1
|
Tran Van Nhieu G, Latour-Lambert P, Enninga J. Modification of phosphoinositides by the Shigella effector IpgD during host cell infection. Front Cell Infect Microbiol 2022; 12:1012533. [PMID: 36389142 PMCID: PMC9647168 DOI: 10.3389/fcimb.2022.1012533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 09/15/2023] Open
Abstract
Shigella, the causative agent of bacillary dysentery, subvert cytoskeletal and trafficking processes to invade and replicate in epithelial cells using an arsenal of bacterial effectors translocated through a type III secretion system. Here, we review the various roles of the type III effector IpgD, initially characterized as phosphatidylinositol 4,5 bisphosphate (PI4,5P2) 4-phosphatase. By decreasing PI4,5P2 levels, IpgD triggers the disassembly of cortical actin filaments required for bacterial invasion and cell migration. PI5P produced by IpgD further stimulates signaling pathways regulating cell survival, macropinosome formation, endosomal trafficking and dampening of immune responses. Recently, IpgD was also found to exhibit phosphotransferase activity leading to PI3,4P2 synthesis adding a new flavor to this multipotent bacterial enzyme. The substrate of IpgD, PI4,5P2 is also the main substrate hydrolyzed by endogenous phospholipases C to produce inositoltriphosphate (InsP3), a major Ca2+ second messenger. Hence, beyond the repertoire of effects associated with the direct diversion of phoshoinositides, IpgD indirectly down-regulates InsP3-mediated Ca2+ release by limiting InsP3 production. Furthermore, IpgD controls the intracellular lifestyle of Shigella promoting Rab8/11 -dependent recruitment of the exocyst at macropinosomes to remove damaged vacuolar membrane remnants and promote bacterial cytosolic escape. IpgD thus emerges as a key bacterial effector for the remodeling of host cell membranes.
Collapse
Affiliation(s)
- Guy Tran Van Nhieu
- Institute for Integrative Biology of the Cell – Centre National de la Recherche Scientifique (CNRS) UMR9198 - Institut National de la Santé et de la Recherche Médicale (Inserm) U1280, Team Calcium Signaling and Microbial Infections, Gif-sur-Yvette, France
| | - Patricia Latour-Lambert
- Institut Pasteur, Unité Dynamique des interactions hôtes-pathogènes and Centre National de la Recherche Scientifique (CNRS) UMR3691, Université de Paris Cité, Paris, France
| | - Jost Enninga
- Institut Pasteur, Unité Dynamique des interactions hôtes-pathogènes and Centre National de la Recherche Scientifique (CNRS) UMR3691, Université de Paris Cité, Paris, France
| |
Collapse
|
2
|
Abe Y, Watanabe M, Chung S, Kamm RD, Tanishita K, Sudo R. Balance of interstitial flow magnitude and vascular endothelial growth factor concentration modulates three-dimensional microvascular network formation. APL Bioeng 2019; 3:036102. [PMID: 31431938 PMCID: PMC6697031 DOI: 10.1063/1.5094735] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/09/2019] [Indexed: 12/02/2022] Open
Abstract
Hemodynamic and biochemical factors play important roles in critical steps of angiogenesis. In particular, interstitial flow has attracted attention as an important hemodynamic factor controlling the angiogenic process. Here, we applied a wide range of interstitial flow magnitudes to an in vitro three-dimensional (3D) angiogenesis model in a microfluidic device. This study aimed to investigate the effect of interstitial flow magnitude in combination with the vascular endothelial growth factor (VEGF) concentration on 3D microvascular network formation. Human umbilical vein endothelial cells (HUVECs) were cultured in a series of interstitial flow generated by 2, 8, and 25 mmH2O. Our findings indicated that interstitial flow significantly enhanced vascular sprout formation, network extension, and the development of branching networks in a magnitude-dependent manner. Furthermore, we demonstrated that the proangiogenic effect of interstitial flow application could not be substituted by the increased VEGF concentration. In addition, we found that HUVECs near vascular sprouts significantly elongated in >8 mmH2O conditions, while activation of Src was detected even in 2 mmH2O conditions. Our results suggest that the balance between the interstitial flow magnitude and the VEGF concentration plays an important role in the regulation of 3D microvascular network formation in vitro.
Collapse
Affiliation(s)
- Yoshinori Abe
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Masafumi Watanabe
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul 02841, South Korea
| | - Roger D Kamm
- Departments of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Kazuo Tanishita
- Department of System Design Engineering, Keio University, Yokohama 223-8522, Japan
| | | |
Collapse
|
3
|
Syndecan-2 regulation of morphology in breast carcinoma cells is dependent on RhoGTPases. Biochim Biophys Acta Gen Subj 2014; 1840:2482-90. [DOI: 10.1016/j.bbagen.2014.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/21/2023]
|
4
|
Role of Src kinases in mobilization of glycosylphosphatidylinositol-anchored decay-accelerating factor by Dr fimbria-positive adhering bacteria. Infect Immun 2011; 79:2519-34. [PMID: 21518786 DOI: 10.1128/iai.01052-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Afa/Dr fimbriae constitute the major virulence factor of diffusely adhering Escherichia coli (Afa/Dr DAEC). After recognizing membrane-bound signaling receptors, they trigger cell responses. One of these receptors is the human decay-accelerating factor (hDAF). It has previously been reported that the binding of Afa/Dr fimbriae to hDAF quickly induces recruitment of hDAF around adhering bacteria. The aim of our study is to analyze the role of Src kinases in the Dr fimbria-induced recruitment of hDAF. Using biochemical methods and confocal microscopy followed by 3-dimensional (3D) analysis, we have shown that the activation and cell membrane targeting of Src kinases are necessary for the recruitment and organization of hDAF around adhering bacteria. We identified c-Src to be the specific kinase involved in this process. Using a set of Src-green fluorescent protein mutants, we showed that the catalytic activity and the Src homology 2 (SH2) and SH3 domains of the Src kinases are necessary for Dr fimbria-induced hDAF mobilization to occur. In addition, using mutated Dr fimbriae and a set of mutated hDAFs in which each of the complement control protein (CCP) domains had successively been deleted, we found that the aspartic acids at position 54 in the Dr fimbriae and in CCP domain 4 of hDAF played pivotal roles in the mobilization of the Src kinases and hDAF, respectively.
