1
|
aPKCi triggers basal extrusion of luminal mammary epithelial cells by tuning contractility and vinculin localization at cell junctions. Proc Natl Acad Sci U S A 2019; 116:24108-24114. [PMID: 31699818 PMCID: PMC6883778 DOI: 10.1073/pnas.1906779116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study shows that an oncogenic mammary epithelial cell surrounded by normal cells can extrude basally in vivo and invade surrounding tissues without formation of a primary tumor. Here, we show that overexpression of the key polarity protein atypical protein kinase C ι (aPKCi) is sufficient for triggering basally oriented epithelial cell extrusion and early cell invasion into the mammary gland stroma. Moreover, we highlight the importance of the difference between the mechanical properties of aPKCi-overexpressing cells and those of the normal surrounding cells associated with the decrease of vinculin at the cell junction, which triggers cell segregation, the first step toward promoting and controlling the direction of cell extrusion. Metastasis is the main cause of cancer-related deaths. How a single oncogenic cell evolves within highly organized epithelium is still unknown. Here, we found that the overexpression of the protein kinase atypical protein kinase C ι (aPKCi), an oncogene, triggers basally oriented epithelial cell extrusion in vivo as a potential mechanism for early breast tumor cell invasion. We found that cell segregation is the first step required for basal extrusion of luminal cells and identify aPKCi and vinculin as regulators of cell segregation. We propose that asymmetric vinculin levels at the junction between normal and aPKCi+ cells trigger an increase in tension at these cell junctions. Moreover, we show that aPKCi+ cells acquire promigratory features, including increased vinculin levels and vinculin dynamics at the cell–substratum contacts. Overall, this study shows that a balance between cell contractility and cell–cell adhesion is crucial for promoting basally oriented cell extrusion, a mechanism for early breast cancer cell invasion.
Collapse
|
2
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Garakani K, Shams H, Mofrad MRK. Mechanosensitive Conformation of Vinculin Regulates Its Binding to MAPK1. Biophys J 2017; 112:1885-1893. [PMID: 28494959 DOI: 10.1016/j.bpj.2017.03.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 11/17/2022] Open
Abstract
Extracellular matrix stiffness sensing by living cells is known to play a major role in a variety of cell mechanobiological processes, such as migration and differentiation. Various membrane and cytoplasmic proteins are involved in transmitting and transducing environmental signals to biochemical cascades. Protein kinases play a key role in regulating the activity of focal adhesion proteins. Recently, an interaction between mitogen-activated protein kinase (MAPK1) and vinculin was experimentally shown to mediate this process. Here, we adopt a molecular modeling approach to further investigate this interaction and its possible regulatory effects. Using a combination of data-driven flexible docking and molecular dynamics simulations guided by previous experimental studies, we predict the structure of the MAPK1-vinculin complex. Furthermore, by comparing the association of MAPK1 with open versus closed vinculin, we demonstrate that MAPK1 exhibits preferential binding toward the open conformation of vinculin, suggesting that the MAPK1-vinculin interaction is conformationally selective. Finally, we demonstrate that changes in the size of the D3-D4 cleft provide a structural basis for the conformational selectivity of the interaction.
Collapse
Affiliation(s)
- Kiavash Garakani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Hengameh Shams
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California.
| |
Collapse
|
4
|
Matsuda S, Kawamoto K, Miyamoto K, Tsuji A, Yuasa K. PCTK3/CDK18 regulates cell migration and adhesion by negatively modulating FAK activity. Sci Rep 2017; 7:45545. [PMID: 28361970 PMCID: PMC5374530 DOI: 10.1038/srep45545] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/01/2017] [Indexed: 12/19/2022] Open
Abstract
PCTAIRE kinase 3 (PCTK3) is a member of the cyclin dependent kinase family, but its physiological function remains unknown. We previously reported that PCTK3-knockdown HEK293T cells showed actin accumulation at the leading edge, suggesting that PCTK3 is involved in the regulation of actin reorganization. In this study, we investigated the physiological function and downstream signal transduction molecules of PCTK3. PCTK3 knockdown in HEK293T cells increased cell motility and RhoA/Rho-associated kinase activity as compared with control cells. We also found that phosphorylation at residue Tyr-397 in focal adhesion kinase (FAK) was increased in PCTK3-knockdown cells. FAK phosphorylation at Tyr-397 was increased in response to fibronectin stimulation, whereas its phosphorylation was suppressed by PCTK3. In addition, excessive expression of PCTK3 led to the formation of filopodia during the early stages of cell adhesion in HeLa cells. These results indicate that PCTK3 controls actin cytoskeleton dynamics by negatively regulating the FAK/Rho signaling pathway.
Collapse
Affiliation(s)
- Shinya Matsuda
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima 770-8506, Japan
| | - Kohei Kawamoto
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima 770-8506, Japan
| | - Kenji Miyamoto
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima 770-8506, Japan
| | - Akihiko Tsuji
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima 770-8506, Japan.,Department of Bioscience and Bioindustry, Tokushima University Graduate School, Minamijosanjima, Tokushima 770-8513, Japan
| | - Keizo Yuasa
- Department of Biological Science and Technology, Tokushima University Graduate School, Minamijosanjima, Tokushima 770-8506, Japan.,Department of Bioscience and Bioindustry, Tokushima University Graduate School, Minamijosanjima, Tokushima 770-8513, Japan
| |
Collapse
|
5
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
6
|
Chinthalapudi K, Patil DN, Rangarajan ES, Rader C, Izard T. Lipid-directed vinculin dimerization. Biochemistry 2015; 54:2758-68. [PMID: 25880222 DOI: 10.1021/acs.biochem.5b00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vinculin localizes to cellular adhesions where it regulates motility, migration, development, wound healing, and response to force. Importantly, vinculin loss results in cancer phenotypes, cardiovascular disease, and embryonic lethality. At the plasma cell membrane, the most abundant phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2), binds the vinculin tail domain, Vt, and triggers homotypic and heterotypic interactions that amplify binding of vinculin to the actin network. Binding of PIP2 to Vt is necessary for maintaining optimal focal adhesions, for organizing stress fibers, for cell migration and spreading, and for the control of vinculin dynamics and turnover of focal adhesions. While the recently determined Vt/PIP2 crystal structure revealed the conformational changes occurring upon lipid binding and oligomerization, characterization of PIP2-induced vinculin oligomerization has been challenging in the adhesion biology field. Here, via a series of novel biochemical assays not performed in previous studies that relied on chemical cross-linking, we characterize the PIP2-induced vinculin oligomerization. Our results show that Vt/PIP2 forms a tight dimer with Vt or with the muscle-specific vinculin isoform, metavinculin, at sites of adhesion at the cell membrane. Insight into how PIP2 regulates clustering and into mechanisms that regulate cell adhesion allows the development for a more definite sensor for PIP2, and our developed techniques can be applied generally and thus open the door for the characterization of many other protein/PIP2 complexes under physiological conditions.
