1
|
Zhang J, Yang X, Chang Z, Zhu W, Ma Y, He H. Polymeric nanocarriers for therapeutic gene delivery. Asian J Pharm Sci 2025; 20:101015. [PMID: 39931356 PMCID: PMC11808530 DOI: 10.1016/j.ajps.2025.101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 02/13/2025] Open
Abstract
The recent commercialization of gene products has sparked significant interest in gene therapy, necessitating efficient and precise gene delivery via various vectors. Currently, viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed. Beyond these vectors, polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities, such as improving the stability, cellar uptake and endosomal escape of nucleic acid drugs, along with precise delivery to targeted tissues. This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery, focusing on key cationic polymers, nanocarrier types, and preparation methods. It also highlights targeted diseases, strategies to improve delivery efficiency, and potential future directions in this research area. The review is hoped to inspire the development, optimization, and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, School of Pharmacy, Qinghai Minzu University, Xining 810007, China
| | - Xinyu Yang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhichao Chang
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenwei Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuhua Ma
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, School of Pharmacy, Qinghai Minzu University, Xining 810007, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
2
|
Panday A, Dixena B, Jain N, Jain AK. Lipid-based Non-viral Vector: Promising Approach for Gene Delivery. Curr Pharm Des 2025; 31:521-539. [PMID: 39318208 DOI: 10.2174/0113816128324084240828084904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES The present review aims to discuss various strategies to overcome intracellular and extracellular barriers involved in gene delivery as well as the advantages, challenges, and mechanisms of gene delivery using non-viral vectors. Additionally, patents, clinical studies, and various formulation approaches related to lipid-based carrier systems are discussed. METHODS Data were searched and collected from Google Scholar, ScienceDirect, PubMed, and Springer. RESULTS In this review, we have investigated the advantages of non-viral vectors over viral vectors. The advantage of using non-viral vectors are that they seek more attention in different fields. They play an important role in delivering the genetic materials. However, few non-viral vector-based carrier systems have been found in clinical settings. Challenges are developing more stable, site-specific gene delivery and conducting thorough safety assessments to minimize the undesired effects. CONCLUSION In comparison to viral vectors, non-viral vector-based lipid nanocarriers have more advantages for gene delivery. Gene therapy research shows promise in addressing health concerns. Lipid-based nanocarriers can overcome intracellular and extracellular barriers, allowing efficient delivery of genetic materials. Nonviral vectors are more attractive due to their biocompatibility, ease of synthesis, and cost-effectiveness. They can deliver various nucleic acids and have improved gene delivery efficacy by avoiding degradation steps. Despite limited clinical use, many patents have been filed for mRNA vaccine delivery using non-viral vectors.
Collapse
Affiliation(s)
- Anupama Panday
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Bhupendra Dixena
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Akhlesh Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| |
Collapse
|
3
|
Casper J, Schenk SH, Parhizkar E, Detampel P, Dehshahri A, Huwyler J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. J Control Release 2023; 362:667-691. [PMID: 37666302 DOI: 10.1016/j.jconrel.2023.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Polyethlyenimine (PEI) was introduced 1995 as a cationic polymer for nucleic acid delivery. PEI and its derivatives are extensively used in basic research and as reference formulations in the field of polymer-based gene delivery. Despite its widespread use, the number of clinical applications to date is limited. Thus, this review aims to consolidate the past applications of PEI in DNA delivery, elucidate the obstacles that hinder its transition to clinical use, and highlight potential prospects for novel iterations of PEI derivatives. The present review article is divided into three sections. The first section examines the mechanism of action employed by PEI, examining fundamental aspects of cellular delivery including uptake mechanisms, release from endosomes, and transport into the cell nucleus, along with potential strategies for enhancing these delivery phases. Moreover, an in-depth analysis is conducted concerning the mechanism underlying cellular toxicity, accompanied with approaches to overcome this major challenge. The second part is devoted to the in vivo performance of PEI and its application in various therapeutic indications. While systemic administration has proven to be challenging, alternative localized delivery routes hold promise, such as treatment of solid tumors, application as a vaccine, or serving as a therapeutic agent for pulmonary delivery. In the last section, the outcome of completed and ongoing clinical trials is summarized. Finally, an expert opinion is provided on the potential of PEI and its future applications. PEI-based formulations for nucleic acid delivery have a promising potential, it will be an important task for the years to come to introduce innovations that address PEI-associated shortcomings by introducing well-designed PEI formulations in combination with an appropriate route of administration.
Collapse
Affiliation(s)
- Jens Casper
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elahehnaz Parhizkar
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pascal Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
4
|
Rotov AY, Romanov IS, Tarakanchikova YV, Astakhova LA. Application Prospects for Synthetic Nanoparticles in Optogenetic Retinal Prosthetics. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Shafaati M, Saidijam M, Soleimani M, Hazrati F, Mirzaei R, Amirheidari B, Tanzadehpanah H, Karampoor S, Kazemi S, Yavari B, Mahaki H, Safaei M, Rahbarizadeh F, Samadi P, Ahmadyousefi Y. A brief review on DNA vaccines in the era of COVID-19. Future Virol 2021; 17:10.2217/fvl-2021-0170. [PMID: 34858516 PMCID: PMC8629371 DOI: 10.2217/fvl-2021-0170] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023]
Abstract
This article provides a brief overview of DNA vaccines. First, the basic DNA vaccine design strategies are described, then specific issues related to the industrial production of DNA vaccines are discussed, including the production and purification of DNA products such as plasmid DNA, minicircle DNA, minimalistic, immunologically defined gene expression (MIDGE) and Doggybone™. The use of adjuvants to enhance the immunogenicity of DNA vaccines is then discussed. In addition, different delivery routes and several physical and chemical methods to increase the efficacy of DNA delivery into cells are explained. Recent preclinical and clinical trials of DNA vaccines for COVID-19 are then summarized. Lastly, the advantages and obstacles of DNA vaccines are discussed.
Collapse
Affiliation(s)
- Maryam Shafaati
- Department of Microbiology, Faculty of Sciences, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Massoud Saidijam
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereshte Hazrati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Tanzadehpanah
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bahram Yavari
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouria Samadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA. Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 2021; 170:113-141. [PMID: 33422546 PMCID: PMC7789827 DOI: 10.1016/j.addr.2021.01.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 01/07/2023]
Abstract
The novel betacoronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has spread across the globe at an unprecedented rate since its first emergence in Wuhan City, China in December 2019. Scientific communities around the world have been rigorously working to develop a potent vaccine to combat COVID-19 (coronavirus disease 2019), employing conventional and novel vaccine strategies. Gene-based vaccine platforms based on viral vectors, DNA, and RNA, have shown promising results encompassing both humoral and cell-mediated immune responses in previous studies, supporting their implementation for COVID-19 vaccine development. In fact, the U.S. Food and Drug Administration (FDA) recently authorized the emergency use of two RNA-based COVID-19 vaccines. We review current gene-based vaccine candidates proceeding through clinical trials, including their antigenic targets, delivery vehicles, and route of administration. Important features of previous gene-based vaccine developments against other infectious diseases are discussed in guiding the design and development of effective vaccines against COVID-19 and future derivatives.