Collapse
|
5
|
Entry of Neisseria meningitidis into mammalian cells requires the Src family protein tyrosine kinases. Infect Immun 2010; 78:1905-14. [PMID: 20176789 DOI: 10.1128/iai.01267-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis, the causative agent of meningitis and septicemia, is able to attach to and invade a variety of cell types. In a previous study we showed that entry of N. meningitidis into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin bound to the outer membrane protein Opc, which forms a molecular bridge to alpha 5 beta 1-integrins. This interaction results in cytoskeletal remodeling and uptake of the bacteria. In this study we identified and characterized the intracellular signals involved in integrin-initiated uptake of N. meningitidis. We determined that the Src protein tyrosine kinases (PTKs) are activated in response to contact with N. meningitidis. Inhibition of Src PTK activity by the general tyrosine kinase inhibitor genistein and the specific Src inhibitor PP2 reduced Opc-mediated invasion of HBMEC and human embryonic kidney (HEK) 293T cells up to 90%. Moreover, overexpression of the cellular Src antagonist C-terminal Src kinase (CSK) also significantly reduced N. meningitidis invasion. Src PTK-deficient fibroblasts were impaired in the ability to internalize N. meningitidis and showed reduced phosphorylation of the cytoskeleton and decreased development of stress fibers. These data indicate that the Src family PTKs, particularly the Src protein, along with other proteins, are important signal proteins that are responsible for the transfer of signals from activated integrins to the cytoskeleton and thus mediate the endocytosis of N. meningitidis into brain endothelial cells.
Collapse
|
6
|
Kim TJ, Xu J, Dong R, Lu S, Nuzzo R, Wang Y. Visualizing the effect of microenvironment on the spatiotemporal RhoA and Src activities in living cells by FRET. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:1453-9. [PMID: 19334011 PMCID: PMC3373893 DOI: 10.1002/smll.200801846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cell-microenvironment interaction is critical for cells to perceive environmental cues and co-ordinate signaling cascades to regulate physiological functions. Herein, a soft-lithography technique, micropattern via micromolding in capillaries (MIMIC), is explored to create cell-adhesive micropatterns on glass coverslips. Genetically encoded Src and RhoA fluorescence resonance energy transfer (FRET) biosensors are used to monitor the Src and RhoA activities in nonpatterned cells (stochastically migrating cells, SMCs) and those constrained to grow on micropatterned surfaces (restrictedly migrating cells, RMCs). The results reveal that epidermal growth factor (EGF) induces a decrease of RhoA and an increase of Src activities with biphasic time courses in RMCs. In contrast, the time courses of such activities in SMCs upon EGF stimulation are relatively monophasic. The inhibition of Src activity, actin network, or myosin machinery abolishes the biphasic RhoA response upon EGF stimulation in RMCs. The results indicate that this microenvironment effect on the biphasic RhoA activation in RMCs is mediated by Src and actomyosin machinery. Through the integration of FRET and micropatterning technologies, it is demonstrated that the microenvironment impacts significantly on cell shapes and subsequently the spatiotemporal signaling network of RhoA and Src in living cells. The results help to advance mechanistic understanding of how cells perceive and interpret microenvironments to co-ordinate intracellular molecular signals and ultimately physiological responses.
Collapse
Affiliation(s)
- Tae-Jin Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, IL 61801 (USA)
| | - Jing Xu
- Department of Bioengineering and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL 61801 (USA)
| | - Rui Dong
- Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801 (USA)
| | - Shaoying Lu
- Department of Bioengineering and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL 61801 (USA)
| | - Ralph Nuzzo
- Department of Chemistry, University of Illinois at Urbana-Champaign, IL 61801 (USA)
| | - Yingxiao Wang
- Neuroscience Program, University of Illinois at Urbana-Champaign, IL 61801 (USA) ; Department of Bioengineering and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL 61801 (USA); Department of Molecular and Integrative Physiology and Center for Biophysics and Computational Biology, Institute of Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801 (USA)
| |
Collapse
|
7
|
Vepachedu R, Karim Z, Patel O, Goplen N, Alam R. Unc119 protects from Shigella infection by inhibiting the Abl family kinases. PLoS One 2009; 4:e5211. [PMID: 19381274 PMCID: PMC2667249 DOI: 10.1371/journal.pone.0005211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/13/2009] [Indexed: 01/11/2023] Open
Abstract
Background Bacteria engage cell surface receptors and intracellular signaling molecules to enter the cell. Unc119 is an adaptor protein, which interacts with receptors and tyrosine kinases. Its role in bacterial invasion of cells is unknown. Methodology/Principal Findings We used biochemical, molecular and cell biology approaches to identify the binding partners of Unc119, and to study the effect of Unc119 on Abl family kinases and Shigella infection. We employed loss-of-function and gain-in-function approaches to study the effect of Unc119 in a mouse model of pulmonary shigellosis. Unc119 interacts with Abl family kinases and inhibits their kinase activity. As a consequence, it inhibits Crk phosphorylation, which is essential for Shigella infection. Unc119 co-localizes with Crk and Shigella in infected cells. Shigella infectivity increases in Unc119-deficient epithelial and macrophage cells. In a mouse model of shigellosis cell-permeable TAT-Unc119 inhibits Shigella infection. Conversely, Unc119 knockdown in vivo results in enhanced bacterial invasion and increased lethality. Unc119 is an inducible protein. Its expression is upregulated by probacteria and bacterial products such as lipopolysacharide and sodium butyrate. The latter inhibits Shigella infection in mouse lungs but is ineffective in Unc119 deficiency. Conclusions Unc119 inhibits signaling pathways that are used by Shigella to enter the cell. As a consequence it provides partial but significant protection from Shigella infections. Unc119 induction in vivo boosts host defense against infections.