Collapse
Affiliation(s)
- Krishna Chinthalapudi
- †Cell Adhesion Laboratory, ‡Department of Cancer Biology, and §Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Dipak N Patil
- †Cell Adhesion Laboratory, ‡Department of Cancer Biology, and §Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Erumbi S Rangarajan
- †Cell Adhesion Laboratory, ‡Department of Cancer Biology, and §Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Christoph Rader
- †Cell Adhesion Laboratory, ‡Department of Cancer Biology, and §Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Tina Izard
- †Cell Adhesion Laboratory, ‡Department of Cancer Biology, and §Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
7
|
George MD, Wine RN, Lackford B, Kissling GE, Akiyama SK, Olden K, Roberts JD. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion. Biochem Cell Biol 2013; 91:404-18. [PMID: 24219282 PMCID: PMC3935246 DOI: 10.1139/bcb-2013-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to the spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV, as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia, whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading, and that this association can be regulated by factors in the tumor microenvironment.
Collapse
Affiliation(s)
- Margaret D George
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Kim JH, Mukherjee A, Madhavan SM, Konieczkowski M, Sedor JR. WT1-interacting protein (Wtip) regulates podocyte phenotype by cell-cell and cell-matrix contact reorganization. Am J Physiol Renal Physiol 2011; 302:F103-15. [PMID: 21900451 DOI: 10.1152/ajprenal.00419.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Podocytes respond to environmental cues by remodeling their slit diaphragms and cell-matrix adhesive junctions. Wt1-interacting protein (Wtip), an Ajuba family LIM domain scaffold protein expressed in the podocyte, coordinates cell adhesion changes and transcriptional responses to regulate podocyte phenotypic plasticity. We evaluated effects of Wtip on podocyte cell-cell and cell-matrix contact organization using gain-of- and loss-of-function methods. Endogenous Wtip targeted to focal adhesions in adherent but isolated podocytes and then shifted to adherens junctions after cells made stable, homotypic contacts. Podocytes with Wtip knockdown (shWtip) adhered but failed to spread normally. Noncontacted shWtip podocytes did not assemble actin stress fibers, and their focal adhesions failed to mature. As shWtip podocytes established cell-cell contacts, stable adherens junctions failed to form and F-actin structures were disordered. In shWtip cells, cadherin and β-catenin clustered in irregularly distributed spots that failed to laterally expand. Cell surface biotinylation showed diminished plasma membrane cadherin, β-catenin, and α-catenin in shWtip podocytes, although protein expression was similar in shWtip and control cells. Since normal actin dynamics are required for organization of adherens junctions and focal adhesions, we determined whether Wtip regulates F-actin assembly. Undifferentiated podocytes did not elaborate F-actin stress fibers, but when induced to overexpress WTIP, formed abundant stress fibers, a process blocked by the RhoA inhibitor C3 toxin and a RhoA kinase inhibitor. WTIP directly interacted with Rho guanine nucleotide exchange factor (GEF) 12 (Arhgef12), a RhoA-specific GEF enriched in the glomerulus. In conclusion, stable assembly of podocyte adherens junctions and cell-matrix contacts requires Wtip, a process that may be mediated by spatiotemporal regulation of RhoA activity through appropriate targeting of Arhgef12.
Collapse
Affiliation(s)
- Jane H Kim
- Departments of 1Physiology and Biophysics, MetroHealth System Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
9
|
The Rho target PRK2 regulates apical junction formation in human bronchial epithelial cells. Mol Cell Biol 2010; 31:81-91. [PMID: 20974804 DOI: 10.1128/mcb.01001-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rho GTPases regulate multiple signaling pathways to control a number of cellular processes during epithelial morphogenesis. To investigate the downstream pathways through which Rho regulates epithelial apical junction formation, we screened a small interfering RNA (siRNA) library targeting 28 known Rho target proteins in 16HBE human bronchial epithelial cells. This led to the identification of the serine-threonine kinase PRK2 (protein kinase C-related kinase 2, also called PKN2). Depletion of PRK2 does not block the initial formation of primordial junctions at nascent cell-cell contacts but does prevent their maturation into apical junctions. PRK2 is recruited to primordial junctions, and this localization depends on its C2-like domain. Rho binding is essential for PRK2 function and also facilitates PRK2 recruitment to junctions. Kinase-dead PRK2 acts as a dominant-negative mutant and prevents apical junction formation. We conclude that PRK2 is recruited to nascent cell-cell contacts through its C2-like and Rho-binding domains and promotes junctional maturation through a kinase-dependent pathway.
Collapse
|
10
|
Kang MY, Zhang Y, Matkovich SJ, Diwan A, Chishti AH, Dorn GW. Receptor-independent cardiac protein kinase Calpha activation by calpain-mediated truncation of regulatory domains. Circ Res 2010; 107:903-12. [PMID: 20689063 DOI: 10.1161/circresaha.110.220772] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Protein kinase (PK)Cs and calpain cysteine proteases are highly expressed in myocardium. Ischemia produces calcium overload that activates calpains and conventional PKCs. However, calpains can proteolytically process PKCs, and the potential in vivo consequences of this interaction are unknown. OBJECTIVE To determine the biochemical and pathophysiological consequences of calpain-mediated cardiac PKCα proteolysis. METHODS AND RESULTS Isolated mouse hearts subjected to global ischemia/reperfusion demonstrated cleavage of PKCα. Calpain 1 overexpression was not sufficient to produce PKCα cleavage in normal hearts, but ischemia-induced myocardial PKCα cleavage and myocardial injury were greatly increased by cardiac-specific expression of calpain 1. In contrast, calpain 1 gene ablation or inhibition with calpastatin prevented ischemia/reperfusion induced PKCα cleavage; infarct size was decreased and ventricular function enhanced in infarcted calpain 1 knockout hearts. To determine consequences of PKCα fragmentation on myocardial protein phosphorylation, transgenic mice were created conditionally expressing full-length PKCα or its N-terminal and C-terminal calpain 1 cleavage fragments. Two-dimensional mapping of ventricular protein extracts showed a distinct PKCα phosphorylation profile that was exaggerated and distorted in hearts expressing the PKCα C-terminal fragment. MALDI mass spectroscopy revealed hyperphosphorylation of myosin-binding protein C and phosphorylation of atypical substrates by the PKCα C-terminal fragment. Expression of parent PKCα produced a mild cardiomyopathy, whereas myocardial expression of the C-terminal PKCα fragment induced a disproportionately severe, rapidly lethal cardiomyopathy. CONCLUSIONS Proteolytic processing of PKCα by calcium-activated calpain activates pathological cardiac signaling through generation of an unregulated and/or mistargeted kinase. Production of the PKCα C-terminal fragment in ischemic hearts occurs via a receptor-independent mechanism.
Collapse
Affiliation(s)
- Min-Young Kang
- Washington University Center for Pharmacogenomics, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
11
|
Blecharz KG, Drenckhahn D, Förster CY. Glucocorticoids increase VE-cadherin expression and cause cytoskeletal rearrangements in murine brain endothelial cEND cells. J Cereb Blood Flow Metab 2008; 28:1139-49. [PMID: 18231113 DOI: 10.1038/jcbfm.2008.2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies have shown the influence of glucocorticoids on the expression of the tight junction protein occludin in the brain capillary endothelial cell line cEND, contributing to improvement in endothelial barrier functions. In this study, we investigated glucocorticoid effects on the expression of the adherens junction proteins VE- (vascular-endothelial) cadherin, alpha-catenin and beta-catenin as well as that of ZO-1, the plaque protein shared by both adherens and tight junctions on stimulation with dexamethasone. We were able to show a positive influence of dexamethasone administration on VE-cadherin protein levels as well as a rearrangement of VE-cadherin protein to the cytoskeleton after dexamethasone treatment. Investigation of transcriptional activation of the VE-cadherin promoter by dexamethasone, however, did not point to direct glucocorticoid-mediated VE-cadherin gene induction but rather suggested indirect steroid effects leading to increased VE-cadherin protein synthesis. Dexamethasone was further shown to induce cellular differentiation into a cobblestone cellular morphology and reinforcement of adherens junctions concomitant with the increased anchorage of VE-cadherin to the actin cytoskeleton. We thus propose that glucocorticoid effects on VE-cadherin protein synthesis and organization are important for the formation of both adherens and tight junction, and for improved barrier properties in microvascular brain endothelial cells.