Collapse
Affiliation(s)
- Deborah Pushparajah
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Salma Jimenez
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada
| | - Shirley Wong
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Hibah Alattas
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada
| | - Nafiseh Nafissi
- Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Roderick A Slavcev
- School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada; Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada; Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada.
| |
Collapse
|
8
|
Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007096. [PMID: 34366761 PMCID: PMC8336227 DOI: 10.1002/adfm.202007096] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 05/05/2023]
Abstract
Cancer is a genetic disease originating from the accumulation of gene mutations in a cellular subpopulation. Although many therapeutic approaches have been developed to treat cancer, recent studies have revealed an irrefutable challenge that tumors evolve defenses against some therapies. Gene therapy may prove to be the ultimate panacea for cancer by correcting the fundamental genetic errors in tumors. The engineering of nanoscale inorganic carriers of cancer therapeutics has shown promising results in the efficacious and safe delivery of nucleic acids to treat oncological diseases in small-animal models. When these nanocarriers are used for co-delivery of gene therapeutics along with auxiliary treatments, the synergistic combination of therapies often leads to an amplified health benefit. In this review, an overview of the inorganic nanomaterials developed for combinatorial therapies of gene and other treatment modalities is presented. First, the main principles of using nucleic acids as therapeutics, inorganic nanocarriers for medical applications and delivery of gene/drug payloads are introduced. Next, the utility of recently developed inorganic nanomaterials in different combinations of gene therapy with each of chemo, immune, hyperthermal, and radio therapy is examined. Finally, current challenges in the clinical translation of inorganic nanomaterial-mediated therapies are presented and outlooks for the field are provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Ni R, Feng R, Chau Y. Synthetic Approaches for Nucleic Acid Delivery: Choosing the Right Carriers. Life (Basel) 2019; 9:E59. [PMID: 31324016 PMCID: PMC6789897 DOI: 10.3390/life9030059] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of the genetic roots of various human diseases has motivated the exploration of different exogenous nucleic acids as therapeutic agents to treat these genetic disorders (inherited or acquired). However, the physicochemical properties of nucleic acids render them liable to degradation and also restrict their cellular entrance and gene translation/inhibition at the correct cellular location. Therefore, gene condensation/protection and guided intracellular trafficking are necessary for exogenous nucleic acids to function inside cells. Diversified cationic formulation materials, including natural and synthetic lipids, polymers, and proteins/peptides, have been developed to facilitate the intracellular transportation of exogenous nucleic acids. The chemical properties of different formulation materials determine their special features for nucleic acid delivery, so understanding the property-function correlation of the formulation materials will inspire the development of next-generation gene delivery carriers. Therefore, in this review, we focus on the chemical properties of different types of formulation materials and discuss how these formulation materials function as protectors and cellular pathfinders for nucleic acids, bringing them to their destination by overcoming different cellular barriers.
Collapse
Affiliation(s)
- Rong Ni
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Institute for Advanced Study, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ruilu Feng
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
10
|
You HS, Ok YJ, Lee EJ, Kang SS, Hyun SH. Development of a novel DsRed-NLS vector with a monopartite classical nuclear localization signal. 3 Biotech 2019; 9:232. [PMID: 31139547 DOI: 10.1007/s13205-019-1770-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/18/2019] [Indexed: 12/01/2022] Open
Abstract
The nuclear localization signal (NLS) marks proteins for transport to the nucleus and is used in various applications in many fields. NLSs are used to achieve efficient and stable transport of biomolecules. Previously, commercial vectors used in NLS studies contained three iterations of the NLS sequence, but these sequences can affect experimental results and alter protein function. Here, we investigated a new vector using a single classical NLS sequence with a mutation in pDsRed2-C1-wt to reduce experimental artifacts. In the newly constructed pDsRed2-C1-1NLS vector, the NLS sequence is placed near the multiple cloning sites of pDsRed2-C1-wt, and the multiple cloning site region was designed to facilitate insertion of the desired gene by site-directed mutagenesis. Fluorescent protein expression in the nucleus can be visually confirmed. The results show that the fluorescent protein was bound to the transport protein. The constructed vector had a cell survival rate of 89-95% and a transfection efficiency of 39-56% when introduced into animal cells, which are similar to those of other NLS vectors. Additionally, the constructed NLS vector can be used to demonstrate complementary binding between target proteins, and that the target protein is transported by the NLS transport system. Especially, we show that the vector can be useful for experiments involving the S100A10 gene. In addition, the constructed vector is useful for studies of genes and proteins that show potential for gene therapy or drug delivery applications.
Collapse
Affiliation(s)
- Hee Sang You
- 1Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824 Republic of Korea
- 2Department of Biomedical Laboratory Science, School of Medicine, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824 Republic of Korea
| | - Yeon Jeong Ok
- 2Department of Biomedical Laboratory Science, School of Medicine, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824 Republic of Korea
| | - Eun Jeong Lee
- 3Department of Biology Education, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644 Republic of Korea
| | - Sang Sun Kang
- 3Department of Biology Education, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644 Republic of Korea
| | - Sung Hee Hyun
- 1Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824 Republic of Korea
- 2Department of Biomedical Laboratory Science, School of Medicine, Eulji University, 77, Gyeryong-ro, 771 beon-gil, Jung-gu, Daejeon, 34824 Republic of Korea
| |
Collapse
|
11
|
Durymanov M, Reineke J. Non-viral Delivery of Nucleic Acids: Insight Into Mechanisms of Overcoming Intracellular Barriers. Front Pharmacol 2018; 9:971. [PMID: 30186185 PMCID: PMC6111240 DOI: 10.3389/fphar.2018.00971] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022] Open
Abstract
Delivery of genes, including plasmid DNAs, short interfering RNAs (siRNAs), and messenger RNAs (mRNAs), using artificial non-viral nanotherapeutics is a promising approach in cancer gene therapy. However, multiple physiological barriers upon systemic administration remain a key challenge in clinical translation of anti-cancer gene therapeutics. Besides extracellular barriers including sequestration of gene delivery nanoparticles from the bloodstream by resident organ-specific macrophages, and their poor extravasation and tissue penetration in tumors, overcoming intracellular barriers is also necessary for successful delivery of nucleic acids. Whereas for RNA delivery the endosomal barrier holds a key importance, transfer of DNA cargo additionally requires translocation into the nucleus. Better understanding of crossing membrane barriers by nucleic acid nanoformulations is essential to the improvement of current non-viral carriers. This review aims to summarize relevant literature on intracellular trafficking of non-viral nanoparticles and determine key factors toward surmounting intracellular barriers. Moreover, recent data allowed us to propose new interpretations of current hypotheses of endosomal escape mechanisms of nucleic acid nanoformulations.