Collapse
Affiliation(s)
| | - Zunayet Karim
- National Jewish Health, Denver, Colorado, United States of America
| | - Ojas Patel
- University of Colorado at Denver Health Sciences Center, Denver, Colorado, United States of America
| | - Nicholas Goplen
- National Jewish Health, Denver, Colorado, United States of America
| | - Rafeul Alam
- National Jewish Health, Denver, Colorado, United States of America
- University of Colorado at Denver Health Sciences Center, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
8
|
Mounier J, Popoff MR, Enninga J, Frame MC, Sansonetti PJ, Van Nhieu GT. The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog 2009; 5:e1000271. [PMID: 19165331 PMCID: PMC2621354 DOI: 10.1371/journal.ppat.1000271] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 12/15/2008] [Indexed: 01/04/2023] Open
Abstract
Shigella, the causative agent of bacillary dysentery, invades epithelial cells by locally reorganizing the actin cytoskeleton. Shigella invasion requires actin polymerization dependent on the Src tyrosine kinase and a functional bacterial type III secretion (T3S) apparatus. Using dynamic as well as immunofluorescence microscopy, we show that the T3S translocon component IpaC allows the recruitment of the Src kinase required for actin polymerization at bacterial entry sites during the initial stages of Shigella entry. Src recruitment occurred at bacterial-cell contact sites independent of actin polymerization at the onset of the invasive process and was still observed in Shigella strains mutated for translocated T3S effectors of invasion. A Shigella strain with a polar mutation that expressed low levels of the translocator components IpaB and IpaC was fully proficient for Src recruitment and bacterial invasion. In contrast, a Shigella strain mutated in the IpaC carboxyterminal effector domain that was proficient for T3S effector translocation did not induce Src recruitment. Consistent with a direct role for IpaC in Src activation, cell incubation with the IpaC last 72 carboxyterminal residues fused to the Iota toxin Ia (IaC) component that translocates into the cell cytosol upon binding to the Ib component led to Src-dependent ruffle formation. Strikingly, IaC also induced actin structures resembling bacterial entry foci that were enriched in activated Src and were inhibited by the Src inhibitor PP2. These results indicate that the IpaC effector domain determines Src-dependent actin polymerization and ruffle formation during bacterial invasion. Type III secretion systems (T3SS) are present in a wide range of Gram-negative bacteria that are pathogenic to humans, animals, and plants. These molecular devices allow the injection of bacterial virulence factors into host cells to manipulate various cellular functions. T3SSs share similar functional features. Noticeably, host cell contact triggers the secretion of two T3SS substrates that insert into host cell membranes to form a so-called “translocator” required for the injection of T3SS effectors. Shigella, an enteroinvasive pathogen responsible for bacillary dysentery, uses a T3SS to transiently reorganize the actin cytoskeleton and to induce its internalization into epithelial cells. Some Shigella-injected T3SS effectors participate in cytoskeletal reorganization, but none of these effectors are totally necessary or sufficient to induce bacterial invasion. We show here that in addition to its role in the injection of bacterial effectors, the translocator component IpaC also induces the recruitment of Src and actin polymerization driving the formation of localized membrane ruffling. Our findings suggest that major signaling through T3S translocator components occurs during the initial steps of bacterial interaction with host cell membranes. Compounds that prevent membrane insertion of the Shigella T3S translocator would likely constitute ideal candidates for antimicrobial agents.
Collapse
Affiliation(s)
- Joëlle Mounier
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
| | - Michel R. Popoff
- Unité de Recherche et d'Expertise Bactéries anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Jost Enninga
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
| | - Margaret C. Frame
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
| | - Guy Tran Van Nhieu
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Inserm U786, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
9
|
Shigella Infection of Intestinal Epithelium and Circumvention of the Host Innate Defense System. Curr Top Microbiol Immunol 2009; 337:231-55. [DOI: 10.1007/978-3-642-01846-6_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Jiang W, Betson M, Mulloy R, Foster R, Lévay M, Ligeti E, Settleman J. p190A RhoGAP is a glycogen synthase kinase-3-beta substrate required for polarized cell migration. J Biol Chem 2008; 283:20978-88. [PMID: 18502760 DOI: 10.1074/jbc.m802588200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Rho GTPases are critical regulators of the actin cytoskeleton and are required for cell adhesion, migration, and polarity. Among the key Rho regulatory proteins in the context of cell migration are the p190 RhoGAPs (p190A and p190B), which function to modulate Rho signaling in response to integrin engagement. The p190 RhoGAPs undergo complex regulation, including phosphorylation by several identified kinases, interactions with phospholipids, and association with a variety of cellular proteins. Here, we have identified an additional regulatory mechanism unique to p190A RhoGAP that involves priming-dependent phosphorylation by glycogen synthase-3-beta (GSK-3beta), a kinase previously implicated in establishing cell polarity. We found that p190A-deficient fibroblasts exhibit a defect in directional cell migration reflecting a requirement for GSK-3beta-mediated phosphorylation of amino acids in the C-terminal "tail" of p190A. This phosphorylation leads to inhibition of p190A RhoGAP activity in vitro and in vivo. These studies identify p190A as a novel GSK-3beta substrate and reveal a mechanism by which GSK-3beta contributes to cellular polarization in directionally migrating cells via effects on Rho GTPase activity.
Collapse
Affiliation(s)
- Wei Jiang
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Schober M, Raghavan S, Nikolova M, Polak L, Pasolli HA, Beggs HE, Reichardt LF, Fuchs E. Focal adhesion kinase modulates tension signaling to control actin and focal adhesion dynamics. ACTA ACUST UNITED AC 2007; 176:667-80. [PMID: 17325207 PMCID: PMC2064024 DOI: 10.1083/jcb.200608010] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In response to alphabeta1 integrin signaling, transducers such as focal adhesion kinase (FAK) become activated, relaying to specific machineries and triggering distinct cellular responses. By conditionally ablating Fak in skin epidermis and culturing Fak-null keratinocytes, we show that FAK is dispensable for epidermal adhesion and basement membrane assembly, both of which require alphabeta1 integrins. FAK is also dispensible for proliferation/survival in enriched medium. In contrast, FAK functions downstream of alphabeta1 integrin in regulating cytoskeletal dynamics and orchestrating polarized keratinocyte migration out of epidermal explants. Fak-null keratinocytes display an aberrant actin cytoskeleton, which is tightly associated with robust, peripheral focal adhesions and microtubules. We find that without FAK, Src, p190RhoGAP, and PKL-PIX-PAK, localization and/or activation at focal adhesions are impaired, leading to elevated Rho activity, phosphorylation of myosin light chain kinase, and enhanced tensile stress fibers. We show that, together, these FAK-dependent activities are critical to control the turnover of focal adhesions, which is perturbed in the absence of FAK.
