1
|
Zhang Z, Tanaka I, Nakahashi-Ouchida R, Ernst PB, Kiyono H, Kurashima Y. Glycoprotein 2 as a gut gate keeper for mucosal equilibrium between inflammation and immunity. Semin Immunopathol 2024; 45:493-507. [PMID: 38170255 PMCID: PMC11136868 DOI: 10.1007/s00281-023-00999-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Glycoprotein 2 (GP2) is a widely distributed protein in the digestive tract, contributing to mucosal barrier maintenance, immune homeostasis, and antigen-specific immune response, while also being linked to inflammatory bowel disease (IBD) pathogenesis. This review sheds light on the extensive distribution of GP2 within the gastrointestinal tract and its intricate interplay with the immune system. Furthermore, the significance of GP2 autoantibodies in diagnosing and categorizing IBD is underscored, alongside the promising therapeutic avenues for modulating GP2 to regulate immunity and maintain mucosal balance.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
| | - Izumi Tanaka
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
| | - Rika Nakahashi-Ouchida
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Peter B Ernst
- Department of Medicine, School of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), San Diego, CA, USA
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, CA, USA
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Hiroshi Kiyono
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Department of Medicine, School of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), San Diego, CA, USA
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
- Chiba University Futuristic Mucosal Vaccine Research and Development Synergy Institute (cSIMVa), Chiba, Japan.
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan.
- Department of Medicine, School of Medicine, Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD cMAV), San Diego, CA, USA.
- Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan.
| |
Collapse
|
2
|
Martinez-Ramirez AS, Borders TL, Paul L, Schipma M, Wang X, Korobova F, Wright CV, Sosa-Pineda B. Specific Temporal Requirement of Prox1 Activity During Pancreatic Acinar Cell Development. GASTRO HEP ADVANCES 2022; 1:807-823. [PMID: 37829188 PMCID: PMC10569262 DOI: 10.1016/j.gastha.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND AND AIMS An interactive regulatory network assembled through the induction and downregulation of distinct transcription factors governs acinar cell maturation. Understanding how this network is built is relevant for protocols of directed pancreatic acinar differentiation. The murine transcription factor Prox1 is highly expressed in multipotent pancreatic progenitors and in various mature pancreatic cell types except for acinar cells. In this study, we investigated when is Prox1 expression terminated in developing acinar cells and the potential involvement of its activity in acinar cell specification/differentiation. We also investigated the effects of sustained Prox1 expression in acinar maturation and maintenance. METHODS Prox1 acinar expression was analyzed by immunofluorescence and confocal microscopy. Prox1-null embryos (Prox1GFPCre/Δ), Prox1AcOE transgenic mice, histologic and immunostaining methods, transmission electron microscopy, functional assays, and quantitative RNA and RNA-sequencing methods were used to investigate the effects of Prox1 functional deficiency and sustained Prox1 expression in acinar maturation and homeostasis. RESULTS Immunostaining results reveal transient Prox1 expression in newly committed embryonic acinar cells. RNA-sequencing demonstrate precocious expression of multiple "late" acinar genes in the pancreas of Prox1GFPCre/Δ embryos. Prox1AcOE transgenic mice carrying sustained Prox1 acinar expression have relatively normal pancreas development. In contrast, Prox1AcOE adult mice have severe pancreatic alterations involving reduced acinar gene expression, abnormal acinar secretory granules, acinar atrophy, increased endoplasmic reticulum stress, and mild chronic inflammation. CONCLUSION Prox1 transient expression in early acinar cells is necessary for correct sequential gene expression. Prox1 expression is terminated in developing acinar cells to complete maturation and to preserve homeostasis.