Collapse
Affiliation(s)
- Kinga G Blecharz
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
12
|
Ramírez-Rodríguez G, Ortiz-López L, Benítez-King G. Melatonin increases stress fibers and focal adhesions in MDCK cells: participation of Rho-associated kinase and protein kinase C. J Pineal Res 2007; 42:180-90. [PMID: 17286751 DOI: 10.1111/j.1600-079x.2006.00404.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Melatonin cyclically modifies water transport measured as dome formation in MDCK cells. An optimal increase in water transport, concomitant with elevated stress fiber (SF) formation, occurs at nocturnal plasma melatonin concentrations (1 nm) after 6 hr of incubation. Blockage in melatonin-elicited dome formation was observed with protein kinase C (PKC) inhibitors. Despite, this information on the precise mechanism by which melatonin increases SF formation involved in water transport is not known. Focal adhesion contacts (FAC) are cytoskeletal structures, which participate in MDCK membrane polarization. SF organization and vinculin phosphorylation are involved in FAC assembly and both processes are mediated by PKC, an enzyme stimulated by melatonin; in these processes also involved is Rho-associated kinase (ROCK). Thus, we studied FAC formation and the ROCK/PKC pathway as the mechanism by which melatonin increases SF formation and water transport. The results showed that 1 nM melatonin and the PKC agonist phorbol-12-miristate-13-acetate increased FAC. The PKC inhibitor GF109203x, and the ROCK inhibitor Y27632, blocked increased FAC caused by melatonin. ROCK and PKC activities, vinculin phosphorylation and FAC formation were increased with melatonin. The PKC inhibitor, GF109203x, abolished both melatonin stimulated FAC in whole cells and ROCK activity, indicating that ROCK is a downstream kinase in the melatonin-stimulated PKC pathway in MDCK cultured cells that causes an increase in SF and FAC formation. Data also document that melatonin modulates water transport through modifications of the cytoskeletal structure.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rodríguez
- Departamento de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | | | | |
Collapse
|
13
|
Hong YH, Hishikawa D, Miyahara H, Nishimura Y, Tsuzuki H, Gotoh C, Iga T, Suzuki Y, Song SH, Choi KC, Lee HG, Sasaki S, Roh SG. Up-regulation of the claudin-6 gene in adipogenesis. Biosci Biotechnol Biochem 2006; 69:2117-21. [PMID: 16306693 DOI: 10.1271/bbb.69.2117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To investigate the role of claudin-6 in adipogenesis, claudin-6 mRNA was examined in adipose tissues and adipocyte differentiation. Claudin-6 mRNA was found to be differentially expressed in four different adipose tissues, and up-regulated in each fat depot of mice fed a high-fat diet as compared to a normal-fat diet. Levels of claudin-6 transcripts were increased during differentiation of 3T3-L1 cells in vitro. Moreover, small interfering RNA (siRNA)-mediated reduction of claudin-6 mRNA inhibited differentiation of 3T3-L1 cells. These results suggest that claudin-6 is another important regulator in adipogenesis and fat deposition.
Collapse
Affiliation(s)
- Yeon-Hee Hong
- Department of Food Production Science, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Larsson C. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 2005; 18:276-84. [PMID: 16109477 DOI: 10.1016/j.cellsig.2005.07.010] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 01/01/2023]
Abstract
Protein kinase C (PKC) isoforms are central components in intracellular networks that regulate a vast number of cellular processes. It has long been known that in most cell types, one or more PKC isoforms influences the morphology of the F-actin cytoskeleton and thereby regulates processes that are affected by remodelling of the microfilaments. These include cellular migration and neurite outgrowth. This review focuses on the role of classical and novel PKC isoforms in migration and neurite outgrowth, and highlights some regulatory steps that may be of importance in the regulation by PKC of migration and neurite outgrowth. Many studies indicate that integrins are crucial mediators both upstream and downstream of PKC in inducing morphological changes. Furthermore, a number of PKC substrates, directly associated with the microfilaments, such as MARCKS, GAP43, adducin, fascin, ERM proteins and others have been identified. Their potential role in PKC effects on the cytoskeleton is discussed.
Collapse
Affiliation(s)
- Christer Larsson
- Lund University, Dept of Laboratory Medicine, Molecular Medicine, Entrance 78, 3rd floor, UMAS SE-205 02, Malmö University Hospital, Malmö, Sweden.
| |
Collapse
|
15
|
Nava P, López S, Arias CF, Islas S, González-Mariscal L. The rotavirus surface protein VP8 modulates the gate and fence function of tight junctions in epithelial cells. J Cell Sci 2004; 117:5509-19. [PMID: 15494377 DOI: 10.1242/jcs.01425] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rotaviruses constitute a major cause of diarrhea in young mammals. Rotaviruses utilize different integrins as cell receptors, therefore upon their arrival to the intestinal lumen their integrin receptors will be hidden below the tight junction (TJ), on the basolateral membrane. Here we have studied whether the rotavirus outer capsid proteins are capable of opening the paracellular space sealed by the TJ. From the outermost layer of proteins of the rotavirus, 60 spikes formed of protein VP4 are projected. VP4 is essential for virus-cell interactions and is cleaved by trypsin into peptides VP5 and VP8. Here we found that when these peptides are added to confluent epithelial monolayers (Madin-Darby canine kidney cells), VP8 is capable of diminishing in a dose dependent and reversible manner the transepithelial electrical resistance. VP5 exerted no effect. VP8 can also inhibit the development of newly formed TJs in a Ca-switch assay. Treatment with VP8 augments the paracellular passage of non-ionic tracers, allows the diffusion of a fluorescent lipid probe and the apical surface protein GP135, from the luminal to the lateral membrane, and triggers the movement of the basolateral proteins Na+-K+-ATPase, alphanubeta3 integrin and beta1 integrin subunit, to the apical surface. VP8 generates a freeze-fracture pattern of TJs characterized by the appearance of loose end filaments, that correlates with an altered distribution of several TJ proteins. VP8 given orally to diabetic rats allows the enteral administration of insulin, thus indicating that it can be employed to modulate epithelial permeability.