Collapse
Affiliation(s)
- Markus Schober
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Matheson SF, Hu KQ, Brouns MR, Sordella R, VanderHeide JD, Settleman J. Distinct but overlapping functions for the closely related p190 RhoGAPs in neural development. Dev Neurosci 2006; 28:538-50. [PMID: 17028431 DOI: 10.1159/000095116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 03/08/2006] [Indexed: 11/19/2022] Open
Abstract
The p190 RhoGAPs, p190A and p190B, are highly related GTPase-activating proteins for the Rho GTPases. Rho GTPases and p190A reportedly control various aspects of brain development, and we hypothesized that p190B would be likewise involved in neuronal development. We find that like p190A, p190B is prominently expressed in the developing and adult brain. Unlike p190A, p190B is not abundantly tyrosine phosphorylated. We further demonstrate, using p190B-deficient mice, that p190B is required for normal brain development. Mice lacking p190B display several major defects, including (1) deficits in the formation of major forebrain commissures, including the corpus callosum and anterior commissure, (2) dilation of the lateral ventricles, suggesting inhibition of neurogenesis and/or survival, (3) thinning of the neocortical intermediate zone, suggesting defects in neuronal differentiation and/or axonal outgrowth, and (4) impaired neuronal differentiation. These defects are similar to, but distinct from, those described in p190A-deficient mice. RNA interference-mediated knockdown of neither p190 protein results in significant inhibition of neurite outgrowth in neuroblastoma cells, despite an apparent increase in RhoA activity. We conclude that p190 RhoGAPs control pivotal aspects of neural development, including neuronal differentiation and process outgrowth, and that these effects are mediated by signaling systems that include, but are not limited to, RhoA.
Collapse
|
13
|
Cozzone AJ. Role of Protein Phosphorylation on Serine/Threonine and Tyrosine in the Virulence of Bacterial Pathogens. J Mol Microbiol Biotechnol 2006; 9:198-213. [PMID: 16415593 DOI: 10.1159/000089648] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial pathogens have developed a diversity of strategies to interact with host cells, manipulate their behaviors, and thus to survive and propagate. During the process of pathogenesis, phosphorylation of proteins on hydroxyl amino acids (serine, threonine, tyrosine) occurs at different stages, including cell-cell interaction and adherence, translocation of bacterial effectors into host cells, and changes in host cellular structure and function induced by infection. The phosphorylation reactions are catalyzed in a reversible fashion by specific protein kinases and phosphatases that belong to either the invading bacterial cells or the infected eukaryotic host cells. Among the various virulence factors involved in bacterial pathogenesis, special attention has been paid recently to the cell wall components, exopolysaccharides. A major breakthrough has been made by showing the existence of a biological link between the activity of certain protein-tyrosine kinases/phosphatases and the production and/or transport of surface polysaccharides. In addition, genetic studies have revealed a key role played by some serine/threonine kinases in pathogenesis. Considering the structural organization and membrane topology of these different kinases, it can be envisaged that they operate as one-component systems in signal transduction pathways, in the form of single proteins containing input and output domains on the same polypeptide chain. From a general standpoint, the demonstration of a direct relationship between protein phosphorylation on serine/threonine/tyrosine and bacterial virulence represents a novel concept of great importance in deciphering the molecular and cellular mechanisms that underlie pathogenesis.
Collapse
Affiliation(s)
- Alain J Cozzone
- Institute of Biology and Chemistry of Proteins, University of Lyon/CNRS, Lyon, France.
| |
Collapse
|
14
|
Rottner K, Stradal TEB, Wehland J. Bacteria-host-cell interactions at the plasma membrane: stories on actin cytoskeleton subversion. Dev Cell 2005; 9:3-17. [PMID: 15992537 DOI: 10.1016/j.devcel.2005.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exploitation of the host-cell actin cytoskeleton is pivotal for many microbial pathogens to enter cells, to disseminate within and between infected tissues, to prevent their uptake by phagocytic cells, or to promote intimate attachment to the cell surface. To accomplish this, these pathogens have evolved common as well as unique strategies to modulate actin dynamics at the plasma membrane, which will be discussed here, exemplified by a number of well-studied bacterial pathogens.
Collapse
Affiliation(s)
- Klemens Rottner
- Cytoskeleton Dynamics Group, German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | |
Collapse
|
15
|
Dutra JMF, Bonilha VL, De Souza W, Carvalho TMU. Role of small GTPases in Trypanosoma cruzi invasion in MDCK cell lines. Parasitol Res 2005; 96:171-7. [PMID: 15864650 DOI: 10.1007/s00436-005-1333-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 01/31/2005] [Indexed: 11/27/2022]
Abstract
Trypanosoma cruzi can modulate a large number of host intracellular responses during its invasion. GTPases such as RhoA, Rac1 and Cdc42 are examples of molecules that could be activated at this moment and trigger changes in the pattern of F-actin cytoskeleton leading to the formation of structures like stress fibers, lamellipodium and fillopodium, respectively. Here we investigate the role of these GTPases in the cytoskeletal rearrangement of MDCK cell transfectants expressing variants of RhoA, Rac1 and Cdc42 during T. cruzi infection. The adhesion, internalization and the survival rate were determined. Rac1 mutants showed the higher adhesion and internalization indexes but the lower survival index after 48 h of infection. Confocal laser scanning microscopy showed changes in the pattern of F-actin distribution and reorganization at the site of trypomastigote invasion. These observations suggest that these GTPases act in the signaling mechanisms that affect the F-actin cytoskeleton during T. cruzi invasion.