Collapse
Affiliation(s)
- Angelica S. Martinez-Ramirez
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Thomas L. Borders
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Leena Paul
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Matthew Schipma
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xinkun Wang
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Farida Korobova
- Center for Advanced Microscopy, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christopher V. Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Beatriz Sosa-Pineda
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
3
|
Deng Y, Pakdel M, Blank B, Sundberg EL, Burd CG, von Blume J. Activity of the SPCA1 Calcium Pump Couples Sphingomyelin Synthesis to Sorting of Secretory Proteins in the Trans-Golgi Network. Dev Cell 2018; 47:464-478.e8. [PMID: 30393074 PMCID: PMC6261503 DOI: 10.1016/j.devcel.2018.10.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/29/2018] [Accepted: 10/05/2018] [Indexed: 12/24/2022]
Abstract
How the principal functions of the Golgi apparatus-protein processing, lipid synthesis, and sorting of macromolecules-are integrated to constitute cargo-specific trafficking pathways originating from the trans-Golgi network (TGN) is unknown. Here, we show that the activity of the Golgi localized SPCA1 calcium pump couples sorting and export of secreted proteins to synthesis of new lipid in the TGN membrane. A secreted Ca2+-binding protein, Cab45, constitutes the core component of a Ca2+-dependent, oligomerization-driven sorting mechanism whereby secreted proteins bound to Cab45 are packaged into a TGN-derived vesicular carrier whose membrane is enriched in sphingomyelin, a lipid implicated in TGN-to-cell surface transport. SPCA1 activity is controlled by the sphingomyelin content of the TGN membrane, such that local sphingomyelin synthesis promotes Ca2+ flux into the lumen of the TGN, which drives secretory protein sorting and export, thereby establishing a protein- and lipid-specific secretion pathway.
Collapse
Affiliation(s)
- Yongqiang Deng
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Mehrshad Pakdel
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Birgit Blank
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Emma L Sundberg
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher G Burd
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Julia von Blume
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
4
|
Mito A, Nakano Y, Saitoh T, Gouraud SSS, Yamaguchi Y, Sato T, Sasaki N, Kojima-Aikawa K. Lectin ZG16p inhibits proliferation of human colorectal cancer cells via its carbohydrate-binding sites. Glycobiology 2018; 28:21-31. [PMID: 29069492 DOI: 10.1093/glycob/cwx088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022] Open
Abstract
Zymogen granule protein 16 (ZG16p) is a soluble lectin that binds to both mannose and heparin/heparan sulfate. It is highly expressed in the human digestive tract and is secreted into the mucus. In this study, we investigated the effect of ZG16p on the proliferation of human colorectal cancer cells. Overexpression of ZG16p in Caco-2 cells decreased cell growth. Recombinant ZG16p markedly inhibited proliferation of Caco-2, LS174T, HCT116 and HCT15 cells. Caco-2 cell growth was not inhibited by two mutated ZG16p proteins, D151A and M5 (K36A, R37A, R53A, R55A and R79A) lacking mannose- and heparin-binding activities, respectively. Immunofluorescent cell staining revealed that ZG16p-D151A maintained its binding to the Caco-2 cell surface, whereas ZG16p-M5 failed to bind to the cells. These results suggest that ZG16p interacts with the cell surface via basic amino acids substituted in ZG16p-M5 and inhibits Caco-2 cell proliferation via Asp151. In addition, growth of patient-derived colorectal tumor organoids in a 3D intestinal stem cell system was suppressed by ZG16p but not by ZG16p-M5. Taken together, our findings indicate that ZG16p inhibits the growth of colorectal cancer cells via its carbohydrate-binding sites in vitro and ex vivo. In this study, a novel pathway in cancer cell growth regulation through cell surface carbohydrate chains is suggested.
Collapse
Affiliation(s)
- Akiko Mito
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.,Program for Leading Graduate Schools, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yukiko Nakano
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Takako Saitoh
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Sabine S S Gouraud
- Leading Graduate School Promotion Center, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yoshiki Yamaguchi
- Structure Glycobiology Team, Systems Glycobiology Research Group, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshiro Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuo Sasaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kyoko Kojima-Aikawa
- Natural Science Division, Faculty of Core Research, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.,Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
5
|
Abstract
Inflammation in inflammatory bowel diseases (IBD) has been linked to a loss of tolerance to self-antigens suggesting the existence of autoantibodies in specific disease phenotypes. However, the lack of clearly defined autoantigenic targets has slowed down research. Genome-wide association studies have identified an impressive number of immune-related susceptibility loci for IBD with no clearly discernible pattern among them. Growing evidence supports the hypothesis that innate immune responses to a low-diversity and impaired gut microbiota may be of key importance in initiating and perpetuating chronic inflammation in IBD. Increasing evidence suggests that reduced microbial diversity and microbial-mucosal epithelium interaction (including adhesion and clearance) are critically involved in IBD pathogenesis. Along these lines the discovery of autoantigenic targets in Crohn's disease (CD) has refocused research in IBD on the possible role of autoimmune responses. The identification of the major zymogen granule membrane glycoprotein 2 (GP2) as an autoantigen in CD patients and its proposed role in the sensing of the microbiota lends credence to this trend. Loss of tolerance to GP2 occurs in up to 40% of patients with CD. Corresponding autoantibodies appear to be associated with distinct disease courses (types or phenotypes) in CD. Here, we critically review autoantibodies in CD for their impact on clinical practice and future IBD research. The immunomodulatory role of GP2 in innate and adaptive intestinal immunity is also discussed.