Collapse
Affiliation(s)
- Porfirio Nava
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Mexico DF 07000, Mexico
| | | | | | | | | |
Collapse
|
16
|
Cereijido M, Contreras RG, Shoshani L. Cell Adhesion, Polarity, and Epithelia in the Dawn of Metazoans. Physiol Rev 2004; 84:1229-62. [PMID: 15383651 DOI: 10.1152/physrev.00001.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transporting epithelia posed formidable conundrums right from the moment that Du Bois Raymond discovered their asymmetric behavior, a century and a half ago. It took a century and a half to start unraveling the mechanisms of occluding junctions and polarity, but we now face another puzzle: lest its cells died in minutes, the first high metazoa (i.e., higher than a sponge) needed a transporting epithelium, but a transporting epithelium is an incredibly improbable combination of occluding junctions and cell polarity. How could these coincide in the same individual organism and within minutes? We review occluding junctions (tight and septate) as well as the polarized distribution of Na+-K+-ATPase both at the molecular and the cell level. Junctions and polarity depend on hosts of molecular species and cellular processes, which are briefly reviewed whenever they are suspected to have played a role in the dawn of epithelia and metazoan. We come to the conclusion that most of the molecules needed were already present in early protozoan and discuss a few plausible alternatives to solve the riddle described above.
Collapse
Affiliation(s)
- M Cereijido
- Center For Research and Advanced Studies, Dept. of Physiology, Biophysics, and Neurosciences, Avenida Instituto Politécnico Nacional 2508, Código Postal 07360, México D.F., Mexico.
| | | | | |
Collapse
|
17
|
Siu MKY, Cheng CY. Extracellular matrix: recent advances on its role in junction dynamics in the seminiferous epithelium during spermatogenesis. Biol Reprod 2004; 71:375-91. [PMID: 15115723 DOI: 10.1095/biolreprod.104.028225] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Spermatogenesis takes place in the seminiferous epithelium of the mammalian testis in which one type A1 spermatogonium (diploid, 2n) gives rise to 256 spermatids (haploid, 1n). To accomplish this, developing germ cells, such as preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) entering into the adluminal compartment for further development into round, elongating, and elongate spermatids. Recent studies have shown that the basement membrane in the testis (a modified form of extracellular matrix, ECM) is important to the event of germ cell movement across the BTB because proteins in the ECM were shown to regulate BTB dynamics via the interactions between collagens, proteases, and protease inhibitors, possibly under the regulation of cytokines. While these findings are intriguing, they are not entirely unexpected. For one, the basement membrane in the testis is intimately associated with the BTB, which represents the basolateral region of Sertoli cells. Also, Sertoli cell tight junctions (TJs) that constitute the BTB are present side-by-side with cell-cell actin-based adherens junctions (AJ, such as basal ectoplasmic specialization [ES]) and intermediate filament-based desmosome-like junctions. As such, the relative morphological layout between TJs, AJs, and desmosome-like junctions in the seminiferous epithelium is in sharp contrast to other epithelia where TJs are located at the apical portion of an epithelium or endothelium, furthest away from ECM, to be followed by AJs and desmosomes, which in turn constitute the junctional complex. For another, anchoring junctions between a cell epithelium and ECM found in multiple tissues, also known as focal contacts (or focal adhesion complex, FAC, an actin-based cell-matrix anchoring junction type), are the most efficient junction type that permits rapid junction restructuring to accommodate cell movement. It is therefore physiologically plausible, and perhaps essential, that the testis is using some components of the focal contacts to regulate rapid restructuring of AJs between Sertoli and germ cells when germ cells traverse the seminiferous epithelium. Indeed, recent findings have shown that the apical ES, a testis-specific AJ type in the seminiferous epithelium, is equipped with proteins of FAC to regulate its restructuring. In this review, we provide a timely update on this exciting yet rapidly developing field regarding how the homeostasis of basement membrane in the tunica propria regulates BTB dynamics and spermatogenesis in the testis, as well as a critical review on the molecular architecture and the regulation of ES in the seminiferous epithelium.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
18
|
Contreras RG, Flores-Maldonado C, Lázaro A, Shoshani L, Flores-Benitez D, Larré I, Cereijido M. Ouabain Binding to Na+,K+-ATPase Relaxes Cell Attachment and Sends a SpecificSignal (NACos) to the Nucleus. J Membr Biol 2004; 198:147-58. [PMID: 15216416 DOI: 10.1007/s00232-004-0670-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2003] [Revised: 03/01/2004] [Indexed: 10/26/2022]
Abstract
Abstract. In previous work we described a "P-->A mechanism" that transduces occupancy of the pump ( P) by ouabain into changes in phosphorylation, stimulation of mitogen-activated protein kinase (MAPK), and endocytosis of cell-cell- and cell-substrate-attaching molecules ( A), thereby causing a release of the cell from the monolayer. In the present work we try to understand the mechanism of this effect; whether, in order to trigger the P-->A mechanism, ouabain should block the pumping activity of Na(+),K(+)-ATPase as pump, or whether it would suffice that the drug occupies this enzyme as a receptor. We assay a series of drugs known to act on the pump, such as ouabain, digoxin, digitoxin, palytoxin, oligomycin, strophanthidin, neothyoside-A, proscillaridin-A, etc. We gauge their ability to block the pump by measuring the K(+) content in the cells, and their ability to detach the cells from the monolayer by determining the amount of protein remaining in the culturing well. None of the drugs tested was able to cause detachment without stopping the pump. Ouabain also enhances phosphorylation, yet pump inhibition and signal transduction do not seem to be intimately associated in a causal chain, but to occur simultaneously. To investigate the response of the site of cell attachment, we analyze the position of beta-catenin by fluorescence confocal microscopy, and find that this adherent junction-associated molecule is sent to the nucleus, where it is known to act as a transcriptional cofactor.
Collapse
Affiliation(s)
- R G Contreras
- Department of Physiology, Biophysics and Neurosciences, Av., Center for Research & Advanced Studies, Instituto Politécnico Nacional 2508, 07300, México, D.F., Mexico.
| | | | | | | | | | | | | |
Collapse
|
19
|
Vallenius T, Scharm B, Vesikansa A, Luukko K, Schäfer R, Mäkelä TP. The PDZ-LIM protein RIL modulates actin stress fiber turnover and enhances the association of alpha-actinin with F-actin. Exp Cell Res 2004; 293:117-28. [PMID: 14729062 DOI: 10.1016/j.yexcr.2003.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
ALP, CLP-36 and RIL form the ALP subfamily of PDZ-LIM proteins. ALP has been implicated in sarcomere function in muscle cells in association with alpha-actinin. The closely related CLP-36 is predominantly expressed in nonmuscle cells, where it localizes to actin stress fibers also in association with alpha-actinin. Here we have studied the expression and functions of RIL originally identified as a gene downregulated in H-ras-transformed cells. RIL was mostly expressed in nonmuscle epithelial cells with a pattern distinct from that of CLP-36. RIL protein was found to localize to actin stress fibers in nonmuscle cells similarly to CLP-36. However, RIL expression led to partially abnormal actin filaments showing thick irregular stress fibers not seen with CLP-36. Furthermore, live cell imaging demonstrated altered stress fiber dynamics with rapid formation of new fibers and frequent collapse of thick irregular fibers in EGFP-RIL-expressing cells. These effects may be mediated through the association of RIL with alpha-actinin, as RIL was found to associate with alpha-actinin via its PDZ domain, and RIL enhanced the ability of alpha-actinin to cosediment with actin filaments. These results implicate the RIL PDZ-LIM protein as a regulator of actin stress fiber turnover.