Collapse
Affiliation(s)
- J M F Dutra
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho-CCS-UFRJ-Ilha do Fundão, 21940-900, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
16
|
Ohya K, Handa Y, Ogawa M, Suzuki M, Sasakawa C. IpgB1 is a novel Shigella effector protein involved in bacterial invasion of host cells. Its activity to promote membrane ruffling via Rac1 and Cdc42 activation. J Biol Chem 2005; 280:24022-34. [PMID: 15849186 DOI: 10.1074/jbc.m502509200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Shigella, the causative agent of bacillary dysentery, is capable of inducing the large scale membrane ruffling required for the bacterial invasion of host cells. Shigella secrete a subset of effectors via the type III secretion system (TTSS) into the host cells to induce membrane ruffling. Here, we show that IpgB1 is secreted via the TTSS into epithelial cells and plays a major role in producing membrane ruffles via stimulation of Rac1 and Cdc42 activities, thus promoting bacterial invasion of epithelial cells. The invasiveness of the ipgB1 mutant was decreased to less than 50% of the wild-type level (100%) in a gentamicin protection or plaque forming assay. HeLa cells infected with the wild-type or a IpgB1-hyperproducing strain developed membrane ruffles, with the invasiveness and the scale of membrane ruffles being comparable with the level of IpgB1 production in bacteria. Upon expression of EGFP-IpgB1 in HeLa cells, large membrane ruffles are extended, where the EGFP-IpgB1 was predominantly associated with the cytoplasmic membrane. The IpgB1-mediated formation of ruffles was significantly diminished by expressing Rac1 small interfering RNA and Cdc42 small interfering RNA or by treatment with GGTI-298, an inhibitor of the geranylgeranylation of Rho GTPases. When IpgB1 was expressed in host cells or wild-type Shigella-infected host cells, Rac1 and Cdc42 were activated. The results thus indicate that IpgB1 is a novel Shigella effector involved in bacterial invasion of epithelial cells via the activation of Rho GTPases.
Collapse
Affiliation(s)
- Kenji Ohya
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
17
|
Nhieu GTV, Enninga J, Sansonetti P, Grompone G. Tyrosine kinase signaling and type III effectors orchestrating Shigella invasion. Curr Opin Microbiol 2005; 8:16-20. [PMID: 15694852 DOI: 10.1016/j.mib.2004.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Upon epithelial cell contact, Shigella type III effectors activate complex signaling pathways that induce localized membrane ruffling, resulting in Shigella invasion. Bacterial induced membrane ruffles require a timely coordination of cytoskeletal processes, including actin polymerization, filament reorganization and depolymerization, orchestrated by Rho GTPases and tyrosine kinases. An emerging concept is that multiple Shigella effectors act in synergy to promote actin polymerization in membrane extensions at the site of bacterial entry. Recent advances point to the role of Abl/Arg and Src tyrosine kinases as key regulators of bacterial induced cytoskeletal dynamics.
Collapse
Affiliation(s)
- Guy Tran Van Nhieu
- Unité de Pathogénie Microbienne Moléculaire. Inserm U389. Institut Pasteur. 28, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
18
|
Martinez JJ, Cossart P. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J Cell Sci 2004; 117:5097-106. [PMID: 15383620 DOI: 10.1242/jcs.01382] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rickettsia conorii, the causative agent of Mediterranean spotted fever, is able to attach to and invade a variety of cell types both in vitro and in vivo. Although previous studies show that entry of R. conorii into non-phagocytic cells relies on actin polymerization, little else is known about the molecular details governing Rickettsia-host cell interactions and actin rearrangements. We determined that R. conorii recruits the Arp2/3 complex to the site of entry foci and that expression of an Arp 2/3 binding derivative of the WASP-family member, Scar, inhibited bacterial entry into Vero cells, establishing that Arp2/3 is an active component of this process. Using transient transfection with plasmids expressing dominant negative versions of small GTPases, we showed that Cdc42, but not Rac1 is involved in R. conorii invasion into Vero cells. Using pharmacological approaches, we show that this invasion is dependent on phosphoinositide (PI) 3-kinase and on protein tyrosine kinase (PTK) activities, in particular Src-family kinases. C-Src and its downstream target, p80/85 cortactin, colocalize at entry sites early in the infection process. R. conorii internalization correlated with the tyrosine phosphorylation of several other host proteins, including focal adhesion kinase (FAK), within minutes of R. conorii infection. Our results reveal that R. conorii entry into nonphagocytic cells is dependent on the Arp2/3 complex and that the interplay of pathways involving Cdc42, PI 3-kinase, c-Src, cortactin and tyrosine-phosphorylated proteins regulates Arp2/3 activation leading to the localized actin rearrangements observed during bacterial entry. This is the first report that documents the mechanism of entry of a rickettsial species into mammalian cells.
Collapse
Affiliation(s)
- Juan J Martinez
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, INSERM U604, Département de Biologie Cellulaire et Infection, 25 Rue du Dr Roux, 75724 Paris CEDEX 15, France
| | | |
Collapse
|
19
|
Chen XM, Huang BQ, Splinter PL, Orth JD, Billadeau DD, McNiven MA, LaRusso NF. Cdc42 and the actin-related protein/neural Wiskott-Aldrich syndrome protein network mediate cellular invasion by Cryptosporidium parvum. Infect Immun 2004; 72:3011-21. [PMID: 15102814 PMCID: PMC387898 DOI: 10.1128/iai.72.5.3011-3021.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cryptosporidium parvum invasion of epithelial cells involves host cell membrane alterations which require a remodeling of the host cell actin cytoskeleton. In addition, an actin plaque, possibly associated with the dense-band region, forms within the host cytoplasm at the host-parasite interface. Here we show that Cdc42 and RhoA, but not Rac1, members of the Rho family of GTPases, are recruited to the host-parasite interface in an in vitro model of human biliary cryptosporidiosis. Interestingly, activation of Cdc42, but not RhoA, was detected in the infected cells. Neural Wiskott-Aldrich syndrome protein (N-WASP) and p34-Arc, actin-regulating downstream effectors of Cdc42, were also recruited to the host-parasite interface. Whereas cellular expression of a constitutively active mutant of Cdc42 promoted C. parvum invasion, overexpression of a dominant negative mutant of Cdc42, or depletion of Cdc42 mRNA by short interfering RNA-mediated gene silencing, inhibited C. parvum invasion. Expression of the WA fragment of N-WASP to block associated actin polymerization also inhibited C. parvum invasion. Moreover, inhibition of host cell Cdc42 activation by dominant negative mutation inhibited C. parvum-associated actin remodeling, membrane protrusion, and dense-band formation. In contrast, treatment of cells with a Rho inhibitor, exoenzyme C3, or cellular overexpression of dominant negative mutants of RhoA and Rac1 had no effect on C. parvum invasion. These data suggest that C. parvum invasion of target epithelia results from the organism's ability to activate a host cell Cdc42 GTPase signaling pathway to induce host cell actin remodeling at the attachment site.
