1
|
Brunel LG, Cai B, Hull SM, Han U, Wungcharoen T, Fernandes-Cunha GM, Seo YA, Johansson PK, Heilshorn SC, Myung D. In situ UNIversal Orthogonal Network (UNION) bioink deposition for direct delivery of corneal stromal stem cells to corneal wounds. Bioact Mater 2025; 48:414-430. [PMID: 40083774 PMCID: PMC11903395 DOI: 10.1016/j.bioactmat.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
The scarcity of human donor corneal graft tissue worldwide available for corneal transplantation necessitates the development of alternative therapeutic strategies for treating patients with corneal blindness. Corneal stromal stem cells (CSSCs) have the potential to address this global shortage by allowing a single donor cornea to treat multiple patients. To directly deliver CSSCs to corneal defects within an engineered biomatrix, we developed a UNIversal Orthogonal Network (UNION) collagen bioink that crosslinks in situ with a bioorthogonal, covalent chemistry. This cell-gel therapy is optically transparent, stable against contraction forces exerted by CSSCs, and permissive to the efficient growth of corneal epithelial cells. Furthermore, CSSCs remain viable within the UNION collagen gel precursor solution under standard storage and transportation conditions. This approach promoted corneal transparency and re-epithelialization in a rabbit anterior lamellar keratoplasty model, indicating that the UNION collagen bioink serves effectively as an in situ-forming, suture-free therapy for delivering CSSCs to corneal wounds.
Collapse
Affiliation(s)
- Lucia G. Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sarah M. Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Uiyoung Han
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Thitima Wungcharoen
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Youngyoon Amy Seo
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Patrik K. Johansson
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - David Myung
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
2
|
Marasini S, Dean SJ, Swift S, Craig JP. Comparison of antimicrobial efficacy and safety of pulsed versus continuous wave UVC. Cont Lens Anterior Eye 2025:102437. [PMID: 40404530 DOI: 10.1016/j.clae.2025.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025]
Abstract
PURPOSE Preclinical studies have confirmed efficacy of ultraviolet C (UVC) light in managing superficial corneal infections. This study sought to establish if delivering UVC in pulsed form enhances antimicrobial efficacy compared to continuous delivery, and whether pulsed delivery in ocular tissue results in deeper penetration or introduces additional safety concerns. METHODS This study compared antimicrobial efficacy, depth of penetration, and safety of continuous versus pulsed wave delivery of UVC (20 Hz, 50% duty cycle) in three experimental setups. Firstly, efficacy was assessed using a simulated in vitro corneal wound model infected with bioluminescent P. aeruginosa, comparing matched-fluence, 0 to 120 s continuous wave versus 0 to 240 s pulsed wave exposures. Secondly, penetrability was evaluated in an ex vivo porcine corneal model (0 to 650 µm thickness). Lastly, safety was analyzed by immunohistochemistry to assess DNA photoproducts, cyclobutene pyrimidine dimers (CPD), focusing on their spatial distribution and density after UVC exposure (579 mJ/cm2). RESULTS Comparable antimicrobial efficacy was observed for continuous and pulsed wave UVC (50% duty cycle) for all exposure durations (p > 0.05), except the 40 s pulsed wave, which was more effective than the 20 s continuous wave (p < 0.05). Corneal UVC transmission was limited and comparable for both delivery modes (all p > 0.05). Immunohistochemistry confirmed CPD were confined to the superficial corneal epithelial layers, with no significant differences in depth or extent of CPD formation between pulsed and continuous wave delivery modes (p > 0.05). CONCLUSIONS In in vitro and ex vivo testing, pulsed wave UVC demonstrated antimicrobial efficacy that was at least as good as continuous wave delivery, demonstrated comparable corneal depth penetration, and similar spatial distribution of CPD.
Collapse
Affiliation(s)
- Sanjay Marasini
- Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand.
| | - Simon J Dean
- Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand.
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand.
| | - Jennifer P Craig
- Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Blackburn B, Dutra BAL, Hammoud B, Scarcelli G, Dupps WJ, Randleman JB, Wilson SE. Riboflavin-UV crosslinking of the cornea: Wound healing and biomechanics. Exp Eye Res 2025; 254:110321. [PMID: 40054831 DOI: 10.1016/j.exer.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/04/2025] [Accepted: 03/04/2025] [Indexed: 04/08/2025]
Abstract
The corneal wound healing response to Riboflavin-ultraviolet-crosslinking (RIB-UV-CXL) depends on the specific method used in treatment. The predominance of clinical evidence supports the classical "epithelium-off" RIB-UV-CXL method being more effective in halting ectasia progression than various "epithelium-on" methods, where the corneal epithelium is maintained intact. Corneal transparency results from the precise organization of collagen fibrils and extracellular matrix, along with transparent keratocytes. The mild and transient stromal opacity seen after standard RIB-UV-CXL is linked to changes in hydration, cellularity, and matrix composition. As hydration normalizes, opacity arises from the development of corneal fibroblasts and their secretion of disordered extracellular matrix materials including collagens. Over months, as the epithelial basement membrane regenerates, transitioning stromal cells either undergo apoptosis or revert to keratocan-positive keratocytes, restoring stromal transparency. In normal healing after standard RIB-UV-CXL, the stroma is eventually repopulated predominantly by keratocytes without significant persisting fibroblasts, immune cells, or myofibroblasts. Biomechanical studies have extensively explored how CXL strengthens corneal tissue, providing insight into its therapeutic mechanisms. The purpose of this review is to evaluate the wound healing response and biomechanical changes in the cornea following RIB-UV-CXL.
Collapse
Affiliation(s)
- Brecken Blackburn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Barbara A L Dutra
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Ophthalmology, University of Sao Paulo, Sao Paulo, Brazil
| | - Bassel Hammoud
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - William J Dupps
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - J Bradley Randleman
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
4
|
Dutra BAL, Villabona-Martinez V, Wilson SE. The Influence of the Epithelium Removal Method on the Outcomes of Photorefractive Keratectomy. J Refract Surg 2025; 41:e510-e518. [PMID: 40340683 DOI: 10.3928/1081597x-20250320-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
PURPOSE To compare the outcomes and complications reported for alternative methods of removal of the corneal epithelium during photorefractive keratectomy (PRK). METHODS Literature review. RESULTS Excimer laser-based refractive surgery treatments are safe and effective, and PRK is one of the most common methods used to treat refractive errors. Conventional PRK methods involve removing the corneal epithelium overlying the intended stromal ablation with mechanical debridement, dilute ethanol exposure, or a rotating brush, and each method is associated with potential complications. An alternative method in which the corneal epithelium overlying the intended stromal ablation is removed with the excimer laser followed by refractive stromal ablation (a single-step, "no-touch" method) termed transepithelial PRK (transPRK) continues to evolve and has advantages and disadvantages compared to the other methods. CONCLUSIONS Mechanical blade scrape PRK and alcohol-assisted PRK techniques have been most used and yield excellent results. However, alcohol-assisted epithelial removal triggers increased keratocyte death at the time of surgery that is hypothesized to underlie the development of breakthrough haze after PRK with mitomycin C. TransPRK continues to have limitations but as the technique evolves it appears to potentially be a more precise method. [J Refract Surg. 2025;41(5):e510-e518.].
Collapse
|
5
|
Passaro ML, Rinaldi M, Morgera V, Feola A, Romano V, Troisi M, Strianese D, Piscopo R, Messina S, Romano A, Porcellini A, Pezone A, Costagliola C. The oxidative-stress-senescence axis in keratoconus: new insights into corneal degeneration. Front Mol Biosci 2025; 12:1539542. [PMID: 40343259 PMCID: PMC12058492 DOI: 10.3389/fmolb.2025.1539542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/09/2025] [Indexed: 05/11/2025] Open
Abstract
Keratoconus is a bilateral and asymmetric degenerative eye disease that causes corneal thinning and bowing, leading to irregular astigmatism and vision loss. Although environmental and genetic factors contribute to the disease's development, the exact cause and underlying pathological mechanism remain unknown. In this review, we comprehensively explore the latest pathophysiological mechanisms of keratoconus, focusing on oxidative damage and inflammation. Senescence emerges as a key driver of keratoconus pathogenesis. Understanding these common elements enhances our understanding of the disease and paves the way for innovative therapeutic approaches to keratoconus.
Collapse
Affiliation(s)
- Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Valentina Morgera
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Antonia Feola
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Eye Clinic, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Mario Troisi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Diego Strianese
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Raffaele Piscopo
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, Naples, Italy
| | | | - Antonella Romano
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Antonio Porcellini
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
6
|
Qu S, Zheng S, Muhammad S, Huang L, Guo B. An exploration of the ocular mysteries linking nanoparticles to the patho-therapeutic effects against keratitis. J Nanobiotechnology 2025; 23:184. [PMID: 40050881 PMCID: PMC11887204 DOI: 10.1186/s12951-025-03230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Microbial keratitis, a sight-threatening corneal infection, remains a significant global health concern. Conventional therapies using antimicrobial agents often suffers from limitations such as poor drug penetration, side effects, and occurrence of drug resistance, with poor prognosis. Novel treatment techniques, with their unique properties and targeted delivery capabilities, offers a promising solution to overcome these challenges. This review delves into timely update of the state-of-the-art advance therapeutics for keratitis treatment. The diverse microbial origins of keratitis, including viral, bacterial, and fungal infections, exploring their complex pathogenic mechanisms, followed by the drug resistance mechanisms in keratitis pathogens are reviewed briefly. Importantly, the emerging therapeutic techniques for keratitis treatment including piezodynamic therapy, photothermal therapy, photodynamic therapy, nanoenzyme therapy, and metal ion therapy are summarized in this review showcasing their potential to overcome the limitations of traditional treatments. The challenges and future directions for advance therapies and nanotechnology-based approaches are discussed, focusing on safety, targeting strategies, drug resistance, and combination therapies. This review aims to inspire researchers to revolutionize and accelerate the development of functional materials using different therapies for keratitis treatment.
Collapse
Affiliation(s)
- Siying Qu
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province, 519000, China
| | - Shuihua Zheng
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province, 519000, China
| | - Sibtain Muhammad
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Liang Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province, 519000, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Meek KM, Knupp C, Lewis PN, Morgan SR, Hayes S. Structural control of corneal transparency, refractive power and dynamics. Eye (Lond) 2025; 39:644-650. [PMID: 38396030 PMCID: PMC11885422 DOI: 10.1038/s41433-024-02969-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/11/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The cornea needs to be transparent to visible light and precisely curved to provide the correct refractive power. Both properties are governed by its structure. Corneal transparency arises from constructive interference of visible light due to the relatively ordered arrangement of collagen fibrils in the corneal stroma. The arrangement is controlled by the negatively charged proteoglycans surrounding the fibrils. Small changes in fibril organisation can be tolerated but larger changes cause light scattering. Corneal keratocytes do not scatter light because their refractive index matches that of the surrounding matrix. When activated, however, they become fibroblasts that have a lower refractive index. Modelling shows that this change in refractive index significantly increases light scatter. At the microscopic level, the corneal stroma has a lamellar structure, the parallel collagen fibrils within each lamella making a large angle with those of adjacent lamellae. X-ray scattering has shown that the lamellae have preferred orientations in the human cornea: inferior-superior and nasal-temporal in the central cornea and circumferential at the limbus. The directions at the centre of the cornea may help withstand the pull of the extraocular muscles whereas the pseudo-circular arrangement at the limbus supports the change in curvature between the cornea and sclera. Elastic fibres are also present; in the limbus they contain fibrillin microfibrils surrounding an elastin core, whereas at the centre of the cornea, they exist as thin bundles of fibrillin-rich microfibrils. We present a model based on the structure described above that may explain how the cornea withstands repeated pressure changes due to the ocular pulse.