Collapse
Affiliation(s)
- Tea Vallenius
- Molecular Cancer Biology Program, Institute of Biomedicine and Helsinki University Central Hospital, University of Helsinki, Biomedicum Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
20
|
Betanzos A, Huerta M, Lopez-Bayghen E, Azuara E, Amerena J, González-Mariscal L. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp Cell Res 2004; 292:51-66. [PMID: 14720506 DOI: 10.1016/j.yexcr.2003.08.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ZO-2 is a membrane-associated guanylate kinase (MAGUK) protein present at the tight junction (TJ) of epithelial cells. While confluent monolayers have ZO-2 at their cellular borders, sparse cultures conspicuously show ZO-2 at the nuclei. To study the role of nuclear ZO-2, we tested by pull-down assays and gel shift analysis the interaction between ZO-2 GST fusion proteins and different transcription factors. We identified the existence of a specific interaction of ZO-2 with Fos, Jun and C/EBP (CCAAT/enhancer binding protein). To analyze if this association is present "in vivo", we performed immunoprecipitation and immunolocalization experiments, which revealed an interaction of ZO-2 with Jun, Fos and C/EBP not only at the nucleus but also at the TJ region. To test if the association of ZO-2 with AP-1 (activator protein-1) modulates gene transcription, we performed reporter gene assays employing chloramphenicol acetyltransferase (CAT) constructs with promoters under the control of AP-1 sites. We observed that the co-transfected ZO-2 down-regulates CAT expression in a dose-dependent manner. Since ZO-2 is a multidomain protein, we proceeded to determine which region of the molecule is responsible for the modulation of gene expression, and observed that both the amino and the carboxyl domains are capable of inhibiting gene transcription.
Collapse
Affiliation(s)
- Abigail Betanzos
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), México DF, 07000, Mexico
| | | | | | | | | | | |
Collapse
|
21
|
Quittau-Prévostel C, Delaunay N, Collazos A, Vallentin A, Joubert D. Targeting of PKCα and ϵ in the pituitary: a highly regulated mechanism involving a GD(E)E motif of the V3 region. J Cell Sci 2004; 117:63-72. [PMID: 14627629 DOI: 10.1242/jcs.00832] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C (PKC) has been implicated in the control of intercellular adhesion. Our previous observation demonstrating that activated PKC alpha (PKCα is selectively targeted to cell-cell contacts of pituitary GH3B6 cells supports these findings. The relevance of this observation is further strengthened by the present data establishing that this targeting selectivity also occurs in the pituitary gland. Moreover, a new mechanism involved in the control of PKC targeting is unravelled. We demonstrate that a three amino acid motif located in the V3 region of α and epsilon (ϵ (GDE/GEE respectively) is essential for the targeting selectivity of these isoforms because: (1) this motif is absent in delta (δ) and mutated in the natural D294GPKCα mutant, which do not exhibit such selectivity, and (2) a GEE to GGE mutation abolishes the selectivity of targeting to cell-cell contacts for ϵ, as it does for the D294G PKCα mutant. Thus the GD(E)E motif may be part of a consensus sequence able to interact with shuttle and/or anchoring proteins. GFP-tagged deletion mutants also reveal a new function for the pseudosubstrate in the cytoplasmic sequestration. Together, these data underline the complexity of PKC subcellular targeting in the pituitary, determined by the cell-cell contact, at least for α and ϵ
Collapse
Affiliation(s)
- Corinne Quittau-Prévostel
- INSERM U469, Molecular and Cellular Endocrinology: Signaling and Pathology, 141 rue de la Cardonille, 34094 Montpellier CEDEX 05, France
| | | | | | | | | |
Collapse
|
22
|
Li C, Wernig F, Leitges M, Hu Y, Xu Q. Mechanical stress-activated PKCdelta regulates smooth muscle cell migration. FASEB J 2003; 17:2106-8. [PMID: 12958154 DOI: 10.1096/fj.03-0150fje] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular smooth muscle cells (SMCs) are exposed to altered mechanical stress that may contribute to SMC migration in the development of atherosclerosis. Signal transduction pathways in SMCs activated by mechanical stress that instigate cell migration are undefined. Herein, we provide evidence that mechanical stress enhances SMC migration, which is mediated, at least in part, by protein kinase C (PKC)delta. When rat SMCs cultivated on a flexible membrane were subjected to cyclic strain stress (60 cycles/min, 5, 15, or 20% elongation), PKCdelta was translocated to the Triton-insoluble fraction, whereas PKCalpha was translocated to the membrane, which was confirmed by PKC kinase assays. Immunofluorescence and actin staining revealed a cytoskeleton translocation of PKCdelta in SMCs stimulated by cyclic strain. PKCdelta-deficient SMCs cultivated from PKCdelta-/- mice showed an abnormal cytoskeleton structure, which was related to a diminished phosphorylation of paxillin, focal adhesion kinase, and vinculin in response to mechanical stress. Mechanical stress enhanced SMC migration, which was diminished in PKCdelta-/- SMCs. Taken together, our data demonstrated that mechanical stress activates PKCdelta translocation to the cytoskeleton, which is related to decreased SMC migration and indicates that PKCdelta is a key signal transducer between mechanical stress and cell migration.
Collapse
MESH Headings
- Animals
- Cell Movement
- Cells, Cultured
- Cytoskeleton/ultrastructure
- Enzyme Activation
- Mice
- Mice, Knockout
- Models, Biological
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/ultrastructure
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Protein Kinase C-alpha
- Protein Kinase C-delta
- Protein Transport
- Rats
- Stress, Mechanical
Collapse
Affiliation(s)
- Chaohong Li
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
23
|
Xu H, Inouye M, Hines ER, Collins JF, Ghishan FK. Transcriptional regulation of the human NaPi-IIb cotransporter by EGF in Caco-2 cells involves c-myb. Am J Physiol Cell Physiol 2003; 284:C1262-71. [PMID: 12529244 DOI: 10.1152/ajpcell.00456.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type IIb sodium-phosphate (NaP(i)-IIb) cotransporter mediates intestinal phosphate absorption. Previous work in our laboratory has shown that EGF inhibited NaP(i)-IIb cotransporter expression through transcriptional regulation. To understand this regulation, progressively shorter human NaP(i)-IIb promoter constructs were used to define the EGF response region, and gel mobility shift assays (GMSAs) were used to characterize DNA-protein interactions. Promoter analysis determined that the EGF response region was located between -784 and -729 base pair (bp) of the promoter. GMSAs and overexpression studies revealed an interaction between this promoter region and c-myb transcription factor. Inhibition of EGF receptor activation restored promoter function. Further studies suggested that MAPK, PKC, and/or PKA pathways are involved in this regulation. In conclusion, these studies suggest that EGF decreases human NaP(i)-IIb gene expression by modifying the c-myb protein such that it inhibits transcriptional activation. We further conclude that this downregulation of promoter function is mediated by EGF-activated PKC/PKA and MAPK pathways. This is the first study that demonstrates involvement of c-myb in the regulation of intestinal nutrient absorption.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
24
|
Ward PD, Ouyang H, Thakker DR. Role of phospholipase C-beta in the modulation of epithelial tight junction permeability. J Pharmacol Exp Ther 2003; 304:689-98. [PMID: 12538823 DOI: 10.1124/jpet.102.043638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The results presented in this study establish an association between phospholipase C-beta (PLC-beta) and tight junction permeability across Madin-Darby canine kidney (MDCK) cell monolayers, an in vitro model for epithelial tissue. These results further show that PLC-beta modulates tight junction permeability by affecting actin filament organization. Hexadecylphosphocholine (HPC) inhibited PLC-beta and increased tight junction permeability in MDCK cells. Interestingly, the analogs of HPC, a series of alkylphosphocholines containing various lengths of linear alkyl chains, inhibited PLC-beta and increased tight junction permeability with a wide range of potency. The potency of alkylphosphocholines as enhancers of tight junction permeability significantly correlated (p < 0.05) with their potency as PLC-beta inhibitors. U73122, a steroid derivative that is structurally unrelated to alkylphosphocholines, inhibited PLC-beta and increased tight junction permeability with potencies that fit into the correlation observed for the alkylphosphocholine series. U73122 and HPC induced disorganization of actin filaments in MDCK cell monolayers. The potencies to cause disorganization of actin filaments were consistent with the potencies of these agents as inhibitors of PLC-beta and enhancers of tight junction permeability. Furthermore, ATP, an activator of PLC-beta, attenuated U73122-induced increase in tight junction permeability as well as disorganization of actin filaments. These results provide strong evidence that PLC-beta inhibition leads to increased tight junction permeability across MDCK cell monolayers through disorganization of actin filaments.