Collapse
|
6
|
Aroso M, Agricola B, Hacker C, Schrader M. Proteoglycans support proper granule formation in pancreatic acinar cells. Histochem Cell Biol 2015; 144:331-46. [PMID: 26105026 DOI: 10.1007/s00418-015-1339-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2015] [Indexed: 12/31/2022]
Abstract
Zymogen granules (ZG) are specialized organelles in the exocrine pancreas which allow digestive enzyme storage and regulated secretion. The molecular mechanisms of their biogenesis and the sorting of zymogens are still incompletely understood. Here, we investigated the role of proteoglycans in granule formation and secretion of zymogens in pancreatic AR42J cells, an acinar model system. Cupromeronic Blue cytochemistry and biochemical studies revealed an association of proteoglycans primarily with the granule membrane. Removal of proteoglycans by carbonate treatment led to a loss of membrane curvature indicating a supportive role in the maintenance of membrane shape and stability. Chemical inhibition of proteoglycan synthesis impaired the formation of normal electron-dense granules in AR42J cells and resulted in the formation of unusually small granule structures. These structures still contained the zymogen carboxypeptidase, a cargo molecule of secretory granules, but migrated to lighter fractions after density gradient centrifugation. Furthermore, the basal secretion of amylase was increased in AR42J cells after inhibitor treatment. In addition, irregular-shaped granules appeared in pancreatic lobules. We conclude that the assembly of a proteoglycan scaffold at the ZG membrane is supporting efficient packaging of zymogens and the proper formation of stimulus-competent storage granules in acinar cells of the pancreas.
Collapse
Affiliation(s)
- Miguel Aroso
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Brigitte Agricola
- Department of Cell Biology and Cell Pathology, University of Marburg, 35037, Marburg, Germany
| | - Christian Hacker
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Michael Schrader
- Centre for Cell Biology and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal. .,College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
7
|
Holm H, Santi N, Kjøglum S, Perisic N, Skugor S, Evensen Ø. Difference in skin immune responses to infection with salmon louse (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar L.) of families selected for resistance and susceptibility. FISH & SHELLFISH IMMUNOLOGY 2015; 42:384-94. [PMID: 25449368 DOI: 10.1016/j.fsi.2014.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 05/04/2023]
Abstract
Atlantic salmon is susceptible to the salmon louse (Lepeophtheirus salmonis) and the variation in susceptibility within the species can be exploited in selective breeding programs for louse resistant fish. In this study, lice counts were completed on 3000 siblings from 150 families of Atlantic salmon identified as high resistant (HR) and low resistant (LR) families in two independent challenge trials. Skin samples behind the dorsal fin (nearby lice attachment) were collected from ten extreme families (HR or LR) and analyzed by qPCR for the expression of 32 selected genes, including a number of genes involved in T helper cell (Th) mediated immune responses, which have been previously implied to play important roles during salmon louse infections. Most genes showed lower expression patterns in the LR than in HR fish, suggesting an immunosuppressed state in LR families. The average number of lice (chalimi) was 9 in HR and 15 in LR fish. Large variation in lice counts was seen both within resistant and susceptible families, which enabled us to subdivide the groups into HR < 10 and HR > 10, and LR < 10 and LR > 10 to better understand the effect of lice burden per se. As expected, expression patterns were influenced both by genetic background and the number of attached parasites. Higher number of lice (>10) negatively affected gene expression in both HR and LR families. In general, strongest down-regulation was seen in LR > 10 and lesser down-regulation in HR < 10. HR in general and especially HR < 10 fish were better at resisting suppression of expression of both Th1 and Th2 genes. However, the best inverse correlation with infection level was seen for the prototypical Th1 genes, including several members from the interferon pathways. In addition, skin histomorphometry suggests that infected LR salmon had thicker epidermis in the area behind the dorsal fin and larger mucous cell size compared to infected HR fish, however marginally significant (p = 0.08). This histomorphometric finding was in line with the immune response being skewed in LR towards the Th2 rather than a Th1 profile. Our findings suggest that the ability to resist lice infection depends on the ability to avoid immunosuppression and not as much on the physical tissue barrier functions.