Collapse
Affiliation(s)
- Keith M Meek
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Carlo Knupp
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Philip N Lewis
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Siân R Morgan
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Sally Hayes
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
8
|
Hatami-Marbini H, Emu ME. Role of sulfated GAGs in shear mechanical properties of human and porcine cornea. Exp Eye Res 2025; 251:110181. [PMID: 39626838 DOI: 10.1016/j.exer.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/18/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024]
Abstract
The corneal extracellular matrix is mainly composed of collagen fibers, proteoglycans (PGs), and glycosaminoglycans (GAGs). The present work was done to investigate the effect of GAGs on linear viscoelastic shear properties of human and porcine cornea. A clear understanding of structural functions of GAGs could result in the development of new intervention methods for diseased conditions that involve changes to the expression of GAGs/PGs. Here, we used keratanase II enzyme to deplete sulfated GAGs from porcine and human donor corneal disks. After quantifying the GAG content, collagen fiber diameter, and interfibrillar spacings of control and GAG-depleted specimens using the Blyscan assay and transmission electron microscopy, we performed torsional rheometry to determine their shear properties at different levels of axial strain. We found that the GAG content of control human (52.35 ± 3.40 μg/mg dry tissue) and porcine cornea (48.59 ± 7.79 μg/mg dry tissue) significantly reduced following keratanase II enzyme treatment. Moreover, we observed that the diameter of collagen fibers (28.78 ± 2.33 nm) and interfibrillar spacing (45.93 ± 2.33 nm) of human specimens were significantly smaller than the collagen fiber diameter (34.77 ± 21.90 nm) and interfibrillar spacing (54.28 ± 3.99 nm) of porcine corneal samples. Although GAG depletion did not have any significant effect on the collagen fiber diameter, it significantly increased the interfibrillar spacing in both porcine and human samples. Within the range of linear viscoelastic behavior, the shear stiffness of human and porcine corneal samples did not depend on the shear strain but significantly increased with increasing the applied axial strain. The average complex shear modulus was found to be between 1.0 KPa and 6.5 KPa and between 8.5 KPa and 31 KPa for control porcine and human corneal discs, respectively. The GAG removal caused significant reduction of shear stiffness in both human and porcine corneal samples. Based on these findings, we conclude that sulfated GAGs are important in defining shear properties of porcine and human corneas and significant GAG content variation adversely affects corneal shear modulus.
Collapse
Affiliation(s)
- Hamed Hatami-Marbini
- Mechanical and Industrial Engineering Department, University of Illinois Chicago, Chicago, IL, USA.
| | - Md Esharuzzaman Emu
- Mechanical and Industrial Engineering Department, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Segars KL, Azzari N, Cole M, Kushimi L, Rapaka S, Rich CB, Trinkaus-Randall V. Diverse calcium signaling profiles regulate migratory behavior in avascular wound healing and aberrant signal hierarchy occurs early in diabetes. Am J Physiol Cell Physiol 2024; 327:C1051-C1072. [PMID: 39129489 PMCID: PMC11482046 DOI: 10.1152/ajpcell.00249.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
In avascular wound repair, calcium signaling events are the predominant mechanism cells use to transduce information about stressors in the environment into an effective and coordinated migratory response. Live cell imaging and computational analysis of corneal epithelial wound healing revealed that signal initiation and propagation at the wound edge are highly ordered, with groups of cells engaging in cyclical patterns of initiation and propagation. The cells in these groups exhibit a diverse range of signaling behavior, and dominant "conductor cells" drive activity in groups of lower-signaling neighbors. Ex vivo model systems reveal that conductor cells are present in wing cell layers of the corneal epithelium and that signaling propagates both within and between wing and basal layers. There are significant aberrations in conductor phenotype and interlayer propagation in type II diabetic murine models, indicating that signal hierarchy breakdown is an early indicator of disease. In vitro models reveal that signaling profile diversity and conductor cell phenotype is eliminated with P2X7 inhibition and is altered in Pannexin-1 or P2Y2 but not Connexin-43 inhibition. Conductor cells express significantly less P2X7 than their lower-signaling neighbors and exhibit significantly less migratory behavior after injury. Together, our results show that the postinjury calcium signaling cascade exhibits significantly more ordered and hierarchical behavior than previously thought, that proteins previously shown to be essential for regulating motility are also essential for determining signaling phenotype, and that loss of signal hierarchy integrity is an early indicator of disease state. NEW & NOTEWORTHY Calcium signaling in corneal epithelial cells after injury is highly ordered, with groups of cells engaged in cyclical patterns of event initiation and propagation driven by high-signaling cells. Signaling behavior is determined by P2X7, Pannexin-1, and P2Y2 and influences migratory behavior. Signal hierarchy is observed in healthy ex vivo models after injury and becomes aberrant in diabetes. This represents a paradigm shift, as signaling was thought to be random and determined by factors in the environment.
Collapse
Affiliation(s)
- Kristen L Segars
- Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Nicholas Azzari
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Malia Cole
- STaRS Program, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Landon Kushimi
- Department of Computer Science, Boston University Center for Computing and Data Sciences, Boston, Massachusetts, United States
| | - Srikar Rapaka
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Celeste B Rich
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Vickery Trinkaus-Randall
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
- Department of Ophthalmology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
10
|
Brunel LG, Cai B, Hull SM, Han U, Wungcharoen T, Fernandes-Cunha GM, Seo YA, Johansson PK, Heilshorn SC, Myung D. In Situ UNIversal Orthogonal Network (UNION) Bioink Deposition for Direct Delivery of Corneal Stromal Stem Cells to Corneal Wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613997. [PMID: 39386574 PMCID: PMC11463654 DOI: 10.1101/2024.09.19.613997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The scarcity of human donor corneal graft tissue worldwide available for corneal transplantation necessitates the development of alternative therapeutic strategies for treating patients with corneal blindness. Corneal stromal stem cells (CSSCs) have the potential to address this global shortage by allowing a single donor cornea to treat multiple patients. To directly deliver CSSCs to corneal defects within an engineered biomatrix, we developed a UNIversal Orthogonal Network (UNION) collagen bioink that crosslinks in situ with a bioorthogonal, covalent chemistry. This cell-gel therapy is optically transparent, stable against contraction forces exerted by CSSCs, and permissive to the efficient growth of corneal epithelial cells. Furthermore, CSSCs remain viable within the UNION collagen gel precursor solution under standard storage and transportation conditions. This approach promoted corneal transparency and re-epithelialization in a rabbit anterior lamellar keratoplasty model, indicating that the UNION collagen bioink serves effectively as an in situ -forming, suture-free therapy for delivering CSSCs to corneal wounds. TEASER. Corneal stem cells are delivered within chemically crosslinked collagen as a transparent, regenerative biomaterial therapy.
Collapse
|
11
|
Kumar R, Tripathi R, Sinha NR, Mohan RR. RNA-Seq Analysis Unraveling Novel Genes and Pathways Influencing Corneal Wound Healing. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 39240550 PMCID: PMC11383191 DOI: 10.1167/iovs.65.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Purpose Transdifferentiation of corneal fibroblasts to myofibroblasts in the stroma is a central mechanistic event in corneal wound healing. This study sought to characterize genes and pathways influencing transdifferentiation of human corneal fibroblasts (hCSFs) to human corneal myofibroblasts (hCMFs) using RNA sequencing (RNA-seq) to develop comprehensive mechanistic information and identify newer targets for corneal fibrosis management. Methods Primary hCSFs were derived from donor human corneas. hCMFs were generated by treating primary hCSFs with transforming growth factor β1 (TGFβ1; 5 ng/mL) for 72 hours under serum-free conditions. RNA was extracted using the RNeasy Plus Mini Kit and subjected to RNA-seq analysis after quality control testing. Differential gene expression, pathway enrichment, and protein-protein network analyses were performed using DESeq2, GSEA/PANTHER/Reactome, and Cytoscape/cytoHubba, respectively. Results RNA-seq analysis of hCMFs and hCSFs identified 3843 differentially expressed genes and transcripts (adjusted P < 0.05). The log(fold change) ≥ ±1.5 filter showed 816 upregulated and 739 downregulated genes between two cell types. Pathway enrichment analysis showed the highest normalized enrichment score for epithelial-to-mesenchymal transition (5.569), followed by mTORC1 signaling (2.949), angiogenesis (2.176), and TGFβ signaling (2.008). Protein-protein interaction network analysis identified the top 20 nodes influencing corneal myofibroblast development. The expression of a novel MXRA5 in corneal stroma and its association with corneal fibrosis was verified by real-time quantitative reverse transcription PCR and immunofluorescence. RNA-seq and gene count files were submitted to the NCBI Gene Expression Omnibus (GSE260476). Conclusions This study identified several novel genes involved in myofibroblast development, offering potential targets for developing newer therapeutic strategies for corneal fibrosis.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
| | - Ratnakar Tripathi
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
12
|
Martinez VV, Dutra BAL, Sampaio LP, Shiju TM, Santhiago MR, Wilson SE. Topical Losartan Inhibition of Myofibroblast Generation in Rabbit Corneas With Acute Incisions. Cornea 2024; 43:883-889. [PMID: 38277165 PMCID: PMC11272906 DOI: 10.1097/ico.0000000000003476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
PURPOSE The purpose of this study was to study whether deep central corneal incisions close during topical losartan treatment and the effect of topical losartan on myofibroblast generation after incisions in rabbit corneas. METHODS Rabbits (12) had a 0.35-mm deep radial incision from the center of the cornea into the limbus in 1 eye that was approximated with a single 10-0 nylon suture 1 mm inside the limbus. The incision was treated with 50 μL of topical 0.8 mg/mL losartan or 50 μL of balanced salt solution vehicle 6 times per day for 1 month. Standardized slitlamp photographs of the central incisions were analyzed for opacity with ImageJ before euthanasia. Triplex IHC was performed on cryofixed corneas for myofibroblast marker alpha-smooth muscle actin, mesenchymal cell marker vimentin, and basement membrane marker laminin alpha-5. Stromal α-SMA-positive myofibroblasts surrounding the incisions were quantitated with ImageJ. RESULTS Topical losartan compared with vehicle did not affect closure of the radial incisions or the opacity that developed surrounding the incisions at 1 month after injury. Topical losartan compared with vehicle did significantly decrease the average density of stromal myofibroblasts surrounding the incisions. CONCLUSIONS Topical losartan, a known inhibitor of transforming growth factor beta signaling, did not affect closure of deep corneal incisions. Losartan decreased myofibroblast generation surrounding nearly full-thickness radial corneal incisions compared with vehicle. The opacity at the incisions was not significantly affected by losartan-likely because corneal fibroblasts that develop in the stroma adjacent to the incisions were not changed by the losartan compared with the vehicle.
Collapse
Affiliation(s)
| | - Barbara Araujo Lima Dutra
- The Cole Eye Institute, The Cleveland Clinic, Cleveland,
Ohio
- Department of Ophthalmology at University of Sao Paulo, Sao
Paulo, Brazil
| | - Lycia Pedral Sampaio
- The Cole Eye Institute, The Cleveland Clinic, Cleveland,
Ohio
- Department of Ophthalmology at University of Sao Paulo, Sao
Paulo, Brazil
| | | | | | | |
Collapse
|
13
|
Ogata FT, Verma S, Coulson-Thomas VJ, Gesteira TF. TGF-β-Based Therapies for Treating Ocular Surface Disorders. Cells 2024; 13:1105. [PMID: 38994958 PMCID: PMC11240592 DOI: 10.3390/cells13131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The cornea is continuously exposed to injuries, ranging from minor scratches to deep traumas. An effective healing mechanism is crucial for the cornea to restore its structure and function following major and minor insults. Transforming Growth Factor-Beta (TGF-β), a versatile signaling molecule that coordinates various cell responses, has a central role in corneal wound healing. Upon corneal injury, TGF-β is rapidly released into the extracellular environment, triggering cell migration and proliferation, the differentiation of keratocytes into myofibroblasts, and the initiation of the repair process. TGF-β-mediated processes are essential for wound closure; however, excessive levels of TGF-β can lead to fibrosis and scarring, causing impaired vision. Three primary isoforms of TGF-β exist-TGF-β1, TGF-β2, and TGF-β3. Although TGF-β isoforms share many structural and functional similarities, they present distinct roles in corneal regeneration, which adds an additional layer of complexity to understand the role of TGF-β in corneal wound healing. Further, aberrant TGF-β activity has been linked to various corneal pathologies, such as scarring and Peter's Anomaly. Thus, understanding the molecular and cellular mechanisms by which TGF-β1-3 regulate corneal wound healing will enable the development of potential therapeutic interventions targeting the key molecule in this process. Herein, we summarize the multifaceted roles of TGF-β in corneal wound healing, dissecting its mechanisms of action and interactions with other molecules, and outline its role in corneal pathogenesis.