Collapse
Affiliation(s)
- Xian-Ming Chen
- The Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
In the past few years, an important question in microbiology has arisen from reports indicating that several pathogenic bacteria have evolved virulence factors directed towards a Ras subfamily of GTPases, namely the Rho GTPases. Progress made in studying both the virulence factors and the signaling pathways involving Rho GTPases has shed light on this crosstalk. One central question is raised by the findings that both activating and inactivating virulence factors that target Rho GTPases coexist in some pathogenic bacteria. Further studies on this peculiar aspect of the bacteria-host cell interactions, which leads to the outbreak of infectious diseases, might clarify whether this aspect of Rho GTPase activation or inactivation represents a finely adapted response of the pathogen for its own benefit or might lead to a reaction of the host against the bacteria.
Collapse
Affiliation(s)
- Patrice Boquet
- INSERM U452, IFR50, Faculty of Medicine 28 Avenue de Valombrose, 06107 Nice, France.
| | | |
Collapse
|
21
|
Fernandez MI, Sansonetti PJ. Shigella interaction with intestinal epithelial cells determines the innate immune response in shigellosis. Int J Med Microbiol 2003; 293:55-67. [PMID: 12755366 DOI: 10.1078/1438-4221-00244] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Shigellae are Gram-negative bacilli that cause bacillary dysentery in humans. This review summarizes current knowledge of Shigella pathogenesis and pathogenicity factors, invasion of epithelial cells, intracellular motility and cell-to-cell spreading, as well as components of the host cell involved in innate immune responses.
Collapse
Affiliation(s)
- M Isabel Fernandez
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, Rue du Dr. Roux 28, F-75724 Paris 15, France
| | | |
Collapse
|
22
|
Nakamura T, Komiya M, Sone K, Hirose E, Gotoh N, Morii H, Ohta Y, Mori N. Grit, a GTPase-activating protein for the Rho family, regulates neurite extension through association with the TrkA receptor and N-Shc and CrkL/Crk adapter molecules. Mol Cell Biol 2002; 22:8721-34. [PMID: 12446789 PMCID: PMC139861 DOI: 10.1128/mcb.22.24.8721-8734.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurotrophins are key regulators of the fate and shape of neuronal cells and act as guidance cues for growth cones by remodeling the actin cytoskeleton. Actin dynamics is controlled by Rho GTPases. We identified a novel Rho GTPase-activating protein (Grit) for Rho/Rac/Cdc42 small GTPases. Grit was abundant in neuronal cells and directly interacted with TrkA, a high-affinity receptor for nerve growth factor (NGF). Another pool of Grit was recruited to the activated receptor tyrosine kinase through its binding to N-Shc and CrkL/Crk, adapter molecules downstream of activated receptor tyrosine kinases. Overexpression of the TrkA-binding region of Grit inhibited NGF-induced neurite elongation. Further, we found some tendency for neurite promotion in full-length Grit-overexpressing PC12 cells upon NGF stimulation. These results suggest that Grit, a novel TrkA-interacting protein, regulates neurite outgrowth by modulating the Rho family of small GTPases.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Department of Molecular Genetics, National Institute for Longevity Sciences, Program of Protecting the Brain, CREST, JST, Oobu, Aichi 474-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zaharik ML, Gruenheid S, Perrin AJ, Finlay BB. Delivery of dangerous goods: type III secretion in enteric pathogens. Int J Med Microbiol 2002; 291:593-603. [PMID: 12008913 DOI: 10.1078/1438-4221-00179] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Type III secretion systems (TTSSs) of Gram-negative pathogens are molecular syringes that inject bacterial virulence factors directly into host cells. These virulence factors manipulate host cell pathways to aid bacterial survival within the host. Four important enteric pathogens use TTSSs to colonize and persist within the intestinal environment. The following is a brief review of the way in which TTSSs and their effectors contribute to the pathogenic nature of the prototypic diarrheal pathogens Salmonella, Shigella, Yersinia and enteropathogenic Escherichia coli (EPEC).
Collapse
Affiliation(s)
- Michelle L Zaharik
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
24
|
Abstract
Many pathogens must surmount an epithelial cell barrier in order to establish an infection. While much has been learned about the interaction of bacterial pathogens with cultured epithelial cells, the influence of cell polarity on these events has only recently been appreciated. This review outlines bacterial-host epithelial cell interactions in the context of the distinct apical and basolateral surfaces of the polarized epithelium that lines the lumens of our organs.
Collapse
Affiliation(s)
- B I Kazmierczak
- Department of Medicine, University of California, San Francisco, California 94143-0654, USA.
| | | | | |
Collapse
|
25
|
11 Cell transfection, permeabilization and microinjection as means to study Shigella-induced cytoskeletal reorganization. METHODS IN MICROBIOLOGY 2002. [DOI: 10.1016/s0580-9517(02)31012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Abstract
Phagocytosis of bacterial pathogens is at the heart of the pathogenesis of infections. Pathogens have evolved a large array of strategies to escape the deleterious effect of phagocytosis by professional phagocytes among which avoiding phagocytosis, killing the phagocytes or surviving inside them are the most 'popular' solutions. Bacterial pathogens are also using induction of phagocytic entry into non-professional phagocytic cells, such as epithelial cells, as a strategy of survival and multiplication. We have taken enteroinvasive micro-organisms such as Yersinia, Shigella and Salmonella as a paradigm of the significance of phagocytosis/antiphagocytosis in the development of an infection and on the elicitation of the host response.