Collapse
Affiliation(s)
- Peter D Ward
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
25
|
Besson A, Wilson TL, Yong VW. The anchoring protein RACK1 links protein kinase Cepsilon to integrin beta chains. Requirements for adhesion and motility. J Biol Chem 2002; 277:22073-84. [PMID: 11934885 DOI: 10.1074/jbc.m111644200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Integrin affinity is modulated by intracellular signaling cascades, in a process known as "inside-out" signaling, leading to changes in cell adhesion and motility. Protein kinase C (PKC) plays a critical role in integrin-mediated events; however, the mechanism that links PKC to integrins remains unclear. Here, we report that PKCepsilon positively regulates integrin-dependent adhesion, spreading, and motility of human glioma cells. PKCepsilon activation was associated with increased focal adhesion and lamellipodia formation as well as clustering of select integrins, and it is required for phorbol 12-myristate 13-acetate-induced adhesion and motility. We provide novel evidence that the scaffolding protein RACK1 mediates the interaction between integrin beta chain and activated PKCepsilon. Both depletion of RACK1 by antisense strategy and overexpression of a truncated form of RACK1 which lacks the integrin binding region resulted in decreased PKCepsilon-induced adhesion and migration, suggesting that RACK1 links PKCepsilon to integrin beta chains. Altogether, these results provide a novel mechanistic link between PKC activation and integrin-mediated adhesion and motility.
Collapse
Affiliation(s)
- Arnaud Besson
- Department of Oncology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
26
|
Greenwood J, Etienne-Manneville S, Adamson P, Couraud PO. Lymphocyte migration into the central nervous system: implication of ICAM-1 signalling at the blood-brain barrier. Vascul Pharmacol 2002; 38:315-22. [PMID: 12529926 DOI: 10.1016/s1537-1891(02)00199-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lymphocyte recruitment to the central nervous system (CNS) is a critical step in the pathogenesis of diseases such as multiple sclerosis (MS), meningitis and posterior uveitis. The principle sequential stages that control lymphocyte emigration from the blood have been widely reported, but only recently has attention been directed towards the role of the vascular endothelium in actively supporting transvascular migration. It has now been shown that adhesion molecules, particularly those of the immunoglobulin super family (e.g. ICAM-1, VCAM-1 and PECAM-1), not only act as ligands for leucocyte receptors but can also serve as signal transducers. Engagement of these receptors initiates endothelial signalling cascades that result in downstream effector mechanisms which in turn influence the progression of neuroinflammation. In particular, it has been shown that ICAM-1-mediated signalling in brain endothelial cells is a crucial regulatory step in the process of lymphocyte migration through the blood-brain barrier and as such represents an additional phase in the multistep paradigm of leucocyte recruitment. In this article we review current understanding of endothelial cell ICAM-1 signalling and discuss the importance of these findings in relation to leucocyte trafficking to the CNS.
Collapse
Affiliation(s)
- John Greenwood
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | | | | | | |
Collapse
|
27
|
Ziegler WH, Tigges U, Zieseniss A, Jockusch BM. A lipid-regulated docking site on vinculin for protein kinase C. J Biol Chem 2002; 277:7396-404. [PMID: 11741957 DOI: 10.1074/jbc.m110008200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During cell spreading, binding of actin-organizing proteins to acidic phospholipids and phosphorylation are important for localization and activity of these proteins at nascent cell-matrix adhesion sites. Here, we report on a transient interaction between the lipid-dependent protein kinase Calpha and vinculin, an early component of these sites, during spreading of HeLa cells on collagen. In vitro binding of protein kinase Calpha to vinculin tail was found dependent on free calcium and acidic phospholipids but independent of a functional kinase domain. The interaction was enhanced by conditions that favor the oligomerization of vinculin. Phosphorylation by protein kinase Calpha reached 1.5 mol of phosphate/mol of vinculin tail and required the C-terminal hydrophobic hairpin, a putative phosphatidylinositol 4,5-bisphosphate-binding site. Mass spectroscopy of peptides derived from in vitro phosphorylated vinculin tail identified phosphorylation of serines 1033 and 1045. Inhibition of C-terminal phospholipid binding at the vinculin tail by mutagenesis or deletion reduced the rate of phosphorylation to < or =50%. We suggest a possible mechanism whereby phospholipid-regulated conformational changes in vinculin may lead to exposure of a docking site for protein kinase Calpha and subsequent phosphorylation of vinculin and/or vinculin interaction partners, thereby affecting the formation of cell adhesion complexes.
Collapse
Affiliation(s)
- Wolfgang H Ziegler
- Department of Cell Biology, Zoological Institute, Technical University of Braunschweig, D-38092 Braunschweig, Germany
| | | | | | | |
Collapse
|
28
|
Patterson CE, Lum H. Update on pulmonary edema: the role and regulation of endothelial barrier function. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 2002; 8:75-105. [PMID: 11572478 DOI: 10.3109/10623320109165319] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Discovery of the pathophysiologic mechanisms leading to pulmonary edema and identification of effective strategies for prevention remain significant clinical concerns. Endothelial barrier function is a key component for maintenance of the integrity of the vascular boundary in the lung, particularly since the gas exchange surface area of the alveolar-capillary membrane is large. This review is focused on new insights in the pulmonary endothelial response to injury and recovery, reversible activation by edemagenic agents, and the biochemical/structural basis for regulation of endothelial barrier function. This information is discussed in the context of fundamental concepts of lung fluid balance and pulmonary function.