Collapse
Affiliation(s)
- Fernando T. Ogata
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA; (F.T.O.); (S.V.); (V.J.C.-T.)
| | - Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA; (F.T.O.); (S.V.); (V.J.C.-T.)
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Vivien J. Coulson-Thomas
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA; (F.T.O.); (S.V.); (V.J.C.-T.)
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA; (F.T.O.); (S.V.); (V.J.C.-T.)
| |
Collapse
|
14
|
Riau AK, Look Z, Yam GHF, Boote C, Ma Q, Han EJY, Binte M Yusoff NZ, Ong HS, Goh TW, Binte Halim NSH, Mehta JS. Impact of keratocyte differentiation on corneal opacity resolution and visual function recovery in male rats. Nat Commun 2024; 15:4959. [PMID: 38862465 PMCID: PMC11166667 DOI: 10.1038/s41467-024-49008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Intrastromal cell therapy utilizing quiescent corneal stromal keratocytes (qCSKs) from human donor corneas emerges as a promising treatment for corneal opacities, aiming to overcome limitations of traditional surgeries by reducing procedural complexity and donor dependency. This investigation demonstrates the therapeutic efficacy of qCSKs in a male rat model of corneal stromal opacity, underscoring the significance of cell-delivery quality and keratocyte differentiation in mediating corneal opacity resolution and visual function recovery. Quiescent CSKs-treated rats display improvements in escape latency and efficiency compared to wounded, non-treated rats in a Morris water maze, demonstrating improved visual acuity, while stromal fibroblasts-treated rats do not. Advanced imaging, including multiphoton microscopy, small-angle X-ray scattering, and transmission electron microscopy, revealed that qCSK therapy replicates the native cornea's collagen fibril morphometry, matrix order, and ultrastructural architecture. These findings, supported by the expression of keratan sulfate proteoglycans, validate qCSKs as a potential therapeutic solution for corneal opacities.
Collapse
Affiliation(s)
- Andri K Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Zhuojian Look
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Gary H F Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Craig Boote
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Qian Ma
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Evelina J Y Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
| | - Nur Zahirah Binte M Yusoff
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
| | - Hon Shing Ong
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore
- Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, 168751, Singapore
| | - Tze-Wei Goh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore
| | | | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, 169856, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore.
- Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, 168751, Singapore.
| |
Collapse
|
15
|
Trujillo Cubillo L, Gurdal M, Zeugolis DI. Corneal fibrosis: From in vitro models to current and upcoming drug and gene medicines. Adv Drug Deliv Rev 2024; 209:115317. [PMID: 38642593 DOI: 10.1016/j.addr.2024.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Fibrotic diseases are characterised by myofibroblast differentiation, uncontrolled pathological extracellular matrix accumulation, tissue contraction, scar formation and, ultimately tissue / organ dysfunction. The cornea, the transparent tissue located on the anterior chamber of the eye, is extremely susceptible to fibrotic diseases, which cause loss of corneal transparency and are often associated with blindness. Although topical corticosteroids and antimetabolites are extensively used in the management of corneal fibrosis, they are associated with glaucoma, cataract formation, corneoscleral melting and infection, imposing the need of far more effective therapies. Herein, we summarise and discuss shortfalls and recent advances in in vitro models (e.g. transforming growth factor-β (TGF-β) / ascorbic acid / interleukin (IL) induced) and drug (e.g. TGF-β inhibitors, epigenetic modulators) and gene (e.g. gene editing, gene silencing) therapeutic strategies in the corneal fibrosis context. Emerging therapeutical agents (e.g. neutralising antibodies, ligand traps, receptor kinase inhibitors, antisense oligonucleotides) that have shown promise in clinical setting but have not yet assessed in corneal fibrosis context are also discussed.
Collapse
Affiliation(s)
- Laura Trujillo Cubillo
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
16
|
Chandran C, Santra M, Rubin E, Geary ML, Yam GHF. Regenerative Therapy for Corneal Scarring Disorders. Biomedicines 2024; 12:649. [PMID: 38540264 PMCID: PMC10967722 DOI: 10.3390/biomedicines12030649] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 05/09/2024] Open
Abstract
The cornea is a transparent and vitally multifaceted component of the eye, playing a pivotal role in vision and ocular health. It has primary refractive and protective functions. Typical corneal dysfunctions include opacities and deformities that result from injuries, infections, or other medical conditions. These can significantly impair vision. The conventional challenges in managing corneal ailments include the limited regenerative capacity (except corneal epithelium), immune response after donor tissue transplantation, a risk of long-term graft rejection, and the global shortage of transplantable donor materials. This review delves into the intricate composition of the cornea, the landscape of corneal regeneration, and the multifaceted repercussions of scar-related pathologies. It will elucidate the etiology and types of dysfunctions, assess current treatments and their limitations, and explore the potential of regenerative therapy that has emerged in both in vivo and clinical trials. This review will shed light on existing gaps in corneal disorder management and discuss the feasibility and challenges of advancing regenerative therapies for corneal stromal scarring.
Collapse
Affiliation(s)
- Christine Chandran
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Elizabeth Rubin
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Moira L. Geary
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
17
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
18
|
Mishra S, Manzanares MA, Prater J, Culp D, Gold LI. Calreticulin accelerates corneal wound closure and mitigates fibrosis: Potential therapeutic applications. J Cell Mol Med 2024; 28:e18027. [PMID: 37985392 PMCID: PMC10902309 DOI: 10.1111/jcmm.18027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
The processes involved in regeneration of cutaneous compared to corneal tissues involve different intrinsic mechanisms. Importantly, cutaneous wounds involve healing by angiogenesis but vascularization of the cornea obscures vision. Previous studies showed that topically applied calreticulin (CALR) healed full-thickness excisional animal wounds by a tissue regenerative process markedly enhancing repair without evoking angiogenesis. In the current study, the application of CALR in a rabbit corneal injury model: (1) accelerated full wound closure by 3 days (2) accelerated delayed healing caused by corticosteroids, routinely used to prevent post-injury inflammation, by 6 days and (3) healed wounds without vascularization or fibrosis/hazing. In vitro, CALR stimulated proliferation of human corneal epithelial cells (CE) and corneal stromal cells (keratocytes) by 1.5-fold and 1.4-fold, respectively and induced migration of CE cells and keratocytes, by 72% and 85% compared to controls of 44% and 59%, respectively. As a marker of decreased fibrosis, CALR treated corneal wounds showed decreased immunostaining for α-smooth muscle actin (α-SMA) by keratocytes and following CALR treatment in vitro, decreased the levels of TGF-β2 in human CE cells and α-SMA in keratocytes. CALR has the potential to be a novel therapeutic both, to accelerate corneal healing from various injuries and in conjunction with corticosteroids.
Collapse
Affiliation(s)
- Sarita Mishra
- Department of Medicine, Division of Precision MedicineNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
| | - Miguel A. Manzanares
- Department of Medicine, Division of Precision MedicineNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
| | - Justin Prater
- Powered Research, Research Triangle ParkNorth CarolinaNew YorkUSA
| | - David Culp
- Powered Research, Research Triangle ParkNorth CarolinaNew YorkUSA
| | - Leslie I. Gold
- Department of Medicine, Division of Precision MedicineNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
- Department of PathologyNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
| |
Collapse
|
19
|
Wolosin JM. A Keratin 12 Expression-Based Analysis of Stem-Precursor Cells and Differentiation in the Limbal-Corneal Epithelium Using Single-Cell RNA-Seq Data. BIOLOGY 2024; 13:145. [PMID: 38534415 DOI: 10.3390/biology13030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
The corneal epithelium (CE) is spread between two domains, the outer vascularized limbus and the avascular cornea proper. Epithelial cells undergo constant migration from the limbus to the vision-critical central cornea. Coordinated with this migration, the cells undergo differentiation changes where a pool of unique stem/precursor cells at the limbus yields the mature cells that reach the corneal center. Differentiation is heralded by the expression of the corneal-specific Krt12. Processing data acquired by scRNA-Seq showed that the increase in Krt12 expression occurs in four distinct steps within the limbus, plus a single continuous increase in the cornea. Differential gene analysis demonstrated that these domains reflect discreet stages of CE differentiation and yielded extensive information of the genes undergoing down- or upregulation in the sequential transition from less to more differentiate conditions. The approach allowed the identification of multiple gene cohorts, including (a) the genes which have maximal expression in the most primitive, Krt12-negative cell cohort, which is likely to include the stem/precursor cells; (b) the sets of genes that undergo continuous increase or decrease along the whole differentiation path; and (c) the genes showing maximal positive or negative correlation with the changes in Krt12.
Collapse
Affiliation(s)
- J Mario Wolosin
- Department of Ophthalmology, Black Family Stem Cell Institute and Vision Research Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| |
Collapse
|
20
|
Wang S, Mittal SK, Lee S, Herrera AE, Krauthammer M, Elbasiony E, Blanco T, Alemi H, Nakagawa H, Chauhan SK, Dana R, Dohlman TH. Effector T Cells Promote Fibrosis in Corneal Transplantation Failure. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 38261311 PMCID: PMC10810018 DOI: 10.1167/iovs.65.1.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose To evaluate whether fibrosis contributes to corneal transplant failure and to determine whether effector CD4+ T cells, the key immune cells in corneal transplant rejection, play a direct role in fibrosis formation. Methods Allogeneic corneal transplantation was performed in mice. Graft opacity was evaluated by slit-lamp biomicroscopy, and fibrosis was assessed by in vivo confocal microscopy. Expression of alpha-smooth muscle actin (α-SMA) in both accepted and failed grafts was assessed by real-time PCR and immunohistochemistry. Frequencies of graft-infiltrating CD4+ T cells, neutrophils, and macrophages were assessed using flow cytometry. In vitro, MK/T-1 corneal fibroblasts were co-cultured with activated CD4+CD25- effector T cells isolated from corneal transplant recipient mice, and α-SMA expression was quantified by real-time PCR and ELISA. Neutralizing antibody was used to evaluate the role of interferon gamma (IFN-γ) in promoting α-SMA expression. Results The majority of failed grafts demonstrated clinical signs of fibrosis which became most evident at week 6 after corneal transplantation. Failed grafts showed higher expression of α-SMA as compared to accepted grafts. Flow cytometry analysis showed a significant increase in CD4+ T cells in failed grafts compared to accepted grafts. Co-culture of activated CD4+CD25- effector T cells with corneal fibroblasts led to an increase in α-SMA expression by fibroblasts. Inhibition of IFN-γ in culture significantly suppressed this increase in α-SMA expression as compared to immunoglobulin G control. Conclusions Fibrosis contributes to graft opacity in corneal transplant failure and is mediated at least in part by effector CD4+ T cells via IFN-γ.
Collapse
Affiliation(s)
- Shudan Wang
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sharad K. Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Seokjoo Lee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Antonio Esquivel Herrera
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Mark Krauthammer
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Elsayed Elbasiony
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Tomas Blanco
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Hamid Alemi
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Hayate Nakagawa
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Sunil K. Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Thomas H. Dohlman
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
21
|
Vrehen AF, Rutten MGTA, Dankers PYW. Development of a Fully Synthetic Corneal Stromal Construct via Supramolecular Hydrogel Engineering. Adv Healthc Mater 2023; 12:e2301392. [PMID: 37747759 PMCID: PMC11468521 DOI: 10.1002/adhm.202301392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Recent advances in the field of ophthalmology show great potential in the design of bioengineered constructs to mimic the corneal stroma. Hydrogels based on synthetic supramolecular polymers, are attractive synthetic mimics of the natural highly hydrated corneal stroma. Here, a fully synthetic corneal stromal construct is developed via engineering of an injectable supramolecular hydrogel based on ureido-pyrimidinone (UPy) moieties. The hydrogel displays a dynamic and tunable behavior, which allows for control of biochemical and mechanical cues. Two hydrogels are developed, a fully synthetic hydrogel functionalized with a bioactive cyclic arginine-glycine-aspartate UPy (UPy-cRGD) additive, and a hybrid hydrogel based on UPy-moieties mixed with collagen type I fibers. Both hydrogels supported cell encapsulation and associated cellular deposition of extracellular matrix (ECM) proteins after 21 days. Excitingly, the hydrogels support the activation of isolated primary keratocytes into stromal fibroblasts as well as the differentiation toward more quiescent corneal stromal keratocytes, demonstrated by their characteristic long dendritic protrusions and a substantially diminished cytokine secretion. Furthermore, cells survive shear stresses during an injectability test. Together, these findings highlight the development of an injectable supramolecular hydrogel as a synthetic corneal stromal microenvironment able to host primary keratocytes.
