with decreased ability to bind to poly(A) fail to localize to speckles. Taken together the results show that PABP2 localizes to the nuclear speckles as a consequence of its binding to poly(A) RNA, contrasting to splicing factors which assemble into speckles in the absence of newly synthesized transcripts.
Collapse
Affiliation(s)
- A Calado
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Portugal
| | | |
Collapse
|
21
|
Misteli T. Cell biology of transcription and pre-mRNA splicing: nuclear architecture meets nuclear function. J Cell Sci 2000; 113 ( Pt 11):1841-9. [PMID: 10806095 DOI: 10.1242/jcs.113.11.1841] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene expression is a fundamental cellular process. The basic mechanisms involved in expression of genes have been characterized at the molecular level. A major challenge is now to uncover how transcription, RNA processing and RNA export are organized within the cell nucleus, how these processes are coordinated with each other and how nuclear architecture influences gene expression and regulation. A significant contribution has come from cell biological approaches, which combine molecular techniques with microscopy methods. These studies have revealed that the mammalian cell nucleus is a complex but highly organized organelle, which contains numerous subcompartments. I discuss here how two essential nuclear processes - transcription and pre-mRNA splicing - are spatially organized and coordinated in vivo, and how this organization might contribute to the control of gene expression. The dynamic nature of nuclear proteins and compartments indicates a high degree of plasticity in the cellular organization of nuclear functions. The cellular organization of transcription and splicing suggest that the morphology of nuclear compartments is largely determined by the activities of the nucleus.
Collapse
Affiliation(s)
- T Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Melcák I, Cermanová S, Jirsová K, Koberna K, Malínský J, Raska I. Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs. Mol Biol Cell 2000; 11:497-510. [PMID: 10679009 PMCID: PMC14788 DOI: 10.1091/mbc.11.2.497] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the present study, the spatial organization of intron-containing pre-mRNAs of Epstein-Barr virus (EBV) genes relative to location of splicing factors is investigated. The intranuclear position of transcriptionally active EBV genes, as well as of nascent transcripts, is found to be random with respect to the speckled accumulations of splicing factors (SC35 domains) in Namalwa cells, arguing against the concept of the locus-specific organization of mRNA genes with respect to the speckles. Microclusters of splicing factors are, however, frequently superimposed on nascent transcript sites. The transcript environment is a dynamic structure consisting of both nascent and released transcripts, i.e., the track-like transcript environment. Both EBV sequences of the chromosome 1 homologue are usually associated with the track, are transcriptionally active, and exhibit in most cases a polar orientation. In contrast to nascent transcripts (in the form of spots), the association of a post-transcriptional pool of viral pre-mRNA (in the form of tracks) with speckles is not random and is further enhanced in transcriptionally silent cells when splicing factors are sequestered in enlarged accumulations. The transcript environment reflects the intranuclear transport of RNA from the sites of transcription to SC35 domains, as shown by concomitant mapping of DNA, RNA, and splicing factors. No clear vectorial intranuclear trafficking of transcripts from the site of synthesis toward the nuclear envelope for export into the cytoplasm is observed. Using Namalwa and Raji cell lines, a correlation between the level of viral gene transcription and splicing factor accumulation within the viral transcript environment has been observed. This supports a concept that the level of transcription can alter the spatial relationship among intron-containing genes, their transcripts, and speckles attributable to various levels of splicing factors recruited from splicing factor reservoirs. Electron microscopic in situ hybridization studies reveal that the released transcripts are directed toward reservoirs of splicing factors organized in clusters of interchromatin granules. Our results point to the bidirectional intranuclear movement of macromolecular complexes between intron-containing genes and splicing factor reservoirs: the recruitment of splicing factors to transcription sites and movement of released transcripts from DNA loci to reservoirs of splicing factors.