Collapse
Affiliation(s)
- Helle Holm
- Norwegian University of Life Sciences, Faculty of Biosciences and Veterinary Medicine, Sea Lice Research Center, PO Box 8146, N-0033 Oslo, Norway
| | - Nina Santi
- Aquagen AS, Havnegata 9, N-7010 Trondheim, Norway
| | | | - Nebojsa Perisic
- Weifa AS, Stittlidalen 4, Fikkjebakke, 3766 Sannidal, PO Box 98, NO-37911 Kragerø, Norway
| | - Stanko Skugor
- Norwegian University of Life Sciences, Faculty of Biosciences and Veterinary Medicine, Sea Lice Research Center, PO Box 8146, N-0033 Oslo, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Biosciences and Veterinary Medicine, Sea Lice Research Center, PO Box 8146, N-0033 Oslo, Norway.
| |
Collapse
|
8
|
Kanagawa M, Liu Y, Hanashima S, Ikeda A, Chai W, Nakano Y, Kojima-Aikawa K, Feizi T, Yamaguchi Y. Structural basis for multiple sugar recognition of Jacalin-related human ZG16p lectin. J Biol Chem 2014; 289:16954-65. [PMID: 24790092 PMCID: PMC4059138 DOI: 10.1074/jbc.m113.539114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ZG16p is a soluble mammalian lectin, the first to be described with a Jacalin-related β-prism-fold. ZG16p has been reported to bind both to glycosaminoglycans and mannose. To determine the structural basis of the multiple sugar-binding properties, we conducted glycan microarray analyses of human ZG16p. We observed that ZG16p preferentially binds to α-mannose-terminating short glycans such as Ser/Thr-linked O-mannose, but not to high mannose-type N-glycans. Among sulfated glycosaminoglycan oligomers examined, chondroitin sulfate B and heparin oligosaccharides showed significant binding. Crystallographic studies of human ZG16p lectin in the presence of selected ligands revealed the mechanism of multiple sugar recognition. Manα1–3Man and Glcβ1–3Glc bound in different orientations: the nonreducing end of the former and the reducing end of the latter fitted in the canonical shallow mannose binding pocket. Solution NMR analysis using 15N-labeled ZG16p defined the heparin-binding region, which is on an adjacent flat surface of the protein. On-array competitive binding assays suggest that it is possible for ZG16p to bind simultaneously to both types of ligands. Recognition of a broad spectrum of ligands by ZG16p may account for the multiple functions of this lectin in the formation of zymogen granules via glycosaminoglycan binding, and in the recognition of pathogens in the digestive system through α-mannose-related recognition.