Collapse
Affiliation(s)
- Mikhail Durymanov
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, United States
| | - Joshua Reineke
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
12
|
Savic N, Ringnalda FCAS, Lindsay H, Berk C, Bargsten K, Li Y, Neri D, Robinson MD, Ciaudo C, Hall J, Jinek M, Schwank G. Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. eLife 2018; 7:e33761. [PMID: 29809142 PMCID: PMC6023611 DOI: 10.7554/elife.33761] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/26/2018] [Indexed: 12/22/2022] Open
Abstract
The CRISPR-Cas9 targeted nuclease technology allows the insertion of genetic modifications with single base-pair precision. The preference of mammalian cells to repair Cas9-induced DNA double-strand breaks via error-prone end-joining pathways rather than via homology-directed repair mechanisms, however, leads to relatively low rates of precise editing from donor DNA. Here we show that spatial and temporal co-localization of the donor template and Cas9 via covalent linkage increases the correction rates up to 24-fold, and demonstrate that the effect is mainly caused by an increase of donor template concentration in the nucleus. Enhanced correction rates were observed in multiple cell types and on different genomic loci, suggesting that covalently linking the donor template to the Cas9 complex provides advantages for clinical applications where high-fidelity repair is desired.
Collapse
Affiliation(s)
- Natasa Savic
- The Institute of Molecular Health Sciences, ETH ZurichZurichSwitzerland
| | | | - Helen Lindsay
- The Institute of Molecular Life Sciences, University of ZurichZurichSwitzerland
- SIB Swiss Institute of BioinformaticsZurichSwitzerland
| | - Christian Berk
- Institute for Pharmaceutical Sciences, ETH ZurichZurichSwitzerland
| | - Katja Bargsten
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Yizhou Li
- Institute for Pharmaceutical Sciences, ETH ZurichZurichSwitzerland
| | - Dario Neri
- Institute for Pharmaceutical Sciences, ETH ZurichZurichSwitzerland
| | - Mark D Robinson
- The Institute of Molecular Life Sciences, University of ZurichZurichSwitzerland
- SIB Swiss Institute of BioinformaticsZurichSwitzerland
| | - Constance Ciaudo
- The Institute of Molecular Health Sciences, ETH ZurichZurichSwitzerland
| | - Jonathan Hall
- Institute for Pharmaceutical Sciences, ETH ZurichZurichSwitzerland
| | - Martin Jinek
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Gerald Schwank
- The Institute of Molecular Health Sciences, ETH ZurichZurichSwitzerland
| |
Collapse
|
13
|
Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen KS, Ruponen M, Urtti A. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 2016; 57:134-185. [PMID: 28028001 DOI: 10.1016/j.preteyeres.2016.12.001] [Citation(s) in RCA: 451] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.
Collapse
Affiliation(s)
- Eva M Del Amo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Anna-Kaisa Rimpelä
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Emma Heikkinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Otto K Kari
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Eva Ramsay
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tatu Lajunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mechthild Schmitt
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Laura Pelkonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Madhushree Bhattacharya
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Dominique Richardson
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tiina Turunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Itkonen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Elisa Toropainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marco Casteleijn
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Maxim Antopolsky
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
14
|
Hornstein BD, Roman D, Arévalo-Soliz LM, Engevik MA, Zechiedrich L. Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells. PLoS One 2016; 11:e0167537. [PMID: 27918590 PMCID: PMC5137892 DOI: 10.1371/journal.pone.0167537] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/15/2016] [Indexed: 12/16/2022] Open
Abstract
The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery.
Collapse
Affiliation(s)
- Benjamin D. Hornstein
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Dany Roman
- Post-Baccaleureate Research Education Program, Baylor College of Medicine, Houston, TX, United States of America
| | - Lirio M. Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States of America
| | - Melinda A. Engevik
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States of America
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
15
|
McErlean EM, McCrudden CM, McCarthy HO. Delivery of nucleic acids for cancer gene therapy: overcoming extra- and intra-cellular barriers. Ther Deliv 2016; 7:619-37. [PMID: 27582234 DOI: 10.4155/tde-2016-0049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The therapeutic potential of cancer gene therapy has been limited by the difficulty of delivering genetic material to target sites. Various biological and molecular barriers exist which need to be overcome before effective nonviral delivery systems can be applied successfully in oncology. Herein, various barriers are described and strategies to circumvent such obstacles are discussed, considering both the extracellular and intracellular setting. Development of multifunctional delivery systems holds much promise for the progression of gene delivery, and a growing body of evidence supports this approach involving rational design of vectors, with a unique molecular architecture. In addition, the potential application of composite gene delivery platforms is highlighted which may provide an alternative delivery strategy to traditional systemic administration.
Collapse
|
16
|
Sun Y, Xian L, Xing H, Yu J, Yang Z, Yang T, Yang L, Ding P. Factors influencing the nuclear targeting ability of nuclear localization signals. J Drug Target 2016; 24:927-933. [DOI: 10.1080/1061186x.2016.1184273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Namvar A, Bolhassani A, Khairkhah N, Motevalli F. Physicochemical properties of polymers: An important system to overcome the cell barriers in gene transfection. Biopolymers 2016; 103:363-75. [PMID: 25761628 DOI: 10.1002/bip.22638] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
Delivery of the macromolecules including DNA, miRNA, and antisense oligonucleotides is typically mediated by carriers due to the large size and negative charge. Different physical (e.g., gene gun or electroporation), and chemical (e.g., cationic polymer or lipid) vectors have been already used to improve the efficiency of gene transfer. Polymer-based DNA delivery systems have attracted special interest, in particular via intravenous injection with many intra- and extracellular barriers. The recent progress has shown that stimuli-responsive polymers entitled as multifunctional nucleic acid vehicles can act to target specific cells. These nonviral carriers are classified by the type of stimulus including reduction potential, pH, and temperature. Generally, the physicochemical characterization of DNA-polymer complexes is critical to enhance the transfection potency via protection of DNA from nuclease digestion, endosomal escape, and nuclear localization. The successful clinical applications will depend on an exact insight of barriers in gene delivery and development of carriers overcoming these barriers. Consequently, improvement of novel cationic polymers with low toxicity and effective for biomedical use has attracted a great attention in gene therapy. This article summarizes the main physicochemical and biological properties of polyplexes describing their gene transfection behavior, in vitro and in vivo. In this line, the relative efficiencies of various cationic polymers are compared.