Collapse
MESH Headings
- Biological Transport
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/ultrastructure
- Cell Nucleus/virology
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Directed RNA Polymerases/antagonists & inhibitors
- DNA-Directed RNA Polymerases/metabolism
- Genes, Viral/genetics
- Genome, Viral
- Herpesvirus 4, Human/genetics
- Heterogeneous-Nuclear Ribonucleoproteins
- Humans
- Introns/genetics
- Microscopy, Confocal
- Microscopy, Electron
- Microscopy, Fluorescence
- Nuclear Proteins/metabolism
- Plasmids/genetics
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonucleoproteins/metabolism
- Serine-Arginine Splicing Factors
- Spliceosomes/genetics
- Spliceosomes/metabolism
- Spliceosomes/ultrastructure
- Transcription, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- I Melcák
- Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of Czech Republic, Czech Republic
| | | | | | | | | | | |
Collapse
|
23
|
Jolly C, Vourc'h C, Robert-Nicoud M, Morimoto RI. Intron-independent association of splicing factors with active genes. J Cell Biol 1999; 145:1133-43. [PMID: 10366587 PMCID: PMC2133154 DOI: 10.1083/jcb.145.6.1133] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1998] [Revised: 03/31/1999] [Indexed: 11/22/2022] Open
Abstract
The cell nucleus is organized as discrete domains, often associated with specific events involved in chromosome organization, replication, and gene expression. We have examined the spatial and functional relationship between the sites of heat shock gene transcription and the speckles enriched in splicing factors in primary human fibroblasts by combining immunofluorescence and fluorescence in situ hybridization (FISH). The hsp90alpha and hsp70 genes are inducibly regulated by exposure to stress from a low basal level to a high rate of transcription; additionally the hsp90alpha gene contains 10 introns whereas the hsp70 gene is intronless. At 37 degrees C, only 30% of hsp90alpha transcription sites are associated with speckles whereas little association is detected with the hsp70 gene, whose constitutive expression is undetectable relative to the hsp90alpha gene. Upon exposure of cells to heat shock, the heavy metal cadmium, or the amino acid analogue azetidine, transcription at the hsp90alpha and hsp70 gene loci is strongly induced, and both hsp transcription sites become associated with speckles in >90% of the cells. These results reveal a clear disconnection between the presence of intervening sequences at specific gene loci and the association with splicing factor-rich regions and suggest that subnuclear structures containing splicing factors are associated with sites of transcription.
Collapse
Affiliation(s)
- C Jolly
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
Biochemical evidence indicates that pre-mRNA splicing factors physically interact with the C-terminal domain of the largest subunit of RNA polymerase II. We have investigated the in vivo function of this interaction. In mammalian cells, truncation of the CTD of RNA pol II LS prevents the targeting of the splicing machinery to a transcription site. In the absence of the CTD, pre-mRNA splicing is severely reduced. The presence of unspliced RNA alone is not sufficient for the accumulation of splicing factors at the transcription site, nor for its efficient splicing. Our results demonstrate a critical role for the CTD of RNA pol II LS in the intranuclear targeting of splicing factors to transcription sites in vivo.
Collapse
Affiliation(s)
- T Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
25
|
Collas P, Liang MR, Vincent M, Aleström P. Active transgenes in zebrafish are enriched in acetylated histone H4 and dynamically associate with RNA Pol II and splicing complexes. J Cell Sci 1999; 112 ( Pt 7):1045-54. [PMID: 10198286 DOI: 10.1242/jcs.112.7.1045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the functional organization of active and silent integrated luciferase transgenes in zebrafish, with the aim of accounting for the variegation of transgene expression in this species. We demonstrate the enrichment of transcriptionally active transgenes in acetylated histone H4 and the dynamic association of the transgenes with splicing factor SC35 and RNA Pol II. Analysis of interphase nuclei and extended chromatin fibers by immunofluorescence and in situ hybridization reveals a co-localization of transgenes with acetylated H4 in luciferase-expressing animals only. Enrichment of expressed transgenes in acetylated H4 is further demonstrated by their co-precipitation from chromatin using anti-acetylated H4 antibodies. Little correlation exists, however, between the level of histone acetylation and the degree of transgene expression. In transgene-expressing zebrafish, most transgenes co-localize with Pol II and SC35, whereas no such association occurs in non-expressing individuals. Inhibition of Pol II abolishes transgene expression and disrupts association of transgenes with SC35, although inactivated transgenes remains enriched in acetylated histones. Exposure of embryos to the histone deacetylation inhibitor TSA induces expression of most silent transgenes. Chromatin containing activated transgenes becomes enriched in acetylated histones and the transgenes recruit SC35 and Pol II. The results demonstrate a correlation between H4 acetylation and transgene activity, and argue that active transgenes dynamically recruit splicing factors and Pol II. The data also suggest that dissociation of splicing factors from transgenes upon Pol II inhibition is not a consequence of changes in H4 acetylation.