Collapse
Affiliation(s)
- Mayumi Kanagawa
- From the Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yan Liu
- the Department of Medicine, Glycosciences Laboratory, Imperial College London, Burlington Danes Building, Du Cane Road, London W12 0NN, United Kingdom,
| | - Shinya Hanashima
- From the Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akemi Ikeda
- From the Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Wengang Chai
- the Department of Medicine, Glycosciences Laboratory, Imperial College London, Burlington Danes Building, Du Cane Road, London W12 0NN, United Kingdom
| | - Yukiko Nakano
- the Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan, and the The Glycoscience Institute, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kyoko Kojima-Aikawa
- the Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan, and the The Glycoscience Institute, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Ten Feizi
- the Department of Medicine, Glycosciences Laboratory, Imperial College London, Burlington Danes Building, Du Cane Road, London W12 0NN, United Kingdom
| | - Yoshiki Yamaguchi
- From the Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan,
| |
Collapse
|
9
|
Gómez-Lázaro M, Rinn C, Aroso M, Amado F, Schrader M. Proteomic analysis of zymogen granules. Expert Rev Proteomics 2014; 7:735-47. [DOI: 10.1586/epr.10.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Roggenbuck D, Reinhold D, Werner L, Schierack P, Bogdanos DP, Conrad K. Glycoprotein 2 antibodies in Crohn's disease. Adv Clin Chem 2013; 60:187-208. [PMID: 23724745 DOI: 10.1016/b978-0-12-407681-5.00006-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Crohn's disease (CrD) and ulcerative colitis (UC), the two major inflammatory bowel diseases (IBD), remains poorly understood. Autoimmunity is considered to be involved in the triggering and perpetuation of inflammatory processes leading to overt disease. Approximately 30% of CrD patients and less than 8% of UC patients show evidence of humoral autoimmunity to exocrine pancreas, detected by indirect immunofluorescence. Pancreatic autoantibodies (PAB) were described for the first time in 1984, but the autoantigenic target(s) of PABs were identified only in 2009. Utilizing immunoblotting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, the major zymogen granule membrane glycoprotein 2 (GP2) has been discovered as the main PAB autoantigen. The expression of GP2 has been demonstrated at the site of intestinal inflammation, explaining the previously unaddressed contradiction of pancreatic autoimmunity and intestinal inflammation. Recent data demonstrate GP2 to be a specific receptor on microfold (M) cells of intestinal Peyer's patches, which are considered to be the original site of inflammation in CrD. Novel ELISAs, employing recombinant GP2 as the solid phase antigen, have confirmed the presence of IgA and IgG anti-GP2 PABs in CrD patients and revealed an association of anti-GP2 IgA as well as IgG levels with a specific clinical phenotype in CrD. Also, GP2 plays an important role in modulating innate and acquired intestinal immunity. Its urinary homologue, Tamm-Horsfall protein or uromodulin, has a similar effect in the urinary tract, further indicating that GP2 is not just an epiphenomenon of intestinal destruction. This review discusses the role of anti-GP2 autoantibodies as novel CrD-specific markers, the quantification of which provides the basis for further stratification of IBD patients. Given the association with a disease phenotype and the immunomodulating properties of GP2 itself, an important role for GP2 in the immunopathogenesis of IBD cannot be excluded.
Collapse
Affiliation(s)
- Dirk Roggenbuck
- Faculty of Natural Sciences, Lausitz University of Applied Sciences, Senftenberg, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Kumazawa-Inoue K, Mimura T, Hosokawa-Tamiya S, Nakano Y, Dohmae N, Kinoshita-Toyoda A, Toyoda H, Kojima-Aikawa K. ZG16p, an animal homolog of β-prism fold plant lectins, interacts with heparan sulfate proteoglycans in pancreatic zymogen granules. Glycobiology 2011; 22:258-66. [DOI: 10.1093/glycob/cwr145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Histological and immunohistochemical study of the effect of orlistat on the exocrine pancreas of adult female albino rat. ACTA ACUST UNITED AC 2011. [DOI: 10.1097/01.ehx.0000396877.23400.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Hölzl MA, Hofer J, Kovarik JJ, Roggenbuck D, Reinhold D, Goihl A, Gärtner M, Steinberger P, Zlabinger GJ. The zymogen granule protein 2 (GP2) binds to scavenger receptor expressed on endothelial cells I (SREC-I). Cell Immunol 2010; 267:88-93. [PMID: 21190681 PMCID: PMC3040788 DOI: 10.1016/j.cellimm.2010.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/29/2010] [Accepted: 12/02/2010] [Indexed: 12/11/2022]
Abstract
The pancreatic zymogen granule membrane protein (GP2) is expressed by pancreatic acinar cells and M cells of the ileum. GP2 is the closest related homologue of the urine resident Tamm-Horsfall protein (THP). Recently, it was shown that THP is a ligand of various scavenger receptors (SRs). Therefore, we were interested, if GP2 has similar properties. cDNA of different SRs was stably transfected into a murine thymoma cell line. GP2 was recombinantly expressed, purified and biotinylated. Binding or uptake of GP2 by transfected cells or monocyte-derived dendritic cells (moDCs) was analyzed by flow-cytometry. GP2 is a binding partner of the scavenger receptor expressed on endothelial cells I (SREC-I) but not of SR-AI and SR-BI. The dissociation constant (K(d)) of GP2 binding to SREC-I is 41.3nM. SREC transfected cells are able to internalize GP2. moDCs express SREC-I and also bind and internalize GP2. Inhibition of SREC-I on moDCs with anti-SREC-I antibodies does not result in a decreased GP2 binding. Interaction of GP2 with SREC-I and uptake might have profound effects in antigen clearance and mediation of the immune response. In addition to SREC-I other presently unknown receptors for GP2 on DCs might be involved in this process.