Collapse
Affiliation(s)
- C E Patterson
- Department of Medicine, Indiana University School of Medicine & Roudebush VA Med. Center, Indianapolis 46202, USA
| | | |
Collapse
|
29
|
Vallentin A, Lo TC, Joubert D. A single point mutation in the V3 region affects protein kinase Calpha targeting and accumulation at cell-cell contacts. Mol Cell Biol 2001; 21:3351-63. [PMID: 11313461 PMCID: PMC100257 DOI: 10.1128/mcb.21.10.3351-3363.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Given the importance of intercellular adhesion for many regulatory processes, we have investigated the control of protein kinase Calpha (PKCalpha) targeting to the cell-cell contacts. We have previously shown that, upon treatment of the pituitary cell line GH3B6 with thyrotropin-releasing hormone (TRH) or phorbol 12-myristate 13-acetate (PMA), human PKCalpha (hPKCalpha) is selectively targeted to the cell-cell contacts (42). Here we show that the D294G mutation of hPKCalpha, previously identified in a subpopulation of human tumors, induces the loss of this selective targeting. The D294G mutant is instead targeted to the entire plasma membrane, including the cell-cell contacts, and the duration of the first rapid and transient translocation induced by TRH (42) is longer than that of the wild-type enzyme (93.3 versus 22.5 s), coinciding with the duration of the [Ca(2+)](i) increase. We found that in the presence or absence of PMA, RACK1 is never localized at the cell-cell contacts nor was it coimmunoprecipitated with hPKCalpha wild type or the D294G mutant. In contrast, PMA treatment or long-term TRH stimulation resulted in the presence of F-actin and beta-catenin at the cell-cell contacts and their exclusion from the rest of the plasma membrane. Upon disruption of the F-actin network with phalloidin or cytochalasin D, wild-type hPKCalpha translocates but did not accumulate at the plasma membrane and beta-catenin did not accumulate at the cell-cell contacts. In contrast, the disruption of the F-actin network affected neither translocation nor accumulation of the D294G mutant. These results show that the presence of PKCalpha at the cell-cell contacts is a regulated process which depends upon the integrity of both PKCalpha and the actin microfilament network.
Collapse
Affiliation(s)
- A Vallentin
- INSERM U469, 34094 Montpellier Cedex 5, France
| | | | | |
Collapse
|
30
|
Abstract
Reactive oxygen species (ROS) are generated at sites of inflammation and injury, and at low levels, ROS can function as signaling molecules participating as signaling intermediates in regulation of fundamental cell activities such as cell growth and cell adaptation responses, whereas at higher concentrations, ROS can cause cellular injury and death. The vascular endothelium, which regulates the passage of macromolecules and circulating cells from blood to tissues, is a major target of oxidant stress, playing a critical role in the pathophysiology of several vascular diseases and disorders. Specifically, oxidant stress increases vascular endothelial permeability and promotes leukocyte adhesion, which are coupled with alterations in endothelial signal transduction and redox-regulated transcription factors such as activator protein-1 and nuclear factor-kappaB. This review discusses recent findings on the cellular and molecular mechanisms by which ROS signal events leading to impairment of endothelial barrier function and promotion of leukocyte adhesion. Particular emphasis is placed on the regulation of cell-cell and cell-surface adhesion molecules, the actin cytoskeleton, key protein kinases, and signal transduction events.
Collapse
Affiliation(s)
- H Lum
- Department of Pharmacology, Rush Presbyterian St. Luke's Medical Center, 2242 W. Harrison St., Suite 260, Chicago, IL 60612, USA.
| | | |
Collapse
|
31
|
Abstract
The claudin superfamily consists of at least 18 homologous proteins in humans. These proteins are important structural and functional components of tight junctions in paracellular transport. Complexed with two other integral transmembrane proteins, occludin and junctional adhesion molecule, claudins are located in both epithelial and endothelial cells in all tight junction-bearing tissues. Claudins interact directly with tight junction-specific, membrane-associated guanylate kinase homologues, ZO-1, ZO-2, and ZO-3, and indirectly with AF-6 and the myosin-binding molecule cingulin. These protein-protein interactions promote scaffolding of the tight junction transmembrane proteins and provide a link to the actin cytoskeleton for transducing regulatory signals to and from tight junctions. The distinct permeability properties observed in different epithelia and endothelia seemingly result from the restricted tissue expression, variability of the homopolymer and heteropolymer assembly, regulated transcription and translation, and the subcellular localization of claudin family proteins. Defects in claudins are causatively associated with a variety of human diseases, demonstrating that claudins play important roles in human physiology. In conditions where the cell adhesion function contributed by tight junctions is essential, such as in altered paracellular transport, in proliferative diseases, and during morphogenesis, the claudin superfamily of homologous proteins provides the molecular basis for the uniqueness of tight junctions and emerges as a new target for intervention.
Collapse
Affiliation(s)
- M Heiskala
- R.W. Johnson Pharmaceutical Research Institute, 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | |
Collapse
|
32
|
Palovuori R, Eskelinen S. Role of vinculin in the maintenance of cell-cell contacts in kidney epithelial MDBK cells. Eur J Cell Biol 2000; 79:961-74. [PMID: 11152287 DOI: 10.1078/0171-9335-00120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microinjection of fluorophore-tagged cytoskeletal proteins has been a useful tool in studies of formation of focal adhesions (FA). We used this method to study the maintenance of adherens junctions (AJ) and tight junctions (TJ) of epithelial Madin-Darby bovine kidney cells. We chose alpha-actinin and vinculin as markers, because they are present both at adherens junctions and focal adhesions and their binding partners have been well characterized. Isolated FITC-labelled chicken alpha-actinin and vinculin were injected into confluent cells where they were rapidly incorporated both in FAs and AJs. The FAs remained unchanged, whereas cell-cell contacts began to fade within an hour after injection and the cells were joined to polykaryons having 5 to 13 nuclei. Short fragments of cell membranes containing injected proteins, actin, beta-catenin, cadherin, claudin, occludin and ZO-1 were visible inside the polykaryons indicating that both AJs and TJs were disintegrated as a single complex. Microinjected FITC-labelled vinculin head domain was also incorporated to both AJs and FAs, but instead of fusions it rapidly induced the detachment of the cells from the substratum probably due to high affinity of vinculin head to talin. Vinculin tail domain had no apparent effect on the cell morphology. Since small GTPases are involved in the building up of AJs, we injected active and inactive forms of cdc42 and rac proteins together with vinculin to see their effect. Active forms reduced the formation of polykaryons presumably by strengthening AJs, whereas inactive forms had no apparent effect. We suggest that excess alpha-actinin and vinculin uncouple the cell-cell adhesion junctions from the intracellular cytoskeleton which leads to fragmentation of junctional complexes and subsequent cell fusion. The results show that cell-cell adhesion sites are more dynamic and more sensitive than FAs to an imbalance in the amount of free alpha-actinin and intact vinculin.