Collapse
Affiliation(s)
- P Collas
- Department of Biochemistry, Norwegian College of Veterinary Medicine, Oslo, Norway.
| | | | | | | |
Collapse
|
26
|
Snaar SP, Vincent M, Dirks RW. RNA polymerase II localizes at sites of human cytomegalovirus immediate-early RNA synthesis and processing. J Histochem Cytochem 1999; 47:245-54. [PMID: 9889260 DOI: 10.1177/002215549904700213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pre-mRNA synthesis in eukaryotic cells is preceded by the formation of a transcription initiation complex and binding of unphosphorylated RNA polymerase II (Pol II) at the promoter region of a gene. Transcription initiation and elongation are accompanied by the hyperphosphorylation of the carboxy-terminal domain (CTD) of Pol II large subunit. Recent biochemical studies provided evidence that RNA processing factors, including those required for splicing, associate with hyperphosphorylated CTDs forming "transcription factories." To directly visualize the existence of such factories, we simultaneously detected human cytomegalovirus immediate-early (IE) DNA and RNA with splicing factors and Pol II in rat 9G cells inducible for IE gene expression. Combined in situ hybridization and immunocytochemistry revealed that, after induction, both splicing factors and Pol II are present at the sites of IE mRNA synthesis and of IE mRNA processing that extend from the transcribing gene. Noninduced cells revealed no such associations. When IE mRNA-synthesizing cells were treated with a transcription inhibitor, these associations disappeared within 30 min. Our results show that the association of Pol II and splicing factors with IE DNA is dependent on its transcriptional activity and furthermore suggest that splicing factors are still associated with Pol II during active splicing.
Collapse
Affiliation(s)
- S P Snaar
- Department of Molecular Cell Biology, Laboratory for Cytochemistry and Cytometry, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | |
Collapse
|
27
|
Hock R, Wilde F, Scheer U, Bustin M. Dynamic relocation of chromosomal protein HMG-17 in the nucleus is dependent on transcriptional activity. EMBO J 1998; 17:6992-7001. [PMID: 9843505 PMCID: PMC1171047 DOI: 10.1093/emboj/17.23.6992] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chromosomal proteins HMG-14/-17 are nucleosomal binding proteins, which alter the structure of the chromatin fiber and enhance transcription, but only from chromatin templates. Here we show that in tissue culture cells, HMG-17 protein colocalizes with sites of active transcription. Incubation of permeabilized cells with a peptide corresponding to the nucleosomal binding domains of HMG-14/-17 specifically arrested polymerase II-dependent transcription. In these cells the peptide displaces HMG-17 from chromatin and reduces the cellular content of the protein. These results suggest that the presence of HMG-14/-17 in chromatin is required for efficient polymerase II transcription. In non-permeabilized, actively transcribing cells, the protein is dispersed in a punctate pattern, throughout the nucleus. Upon transcriptional inhibition by alpha-amanitin or actinomycin D, the protein gradually redistributes until it localizes fully to interchromatin granule clusters, together with the splicing factor SC35. The results suggest that the association of HMG-17 with chromatin is dynamic rather than static, and that in the absence of transcription, HMG-17 is released from chromatin and accumulates in interchromatin granule clusters. Thus, the intranuclear distribution of chromosomal proteins which act as architectural elements of chromatin structure may be dynamic and functionally related to the transcriptional activity of the cell.