Collapse
Affiliation(s)
- Ali Namvar
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | |
Collapse
|
18
|
Chen W, Li H, Liu Z, Yuan W. Lipopolyplex for Therapeutic Gene Delivery and Its Application for the Treatment of Parkinson's Disease. Front Aging Neurosci 2016; 8:68. [PMID: 27092073 PMCID: PMC4820442 DOI: 10.3389/fnagi.2016.00068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
Lipopolyplex is a core-shell structure composed of nucleic acid, polycation and lipid. As a non-viral gene delivery vector, lipopolyplex combining the advantages of polyplex and lipoplex has shown superior colloidal stability, reduced cytotoxicity, extremely high gene transfection efficiency. Following intravenous administration, there are many strategies based on lipopolyplex to overcome the complex biological barriers in systemic gene delivery including condensation of nucleic acids into nanoparticles, long circulation, cell targeting, endosomal escape, release to cytoplasm and entry into cell nucleus. Parkinson's disease (PD) is the second most common neurodegenerative disorder and severely influences the patients' life quality. Current gene therapy clinical trials for PD employing viral vectors didn't achieve satisfactory efficacy. However, lipopolyplex may become a promising alternative approach owing to its stability in blood, ability to cross the blood-brain barrier (BBB) and specific targeting to diseased brain cells.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine Shanghai, China
| | - Hui Li
- School of Pharmacy, Shanghai JiaoTong University Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai JiaoTong University Shanghai, China
| |
Collapse
|
19
|
Honcharenko M, Bestas B, Jezowska M, Wojtczak BA, Moreno PMD, Romanowska J, Bächle SM, Darzynkiewicz E, Jemielity J, Smith CIE, Strömberg R. Synthetic m3G-CAP attachment necessitates a minimum trinucleotide constituent to be recognised as a nuclear import signal. RSC Adv 2016. [DOI: 10.1039/c6ra09568b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Minimal requirement for Snurportin based nuclear uptake is the inclusion of a trinucleotide sequence between the m3G-CAP and the artificial linker.
Collapse
|
20
|
Pyykkö I, Zou J, Schrott-Fischer A, Glueckert R, Kinnunen P. An Overview of Nanoparticle Based Delivery for Treatment of Inner Ear Disorders. Methods Mol Biol 2016; 1427:363-415. [PMID: 27259938 DOI: 10.1007/978-1-4939-3615-1_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticles offer new possibilities for inner ear treatment as they can carry a variety of drugs, protein, and nucleic acids to inner ear. Nanoparticles are equipped with several functions such as targetability, immuno-transparency, biochemical stability, and ability to be visualized in vivo and in vitro. A group of novel peptides can be attached to the surface of nanoparticles that will enhance the cell entry, endosomal escape, and nuclear targeting. Eight different types of nanoparticles with different payload carrying strategies are available now. The transtympanic delivery of nanoparticles indicates that, depending on the type of nanoparticle, different migration pathways into the inner ear can be employed, and that optimal carriers can be designed according to the intended cargo. The use of nanoparticles as drug/gene carriers is especially attractive in conjunction with cochlear implantation or even as an inclusion in the implant as a drug/gene reservoir.
Collapse
Affiliation(s)
- Ilmari Pyykkö
- Department of Otolaryngology, University of Tampere and University Hospital of Tampere, Tampere, 33014, Finland. .,Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, Tampere, 33520, Finland.
| | - Jing Zou
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, 02150, Espoo, Finland
| | - Annelies Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Paavo Kinnunen
- BECS, Department of Biomedical Engineering and Computational Science, Aalto University, Aalto, Finland
| |
Collapse
|
21
|
Critical considerations for developing nucleic acid macromolecule based drug products. Drug Discov Today 2015; 21:430-44. [PMID: 26674130 DOI: 10.1016/j.drudis.2015.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 11/02/2015] [Accepted: 11/25/2015] [Indexed: 01/02/2023]
Abstract
Protein expression therapy using nucleic acid macromolecules (NAMs) as a new paradigm in medicine has recently gained immense therapeutic potential. With the advancement of nonviral delivery it has been possible to target NAMs against cancer, immunodeficiency and infectious diseases. Owing to the complex and fragile structure of NAMs, however, development of a suitable, stable formulation for a reasonable product shelf-life and efficacious delivery is indeed challenging to achieve. This review provides a synopsis of challenges in the formulation and stability of DNA/m-RNA based medicines and probable mitigation strategies including a brief summary of delivery options to the target cells. Nucleic acid based drugs at various stages of ongoing clinical trials are compiled.
Collapse
|
22
|
Crowley ST, Rice KG. "Evolving nanoparticle gene delivery vectors for the liver: What has been learned in 30 years". J Control Release 2015; 219:457-470. [PMID: 26439664 DOI: 10.1016/j.jconrel.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Nonviral gene delivery to the liver has been under evolution for nearly 30years. Early demonstrations established relatively simple nonviral vectors could mediate gene expression in HepG2 cells which understandably led to speculation that these same vectors would be immediately successful at transfecting primary hepatocytes in vivo. However, it was soon recognized that the properties of a nonviral vector resulting in efficient transfection in vitro were uncorrelated with those needed to achieve efficient nonviral transfection in vivo. The discovery of major barriers to liver gene transfer has set the field on a course to design biocompatible vectors that demonstrate increased DNA stability in the circulation with correlating expression in liver. The improved understanding of what limits nonviral vector gene transfer efficiency in vivo has resulted in more sophisticated, low molecular weight vectors that allow systematic optimization of nanoparticle size, charge and ligand presentation. While the field has evolved DNA nanoparticles that are stable in the circulation, target hepatocytes, and deliver DNA to the cytosol, breaching the nucleus remains the last major barrier to a fully successful nonviral gene transfer system for the liver. The lessons learned along the way are fundamentally important to the design of all systemically delivered nanoparticle nonviral gene delivery systems.
Collapse
Affiliation(s)
- Samuel T Crowley
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA.
| |
Collapse
|
23
|
Durymanov MO, Yarutkin AV, Khramtsov YV, Rosenkranz AA, Sobolev AS. Live imaging of transgene expression in Cloudman S91 melanoma cells after polyplex-mediated gene delivery. J Control Release 2015; 215:73-81. [DOI: 10.1016/j.jconrel.2015.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 01/05/2023]
|
24
|
Abstract
Many viruses deliver their genomes into the host cell’s nucleus before they replicate. While onco-retroviruses and papillomaviruses tether their genomes to host chromatin upon mitotic breakdown of the nuclear envelope, lentiviruses, such as human immunodeficiency virus, adenoviruses, herpesviruses, parvoviruses, influenza viruses, hepatitis B virus, polyomaviruses, and baculoviruses deliver their genomes into the nucleus of post-mitotic cells. This poses the significant challenge of slipping a DNA or RNA genome past the nuclear pore complex (NPC) embedded in the nuclear envelope. Quantitative fluorescence imaging is shedding new light on this process, with recent data implicating misdelivery of viral genomes at nuclear pores as a bottleneck to virus replication. Here, we infer NPC functions for nuclear import of viral genomes from cell biology experiments and explore potential causes of misdelivery, including improper virus docking at NPCs, incomplete translocation, virus-induced stress and innate immunity reactions. We conclude by discussing consequences of viral genome misdelivery for viruses and host cells, and lay out future questions to enhance our understanding of this phenomenon. Further studies into viral genome misdelivery may reveal unexpected aspects about NPC structure and function, as well as aid in developing strategies for controlling viral infections to improve human health.