Collapse
Affiliation(s)
- R Palovuori
- Biocenter Oulu and the Department of Pathology, University of Oulu, Finland
| | | |
Collapse
|
33
|
Etienne-Manneville S, Manneville JB, Adamson P, Wilbourn B, Greenwood J, Couraud PO. ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3375-83. [PMID: 10975856 DOI: 10.4049/jimmunol.165.6.3375] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endothelium of the cerebral blood vessels, which constitutes the blood-brain barrier, controls adhesion and trafficking of leukocytes into the brain. Investigating signaling pathways triggered by the engagement of adhesion molecules expressed on brain endothelial cells using two rat brain endothelial cell lines (RBE4 and GP8), we report in this paper that ICAM-1 cross-linking induces a sustained tyrosine phosphorylation of the phosphatidylinositol-phospholipase C (PLC)gamma1, with a concomitant increase in both inositol phosphate production and intracellular calcium concentration. Our results suggest that PLC are responsible, via a calcium- and protein kinase C (PKC)-dependent pathway, for p60Src activation and tyrosine phosphorylation of the p60Src substrate, cortactin. PKCs are also required for tyrosine phosphorylation of the cytoskeleton-associated proteins, focal adhesion kinase and paxillin, but not for ICAM-1-coupled p130Cas phosphorylation. PKC's activation is also necessary for stress fiber formation induced by ICAM-1 cross-linking. Finally, cell pretreatment with intracellular calcium chelator or PKC inhibitors significantly diminishes transmonolayer migration of activated T lymphocytes, without affecting their adhesion to brain endothelial cells. In summary, our data demonstrate that ICAM-1 cross-linking induces calcium signaling which, via PKCs, mediates phosphorylation of actin-associated proteins and cytoskeletal rearrangement in brain endothelial cell lines. Our results also indicate that these calcium-mediated intracellular events are essential for lymphocyte migration through the blood-brain barrier.
Collapse
Affiliation(s)
- S Etienne-Manneville
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 0415, Cell Biology Department, Institut Cochin de Génétique Moléculaire, Université Paris VII, Paris, France.
| | | | | | | | | | | |
Collapse
|
34
|
Cereijido M, Shoshani L, Contreras RG. Molecular physiology and pathophysiology of tight junctions. I. Biogenesis of tight junctions and epithelial polarity. Am J Physiol Gastrointest Liver Physiol 2000; 279:G477-82. [PMID: 10960345 DOI: 10.1152/ajpgi.2000.279.3.g477] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The tight junction (TJ) was first noticed through its ability to control permeation across the paracellular route, but the homologies of its molecular components with peptides that participate in tumor suppression, nuclear addressing, and cell proliferation indicate that it may be involved in many other fundamental functions. TJs are formed by a dozen molecular species that assemble through PDZ and other protein-protein clustering promoting sequences, in response to the activation of E-cadherin. The TJ occupies a highly specific position between the apical and the basolateral domains. Its first molecular components seem to be delivered to such a position by addressing signals in their molecule and, once anchored, serve as a clustering nucleus for further TJ-associated molecules. Although in mature epithelial cells TJs and E-cadherin do not colocalize, a complex chain of reactions goes from one to the other that involves alpha-, beta-, and gamma-catenins, two different G proteins, phospholipase C, protein kinase C, calmodulin, mitogen-activated protein kinase, and molecules pertaining to the cytoskeleton, which keep the TJ sensitive to physiological requirements and local conditions (notably to Ca(2+)-dependent cell-cell contacts) throughout the life of the epithelium.
Collapse
Affiliation(s)
- M Cereijido
- Center for Research and Advanced Studies, 07000 Mexico City, Mexico.
| | | | | |
Collapse
|
35
|
Partoens P, Slembrouck D, De Busser H, Vaughan PF, Van Dessel GA, De Potter WP, Lagrou AR. Neurons, chromaffin cells and membrane fusion. Subcell Biochem 2000; 34:323-78. [PMID: 10808338 DOI: 10.1007/0-306-46824-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- P Partoens
- Department of Medicine, UA-Faculty of Medicine and Pharmaceutical Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
36
|
Contreras RG, Shoshani L, Flores-Maldonado C, Lázaro A, Cereijido M. Relationship between Na(+),K(+)-ATPase and cell attachment. J Cell Sci 1999; 112 ( Pt 23):4223-32. [PMID: 10564641 DOI: 10.1242/jcs.112.23.4223] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A prolonged ouabain blockade of the Na(+),K(+)-ATPase detaches cells from each other and from the substrate. This suggests the existence of a link between pump (P) and attachment (A). In the present work, we report that MDCK-W cells treated with ouabain increase tyrosine phosphorylation and content of active MAP kinase, redistribute molecules involved in cell attachment (occludin, ZO-1, desmoplakin, cytokeratin, alpha-actinin, vinculin and actin), and detach. Genistein and UO126, inhibitors of protein tyrosine kinase and of MAP kinase kinase, respectively, block this detachment. The content of P190(Rho-GAP), a GTPase activating protein of the Rho small G-protein subfamily, is increased by ouabain, suggesting that both the Rho/Rac and MAPK pathways are involved. Another clone of MDCK cells whose Na(+),K(+)-ATPase has a negligible affinity for the drug, show none of the effects described for MDCK-W and remain attached. Ma104 cells, a line that has a high affinity for ouabain and stops pumping, fail to modify phosphorylation, as well as the pattern of distribution of attaching molecules, and remain in the monolayer. Taken together, these results suggest that there is a mechanism (P-->A) that transduces a blockade of the pump in a detachment of the cell from neighbors and substrate, in which Ma104 cells are faulty.
Collapse
Affiliation(s)
- R G Contreras
- Center for Research and Advanced Studies of México (CINVESTAV), Av. Instituto Politecnico Nacional 2508, Codigo Postal, 07660 Mexico
| | | | | | | | | |
Collapse
|
37
|
Espada J, Pérez-Moreno M, Braga VM, Rodriguez-Viciana P, Cano A. H-Ras activation promotes cytoplasmic accumulation and phosphoinositide 3-OH kinase association of beta-catenin in epidermal keratinocytes. J Cell Biol 1999; 146:967-80. [PMID: 10477752 PMCID: PMC2169475 DOI: 10.1083/jcb.146.5.967] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying downregulation of the cadherin/catenin complexes and beta-catenin signaling during tumor progression are not fully understood. We have analyzed the effect of oncogenic H-Ras on E-cadherin/catenin complex formation/stabilization and beta-catenin distribution in epidermal keratinocytes. Microinjection or stable expression of V12Ras into keratinocytes promotes the loss of E-cadherin and alpha-catenin and relocalization of beta-catenin to the cytoplasm and nucleus. Moreover, these effects are dependent on PI3K (phosphoinositide 3-OH kinase) activity. Interestingly, a strong association of p85alpha and p110alpha subunits of PI3K with beta-catenin is induced in V12Ras-expressing keratinocytes, and in vitro binding assays show a direct interaction between beta-catenin and p85alpha. Overexpression of either V12Ras or constitutively active p110alpha induces metabolic stabilization of beta-catenin and promotes its accumulation in cytoplasmic and nuclear pools. In addition, the interaction of beta-catenin with the adenomatous polyposis coli protein is blocked in V12Ras and p110alpha transformants though no changes in glycogen synthase kinase 3 beta activity could be detected. Nevertheless, in V12Ras transformants the in vivo phosphorylation of beta-catenin in Ser residues is strongly decreased. These results indicate that H-Ras activation induces the relocalization and cytoplasmic stabilization of beta-catenin by a mechanism involving its interaction with PI3K.
Collapse
Affiliation(s)
- Jesús Espada
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Mirna Pérez-Moreno
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Vania M.M. Braga
- MRC Laboratory for Molecular Cell Biology, Department of Biochemistry and Molecular Biology, University College London, WC1E 6BT, London, United Kingdom
| | - Pablo Rodriguez-Viciana
- University of California San Francisco Cancer Research Institute, San Francisco, California 94115
| | - Amparo Cano
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|