Collapse
Affiliation(s)
- R Hock
- Department of Cell and Developmental Biology, Biocenter, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany.
| | | | | | | |
Collapse
|
28
|
Misteli T, Cáceres JF, Clement JQ, Krainer AR, Wilkinson MF, Spector DL. Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo. J Cell Biol 1998; 143:297-307. [PMID: 9786943 PMCID: PMC2132840 DOI: 10.1083/jcb.143.2.297] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/1998] [Revised: 09/04/1998] [Indexed: 11/26/2022] Open
Abstract
Expression of most RNA polymerase II transcripts requires the coordinated execution of transcription, splicing, and 3' processing. We have previously shown that upon transcriptional activation of a gene in vivo, pre-mRNA splicing factors are recruited from nuclear speckles, in which they are concentrated, to sites of transcription (Misteli, T., J.F. Cáceres, and D.L. Spector. 1997. Nature. 387:523-527). This recruitment process appears to spatially coordinate transcription and pre-mRNA splicing within the cell nucleus. Here we have investigated the molecular basis for recruitment by analyzing the recruitment properties of mutant splicing factors. We show that multiple protein domains are required for efficient recruitment of SR proteins from nuclear speckles to nascent RNA. The two types of modular domains found in the splicing factor SF2/ ASF exert distinct functions in this process. In living cells, the RS domain functions in the dissociation of the protein from speckles, and phosphorylation of serine residues in the RS domain is a prerequisite for this event. The RNA binding domains play a role in the association of splicing factors with the target RNA. These observations identify a novel in vivo role for the RS domain of SR proteins and suggest a model in which protein phosphorylation is instrumental for the recruitment of these proteins to active sites of transcription in vivo.
Collapse
Affiliation(s)
- T Misteli
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
29
|
Visser AE, Eils R, Jauch A, Little G, Bakker PJ, Cremer T, Aten JA. Spatial distributions of early and late replicating chromatin in interphase chromosome territories. Exp Cell Res 1998; 243:398-407. [PMID: 9743599 DOI: 10.1006/excr.1998.4144] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The surface area of chromosome territories has been suggested as a preferred site for genes, specific RNAs, and accumulations of splicing factors. Here, we investigated the localization of sites of replication within individual chromosome territories. In vivo replication labeling with thymidine analogues IdUrd and CldUrd was combined with chromosome painting by fluorescent in situ hybridization on three-dimensionally preserved human fibroblast nuclei. Spatial distributions of replication labels over the chromosome territory, as well as the territory volume and shape, were determined by 3D image analysis. During late S-phase a previously observed shape difference between the active and inactive X-chromosome in female cells was maintained, while the volumes of the two territories did not differ significantly. Domains containing early or mid to late replicating chromatin were distributed throughout territories of chromome 8 and the active X. In the inactive X-chromosome early replicating chromatin was observed preferentially near the territory surface. Most important, we established that the process of replication takes place in foci throughout the entire chromosome territory volume, in early as well as in late S-phase. This demonstrates that activity of macromolecular enzyme complexes takes place throughout chromosome territories and is not confined to the territory surface as suggested previously.
Collapse
Affiliation(s)
- A E Visser
- Department of Cell Biology, Academic Medical Center, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
Tomasi V, Spisni E, Griffoni C, Santi S. Nuclear targeting of antisense oligonucleotides: modification of PRE-mRNA splicing or inhibition of polyadenylation? NUCLEOSIDES & NUCLEOTIDES 1998:2073-80. [PMID: 12683389 DOI: 10.1080/07328319808004748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- V Tomasi
- Department of Experimental Biology, University of Bologna, Italy
| | | | | | | |
Collapse
|
31
|
Abstract
It is becoming clear that the cell nucleus is not only organized in domains but that these domains are also organized relative to each other and to the genome. Specific nuclear domains, enriched in different proteins and RNAs, are often found next to each other and next to specific gene loci. Several lines of investigation suggest that nuclear domains are involved in facilitating or regulating gene expression. The emerging view is that the spatial relationship between different domains and genes on different chromosomes, as found in the nucleolus, is a common organizational principle in the nucleus, to allow an efficient and controlled synthesis and processing of a range of gene transcripts.