Collapse
Affiliation(s)
- Annika F. Vrehen
- Institute for Complex Molecular SystemsDepartment of Biomedical EngineeringLaboratory of Cell and Tissue EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyGroene Loper 7Eindhoven5612 AZThe Netherlands
| | - Martin G. T. A. Rutten
- Institute for Complex Molecular SystemsDepartment of Biomedical EngineeringLaboratory of Cell and Tissue EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyGroene Loper 7Eindhoven5612 AZThe Netherlands
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular SystemsDepartment of Biomedical EngineeringLaboratory of Cell and Tissue EngineeringLaboratory of Chemical BiologyEindhoven University of TechnologyGroene Loper 7Eindhoven5612 AZThe Netherlands
| |
Collapse
|
22
|
Tarvestad-Laise KE, Ceresa BP. Modulating Growth Factor Receptor Signaling to Promote Corneal Epithelial Homeostasis. Cells 2023; 12:2730. [PMID: 38067157 PMCID: PMC10706396 DOI: 10.3390/cells12232730] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The corneal epithelium is the first anatomical barrier between the environment and the cornea; it is critical for proper light refraction onto the retina and prevents pathogens (e.g., bacteria, viruses) from entering the immune-privileged eye. Trauma to the highly innervated corneal epithelium is extremely painful and if not resolved quickly or properly, can lead to infection and ultimately blindness. The healthy eye produces its own growth factors and is continuously bathed in tear fluid that contains these proteins and other nutrients to maintain the rapid turnover and homeostasis of the ocular surface. In this article, we review the roles of growth factors in corneal epithelial homeostasis and regeneration and some of the limitations to their use therapeutically.
Collapse
Affiliation(s)
- Kate E. Tarvestad-Laise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Department of Ophthalmology and Vision Sciences, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
23
|
Jeon KI, Kumar A, Callan CL, DeMagistris M, MacRae S, Nehrke K, Huxlin KR. Blocking Mitochondrial Pyruvate Transport Alters Corneal Myofibroblast Phenotype: A New Target for Treating Fibrosis. Invest Ophthalmol Vis Sci 2023; 64:36. [PMID: 37870848 PMCID: PMC10599161 DOI: 10.1167/iovs.64.13.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose The purpose of this study was to critically test the hypothesis that mitochondrial pyruvate carrier (MPC) function is essential for maintenance of the corneal myofibroblast phenotype in vitro and in vivo. Methods Protein and mRNA for canonical profibrotic markers were assessed in cultured cat corneal myofibroblasts generated via transforming growth factor (TGF)-β1 stimulation and treated with either the thiazolidinedione (TZD) troglitazone or the MPC inhibitor alpha-cyano-beta-(1-phenylindol-3-yl) acrylate (UK-5099). RNA sequencing was used to gain insight into signaling modules related to instructive, permissive, or corollary changes in gene expression following treatment. A feline photorefractive keratectomy (PRK) model of corneal wounding was used to test the efficacy of topical troglitazone at reducing α-smooth muscle actin (SMA)-positive staining when applied 2 to 4 weeks postoperatively, during peak fibrosis. Results Troglitazone caused cultured myofibroblasts to adopt a fibroblast-like phenotype through a noncanonical, peroxisome proliferator-activated receptor (PPAR)-γ-independent mechanism. Direct MPC inhibition using UK-5099 recapitulated this effect, but classic inhibitors of oxidative phosphorylation (OXPHOS) did not. Gene Set Enrichment Analysis (GSEA) of RNA sequencing data converged on energy substrate utilization and the Mitochondrial Permeability Transition pore as key players in myofibroblast maintenance. Finally, troglitazone applied onto an established zone of active fibrosis post-PRK significantly reduced stromal α-SMA expression. Conclusions Our results provide empirical evidence that metabolic remodeling in myofibroblasts creates selective vulnerabilities beyond simply mitochondrial energy production, and that these are critical for maintenance of the myofibroblast phenotype. For the first time, we provide proof-of-concept data showing that this remodeling can be exploited to treat existing corneal fibrosis via inhibition of the MPC.
Collapse
Affiliation(s)
- Kye-Im Jeon
- Department of Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Ankita Kumar
- Department of Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Christine L Callan
- Department of Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Margaret DeMagistris
- Department of Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Scott MacRae
- Department of Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Keith Nehrke
- Department of Medicine-Nephrology Division, University of Rochester, Rochester, New York, United States
| | - Krystel R Huxlin
- Department of Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York, United States
| |
Collapse
|
24
|
Guntermann A, Fatoba O, Kronenberg M, Reinehr S, Grotegut P, Schargus M, Tsai T, Ivanova S, Serschnitzki B, Kumowski N, Maier C, Marcus K, Dick HB, Joachim SC, May C. Investigation of Inter- and Intra-Day Variability of Tear Fluid Regarding Flow Rate, Protein Concentration as well as Protein Composition. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37815507 PMCID: PMC10573576 DOI: 10.1167/iovs.64.13.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/21/2023] [Indexed: 10/11/2023] Open
Abstract
Purpose The purpose of this study was to present the determination of inter- and intra-day variations in tear flow rate, and tear fluid protein concentration, as well as protein composition regarding their impact for future biomarker studies. Methods Tear fluid was collected noninvasively from 18 healthy subjects by performing Schirmer tests at 4 different time points repetitive in a period of 2 days. The tear flow rate on the Schirmer test strips was measured. Proteins were extracted from strips and quantified using amino acid analysis. Protein composition was analyzed by the strips data-independent (DIA) based mass spectrometry. To exclude any impairments to health, volunteers underwent a detailed neurological as well as an ophthalmological examination. Results Whether tear fluid was collected from oculus sinister or oculus dexter did not affect the tear flow rate (P ≈ 0.63) or protein concentration (P ≈ 0.97) of individual subjects. Moreover, protein concentration was independent from the tear volume, so that a change in volume may only influence the total protein amount. When the examination days were compared, investigation of tear flow rate (P ≈ 0.001) and protein concentration (P ≈ 0.0003) indicated significant differences. Further, mass spectrometric analysis of tear fluid revealed 11 differentially regulated proteins when comparing both examination days. Conclusions Our findings provide evidence of inter-day variation in tear flow rate, tear proteome concentration, and composition in healthy subjects, suggesting that inter-day variation needs to be taken into consideration in biomarker research of tear fluid. Identified proteins were assigned to functions in the immune response, oxidative and reducing processes, as well as mannose metabolism.
Collapse
Affiliation(s)
- Annika Guntermann
- Ruhr-University Bochum, Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Bochum, Germany
- Ruhr-University Bochum, Medical Faculty, Medizinisches Proteom-Center, Bochum, Germany
| | - Oluwaseun Fatoba
- Ruhr-University Bochum, Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Bochum, Germany
- Ruhr-University Bochum, Medical Faculty, Medizinisches Proteom-Center, Bochum, Germany
| | - Marc Kronenberg
- Ruhr-University Bochum, Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Bochum, Germany
- Ruhr-University Bochum, Medical Faculty, Medizinisches Proteom-Center, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Marc Schargus
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
- Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
- Asklepios Eye Hospital Nord-Heidberg, Hamburg, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Svetlana Ivanova
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Bettina Serschnitzki
- Ruhr-University Bochum, Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Bochum, Germany
- Ruhr-University Bochum, Medical Faculty, Medizinisches Proteom-Center, Bochum, Germany
| | - Nina Kumowski
- Department of Pain Medicine, BG University Hospital Bergmannsheil GmbH, Ruhr-University Bochum, Bochum, Germany
- Medical Clinic I - Cardiology, Angiology and Internal Intensive Care Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Christoph Maier
- University Children's Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Katrin Marcus
- Ruhr-University Bochum, Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Bochum, Germany
- Ruhr-University Bochum, Medical Faculty, Medizinisches Proteom-Center, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Caroline May
- Ruhr-University Bochum, Center for Protein Diagnostics (ProDi), Medical Proteome Analysis, Bochum, Germany
- Ruhr-University Bochum, Medical Faculty, Medizinisches Proteom-Center, Bochum, Germany
| |
Collapse
|
25
|
Fallah Tafti M, Aghamollaei H, Moosazadeh Moghaddam M, Jadidi K, Faghihi S. An inspired microenvironment of cell replicas to induce stem cells into keratocyte-like dendritic cells for corneal regeneration. Sci Rep 2023; 13:15012. [PMID: 37696883 PMCID: PMC10495344 DOI: 10.1038/s41598-023-42359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
Corneal stromal disorders due to the loss of keratocytes can affect visual impairment and blindness. Corneal cell therapy is a promising therapeutic strategy for healing corneal tissue or even enhancing corneal function upon advanced disorders, however, the sources of corneal keratocytes are limited for clinical applications. Here, the capacity of cell-imprinted substrates fabricated by molding human keratocyte templates to induce differentiation of human adipose-derived stem cells (hADSCs) into keratocytes, is presented. Keratocytes are isolated from human corneal stroma and grown to transmit their ECM architecture and cell-like topographies to a PDMS substrate. The hADSCs are then seeded on cell-imprinted substrates and their differentiation to keratocytes in DMEM/F12 (with and without chemical factors) are evaluated by real-time PCR and immunocytochemistry. The mesenchymal stem cells grown on patterned substrates present gene and protein expression profiles similar to corneal keratocytes. In contrast, a negligible expression of myofibroblast marker in the hADSCs cultivated on the imprinted substrates, is observed. Microscopic analysis reveals dendritic morphology and ellipsoid nuclei similar to primary keratocytes. Overall, it is demonstrated that biomimetic imprinted substrates would be a sufficient driver to solely direct the stem cell fate toward target cells which is a significant achievement toward corneal regeneration.
Collapse
Affiliation(s)
- Mahsa Fallah Tafti
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, 14965/161, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, 1435916471, Iran.
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, 14965/161, Tehran, Iran.
| |
Collapse
|
26
|
Xanthis V, Mantso T, Dimtsi A, Pappa A, Fadouloglou VE. Human Aldehyde Dehydrogenases: A Superfamily of Similar Yet Different Proteins Highly Related to Cancer. Cancers (Basel) 2023; 15:4419. [PMID: 37686694 PMCID: PMC10650815 DOI: 10.3390/cancers15174419] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
The superfamily of human aldehyde dehydrogenases (hALDHs) consists of 19 isoenzymes which are critical for several physiological and biosynthetic processes and play a major role in the organism's detoxification via the NAD(P) dependent oxidation of numerous endogenous and exogenous aldehyde substrates to their corresponding carboxylic acids. Over the last decades, ALDHs have been the subject of several studies as it was revealed that their differential expression patterns in various cancer types are associated either with carcinogenesis or promotion of cell survival. Here, we attempt to provide a thorough review of hALDHs' diverse functions and 3D structures with particular emphasis on their role in cancer pathology and resistance to chemotherapy. We are especially interested in findings regarding the association of structural features and their changes with effects on enzymes' functionalities. Moreover, we provide an updated outline of the hALDHs inhibitors utilized in experimental or clinical settings for cancer therapy. Overall, this review aims to provide a better understanding of the impact of ALDHs in cancer pathology and therapy from a structural perspective.