Collapse
Affiliation(s)
- Markus A. Hölzl
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Johannes Hofer
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Johannes J. Kovarik
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | | | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Goihl
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miriam Gärtner
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gerhard J. Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Crystal structures of human secretory proteins ZG16p and ZG16b reveal a Jacalin-related β-prism fold. Biochem Biophys Res Commun 2010; 404:201-5. [PMID: 21110947 DOI: 10.1016/j.bbrc.2010.11.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 11/22/2010] [Indexed: 11/24/2022]
Abstract
ZG16p is a secretory protein that mediates condensation-sorting of pancreatic enzymes to the zymogen granule membrane in pancreatic acinar cells. ZG16p interacts with glycosaminoglycans and the binding is considered to be important for condensation-sorting of pancreatic enzymes. ZG16b/PAUF, a paralog of ZG16p, has recently been found to play a role in gene regulation and cancer metastasis. However, the detailed functions of ZG16p and ZG16b remain to be clarified. Here, in order to obtain insights into structure-function relationships, we conducted crystallographic studies of human ZG16p lectin as well as its paralog, ZG16b, and determined their crystal structures at 1.65 and 2.75 Å resolution, respectively. ZG16p has a Jacalin-related β-prism fold, the first to be reported among mammalian lectins. The putative sugar-binding site of ZG16p is occupied by a glycerol molecule, mimicking the mannose bound to Jacalin-related mannose-binding-type plant lectins such as Banlec. ZG16b also has a β-prism fold, but some amino acid residues of the putative sugar-binding site differ from those of the mannose-type binding site suggesting altered preference. A positively charged patch, which may bind sulfated groups of the glycosaminoglycans, is located around the putative sugar-binding site of ZG16p and ZG16b. Taken together, we suggest that the sugar-binding site and the adjacent basic patch of ZG16p and ZG16b cooperatively form a functional glycosaminoglycan-binding site.
Collapse
|
15
|
Borta H, Aroso M, Rinn C, Gomez-Lazaro M, Vitorino R, Zeuschner D, Grabenbauer M, Amado F, Schrader M. Analysis of low abundance membrane-associated proteins from rat pancreatic zymogen granules. J Proteome Res 2010; 9:4927-39. [PMID: 20707389 DOI: 10.1021/pr100052q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zymogen granules (ZG) are specialized storage organelles in the exocrine pancreas that allow the sorting, packaging, and regulated apical secretion of digestive enzymes. As there is a critical need for further understanding of the key processes in regulated secretion to develop new therapeutic options in medicine, we applied a suborganellar proteomics approach to identify peripheral membrane-associated ZG proteins. We focused on the analysis of a "basic" group (pH range 6.2-11) with about 46 spots among which 44 were identified by tandem mass spectrometry. These spots corresponded to 16 unique proteins, including rat mast cell chymase (RMCP-1) and peptidyl-prolyl cis-trans isomerase B (PpiB; cyclophilin B), an ER-resident protein. To confirm that these proteins were specific to zymogen granules and not contaminants of the preparation, we conducted a series of validation experiments. Immunoblotting of ZG subfractions revealed that chymase and PpiB behaved like bona fide peripheral membrane proteins. Their expression in rat pancreas was regulated by feeding behavior. Ultrastructural and immunofluorescence studies confirmed their ZG localization. Furthermore, a chymase-YFP fusion protein was properly targeted to ZG in pancreatic AR42J cells. Interestingly, for both proteins, proteoglycan-binding properties have been reported. The importance of our findings for sorting and packaging during ZG formation is discussed.