Collapse
Affiliation(s)
- P Sansonetti
- Unité de Pathogénie Microbienne Moléculaire et Unité INSERM 389, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
27
|
Abstract
Shigellosis is a worldwide endemic ulcerating disease of the large intestine caused by enteroinvasive bacteria. Shigella takes the route via M-cells and macrophages to access the basolateral pole of enterocytes. After invasion of and cell-to-cell spread within the epithelial cell layer, the bacterium multiplies within the cytoplasm of enterocytes. Induced by a limited number of bacterial effector proteins, Shigella makes use of established signaling pathways of the host cell to achieve internalization, transcytosis, apoptosis or cell-to-cell spread. This review addresses the host factors required for efficient infection focusing on Shigella-induced cytoskeletal rearrangements and associated signaling.
Collapse
Affiliation(s)
- T Adam
- Institut für Mikrobiologie und Hygiene, Medizinische Fakultät der Humboldt Universität, Charité, Berlin, Germany.
| |
Collapse
|
28
|
Brouns MR, Matheson SF, Settleman J. p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation. Nat Cell Biol 2001; 3:361-7. [PMID: 11283609 DOI: 10.1038/35070042] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Src tyrosine kinases have been implicated in several aspects of neural development and nervous system function; however, their relevant substrates in brain and their mechanism of action in neurons remain to be established clearly. Here we identify the potent Rho regulatory protein, p190 RhoGAP (GTPase-activating protein), as the principal Src substrate detected in the developing and mature nervous system. We also find that mice lacking functional p190 RhoGAP exhibit defects in axon guidance and fasciculation. p190 RhoGAP is co-enriched with F-actin in the distal tips of axons, and overexpressing p190 RhoGAP in neuroblastoma cells promotes extensive neurite outgrowth, indicating that p190 RhoGAP may be an important regulator of Rho-mediated actin reorganization in neuronal growth cones. p190 RhoGAP transduces signals downstream of cell-surface adhesion molecules, and we find that p190-RhoGAP-mediated neurite outgrowth is promoted by the extracellular matrix protein laminin. Together with the fact that mice lacking neural adhesion molecules or Src kinases also exhibit defects in axon outgrowth, guidance and fasciculation, our results suggest that p190 RhoGAP mediates a Src-dependent adhesion signal for neuritogenesis to the actin cytoskeleton through the Rho GTPase.
Collapse
Affiliation(s)
- M R Brouns
- MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
29
|
Meconi S, Capo C, Remacle-Bonnet M, Pommier G, Raoult D, Mege JL. Activation of protein tyrosine kinases by Coxiella burnetii: role in actin cytoskeleton reorganization and bacterial phagocytosis. Infect Immun 2001; 69:2520-6. [PMID: 11254615 PMCID: PMC98187 DOI: 10.1128/iai.69.4.2520-2526.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2000] [Accepted: 01/02/2001] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii, the agent of Q fever, is an obligate intracellular microorganism that grows in monocytes/macrophages. The internalization of virulent organisms by monocytes is lower than that of avirulent variants and is associated with actin cytoskeleton reorganization. We studied the activation of protein tyrosine kinases (PTKs) by C. burnetii in THP-1 monocytes. Virulent organisms induced early PTK activation and the tyrosine phosphorylation of several endogenous substrates, including Hck and Lyn, two Src-related kinases. PTK activation reflects C. burnetii virulence since avirulent variants were unable to stimulate PTK. We also investigated the role of PTK activation in C. burnetii-stimulated F-actin reorganization. Tyrosine-phosphorylated proteins were colocalized with F-actin inside cell protrusions induced by C. burnetii, and PTK activity was increased in Triton X-100-insoluble fractions. In addition, lavendustin A, a PTK inhibitor, and PP1, a Src kinase inhibitor, prevented C. burnetii-induced cell protrusions and F-actin reorganization. We finally assessed the role of PTK activation in bacterial phagocytosis. Pretreatment of THP-1 cells with lavendustin A and PP1 upregulated the uptake of virulent C. burnetii but had no effect on the phagocytosis of avirulent organisms. Thus, it is likely that PTK activation by C. burnetii negatively regulates bacterial uptake by interfering with cytoskeleton organization.
Collapse
Affiliation(s)
- S Meconi
- CNRS UMR 6020, Université de la Méditerranée, 13385 Marseille Cedex 05, France
| | | | | | | | | | | |
Collapse
|
30
|
Kazmierczak BI, Jou TS, Mostov K, Engel JN. Rho GTPase activity modulates Pseudomonas aeruginosa internalization by epithelial cells. Cell Microbiol 2001; 3:85-98. [PMID: 11207623 DOI: 10.1046/j.1462-5822.2001.00091.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Gram-negative pathogen Pseudomonas aeruginosa invades epithelial cells in vivo and in vitro. We have examined the pathway(s) by which epithelial cells internalize P. aeruginosa strain PA103 using Madin-Darby canine kidney (MDCK) cells. We have recently demonstrated that P. aeruginosa internalization occurs by an actin-dependent Toxin B-inhibited pathway which becomes downregulated as epithelial cells become polarized, suggesting that one or more of the Rho family GTPases is involved in bacterial internalization. Here, we demonstrate that activation of the Rho family GTPases by cytotoxic necrotizing factor 1 (CNF-1) stimulates P. aeruginosa internalization. Examination of the roles of the individual Rho family GTPases in internalization shows that expression of a constitutively active allele of RhoA (RhoAV14), but not of constitutively active Rac1 (Rac1V12) or Cdc42 (Cdc42V12), is sufficient to increase uptake of PA103pscJ. This relative increase persists when bacterial infection is established at the basolateral surface of polarized cells, suggesting that the effect of RhoAV14 is not simply due to its known ability to disrupt tight junction integrity in polarized cells. RhoAV14-mediated stimulation of bacterial uptake is actin dependent as it is abrogated by exposure to latrunculin A. We also find that endogenous Rho GTP levels in epithelial cells are increased by infection with an internalized strain of P. aeruginosa; conversely, a poorly internalized isogenic strain expressing the bacterial anti-internalization protein ExoT causes decreased Rho GTP levels. Experimental inhibition of Rho, either by expressing dominant negative RhoAN19 or by inhibiting native Rho using a membrane permeable fusion construct of a Rho-specific inhibitor, C3 ADP-ribosyltransferase, does not inhibit PA103pscJ internalization in MDCK or HeLa cells. Models consistent with these data are presented.