Collapse
Affiliation(s)
| | | | | | | | - Vasiliki E. Fadouloglou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
27
|
Sampaio LP, Villabona-Martinez V, Shiju TM, Santhiago MR, Wilson SE. Topical Losartan Decreases Myofibroblast Generation But Not Corneal Opacity After Surface Blast-Simulating Irregular PTK in Rabbits. Transl Vis Sci Technol 2023; 12:20. [PMID: 37750746 PMCID: PMC10541722 DOI: 10.1167/tvst.12.9.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
Purpose To evaluate the efficacy of topical losartan after blast injury-simulating irregular phototherapeutic keratectomy (PTK) in rabbits. Methods Twelve NZW rabbits underwent 100 pulse 6.5 mm diameter PTK over a metal screen to generate severe surface irregularity and inhibit epithelial basement membrane regeneration. Corneas were treated with 0.8 mg/mL losartan in balanced salt solution (BSS) or BSS 50 µL six times per day for six weeks after PTK. All corneas had slit lamp photography, with and without 1% fluorescein at two, four, and six weeks after PTK, and were analyzed using immunohistochemistry for the myofibroblast marker α-smooth muscle actin (α-SMA), keratocyte marker keratocan, mesenchymal cell marker vimentin, transforming growth factor (TGF)-β1, and collagen type IV. Results Topical 0.8 mg/mL losartan six times a day significantly decreased anterior stromal α-SMA intensity units compared to BSS at six weeks after anterior stromal irregularity-inducing screened PTK (P = 0.009). Central corneal opacity, however, was not significantly different between the two groups. Keratocan, vimentin, TGF-β1, or collagen type IV levels in the anterior stroma were not significantly different between the two groups. Conclusions Topical losartan effectively decreased myofibroblast generation after surface blast simulation irregular PTK. However, these results suggest initial masking-smoothing PTK, along with adjuvant topical losartan therapy, may be needed to decrease corneal stromal opacity after traumatic injuries that produce severe surface irregularity. Translational Relevance Topical losartan decreased scar-producing stromal myofibroblasts after irregular PTK over a metal screen but early smoothing of irregularity would also likely be needed to significantly decrease corneal opacity.
Collapse
Affiliation(s)
- Lycia Pedral Sampaio
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology at University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
28
|
Petroll WM, Miron-Mendoza M, Sunkara Y, Ikebe HR, Sripathi NR, Hassaniardekani H. The impact of UV cross-linking on corneal stromal cell migration, differentiation and patterning. Exp Eye Res 2023; 233:109523. [PMID: 37271309 PMCID: PMC10825899 DOI: 10.1016/j.exer.2023.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM) microstructure. In order to investigate how CXL impacts both keratocyte differentiation and patterning within the stroma, and fibroblast migration and myofibroblast differentiation on top of the stroma, we combined CXL with superficial phototherapeutic keratectomy (PTK) in a rabbit model. Twenty-six rabbits underwent a 6 mm diameter, 70 μm deep phototherapeutic keratectomy (PTK) with an excimer laser to remove the epithelium and anterior basement membrane. In 14 rabbits, standard CXL was performed in the same eye immediately after PTK. Contralateral eyes served as controls. In vivo confocal microscopy through focusing (CMTF) was used to analyze corneal epithelial and stromal thickness, as well as stromal keratocyte activation and corneal haze. CMTF scans were collected pre-operatively, and from 7 to 120 days after the procedure. A subset of rabbits was sacrificed at each time point, and corneas were fixed and labeled in situ for multiphoton fluorescence microscopy and second harmonic generation imaging. In vivo and in situ imaging demonstrated that haze after PTK was primarily derived from a layer of myofibroblasts that formed on top of the native stroma. Over time, this fibrotic layer was remodeled into more transparent stromal lamellae, and quiescent cells replaced myofibroblasts. Migrating cells within the native stroma underneath the photoablated area were elongated, co-aligned with collagen, and lacked stress fibers. In contrast, following PTK + CXL, haze was derived primarily from highly reflective necrotic "ghost cells" in the anterior stroma, and fibrosis on top of the photoablated stroma was not observed at any time point evaluated. Cells formed clusters as they migrated into the cross-linked stromal tissue and expressed stress fibers; some cells at the edge of the CXL area also expressed α-SM actin, suggesting myofibroblast transformation. Stromal thickness increased significantly between 21 and 90 days after PTK + CXL (P < 0.001) and was over 35 μm higher than baseline at Day 90 (P < 0.05). Overall, these data suggest that cross-linking inhibits interlamellar cell movement, and that these changes lead to a disruption of normal keratocyte patterning and increased activation during stromal repopulation. Interestingly, CXL also prevents PTK-induced fibrosis on top of the stroma, and results in long term increases in stromal thickness in the rabbit model.
Collapse
Affiliation(s)
- W Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA; Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, USA.
| | | | - Yukta Sunkara
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hikaru R Ikebe
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nishith R Sripathi
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
29
|
Yang F, Dong Y, Bai C, Alzogool M, Wang Y. Bibliometric and visualized analysis of myopic corneal refractive surgery research: from 1979 to 2022. Front Med (Lausanne) 2023; 10:1141438. [PMID: 37575980 PMCID: PMC10416457 DOI: 10.3389/fmed.2023.1141438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Background Myopic corneal refractive surgery is one of the most prevalent ophthalmic procedures for correcting ametropia. This study aimed to perform a bibliometric analysis of research in the field of corneal refractive surgery over the past 40 years in order to describe the current international status and to identify most influential factors, while highlighting research hotspots. Methods A bibliometric analysis based on the Web of Science Core Collection (WoSCC) was used to analyze the publication trends in research related to myopic corneal refractive surgery. VOSviewer v.1.6.10 was used to construct the knowledge map in order to visualize the publications, distribution of countries, international collaborations, author productivity, source journals, cited references, keywords, and research hotspots in this field. Results A total of 4,680 publications on myopic corneal refractive surgery published between 1979 and 2022 were retrieved. The United States has published the most papers, with Emory University contributing to the most citations. The Journal of Cataract and Refractive Surgery published the greatest number of articles, and the top 10 cited references mainly focused on outcomes and wound healing in refractive surgery. Previous research emphasized "radial keratotomy (RK)" and excimer laser-associated operation methods. The keywords containing femtosecond (FS) laser associated with "small incision lenticule extraction (SMILE)" and its "safety" had higher burst strength, indicating a shift of operation methods and coinciding with the global trends in refractive surgery. The document citation network was clustered into five groups: (1) outcomes of refractive surgery: (2) preoperative examinations for refractive surgery were as follows: (3) complications of myopic corneal refractive surgery; (4) corneal wound healing and cytobiology research related to photorefractive laser keratotomy; and (5) biomechanics of myopic corneal refractive surgery. Conclusion The bibliometric analysis in this study may provide scholars with valuable to information and help them better understand the global trends in myopic corneal refractive surgery research frontiers. Two stages of rapid development occurred around 1991 and 2013, shortly after the innovation of PRK and SMILE surgical techniques. The most cited articles mainly focused on corneal wound healing, clinical outcomes, ocular aberration, corneal ectasia, and corneal topography, representing the safety of the new techniques.
Collapse
Affiliation(s)
- Fang Yang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Department of Ophthalmology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yi Dong
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Chen Bai
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mohammad Alzogool
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Tianjin, China
- Nankai Eye Institute, Nankai University, Tianjin, China
| |
Collapse
|
30
|
Kumar R, Sinha NR, Mohan RR. Corneal gene therapy: Structural and mechanistic understanding. Ocul Surf 2023; 29:279-297. [PMID: 37244594 PMCID: PMC11926995 DOI: 10.1016/j.jtos.2023.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Cornea, a dome-shaped and transparent front part of the eye, affords 2/3rd refraction and barrier functions. Globally, corneal diseases are the leading cause of vision impairment. Loss of corneal function including opacification involve the complex crosstalk and perturbation between a variety of cytokines, chemokines and growth factors generated by corneal keratocytes, epithelial cells, lacrimal tissues, nerves, and immune cells. Conventional small-molecule drugs can treat mild-to-moderate traumatic corneal pathology but requires frequent application and often fails to treat severe pathologies. The corneal transplant surgery is a standard of care to restore vision in patients. However, declining availability and rising demand of donor corneas are major concerns to maintain ophthalmic care. Thus, the development of efficient and safe nonsurgical methods to cure corneal disorders and restore vision in vivo is highly desired. Gene-based therapy has huge potential to cure corneal blindness. To achieve a nonimmunogenic, safe and sustained therapeutic response, the selection of a relevant genes, gene editing methods and suitable delivery vectors are vital. This article describes corneal structural and functional features, mechanistic understanding of gene therapy vectors, gene editing methods, gene delivery tools, and status of gene therapy for treating corneal disorders, diseases, and genetic dystrophies.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow campus, UP, 226028, India
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
31
|
Swamynathan SK, Swamynathan S. Corneal epithelial development and homeostasis. Differentiation 2023; 132:4-14. [PMID: 36870804 PMCID: PMC10363238 DOI: 10.1016/j.diff.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The corneal epithelium (CE), the most anterior cellular structure of the eye, is a self-renewing stratified squamous tissue that protects the rest of the eye from external elements. Each cell in this exquisite three-dimensional structure needs to have proper polarity and positional awareness for the CE to serve as a transparent, refractive, and protective tissue. Recent studies have begun to elucidate the molecular and cellular events involved in the embryonic development, post-natal maturation, and homeostasis of the CE, and how they are regulated by a well-coordinated network of transcription factors. This review summarizes the status of related knowledge and aims to provide insight into the pathophysiology of disorders caused by disruption of CE development, and/or homeostasis.
Collapse
Affiliation(s)
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
32
|
Wilson SE. The corneal fibroblast: The Dr. Jekyll underappreciated overseer of the responses to stromal injury. Ocul Surf 2023; 29:53-62. [PMID: 37080483 DOI: 10.1016/j.jtos.2023.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE To review the functions of corneal fibroblasts in wound healing. METHODS Literature review. RESULTS Corneal fibroblasts arise in the corneal stroma after anterior, posterior or limbal injuries and are derived from keratocytes. Transforming growth factor (TGF) β1 and TGFβ2, along with platelet-derived growth factor (PDGF), are the major modulators of the keratocyte to corneal fibroblast transition, while fibroblast growth factor (FGF)-2, TGFβ3, and retinoic acid are thought to regulate the transition of corneal fibroblasts back to keratocytes. Adequate and sustained levels of TGFβ1 and/or TGFβ2, primarily from epithelium, tears, aqueous humor, and corneal endothelium, drive the development of corneal fibroblasts into myofibroblasts. Myofibroblasts have been shown in vitro to transition back to corneal fibroblasts, although apoptosis of myofibroblasts has been documented as a major contributor to the resolution of fibrosis in several in situ corneal injury models. Corneal fibroblasts, aside from their role as a major progenitor to myofibroblasts, also perform many critical functions in the injured cornea, including the production of critical basement membrane (BM) components during regeneration of the epithelial BM and Descemet's membrane, production of non-basement membrane-associated stromal collagen type IV to control and downregulate TGFβ effects on stromal cells, release of chemotactic chemokines that attract bone marrow-derived cells to the injured stroma, production of growth factors that modulate regeneration and maturation of the overlying epithelium, and production of collagens and other ECM components that contribute to stromal integrity after injury. CONCLUSIONS Corneal fibroblasts are major contributors to and overseers of the corneal response to injuries.
Collapse
Affiliation(s)
- Steven E Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
33
|
Sinha NR, Tripathi R, Balne PK, Suleiman L, Simkins K, Chaurasia SS, Mohan RR. Mustard Gas Exposure Actuates SMAD2/3 Signaling to Promote Myofibroblast Generation in the Cornea. Cells 2023; 12:1533. [PMID: 37296653 PMCID: PMC10252656 DOI: 10.3390/cells12111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Sulfur mustard gas (SM) is a vesicating and alkylating agent used as a chemical weapon in many mass-casualty incidents since World War I. Ocular injuries were reported in >90% of exposed victims. The mechanisms underlying SM-induced blindness remain elusive. This study tested the hypothesis that SM-induced corneal fibrosis occurs due to the generation of myofibroblasts from resident fibroblasts via the SMAD2/3 signaling pathway in rabbit eyes in vivo and primary human corneal fibroblasts (hCSFs) isolated from donor corneas in vitro. Fifty-four New Zealand White Rabbits were divided into three groups (Naïve, Vehicle, SM-Vapor treated). The SM-Vapor group was exposed to SM at 200 mg-min/m3 for 8 min at the MRI Global facility. Rabbit corneas were collected on day 3, day 7, and day 14 for immunohistochemistry, RNA, and protein lysates. SM caused a significant increase in SMAD2/3, pSMAD, and ɑSMA expression on day 3, day 7, and day 14 in rabbit corneas. For mechanistic studies, hCSFs were treated with nitrogen mustard (NM) or NM + SIS3 (SMAD3-specific inhibitor) and collected at 30 m, 8 h, 24 h, 48 h, and 72 h. NM significantly increased TGFβ, pSMAD3, and SMAD2/3 levels. On the contrary, inhibition of SMAD2/3 signaling by SIS3 treatment significantly reduced SMAD2/3, pSMAD3, and ɑSMA expression in hCSFs. We conclude that SMAD2/3 signaling appears to play a vital role in myofibroblast formation in the cornea following mustard gas exposure.