Collapse
|
25
|
Akita H, Kurihara D, Schmeer M, Schleef M, Harashima H. Effect of the Compaction and the Size of DNA on the Nuclear Transfer Efficiency after Microinjection in Synchronized Cells. Pharmaceutics 2015; 7:64-73. [PMID: 26066769 PMCID: PMC4491651 DOI: 10.3390/pharmaceutics7020064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 05/30/2015] [Accepted: 06/04/2015] [Indexed: 11/03/2022] Open
Abstract
The nuclear transfer process is one of the critical rate-limiting processes in transgene expression. In the present study, we report on the effect of compaction and the size of the DNA molecule on nuclear transfer efficiency by microinjection. A DNA/protamine complex- or variously-sized naked DNA molecules were injected into the cytoplasm or nucleus of synchronized HeLa cells. To evaluate the nuclear transfer process, a nuclear transfer score (NT score), calculated based on transgene expression after cytoplasmic microinjection divided by that after nuclear microinjection, was employed. The compaction of DNA with protamine decreased the NT score in comparison with the injection of naked DNA when the N/P ratio was increased to >2.0. Moreover, when naked DNA was microinjected, gene expression increased in parallel with the size of the DNA in the following order: minicircle DNA (MC07.CMV-EGFP; 2257 bp) > middle-sized plasmid DNA (pBS-EGFP; 3992 bp) > conventional plasmid DNA (pcDNA3.1-EGFP; 6172 bp), while the level of gene expression was quite comparable among them when the DNAs were injected into the nucleus. The above findings suggest that the intrinsic size of the DNA molecule is a major determinant for nuclear entry and that minicircle DNA has a great advantage in nuclear transfer.
Collapse
Affiliation(s)
- Hidetaka Akita
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, 060-0812 Sapporo, Japan.
| | - Dai Kurihara
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, 060-0812 Sapporo, Japan.
| | - Marco Schmeer
- PlasmidFactory GmbH & Co. KG. Meisenstraße 96, D-33607 Bielefeld, Germany.
| | - Martin Schleef
- PlasmidFactory GmbH & Co. KG. Meisenstraße 96, D-33607 Bielefeld, Germany.
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, 060-0812 Sapporo, Japan.
| |
Collapse
|
26
|
Mundra V, Mahato RI. Design of nanocarriers for efficient cellular uptake and endosomal release of small molecule and nucleic acid drugs: learning from virus. Front Chem Sci Eng 2014. [DOI: 10.1007/s11705-014-1457-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
“Programmed packaging” for gene delivery. J Control Release 2014; 193:316-23. [DOI: 10.1016/j.jconrel.2014.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/26/2014] [Accepted: 04/10/2014] [Indexed: 11/21/2022]
|
28
|
Redrejo-Rodríguez M, Salas M. Multiple roles of genome-attached bacteriophage terminal proteins. Virology 2014; 468-470:322-329. [PMID: 25232661 DOI: 10.1016/j.virol.2014.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022]
Abstract
Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad de Madrid), Universidad Autónoma, Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad de Madrid), Universidad Autónoma, Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
29
|
A novel nonviral gene delivery system: multifunctional envelope-type nano device. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 119:197-230. [PMID: 19343308 DOI: 10.1007/10_2008_40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
In this review we introduce a new concept for developing a nonviral gene delivery system which we call "Programmed Packaging." Based on this concept, we succeeded in developing a multifunctional envelope-type nano device (MEND), which exerts high transfection activities equivalent to those of an adenovirus in a dividing cell. The use of MEND has been extended to in vivo applications. PEG/peptide/DOPE ternary conjugate (PPD)-MEND, a new in vivo gene delivery system for the targeting of tumor cells that dissociates surface-modified PEG in tumor tissue by matrix metalloproteinase (MMP) and exerts significant transfection activities, was developed. In parallel with the development of MEND, a quantitative gene delivery system, Confocal Image-assisted 3-dimensionally integrated quantification (CIDIQ), also was developed. This method identified the rate-limiting step of the nonviral gene delivery system by comparing it with adenoviral-mediated gene delivery. The results of this analysis provide a new direction for the development of rational nonviral gene delivery systems.
Collapse
|
30
|
Bakhshinejad B, Sadeghizadeh M. Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems. Expert Opin Drug Deliv 2014; 11:1561-74. [PMID: 24955860 DOI: 10.1517/17425247.2014.927437] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The identification of more efficient gene delivery vehicles (GDVs) is essential to fulfill the expectations of clinical gene therapy. Bacteriophages, due to their excellent safety profile, extreme stability under a variety of harsh environmental conditions and the capability for being genetically manipulated, have drawn a flurry of interest to be applied as a newly arisen category of gene delivery platforms. AREAS COVERED The incessant evolutionary interaction of bacteriophages with human cells has turned them into a part of our body's natural ecosystem. However, these carriers represent several barriers to gene transduction of mammalian cells. The lack of evolvement of specialized machinery for targeted cellular internalization, endosomal, lysosomal and proteasomal escape, cytoplasmic entry, nuclear localization and intranuclear transcription poses major challenges to the expression of the phage-carried gene. In this review, we describe pros and cons of bacteriophages as GDVs, provide an insight into numerous barriers that bacteriophages face for entry into and subsequent trafficking inside mammalian cells and elaborate on the strategies used to bypass these barriers. EXPERT OPINION Tremendous genetic flexibility of bacteriophages to undergo numerous surface modifications through phage display technology has proven to be a turning point in the uncompromising efforts to surmount the limitations of phage-mediated gene expression. The revelatory outcomes of the studies undertaken within the recent years have been promising for phage-mediated gene delivery to move from concept to reality.
Collapse
Affiliation(s)
- Babak Bakhshinejad
- Tarbiat Modares University, Department of Genetics, Faculty of Biological Sciences , Tehran , Iran
| | | |
Collapse
|
31
|
Lin J, Qin T, Zhu LQ, Zhang Q, Yu QH, Yang Q. Enhancement of transfection efficiency with NLS and SPB-NLS. Mol Med Rep 2014; 9:2559-67. [PMID: 24715001 DOI: 10.3892/mmr.2014.2121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 03/03/2014] [Indexed: 11/06/2022] Open
Abstract
Low positive cell screening efficiency severely hinders the development of transgenic animals. The major rate-limiting step of positive cell screening is DNA entering the nucleus, particularly for large DNA molecules. To enhance the transport of large DNA molecules into the nucleus, particularly for the production of transgenic animals, nuclear localization sequence (NLS) peptides and the peptide derivative succinimidyl-[4-(psoralen-8-yloxy)]-butyrate (SPB)-NLS were synthesized to mediate transfection in vitro. To investigate the function of NLS and SPB-NLS in vitro, the expression levels of growth hormone (GH) mRNA and green fluorescent protein (GFP) protein were analyzed following transfection mediated by NLS and SPB-NLS. The results demonstrated that the expression of GH mRNA was significantly higher in the NLS (increased by 69%) and SPB-NLS (330%) groups than that in the liposome/pGN group. Similarly, GFP expression was found to be higher in the SPB-NLS group than that in the liposome group, while the expression in the NLS group was lower than that in the liposome group. Further analysis demonstrated that SPB-NLS enhanced the expression of insulin-like growth factor 1 in hard-to-transfect goat mammary epithelia cells. The results of the microscopy analysis revealed that transfected DNA entered the nucleus via the nuclear pores, facilitated by NLS. Analysis of the cell cycle demonstrated that the cytotoxic effects of NLS and SPB-NLS were low. In conclusion, the results of the present study demonstrate that SPB-NLS acts as a transfection-enhancing agent and may be used both to enhance nuclear delivery and for the development of genetically modified animals.