Collapse
Affiliation(s)
- B I Kazmierczak
- Department of Medicine, University of California, San Francisco 94143-0654, USA
| | | | | | | |
Collapse
|
31
|
Sansonetti PJ. Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigella, making sense of prokaryote-eukaryote cross-talks. FEMS Microbiol Rev 2001; 25:3-14. [PMID: 11152938 DOI: 10.1111/j.1574-6976.2001.tb00569.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- P J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 389, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
32
|
Graf B, Bähler M, Hilpelä P, Böwe C, Adam T. Functional role for the class IX myosin myr5 in epithelial cell infection by Shigella flexneri. Cell Microbiol 2000; 2:601-16. [PMID: 11207612 DOI: 10.1046/j.1462-5822.2000.00084.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Efficient control of Shigella-induced, rho-dependent cytoskeletal rearrangements seems to be required to shape the delicate cellular structures associated with bacterial invasion of epithelial cells. We therefore studied a class IX myosin and rho antagonist, the GTPase-activating protein (GAP) myr5, for a potential role in the bacterial entry process. We show that myr5 is recruited into bacterial entry spots. The recruitment pattern resembled that of rhoC or ezrin, but not rhoA, rac or CDC42, while in vitro GAP activity of myr5 was similar for rhoA, B or C. Analysis of myr5 mutants suggested that GTPase- or ATP-binding activites are not required for Shigella-induced recruitment of this atypical myosin to the bacterial entry site. Functional studies revealed a potential dual role of the myosin functions and the GAP module of myr5 for bacterial internalization.
Collapse
Affiliation(s)
- B Graf
- Institut f. Mikrobiologie u. Hygiene, Humboldt-Universität, Charité, Berlin, Germany
| | | | | | | | | |
Collapse
|
33
|
Arthur WT, Petch LA, Burridge K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr Biol 2000; 10:719-22. [PMID: 10873807 DOI: 10.1016/s0960-9822(00)00537-6] [Citation(s) in RCA: 356] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Rho family GTPases Cdc42, Rac1 and RhoA control many of the changes in the actin cytoskeleton that are triggered when growth factor receptors and integrins bind their ligands [1] [2]. Rac1 and Cdc42 stimulate the formation of protrusive structures such as membrane ruffles, lamellipodia and filopodia. RhoA regulates contractility and assembly of actin stress fibers and focal adhesions. Although prolonged integrin engagement can stimulate RhoA [3] [4] [5], regulation of this GTPase by early integrin-mediated signals is poorly understood. Here we show that integrin engagement initially inactivates RhoA, in a c-Src-dependent manner, but has no effect on Cdc42 or Rac1 activity. Additionally, early integrin signaling induces activation and tyrosine phosphorylation of p190RhoGAP via a mechanism that requires c-Src. Dynamic modulation of RhoA activity appears to have a role in motility, as both inhibition and activation of RhoA hinder migration [6] [7] [8]. Transient suppression of RhoA by integrins may alleviate contractile forces that would otherwise impede protrusion at the leading edge of migrating cells.
Collapse
Affiliation(s)
- W T Arthur
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599, USA.
| | | | | |
Collapse
|
34
|
Tran Van Nhieu G, Bourdet-Sicard R, Duménil G, Blocker A, Sansonetti PJ. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell Microbiol 2000; 2:187-93. [PMID: 11207575 DOI: 10.1046/j.1462-5822.2000.00046.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Shigella invades epithelial cells by inducing cytoskeletal reorganization localized at the site of bacterial-host cell interaction. During entry, the Shigella type III secretion apparatus allows the insertion of a pore that contains the IpaB and IpaC proteins into cell membranes. Insertion of this complex is thought to allow translocation of the carboxy-terminus moiety of IpaC, but also of other Shigella effectors, such as IpaA, into the cell cytosol. IpaC triggers actin polymerization and the formation of filopodial and lamellipodial extensions dependent on the Cdc42 and Rac GTPases. IpaA, on the other hand, binds to the focal adhesion protein vinculin and induces depolymerization of actin filaments. IpaA and the GTPase Rho are not required for actin polymerization at the site of bacterial contact with the cell membrane, but allow the transformation of the IpaC-induced extensions into a structure that is productive for bacterial entry. Rho is required for the recruitment at entry foci of ezrin, a cytoskeletal linker required for Shigella entry, and also of the Src tyrosine kinase. The Src tyrosine kinase activity, which is required for Shigella-induced actin polymerization, also appears to be involved in a negative regulatory loop that downregulates Rho at the site of entry.
Collapse
Affiliation(s)
- G Tran Van Nhieu
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, Paris, France.
| | | | | | | | | |
Collapse
|
35
|
Bourdet-Sicard R, Egile C, Sansonetti PJ, Tran Van Nhieu G. Diversion of cytoskeletal processes by Shigella during invasion of epithelial cells. Microbes Infect 2000; 2:813-9. [PMID: 10955962 DOI: 10.1016/s1286-4579(00)90366-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Shigella, the causative agent of bacillar dysentery, invades colonic epithelial cells and moves intracellularly to spread from cell to cell. The processes of Shigella entry, determined by the Ipa proteins, and of actin-based motility, dependent on the IcsA/VirG protein, represent different levels of bacterial manipulation of the cell cytoskeleton.
Collapse
Affiliation(s)
- R Bourdet-Sicard
- Unité de pathogénie microbienne moléculaire, Inserm U389, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|