Collapse
Affiliation(s)
- Nishant R. Sinha
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Ratnakar Tripathi
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Praveen K. Balne
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Laila Suleiman
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Katherine Simkins
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Shyam S. Chaurasia
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Froedtert & Medical College of Wisconsin Eye Institute, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rajiv R. Mohan
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
34
|
Wilson SE. Topical Losartan: Practical Guidance for Clinical Trials in the Prevention and Treatment of Corneal Scarring Fibrosis and Other Eye Diseases and Disorders. J Ocul Pharmacol Ther 2023; 39:191-206. [PMID: 36877777 PMCID: PMC10079252 DOI: 10.1089/jop.2022.0174] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/06/2023] [Indexed: 03/08/2023] Open
Abstract
Losartan is an angiotensin II receptor blocker (ARB) that impedes transforming growth factor (TGF) beta signaling by inhibiting activation of signal transduction molecule extracellular signal-regulated kinase (ERK). Studies supported the efficacy of topical losartan in decreasing scarring fibrosis after rabbit Descemetorhexis, alkali burn, and photorefractive keratectomy injuries, and in case reports of humans with scarring fibrosis after surgical complications. Clinical studies are needed to explore the efficacy and safety of topical losartan in the prevention and treatment of corneal scarring fibrosis, and other eye diseases and disorders where TGF beta has a role in pathophysiology. These include scarring fibrosis associated with corneal trauma, chemical burns, infections, surgical complications, and persistent epithelial defects, as well as conjunctival fibrotic diseases, such as ocular cicatricial pemphigoid and Stevens-Johnson syndrome. Research is also needed to explore the efficacy and safety of topical losartan for hypothesized treatment of transforming growth factor beta-induced (TGFBI)-related corneal dystrophies (Reis-Bu¨cklers corneal dystrophy, lattice corneal dystrophy type 1, and granular corneal dystrophies type 1 and type 2) where deposited mutant protein expression is modulated by TGF beta. Investigations could also explore the efficacy and safety of topical losartan treatments to reduce conjunctival bleb scarring and shunt encapsulation following glaucoma surgical procedures. Losartan and sustained release drug delivery devices could be efficacious in treating intraocular fibrotic diseases. Dosing suggestions and precautions that should be considered in trials of losartan are detailed. Losartan, as an adjuvant to current treatments, has the potential to augment pharmacological therapeutics for many ocular diseases and disorders where TGF beta plays a central role in pathophysiology.
Collapse
Affiliation(s)
- Steven E. Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Tavakkoli F, Eleiwa TK, Elhusseiny AM, Damala M, Rai AK, Cheraqpour K, Ansari MH, Doroudian M, H Keshel S, Soleimani M, Djalilian AR, Sangwan VS, Singh V. Corneal stem cells niche and homeostasis impacts in regenerative medicine; concise review. Eur J Ophthalmol 2023:11206721221150065. [PMID: 36604831 DOI: 10.1177/11206721221150065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The limbal stem cells niche (LSCN) is an optimal microenvironment that provides the limbal epithelial stem cells (LESCs) and strictly regulates their proliferation and differentiation. Disturbing the LSCN homeostasis can lead to limbal stem cell dysfunction (LSCD) and subsequent ocular surface aberrations, such as corneal stromal inflammation, persistent epithelial defects, corneal neovascularisation, lymphangiogenesis, corneal opacification, and conjunctivalization. As ocular surface disorders are considered the second main cause of blindness, it becomes crucial to explore different therapeutic strategies for restoring the functions of the LSCN. A major limitation of corneal transplantation is the current shortage of donor tissue to meet the requirements worldwide. In this context, it becomes mandatory to find an alternative regenerative medicine, such as using cultured limbal epithelial/stromal stem cells, inducing the production of corneal like cells by using other sources of stem cells, and using tissue engineering methods aiming to produce the three-dimensional (3D) printed cornea. Limbal epithelial stem cells have been considered the magic potion for eye treatment. Epithelial and stromal stem cells in the limbal niche hold the responsibility of replenishing the corneal epithelium. These stem cells are being used for transplantation to maintain corneal epithelial integrity and ultimately sustain optimal vision. In this review, we summarised the characteristics of the LSCN and their current and future roles in restoring corneal homeostasis in eyes with LSCD.
Collapse
Affiliation(s)
- Fatemeh Tavakkoli
- Department of Community Health, College of Health Technology, Cihan University, Erbil, Iraq.,SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India.,Centre for Genetic Disorders, Banaras Hindu University, Varanasi, India
| | - Taher K Eleiwa
- Department of Ophthalmology, Benha University, Benha, Egypt
| | - Abdelrahman M Elhusseiny
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mukesh Damala
- SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India.,School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Amit K Rai
- Centre for Genetic Disorders, Banaras Hindu University, Varanasi, India
| | - Kasra Cheraqpour
- Translational Eye Research Center, Farabi Eye Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ansari
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, 145440Kharazmi University, Tehran, Iran
| | - Saeed H Keshel
- Department of Tissue Engineering and Applied Cell Sciences, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Department of Ophthalmology, 159636Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology, 159636Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Vivek Singh
- SSR Stem Cell Biology Laboratory, Brien Holden Eye Research Centre, Centre for Ocular Regeneration, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
36
|
Filiberti A, Gmyrek GB, Berube AN, Carr DJJ. Osteopontin contributes to virus resistance associated with type I IFN expression, activation of downstream ifn-inducible effector genes, and CCR2 +CD115 +CD206 + macrophage infiltration following ocular HSV-1 infection of mice. Front Immunol 2023; 13:1028341. [PMID: 36685562 PMCID: PMC9846535 DOI: 10.3389/fimmu.2022.1028341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Ocular pathology is often associated with acute herpes simplex virus (HSV)-1 infection of the cornea in mice. The present study was undertaken to determine the role of early T lymphocyte activation 1 protein or osteopontin (OPN) in corneal inflammation and host resistance to ocular HSV-1 infection. C57BL/6 wild type (WT) and osteopontin deficient (OPN KO) mice infected in the cornea with HSV-1 were evaluated for susceptibility to infection and cornea pathology. OPN KO mice were found to possess significantly more infectious virus in the cornea at day 3 and day 7 post infection compared to infected WT mice. Coupled with these findings, HSV-1-infected OPN KO mouse corneas were found to express less interferon (IFN)-α1, double-stranded RNA-dependent protein kinase, and RNase L compared to infected WT animals early post infection that likely contributed to decreased resistance. Notably, OPN KO mice displayed significantly less corneal opacity and neovascularization compared to WT mice that paralleled a decrease in expression of vascular endothelial growth factor (VEGF) A within 12 hr post infection. The change in corneal pathology of the OPN KO mice aligned with a decrease in total leukocyte infiltration into the cornea and specifically, in neutrophils at day 3 post infection and in macrophage subpopulations including CCR2+CD115+CD206+ and CD115+CD183+CD206+ -expressing cells. The infiltration of CD4+ and CD8+ T cells into the cornea was unaltered comparing infected WT to OPN KO mice. Likewise, there was no difference in the total number of HSV-1-specific CD4+ or CD8+ T cells found in the draining lymph node with both sets functionally competent in response to virus antigen comparing WT to OPN KO mice. Collectively, these results demonstrate OPN deficiency directly influences the host innate immune response to ocular HSV-1 infection reducing some aspects of inflammation but at a cost with an increase in local HSV-1 replication.
Collapse
Affiliation(s)
- Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Grzegorz B. Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Amanda N. Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Daniel J. J. Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
37
|
Wilson SE. The Yin and Yang of Mesenchymal Cells in the Corneal Stromal Fibrosis Response to Injury: The Cornea as a Model of Fibrosis in Other Organs. Biomolecules 2022; 13:87. [PMID: 36671472 PMCID: PMC9855862 DOI: 10.3390/biom13010087] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Mesenchymal cells (keratocytes, corneal fibroblasts, and myofibroblasts), as well as mesenchymal progenitor bone marrow-derived fibrocytes, are the major cellular contributors to stromal fibrosis after injury to the cornea. Corneal fibroblasts, in addition to being major progenitors to myofibroblasts, also have anti-fibrotic functions in (1) the production of non-basement membrane collagen type IV that binds activated transforming growth factor (TGF) beta-1 and TGF beta-2 to downregulate TGF beta effects on cells in the injured stroma, (2) the production of chemokines that modulate the entry of bone marrow-derived cells into the stroma, (3) the production of hepatocyte growth factor and keratinocyte growth factor to regulate corneal epithelial healing, (4) the cooperation with the epithelium or corneal endothelium in the regeneration of the epithelial basement membrane and Descemet's membrane, and other functions. Fibrocytes also serve as major progenitors to myofibroblasts in the corneal stroma. Thus, mesenchymal cells and mesenchymal cell progenitors serve Yin and Yang functions to inhibit and promote tissue fibrosis depending on the overall regulatory milieu within the injured stroma.
Collapse
Affiliation(s)
- Steven E Wilson
- The Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
38
|
Keles A, Kosekahya P, Sogut FE, Karatepe MS. Long-term Effects of Uncomplicated Traumatic Hyphema on Corneal and Lenticular Clarity. KOREAN JOURNAL OF OPHTHALMOLOGY 2022; 36:501-508. [PMID: 36220635 DOI: 10.3341/kjo.2022.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To evaluate the long-term effects of uncomplicated traumatic hyphema on endothelial morphology, anterior segment structure, and corneal and lenticular densitometry. METHODS In this retrospective comparative study, eyes with a history of uncomplicated traumatic hyphema were compared with the healthy contralateral unaffected eyes. The corneal endothelial cell properties were captured using specular microscopy. Anterior segment analysis, corneal densitometry (12-mm corneal diameter), and lens densitometry measurements were performed using the Pentacam imaging system. RESULTS Measurements were obtained at a mean follow-up of 49.5 ± 15.8 months after injury. The average endothelial cell density was significantly lower in the study group than in the control group (2,506.6 ± 294.0 cells/mm² vs. 2,665.7 ± 195.0 cells/mm², p = 0.020). There was no difference between the groups in respect of polymegathism and pleomorphism (p = 0.061 and p = 0.558, respectively). All the investigated corneal tomographic and angle parameters were similar in both groups (all p > 0.05). The corneal densitometry values in all concentric zones and layers showed no statistically significant difference between the groups (p > 0.05 for all). The lens zone 1 densitometry value was significantly higher in the study group than in the control group (9.6% ± 1.1% vs. 8.9% ± 1.2%, p = 0.031). No difference was observed in zone 2 and 3 (p = 0.170 and p = 0.322, respectively). The degree of hyphema was not correlated with endothelial cell and lenticular clarity loss (p = 0.087 and p = 0.294, respectively). CONCLUSIONS Even if traumatic hyphema is not complicated, long-term outcomes indicate endothelial cell loss and increased lenticular density.