Collapse
Affiliation(s)
- Jian Lin
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Tao Qin
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Li Qi Zhu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Qiang Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Qing Hua Yu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Qian Yang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
32
|
Remaut K, Symens N, Lucas B, Demeester J, De Smedt SC. Cell division responsive peptides for optimized plasmid DNA delivery: the mitotic window of opportunity? J Control Release 2014; 179:1-9. [PMID: 24462902 DOI: 10.1016/j.jconrel.2014.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/07/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
The delivery of plasmid DNA remains hard to achieve, especially due to the presence of the nuclear membrane barrier. During cell division, however, the nuclear membrane is temporarily disassembled. We evaluated two different strategies to optimize plasmid DNA delivery in dividing cells: 1) phosphorylation responsive peptides that release plasmid DNA preferentially during mitosis and 2) chromatin targeting peptides to anchor plasmid DNA in newly formed nuclei upon cell division. Peptide/DNA particles alone were not efficient in penetrating cells. Upon co-delivery with lipid-based carriers, however, transfection efficiency drastically improved when compared to controls. For the phosphorylation responsive peptides, the presence of the phosphorylation sequence slightly increased transfection efficiency. For the chromatin targeting peptides, however, the chromatin targeting sequence did not seem to be the main reason for the improvement of transfection efficiency when applied in living cells. In conclusion, the pre-condensation of plasmid DNA with peptides improves lipid based delivery, but the nature of the peptides (cell responsive or not) does not seem to be the main reason for the improvement. It seems that the nuclear entry of foreign plasmid DNA is still under tight control, even during the mitotic window of opportunity.
Collapse
Affiliation(s)
- K Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - N Symens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - B Lucas
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - J Demeester
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - S C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.
| |
Collapse
|
33
|
Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, Mencía M, Salas M. Nuclear localization signals in phage terminal proteins provide a novel gene delivery tool in mammalian cells. Commun Integr Biol 2013; 6:e22829. [PMID: 23750294 PMCID: PMC3609834 DOI: 10.4161/cib.22829] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 11/21/2022] Open
Abstract
Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. Unexpectedly, we have found functional eukaryotic nuclear localization signals (NLSs) within the TP sequences of bacteriophages from diverse families and hosts. Given the role of bacteriophages as vehicles for horizontal gene transfer (HGT), we postulated that viral genomes that have covalently linked NLS-containing terminal proteins might behave as vectors for HGT between bacteria and the eukaryotic nucleus. To validate this hypothesis, we profited from the in vitro Φ29 amplification system that allows the amplification of heterologous DNAs producing linear molecules of DNA with TP covalently attached to both 5' ends. Interestingly, these in vitro-generated TP-DNA molecules showed enhanced gene delivery in mammalian cells, supporting a possible role in HGT by transferring genes between prokaryotes and eukaryotes. Moreover, these TP-DNA molecules are a useful tool to amplify and subsequently deliver genes efficiently into the eukaryotic nucleus. Here, we suggest various possible applications and further developments of the technique with biotechnological and therapeutic purposes.
Collapse
|
34
|
Synthesis and in vitro evaluation of a PDT active BODIPY–NLS conjugate. Bioorg Med Chem Lett 2013; 23:3204-7. [DOI: 10.1016/j.bmcl.2013.03.128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/27/2013] [Accepted: 03/30/2013] [Indexed: 11/23/2022]
|
35
|
Ericson MD, Rice KG. Synthesis of homogenous disulfide cross-linked polypeptides by iterative reducible ligation. Biopolymers 2013. [PMID: 23203756 DOI: 10.1002/bip.22117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A new method of directed solution phase synthesis of polypeptides linked through iterative formation of disulfide bonds is reported. Four dodecapeptides were successfully ligated into a single 48 amino acid polypeptide using an N-terminal Fmoc-thiazolidine and a novel acidic silver trifluoromethanesulfonate thiazolidine hydrolysis to achieve efficient ligation in the presence of internal disulfide bonds. The approach allows the synthesis of homogeneous disulfide cross-linked polypeptides that have application in gene delivery by undergoing a reductively triggered release of DNA.
Collapse
Affiliation(s)
- Mark D Ericson
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, IA 52242, USA
| | | |
Collapse
|
36
|
Funabashi H, Oura S, Saito M, Matsuoka H. Targeted delivery of a decoy oligodeoxynucleotide to a single ES cell by femtoinjection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:855-63. [PMID: 23506950 DOI: 10.1016/j.nano.2013.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/26/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
UNLABELLED Femtoinjection has been proposed as a feasible approach for the targeted delivery of a decoy oligodeoxynucleotide (ODN) into a single ES cell for the study of transcription factor activity. Here, we evaluated the utility of decoy ODN delivery via femtoinjection in an ES cell model in which Venus fluorescent protein was expressed under the control of the tet-off system. Femtoinjection of a control decoy (Con-decoy) and a tetracycline response element decoy (TRE-decoy) into the cytoplasm had no apparent effect on Venus fluorescent protein expression; however, femtoinjection of the TRE-decoy into the nucleus successfully suppressed expression of the Venus fluorescent protein. We therefore conclude that it is feasible to suppress the activity of a transcription factor in a single ES cell by the delivery of a decoy ODN into the nucleus using the femtoinjection technique. FROM THE CLINICAL EDITOR The authors of this novel basic science study successfully demonstrate a femtoinjection technique to deliver a decoy oligodeoxynucleotide into a single ES cell.
Collapse
Affiliation(s)
- Hisakage Funabashi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology 2-24-16, Naka-cho, Koganei, Tokyo, Japan
| | | | | | | |
Collapse
|
37
|
Synergistic effect of a biosurfactant and protamine on gene transfection efficiency. Eur J Pharm Sci 2013; 49:1-9. [PMID: 23422688 DOI: 10.1016/j.ejps.2013.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/26/2012] [Accepted: 02/03/2013] [Indexed: 11/20/2022]
Abstract
Several barriers need to be overcome to ensure successful gene transfection, including passing of the foreign gene through the plasma membrane, escape of this material from lysosomal degradation, and its translocation into the nucleus. We previously showed that the biosurfactant mannosylerythritol lipid-A (MEL-A) enhanced the efficiency of gene transfection mediated by cationic liposomes by facilitating rapid delivery of foreign genes into target cells through membrane fusion between liposomes and the plasma membrane. Moreover, using MEL-A-containing cationic liposomes, the foreign gene was efficiently delivered into the nucleus because it was released directly into the cytosol and thus escaped lysosomal degradation. Here we investigated the effect of pre-condensation of plasmid DNA by a cationic polymer, protamine, on gene transfection. We found that the efficiency of pre-condensed DNA transfection mediated by MEL-A-containing OH liposomes was >10 times higher than that of non-condensed DNA transfection. In contrast, the efficiency of pre-condensed DNA transfection mediated by OH liposomes was only 1.5 times higher than that of non-condensed DNA transfection. MEL-A did not influence plasmid DNA encapsulation by cationic liposomes, but it greatly accelerated the nuclear delivery of pre-condensed plasmid DNA. Our findings indicate that MEL-A and protamine synergistically accelerate the nuclear delivery of foreign gene and consequently promote gene transfection efficiency.