Collapse
Affiliation(s)
- W Schul
- E.C. Slater Instituut, University of Amsterdam, BioCentrum Amsterdam, The Netherlands
| | | | | |
Collapse
|
32
|
Abstract
Recent cell biological observations have provided new insights into how transcription, pre-mRNA splicing and 3' processing are organized and coordinated with each other in the mammalian cell nucleus. Morphological observations are supported by biochemical evidence that suggests physical interactions between components of the transcription and RNA processing machineries. A working model of the cellular organization of gene expression is now emerging.
Collapse
Affiliation(s)
- T Misteli
- Cold Spring Harbor Laboratory, New York 11724, USA.
| | | |
Collapse
|
33
|
Bridger JM, Herrmann H, Münkel C, Lichter P. Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin. J Cell Sci 1998; 111 ( Pt 9):1241-53. [PMID: 9547300 DOI: 10.1242/jcs.111.9.1241] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of structural and functional subnuclear compartments have been described, including regions exclusive of chromosomes previously hypothesized to form a reactive nuclear space. We have now explored this accessible nuclear space and interchromosomal nucleoplasmic domains experimentally using Xenopus vimentin engineered to contain a nuclear localization signal (NLS-vimentin). In stably transfected human cells incubated at 37 degrees C, the NLS-vimentin formed a restricted number of intranuclear speckles. At 28 degrees C, the optimal temperature for assembly of the amphibian protein, NLS-vimentin progressively extended with time out from the speckles into strictly orientated intranuclear filamentous arrays. This enabled us to observe the development of a system of interconnecting channel-like areas. Quantitative analysis based on 3-D imaging microscopy revealed that these arrays were localized almost exclusively outside of chromosome territories. During mitosis the filaments disassembled and dispersed throughout the cytoplasm, while in anaphase-telophase the vimentin was recruited back into the nucleus and reassembled into filaments at the chromosome surfaces, in distributions virtually identical to those observed in the previous interphase. The filaments also colocalized with specific nuclear RNAs, coiled bodies and PML bodies, all situated outside of chromosome territories, thereby interlinking these structures. This strongly implies that these nuclear entities coexist in the same interconnected nuclear compartment. The assembling NLS-vimentin is restricted to and can be used to delineate, at least in part, the formerly proposed reticular interchromosomal domain compartment (ICD). The properties of NLS-vimentin make it an excellent tool for performing structural and functional studies on this compartment.
Collapse
Affiliation(s)
- J M Bridger
- Organization of Complex Genomes, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
34
|
Jolly C, Mongelard F, Robert-Nicoud M, Vourc'h C. Optimization of nuclear transcript detection by FISH and combination with fluorescence immunocytochemical detection of transcription factors. J Histochem Cytochem 1997; 45:1585-92. [PMID: 9389761 DOI: 10.1177/002215549704501201] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Detection of specific nuclear transcripts by fluorescence in situ hybridization (FISH) has constituted a major breakthrough in the study of the organization of transcription in the cell nucleus. Using the model of heat shock genes, we present an optimized procedure for nuclear transcripts that provides high efficiency for RNA detection and good preservation of cell morphology and nuclear texture. Using this procedure, we designed an original high-efficiency methodology combining FISH and fluorescence immunocytochemistry (FICC), which is used here for the simultaneous detection of heat-shock protein (hsp) nuclear transcripts and the specific heat-shock transcription factor 1 (HSF1). We show that the nuclear accumulation sites of HSF1 in heat-shocked cells do not correspond to the sites of transcription of the hsp70 gene.
Collapse
Affiliation(s)
- C Jolly
- DyOGen, INSERM U309, Institut Albert Bonniot, La Tronche, France
| | | | | | | |
Collapse
|