Collapse
Affiliation(s)
- Ali Keles
- Department of Ophthalmology, Bilecik Seyh Edebali University Faculty of Medicine, Bilecik, Turkey
| | - Pinar Kosekahya
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - Furkan Emre Sogut
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - Mustafa Salih Karatepe
- Department of Ophthalmology, Sivas Cumhuriyet University Faculty of Medicine, Sivas, Turkey
| |
Collapse
|
39
|
Sampaio LP, Hilgert GSL, Shiju TM, Santhiago MR, Wilson SE. Losartan Inhibition of Myofibroblast Generation and Late Haze (Scarring Fibrosis) After PRK in Rabbits. J Refract Surg 2022; 38:820-829. [PMID: 36476304 DOI: 10.3928/1081597x-20221026-03] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To study the effect of topical losartan compared to vehicle on the generation of myofibroblasts and development of late haze scarring fibrosis after photorefractive keratectomy (PRK) in rabbits. METHODS Twelve rabbits had -9.00 diopter (D) PRK in one eye followed by 50 µL of topical 0.2 mg/mL losartan or 50 µL of vehicle six times per day for 1 month. Standardized slit-lamp photographs were obtained prior to death. Duplex immunohistochemistry was performed on cryofixed corneas for myofibroblast marker alpha-smooth muscle actin (α-SMA) and keratocyte marker keratocan or collagen type IV and transforming growth factor (TGF)-β1. ImageJ software (National Institutes of Health) was used for quantitation. RESULTS Topical losartan compared to vehicle significantly decreased corneal opacity (P = .04) and anterior stromal myofibroblast generation (P = .01) at 1 month after PRK. Topical losartan compared to vehicle also decreased anterior stromal non-basement membrane collagen type IV at 1 month after PRK (P = .004). CONCLUSIONS Topical angiotensin converting enzyme II receptor inhibitor losartan, a known inhibitor of TGF-β signaling, decreased late haze scarring fibrosis and myofibroblast generation after -9.00 D PRK in rabbits compared to vehicle. It also decreases TGF-β-modulated, corneal fibroblast-produced, non-basement membrane stromal collagen type IV-likely also through inhibition of TGF-β signaling. [J Refract Surg. 2022;38(12):820-829.].
Collapse
|
40
|
Effect of Polydeoxyribonucleotide (PDRN) Treatment on Corneal Wound Healing in Zebrafish ( Danio rerio). Int J Mol Sci 2022; 23:ijms232113525. [PMID: 36362312 PMCID: PMC9659220 DOI: 10.3390/ijms232113525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to develop a corneal epithelial injury model in zebrafish (Danio rerio) and investigate the effectiveness of polydeoxyribonucleotide (PDRN) treatment on in vivo corneal epithelial regeneration and wound healing. Chemical injury to zebrafish cornea was produced by placing a small cotton swab containing 3% acetic acid solution. PDRN treatment was performed by immersing corneal-injured zebrafish in water containing PDRN (2 mg/mL) for 10 min at 0, 24, 48, and 72 h post-injury (hpi). The level of corneal healing was evaluated by fluorescein staining, histological examination, transcriptional profiling, and immunoblotting techniques. Fluorescein staining results demonstrate that PDRN treatment significantly (p < 0.05) reduced the wounded area of the zebrafish eye at 48 and 72 hpi, suggesting that PDRN may accelerate the corneal re-epithelialization. Histopathological evaluation revealed that injured corneal epithelial cells were re-organized at 72 hpi upon PDRN treatment with increased goblet cell density and size. Moreover, transcriptional analysis results demonstrate that PDRN treatment induced the mRNA expression of adora2ab (6.3-fold), pax6a (7.8-fold), pax6b (29.3-fold), klf4 (7.3-fold), and muc2.1 (5.0-fold) after the first treatment. Besides, tnf-α (2.0-fold) and heat-shock proteins (hsp70; 2.8-fold and hsp90ab1; 1.6-fold) have modulated the gene expression following the PDRN treatment. Immunoblotting results convincingly confirmed the modulation of Mmp-9, Hsp70, and Tnf-α expression levels upon PDRN treatment. Overall, our corneal injury model in zebrafish allows for understanding the morphological and molecular events of corneal epithelial healing, and ophthalmic responses for PDRN treatment following acid injury in zebrafish.
Collapse
|
41
|
Maiti G, Monteiro de Barros MR, Hu N, Dolgalev I, Roshan M, Foster JW, Tsirigos A, Wahlin KJ, Chakravarti S. Single cell RNA-seq of human cornea organoids identifies cell fates of a developing immature cornea. PNAS NEXUS 2022; 1:pgac246. [PMID: 36712326 PMCID: PMC9802453 DOI: 10.1093/pnasnexus/pgac246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
Abstract
The cornea is a protective and refractive barrier in the eye crucial for vision. Understanding the human cornea in health, disease, and cell-based treatments can be greatly advanced with cornea organoids developed in culture from induced pluripotent stem cells. While a limited number of studies have investigated the single-cell transcriptomic composition of the human cornea, its organoids have not been examined similarly. Here, we elucidated the transcriptomic cell fate map of 4-month-old human cornea organoids and human donor corneas. The organoids harbor cell clusters that resemble cells of the corneal epithelium, stroma, and endothelium, with subpopulations that capture signatures of early developmental states. Unlike the adult cornea where the largest cell population is stromal, the organoids contain large proportions of epithelial and endothelial-like cells. These corneal organoids offer a 3D model to study corneal diseases and integrated responses of different cell types.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Maithê Rocha Monteiro de Barros
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Nan Hu
- Department of Ophthalmology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Igor Dolgalev
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, Science Building, Eighth Floor, 435 E 30th, New York, NY 10016, USA
| | - Mona Roshan
- University of California San Diego, ACTRI Building Rm Lower level 3E419, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | - James W Foster
- Wilmer Eye Institute, Johns Hopkins school of Medicine, Smith M037, 400 Broadway, Baltimore, MD 21287, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, Science Building, Eighth Floor, 435 E 30th, New York, NY 10016, USA,Department of Pathology, NYU Grossman School of Medicine, Science Building, Fifth Floor 435 E 30th, New York, NY 10016, USA
| | - Karl J Wahlin
- University of California San Diego, ACTRI Building Rm Lower level 3E419, 9452 Medical Center Drive, La Jolla, CA 92037, USA
| | | |
Collapse
|
42
|
Rozo V, Quan M, Aung T, Kang J, Thomasy SM, Leonard BC. Andrographolide Inhibits Corneal Fibroblast to Myofibroblast Differentiation In Vitro. Biomolecules 2022; 12:biom12101447. [PMID: 36291655 PMCID: PMC9599903 DOI: 10.3390/biom12101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Corneal opacification due to fibrosis is a leading cause of blindness worldwide. Fibrosis occurs from many causes including trauma, photorefractive surgery, microbial keratitis (infection of the cornea), and chemical burns, yet there is a paucity of therapeutics to prevent or treat corneal fibrosis. This study aimed to determine if andrographolide, a labdane diterpenoid found in Andrographis paniculate, has anti-fibrotic properties. Furthermore, we evaluated if andrographolide could prevent the differentiation of fibroblasts to myofibroblasts in vitro, given that the transforming growth factor beta-1(TGF-β1) stimulated persistence of myofibroblasts in the cornea is a primary component of fibrosis. We demonstrated that andrographolide inhibited the upregulation of alpha smooth muscle actin (αSMA) mRNA and protein in rabbit corneal fibroblasts (RCFs), thus, demonstrating a reduction in the transdifferentiation of myofibroblasts. Immunofluorescent staining of TGF-β1-stimulated RCFs confirmed a dose-dependent decrease in αSMA expression when treated with andrographolide. Additionally, andrographolide was well tolerated in vivo and had no impact on corneal epithelialization in a rat debridement model. These data support future studies investigating the use of andrographolide as an anti-fibrotic in corneal wound healing.
Collapse
Affiliation(s)
- Vanessa Rozo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Melinda Quan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Theint Aung
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jennifer Kang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, CA 95616, USA
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
43
|
van der Putten C, van den Broek D, Kurniawan NA. Myofibroblast transdifferentiation of keratocytes results in slower migration and lower sensitivity to mesoscale curvatures. Front Cell Dev Biol 2022; 10:930373. [PMID: 35938166 PMCID: PMC9355510 DOI: 10.3389/fcell.2022.930373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Functional tissue repair after injury or disease is governed by the regenerative or fibrotic response by cells within the tissue. In the case of corneal damage, keratocytes are a key cell type that determine the outcome of the remodeling response by either adapting to a fibroblast or myofibroblast phenotype. Although a growing body of literature indicates that geometrical cues in the environment can influence Myo(fibroblast) phenotype, there is a lack of knowledge on whether and how differentiated keratocyte phenotype is affected by the curved tissue geometry in the cornea. To address this gap, in this study we characterized the phenotype of fibroblastic and transforming growth factor β (TGFβ)-induced myofibroblastic keratocytes and studied their migration behavior on curved culture substrates with varying curvatures. Immunofluorescence staining and quantification of cell morphological parameters showed that, generally, fibroblastic keratocytes were more likely to elongate, whereas myofibroblastic keratocytes expressed more pronounced α smooth muscle actin (α-SMA) and actin stress fibers as well as more mature focal adhesions. Interestingly, keratocyte adhesion on convex structures was weak and unstable, whereas they adhered normally on flat and concave structures. On concave cylinders, fibroblastic keratocytes migrated faster and with higher persistence along the longitudinal direction compared to myofibroblastic keratocytes. Moreover, this behavior became more pronounced on smaller cylinders (i.e., higher curvatures). Taken together, both keratocyte phenotypes can sense and respond to the sign and magnitude of substrate curvatures, however, myofibroblastic keratocytes exhibit weaker curvature sensing and slower migration on curved substrates compared to fibroblastic keratocytes. These findings provide fundamental insights into keratocyte phenotype after injury, but also exemplify the potential of tuning the physical cell environments in tissue engineering settings to steer towards a favorable regeneration response.
Collapse
Affiliation(s)
- Cas van der Putten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Daniëlle van den Broek
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- *Correspondence: Nicholas A. Kurniawan,
| |
Collapse
|
44
|
Santra M, Liu YC, Jhanji V, Yam GHF. Human SMILE-Derived Stromal Lenticule Scaffold for Regenerative Therapy: Review and Perspectives. Int J Mol Sci 2022; 23:ijms23147967. [PMID: 35887309 PMCID: PMC9315730 DOI: 10.3390/ijms23147967] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
A transparent cornea is paramount for vision. Corneal opacity is one of the leading causes of blindness. Although conventional corneal transplantation has been successful in recovering patients’ vision, the outcomes are challenged by a global lack of donor tissue availability. Bioengineered corneal tissues are gaining momentum as a new source for corneal wound healing and scar management. Extracellular matrix (ECM)-scaffold-based engineering offers a new perspective on corneal regenerative medicine. Ultrathin stromal laminar tissues obtained from lenticule-based refractive correction procedures, such as SMall Incision Lenticule Extraction (SMILE), are an accessible and novel source of collagen-rich ECM scaffolds with high mechanical strength, biocompatibility, and transparency. After customization (including decellularization), these lenticules can serve as an acellular scaffold niche to repopulate cells, including stromal keratocytes and stem cells, with functional phenotypes. The intrastromal transplantation of these cell/tissue composites can regenerate native-like corneal stromal tissue and restore corneal transparency. This review highlights the current status of ECM-scaffold-based engineering with cells, along with the development of drug and growth factor delivery systems, and elucidates the potential uses of stromal lenticule scaffolds in regenerative therapeutics.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vishal Jhanji
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
45
|
Sampaio LP, Hilgert GSL, Shiju TM, Santhiago MR, Wilson SE. Topical Losartan and Corticosteroid Additively Inhibit Corneal Stromal Myofibroblast Generation and Scarring Fibrosis After Alkali Burn Injury. Transl Vis Sci Technol 2022; 11:9. [PMID: 35819289 PMCID: PMC9287619 DOI: 10.1167/tvst.11.7.9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/19/2022] [Indexed: 12/26/2022] Open
Abstract
Purpose To evaluate the efficacy of losartan and prednisolone acetate in inhibiting corneal scarring fibrosis after alkali burn injury in rabbits. Methods Sixteen New Zealand White rabbits were included. Alkali injuries were produced using 1N sodium hydroxide on a 5-mm diameter Whatman #1 filter paper for 1 minute. Four corneas in each group were treated six times per day for 1 month with 50 µL of (1) 0.8 mg/mL losartan in balanced salt solution (BSS), (2) 1% prednisolone acetate, (3) combined 0.8 mg/mL losartan and 1% prednisolone acetate, or (4) BSS. Area of opacity and total opacity were analyzed in standardized slit-lamp photos with ImageJ. Corneas in both groups were cryofixed in Optimal cutting temperature (OCT) compound at 1 month after surgery, and immunohistochemistry was performed for alpha-smooth muscle actin (α-SMA) and keratocan or transforming growth factor β1 and collagen type IV with ImageJ quantitation. Results Combined topical losartan and prednisolone acetate significantly decreased slit-lamp opacity area and intensity, as well as decreased stromal myofibroblast α-SMA area and intensity of staining per section and confined myofibroblasts to only the posterior stroma with repopulation of the anterior and mid-stroma with keratocan-positive keratocytes after 1 month of treatment. Corneal fibroblasts produced collagen type IV not associated with basement membranes, and this production was decreased by topical losartan. Conclusions Combined topical losartan and prednisolone acetate decreased myofibroblast-associated fibrosis after corneal alkali burns that produced full-thickness injury, including corneal endothelial damage. Increased dosages and duration of treatment may further decrease scarring fibrosis. Translational Relevance Topical losartan and prednisolone acetate decrease myofibroblast-mediated scarring fibrosis after corneal injury.