Collapse
|
38
|
Dhanoya A, Wang T, Keshavarz-Moore E, Fassati A, Chain BM. Importin-7 mediates nuclear trafficking of DNA in mammalian cells. Traffic 2013; 14:165-75. [PMID: 23067392 PMCID: PMC3672689 DOI: 10.1111/tra.12021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 10/10/2012] [Accepted: 10/15/2012] [Indexed: 01/06/2023]
Abstract
Eukaryotic cells have the ability to uptake and transport endogenous and exogenous DNA in their nuclei, however little is known about the specific pathways involved. Here we show that the nuclear transport receptor importin 7 (imp7) supports nuclear import of supercoiled plasmid DNA and human mitochondrial DNA in a Ran and energy-dependent way. The imp7-dependent pathway was specifically competed by excess DNA but not by excess of maltose-binding protein fused with the classical nuclear localizing signal (NLS) or the M9 peptides. Transport of DNA molecules complexed with poly-l-lysine was impaired in intact cells depleted of imp7, and DNA complexes remained localized in the cytoplasm. Poor DNA nuclear import in cells depleted of imp7 directly correlated with lower gene expression levels in these cells compared to controls. Inefficient nuclear import of transfected DNA induced greater upregulation of the interferon pathway, suggesting that rapid DNA nuclear import may prevent uncontrolled activation of the innate immune response. Our results provide evidence that imp7 is a non-redundant component of an intrinsic pathway in mammalian cells for efficient accumulation of exogenous and endogenous DNA in the nucleus, which may be critical for the exchange of genetic information between mitochondria and nuclear genomes and to control activation of the innate immune response.
Collapse
Affiliation(s)
- Arjun Dhanoya
- The Advanced Centre for Biochemical Engineering, University College LondonTorrington Place, London, WC1E 7JE, UK
| | - Tse Wang
- Division of Infection and Immunity, MRC Centre for Medical Molecular Virology, University College LondonCruciform Building, Gower Street, London, WC1 6BT, UK
- The Wohl Virion Centre, University College LondonCruciform Building, Gower Street, London, WC1 6BT, UK
| | - Eli Keshavarz-Moore
- The Advanced Centre for Biochemical Engineering, University College LondonTorrington Place, London, WC1E 7JE, UK
| | - Ariberto Fassati
- Division of Infection and Immunity, MRC Centre for Medical Molecular Virology, University College LondonCruciform Building, Gower Street, London, WC1 6BT, UK
- The Wohl Virion Centre, University College LondonCruciform Building, Gower Street, London, WC1 6BT, UK
| | - Benjamin M Chain
- Division of Infection and Immunity, MRC Centre for Medical Molecular Virology, University College LondonCruciform Building, Gower Street, London, WC1 6BT, UK
| |
Collapse
|
39
|
Biomaterial-Based Vectors for Targeted Delivery of Nucleic Acids to the Nervous System. DRUG DELIVERY SYSTEMS: ADVANCED TECHNOLOGIES POTENTIALLY APPLICABLE IN PERSONALISED TREATMENT 2013. [DOI: 10.1007/978-94-007-6010-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages. Proc Natl Acad Sci U S A 2012; 109:18482-7. [PMID: 23091024 DOI: 10.1073/pnas.1216635109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A number of prokaryotic proteins have been shown to contain nuclear localization signals (NLSs), although its biological role remains sometimes unclear. Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. We predicted NLSs within the TPs of bacteriophages from diverse families and hosts and, indeed, the TPs of Φ29, Nf, PRD1, Bam35, and Cp-1, out of seven TPs tested, were found to localize to the nucleus when expressed in mammalian cells. Detailed analysis of Φ29 TP led us to identify a bona fide NLS within residues 1-37. Importantly, gene delivery into the eukaryotic nucleus is enhanced by the presence of Φ29 TP attached to the 5' DNA ends. These findings show a common feature of TPs from diverse bacteriophages targeting the eukaryotic nucleus and suggest a possible common function by facilitating the horizontal transfer of genes between prokaryotes and eukaryotes.
Collapse
|
41
|
Nanoparticle-based delivery for the treatment of inner ear disorders. Curr Opin Otolaryngol Head Neck Surg 2012; 19:388-96. [PMID: 21897248 DOI: 10.1097/moo.0b013e32834aa3a8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The delivery of targetable synthetic vectors that can carry a variety of drugs, proteins, and nucleic acids, such as DNA and small interfering RNA (siRNA), to mammalian cells is important as a potential therapeutic system that avoids the problems that are associated with viruses. RECENT FINDINGS The so-called multifunctional nanocarriers that are equipped with several functions, such as targetability, shelter from the immune system, and opsonization, and are capable of delivering payload across the nuclear envelope, have been synthesized. To improve transfection efficiency, a group of novel peptides have been attached to the surface of the carrier that will enhance endosomal escape and promote nuclear entry. The targeting of tropomyocin receptor kinase B (TrkB) with ligands enhances uptake in spiral ganglion cell culture. Treatment cargos have included growth factors such as the Math-1 gene, short hairpin RNA, and steroids. The problems with current synthetic nanocarriers are poorer selectivity, internalization, and transfection rate compared with viral vectors. SUMMARY Within a few years, when the synthetic vectors have been optimized, the first human drugs/proteins/gene product-based therapies will become available in a phase I study.
Collapse
|
42
|
Abstract
The discovery of RNA interference has given a new lease on life to both the chemistry of oligonucleotides and chemical approaches for the intracellular delivery of nucleic acids. In particular, delivery of siRNA, whether in vitro for screening and target validation purposes or in humans as a new class of drugs, may revolutionize our approach to therapy. Their impact could equal that of the bioproduction and various uses of monoclonal antibodies today. Unfortunately, global pharmaceutical companies again seem to be waiting to buy the next Genentech or Genzyme of gene silencing rather than investing research and development into this promising area of research. Gene silencing encounters barriers similar to gene addition and hence may benefit from the extra decade of experience brought by gene therapy. "Chemical" transfection of cells in culture has become routine, and this Account discusses some of the reasons this success has not extended to nonviral gene therapy trials, most of which do not progress beyond the phase 2 stage. The author also discusses a (much debated) mechanism of nucleic acid cell entry and subsequent release of the polycationic particles into the cytoplasm. Both topics should be useful to those interested in delivery of siRNA. The move from gene therapy toward siRNA as an oligonucleotide-based therapy strategy provides a much wider range of druggable targets. Even though these molecules are a hundredfold smaller than a gene, they are delivered via similar cellular mechanisms. Their complexes with cationic polymers are less stable than those with a higher number of phosphate groups, which may be compensated by siRNA concatemerization or by chemical conjugation with the cationic carrier. Thus chemistry is again desperately needed.