Collapse
Affiliation(s)
- Lycia Pedral Sampaio
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology at University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
46
|
Okada Y, Sumioka T, Reinach PS, Miyajima M, Saika S. Roles of Epithelial and Mesenchymal TRP Channels in Mediating Inflammatory Fibrosis. Front Immunol 2022; 12:731674. [PMID: 35058918 PMCID: PMC8763672 DOI: 10.3389/fimmu.2021.731674] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The maintenance of normal vision is dependent on preserving corneal transparency. For this to occur, this tissue must remain avascular and its stromal architecture needs to be retained. Epithelial transparency is maintained provided the uppermost stratified layers of this tissue are composed of terminally differentiated non-keratinizing cells. In addition, it is essential that the underlying stromal connective tissue remains avascular and scar-free. Keratocytes are the source of fibroblasts that are interspersed within the collagenous framework and the extracellular matrix. In addition, there are sensory nerve fibers whose lineage is possibly either neural crest or mesenchymal. Corneal wound healing studies have been undertaken to delineate the underlying pathogenic responses that result in the development of opacification following chemical injury. An alkali burn is one type of injury that can result in severe and long- lasting losses in ocular transparency. During the subsequent wound healing process, numerous different proinflammatory cytokines and proteolytic enzymes undergo upregulation. Such increases in their expression levels induce maladaptive expression of sustained stromal inflammatory fibrosis, neovascularization, and losses in the smooth optical properties of the corneal outer surface. It is becoming apparent that different transient receptor potential channel (TRP) isoforms are important players in mediating these different events underlying the wound healing process since injury upregulates both their expression levels and functional involvement. In this review, we focus on the involvement of TRPV1, TRPA1 and TRPV4 in mediating some of the responses that underlie the control of anterior ocular tissue homeostasis under normal and pathological conditions. They are expressed on both different cell types throughout this tissue and also on corneal sensory nerve endings. Their roles have been extensively studied as sensors and transducers of environmental stimuli resulting from exposure to intrinsic modulators and extrinsic ligands. These triggers include alteration of the ambient temperature and mechanical stress, etc., that can induce pathophysiological responses underlying losses in tissue transparency activated by wound healing in mice losses in tissue transparency. In this article, experimental findings are reviewed about the role of injury-induced TRP channel activation in mediating inflammatory fibrotic responses during wound healing in mice.
Collapse
Affiliation(s)
- Yuka Okada
- Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | | | - Peter S Reinach
- Wenzhou Medical University School of Ophthalmology and Optometry, Wenzhou, China
| | | | - Shizuya Saika
- Ophthalmology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
47
|
Wilson SE. Defective perlecan-associated basement membrane regeneration and altered modulation of transforming growth factor beta in corneal fibrosis. Cell Mol Life Sci 2022; 79:144. [PMID: 35188596 PMCID: PMC8972081 DOI: 10.1007/s00018-022-04184-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
Abstract
In the cornea, the epithelial basement membrane (EBM) and corneal endothelial Descemet's basement membrane (DBM) critically regulate the localization, availability and, therefore, the functions of transforming growth factor (TGF)β1, TGFβ2, and platelet-derived growth factors (PDGF) that modulate myofibroblast development. Defective regeneration of the EBM, and notably diminished perlecan incorporation, occurs via several mechanisms and results in excessive and prolonged penetration of pro-fibrotic growth factors into the stroma. These growth factors drive mature myofibroblast development from both corneal fibroblasts and bone marrow-derived fibrocytes, and then the persistence of these myofibroblasts and the disordered collagens and other matrix materials they produce to generate stromal scarring fibrosis. Corneal stromal fibrosis often resolves completely if the inciting factor is removed and the BM regenerates. Similar defects in BM regeneration are likely associated with the development of fibrosis in other organs where perlecan has a critical role in the modulation of signaling by TGFβ1 and TGFβ2. Other BM components, such as collagen type IV and collagen type XIII, are also critical regulators of TGF beta (and other growth factors) in the cornea and other organs. After injury, BM components are dynamically secreted and assembled through the cooperation of neighboring cells-for example, the epithelial cells and keratocytes for the corneal EBM and corneal endothelial cells and keratocytes for the corneal DBM. One of the most critical functions of these reassembled BMs in all organs is to modulate the pro-fibrotic effects of TGFβs, PDGFs and other growth factors between tissues that comprise the organ.
Collapse
Affiliation(s)
- Steven E Wilson
- Cole Eye Institute, I-32, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA.
| |
Collapse
|
48
|
Sun M, Koudouna E, Cogswell D, Avila MY, Koch M, Espana EM. Collagen XII Regulates Corneal Stromal Structure by Modulating Transforming Growth Factor-β Activity. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:308-319. [PMID: 34774848 PMCID: PMC8908044 DOI: 10.1016/j.ajpath.2021.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023]
Abstract
Collagen XII is a regulator of corneal stroma structure and function. The current study examined the role of collagen XII in regulating corneal stromal transforming growth factor (TGF)-β activation and latency. Specifically, with the use of conventional collagen XII null mouse model, the role of collagen XII in the regulation of TGF-β latency and activity in vivo was investigated. Functional quantification of latent TGF-β in stromal matrix was performed by using transformed mink lung reporter cells that produce luciferase as a function of active TGF-β. Col12a1 knockdown with shRNA was used to test the role of collagen XII in TGF-β activation. Col12a1-/- hypertrophic stromata were observed with keratocyte hyperplasia. Increased collagen fibril forward signal was found by second harmonic generation microscopy in the absence of collagen XII. Collagen XII regulated mRNA synthesis of Serpine1, Col1a1, and Col5a1 and deposition of collagens in the extracellular matrix. A functional plasminogen activator inhibitor luciferase assay showed that collagen XII is necessary for latent TGF-β storage in the extracellular matrix and that collagen XII down-regulates active TGF-β. Collagen XII dictates stromal structure and function by regulating TGF-β activity. A hypertrophic phenotype in Col12a1-/- corneal tissue can be explained by abnormal up-regulation of TGF-β activation and decreased latent storage.
Collapse
Affiliation(s)
- Mei Sun
- Cornea and External Disease, Department of Ophthalmology, Department of Molecular Pharmacology and Physiology, Tampa, Florida
| | - Elena Koudouna
- Structural Biophysics, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Devon Cogswell
- Cornea and External Disease, Department of Ophthalmology, Department of Molecular Pharmacology and Physiology, Tampa, Florida
| | - Marcel Y. Avila
- Department of Ophthalmology, Universidad Nacional de Colombia, Bogota, Colombia
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Edgar M. Espana
- Cornea and External Disease, Department of Ophthalmology, Department of Molecular Pharmacology and Physiology, Tampa, Florida,Morsani College of Medicine, University of South Florida, Tampa, Florida,Address correspondence to Edgar M. Espana, M.D., Ophthalmology, University of South Florida, Morsani College of Medicine, 13330 USF Laurel Dr., 4th Floor, MDC11, Tampa, FL 33612.
| |
Collapse
|
49
|
Wilson SE, Sampaio LP, Shiju TM, Hilgert GSL, de Oliveira RC. Corneal Opacity: Cell Biological Determinants of the Transition From Transparency to Transient Haze to Scarring Fibrosis, and Resolution, After Injury. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 35044454 PMCID: PMC8787546 DOI: 10.1167/iovs.63.1.22] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose To highlight the cellular, matrix, and hydration changes associated with opacity that occurs in the corneal stroma after injury. Methods Review of the literature. Results The regulated transition of keratocytes to corneal fibroblasts and myofibroblasts, and of bone marrow-derived fibrocytes to myofibroblasts, is in large part modulated by transforming growth factor beta (TGFβ) entry into the stroma after injury to the epithelial basement membrane (EBM) and/or Descemet's membrane. The composition, stoichiometry, and organization of the stromal extracellular matrix components and water is altered by corneal fibroblast and myofibroblast production of large amounts of collagen type I and other extracellular matrix components-resulting in varying levels of stromal opacity, depending on the intensity of the healing response. Regeneration of EBM and/or Descemet's membrane, and stromal cell production of non-EBM collagen type IV, reestablishes control of TGFβ entry and activity, and triggers TGFβ-dependent myofibroblast apoptosis. Eventually, corneal fibroblasts also disappear, and repopulating keratocytes reorganize the disordered extracellular matrix to reestablish transparency. Conclusions Injuries to the cornea produce varying amounts of corneal opacity depending on the magnitude of cellular and molecular responses to injury. The EBM and Descemet's membrane are key regulators of stromal cellularity through their modulation of TGFβ. After injury to the cornea, depending on the severity of the insult, and possibly genetic factors, trace opacity to severe scarring fibrosis develops. Stromal cellularity, and the functions of different cell types, are the major determinants of the level of the stromal opacity.
Collapse
Affiliation(s)
- Steven E. Wilson
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Lycia Pedral Sampaio
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Ophthalmology, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
50
|
Karmiris E, Soulantzou K, Machairoudia G, Ntravalias T, Tsiogka A, Chalkiadaki E. Corneal Densitometry Assessed With Scheimpflug Camera in Healthy Corneas and Correlation With Specular Microscopy Values and Age. Cornea 2022; 41:60-68. [PMID: 33797466 DOI: 10.1097/ico.0000000000002722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate correlations between specular microscopy endothelial parameters and age with corneal densitometry values, as they are presented from a Scheimpflug device, in different levels of the cornea. METHODS Two hundred eighty-four eyes of 142 healthy subjects were included in this observational, prospective study. Corneal densitometry was evaluated with Scheimpflug imaging system in the central 0- to 2-mm annular zone of the cornea, whereas the endothelial cell properties were assessed with the use of a noncontact specular microscope. RESULTS Corneal densitometry values of all corneal layers were statistically significant and positively correlated with age. In univariate linear regression analysis among corneal densitometry values and the endothelial parameters, only endothelial cell density (CD) was statistically significant and inversely correlated with densitometry values in all corneal layers. In stepwise multivariate linear regression analysis, after adjustment for age, hexagonality was statistically significant and inversely correlated with posterior densitometry values, whereas coefficient of variation was positively and significantly correlated with the anterior densitometry values. When repeating stepwise multivariate linear regression analysis without adjusting for age, CD was negatively and significantly correlated with corneal densitometry values of all layers, whereas coefficient of variation was positively and significantly correlated with anterior and total corneal densitometry values. CONCLUSIONS Corneal densitometry increases with age. It is also inversely correlated with CD, and this might be used as an indirect way to assess the status of the corneal endothelium.
Collapse
Affiliation(s)
- Efthymios Karmiris
- Ophthalmology Department, Hellenic Air Force General Hospital, Athens, Greece
| | | | - Genovefa Machairoudia
- Ophthalmology Department, Hellenic Air Force General Hospital and Attikon University Hospital, Athens, Greece ; and
| | - Thomas Ntravalias
- Ophthalmology Department, Hellenic Air Force General Hospital, Athens, Greece
| | - Anastasia Tsiogka
- Ophthalmology Department, Hellenic Army General Hospital, Athens, Greece
| | | |
Collapse
|