Collapse
Affiliation(s)
- Jean-Paul Behr
- Chimie Génétique, Université de Strasbourg, route du Rhin, 67401 Illkirch, and Polyplus-transfection SA, Bioparc, 67400 Illkirch, France
| |
Collapse
|
43
|
Rosada RS, Silva CL, Santana MHA, Nakaie CR, de la Torre LG. Effectiveness, against tuberculosis, of pseudo-ternary complexes: Peptide-DNA-cationic liposome. J Colloid Interface Sci 2012; 373:102-9. [DOI: 10.1016/j.jcis.2011.09.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 12/31/2022]
|
44
|
Yamada Y, Akita H, Harashima H. Multifunctional Envelope-Type Nano Device (MEND) for Organelle Targeting Via a Stepwise Membrane Fusion Process. Methods Enzymol 2012; 509:301-26. [DOI: 10.1016/b978-0-12-391858-1.00015-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Symens N, Soenen SJ, Rejman J, Braeckmans K, De Smedt SC, Remaut K. Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Adv Drug Deliv Rev 2012; 64:78-94. [PMID: 22210278 DOI: 10.1016/j.addr.2011.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 02/06/2023]
Abstract
The nucleocytoplasmic partitioning of nanoparticles as a result of cell division is highly relevant to the field of nonviral gene delivery. We reviewed the literature on the intracellular distribution of cell organelles (the endosomal vesicles, Golgi apparatus, endoplasmic reticulum and nucleus), foreign macromolecules (dextrans and plasmid DNA) and inorganic nanoparticles (gold, quantum dot and iron oxide) during mitosis. For nonviral gene delivery particles (lipid- or polymer-based), indirect proof of nuclear entry during mitosis is provided. We also describe how retroviruses and latent DNA viruses take advantage of mitosis to transfer their viral genome and segregate their episomes into the host daughter nuclei. Based on this knowledge, we propose strategies to improve nonviral gene delivery in dividing cells with the ultimate goal of designing nonviral gene delivery systems that are as efficient as their viral counterparts but non-immunogenic, non-oncogenic and easy and inexpensive to prepare.
Collapse
Affiliation(s)
- Nathalie Symens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
46
|
Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 2011; 161:554-65. [PMID: 22123560 DOI: 10.1016/j.jconrel.2011.11.014] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 01/22/2023]
Abstract
Gene therapy offers great opportunities for the treatment of severe diseases including cancer. In recent years the design of synthetic carriers for nucleic acid delivery has become a research field of increasing interest. Studies on the delivery of plasmid DNA (pDNA) have brought up a variety of gene delivery vehicles. The more recently emerged gene silencing strategy by the intracellular delivery of small interfering RNA (siRNA) takes benefit from existing expertise in pDNA transfer. Despite common properties however, delivery of siRNA also faces distinct challenges due to apparent differences in size, stability of the formed nucleic acid complexes, the location and mechanism of action. This review emphasizes the common aspects and main differences between pDNA and siRNA delivery, taking into consideration a wide spectrum of polymer-based, lipidic and peptide carriers. Challenges and opportunities which result from these differences as well as the recent progress made in the optimization of carrier design are presented.
Collapse
Affiliation(s)
- Claudia Scholz
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany
| | | |
Collapse
|
47
|
Wang Y, Canine BF, Hatefi A. HSV-TK/GCV cancer suicide gene therapy by a designed recombinant multifunctional vector. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2011; 7:193-200. [PMID: 20817124 PMCID: PMC3024463 DOI: 10.1016/j.nano.2010.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/24/2010] [Accepted: 08/21/2010] [Indexed: 11/15/2022]
Abstract
The objective of this research was to evaluate the efficacy of a recombinant nonviral vector for targeted delivery of a thymidine kinase (TK) suicide gene to xenograft SKOV-3 tumors. The vector was genetically engineered and used to condense the TK gene into particles of less than 100 nm. The nanoparticles were used to transfect and kill SKOV-3 cancer cells in combination with ganciclovir (GCV) in vitro. The results demonstrated that the vector could effectively kill up to 80% of the SKOV-3 cancer cells. In the next step, the ability of the vector to deliver the TK suicide gene to xenograft tumors of SKOV-3 was studied. The results demonstrated that the vector could transfect tumors and result in significant tumor size reduction during the period that GCV was administered. Administration of GCV for at least 3 weeks post transfection was of paramount importance. These results illustrate the therapeutic efficacy and application of a designed recombinant nonviral vector in cancer gene therapy. FROM THE CLINICAL EDITOR A recombinant nonviral vector is used to deliver a suicide thymidine kinase gene under gancylovir control in vitro to SKOV-3 cancer cells with 70% efficiency. Follow on testing in a xenograft tumor demonstrated tumor reduction persisting for three weeks.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Pharmaceutical Sciences, Center for Integrated Biotechnology, Washington State University, Pullman, WA 99164, USA
| | - Brenda F. Canine
- Department of Pharmaceutical Sciences, Center for Integrated Biotechnology, Washington State University, Pullman, WA 99164, USA
| | - Arash Hatefi
- Department of Pharmaceutical Sciences, Center for Integrated Biotechnology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
48
|
van Gaal EVB, Oosting RS, van Eijk R, Bakowska M, Feyen D, Kok RJ, Hennink WE, Crommelin DJA, Mastrobattista E. DNA nuclear targeting sequences for non-viral gene delivery. Pharm Res 2011; 28:1707-22. [PMID: 21424159 PMCID: PMC3109246 DOI: 10.1007/s11095-011-0407-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/21/2011] [Indexed: 12/02/2022]
Abstract
Purpose To evaluate if introduction of DNA nuclear Targeting Sequences (DTS; i.e. recognition sequences for endogenous DNA-binding proteins) in plasmid DNA (pDNA) leads to increased transfection efficiency of non-viral gene delivery by virtue of enhanced nuclear import of the pDNA. Methods A set of DTS was identified and cloned into EGFP-reporter plasmids controlled by the CMV-promoter. These pDNA constructs were delivered into A431 and HeLa cells using standard electroporation, pEI-based polyfection or lipofection methods. The amount of pDNA delivered into the nucleus was determined by qPCR; transfection efficiency was determined by flow cytometry. Results Neither of these DTS increased transgene expression. We varied several parameters (mitotic activity, applied dose and delivery strategy), but without effect. Although upregulated transgene expression was observed after stimulation with TNF-α, this effect could be ascribed to non-specific upregulation of transcription rather than enhanced nuclear import. Nuclear copy numbers of plasmids containing or lacking a DTS did not differ significantly after lipofectamine-based transfection in dividing and non-dividing cells. Conclusion No beneficial effects of DTS on gene expression or nuclear uptake were observed in this study.
Collapse
Affiliation(s)
- Ethlinn V B van Gaal
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CA, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tavernier G, Andries O, Demeester J, Sanders NN, De Smedt SC, Rejman J. mRNA as gene therapeutic: How to control protein expression. J Control Release 2011; 150:238-47. [DOI: 10.1016/j.jconrel.2010.10.020] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
|
50
|
|