Collapse
Affiliation(s)
- Heike Borta
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Robert Koch Strasse 6, Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Niemann CU, Cowland JB, Ralfkiaer E, Åbrink M, Pejler G, Borregaard N. Serglycin proteoglycan is not implicated in localizing exocrine pancreas enzymes to zymogen granules. Eur J Cell Biol 2009; 88:473-9. [DOI: 10.1016/j.ejcb.2009.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 03/19/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022] Open
|
17
|
Biogenesis of Dense-Core Secretory Granules. TRAFFICKING INSIDE CELLS 2009. [PMCID: PMC7122546 DOI: 10.1007/978-0-387-93877-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dense core granules (DCGs) are vesicular organelles derived from outbound traffic through the eukaryotic secretory pathway. As DCGs are formed, the secretory pathway can also give rise to other types of vesicles, such as those bound for endosomes, lysosomes, and the cell surface. DCGs differ from these other vesicular carriers in both content and function, storing highly concentrated cores’ of condensed cargo in vesicles that are stably maintained within the cell until a specific extracellular stimulus causes their fusion with the plasma membrane. These unique features are imparted by the activities of membrane and lumenal proteins that are specifically delivered to the vesicles during synthesis. This chapter will describe the DCG biogenesis pathway, beginning with the sorting of DCG proteins from proteins that are destined for other types of vesicle carriers. In the trans-Golgi network (TGN), sorting occurs as DCG proteins aggregate, causing physical separation from non-DCG proteins. Recent work addresses the nature of interactions that produce these aggregates, as well as potentially important interactions with membranes and membrane proteins. DCG proteins are released from the TGN in vesicles called immature secretory granules (ISGs). The mechanism of ISG formation is largely unclear but is not believed to rely on the assembly of vesicle coats like those observed in other secretory pathways. The required cytosolic factors are now beginning to be identified using in vitro systems with purified cellular components. ISG transformation into a mature fusion-competent, stimulus-dependent DCG occurs as endoproteolytic processing of many DCG proteins causes continued condensation of the lumenal contents. At the same time, proteins that fail to be incorporated into the condensing core are removed by a coat-mediated budding mechanism, which also serves to remove excess membrane and membrane proteins from the maturing vesicle. This chapter will summarize the work leading to our current view of granule synthesis, and will discuss questions that need to be addressed in order to gain a more complete understanding of the pathway.
Collapse
|
18
|
Chen X, Ulintz PJ, Simon ES, Williams JA, Andrews PC. Global topology analysis of pancreatic zymogen granule membrane proteins. Mol Cell Proteomics 2008; 7:2323-36. [PMID: 18682380 DOI: 10.1074/mcp.m700575-mcp200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zymogen granule is the specialized organelle in pancreatic acinar cells for digestive enzyme storage and regulated secretion and is a classic model for studying secretory granule function. Our long term goal is to develop a comprehensive architectural model for zymogen granule membrane (ZGM) proteins that would direct new hypotheses for subsequent functional studies. Our initial proteomics analysis focused on identification of proteins from purified ZGM (Chen, X., Walker, A. K., Strahler, J. R., Simon, E. S., Tomanicek-Volk, S. L., Nelson, B. B., Hurley, M. C., Ernst, S. A., Williams, J. A., and Andrews, P. C. (2006) Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol. Cell. Proteomics 5, 306-312). In the current study, a new global topology analysis of ZGM proteins is described that applies isotope enrichment methods to a protease protection protocol. Our results showed that tryptic peptides of ZGM proteins were separated into two distinct clusters according to their isobaric tag for relative and absolute quantification (iTRAQ) ratios for proteinase K-treated versus control zymogen granules. The low iTRAQ ratio cluster included cytoplasm-orientated membrane and membrane-associated proteins including myosin V, vesicle-associated membrane proteins, syntaxins, and all the Rab proteins. The second cluster having unchanged ratios included predominantly luminal proteins. Because quantification is at the peptide level, this technique is also capable of mapping both cytoplasm- and lumen-orientated domains from the same transmembrane protein. To more accurately assign the topology, we developed a statistical mixture model to provide probabilities for identified peptides to be cytoplasmic or luminal based on their iTRAQ ratios. By implementing this approach to global topology analysis of ZGM proteins, we report here an experimentally constrained, comprehensive topology model of identified zymogen granule membrane proteins. This model contributes to a firm foundation for developing a higher order architecture model of the ZGM and for future functional studies of individual ZGM proteins.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
19
|
Faust F, Gomez-Lazaro M, Borta H, Agricola B, Schrader M. Rab8 is Involved in Zymogen Granule Formation in Pancreatic Acinar AR42J Cells. Traffic 2008; 9:964-79. [DOI: 10.1111/j.1600-0854.2008.00739.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Kasai H, Kishimoto T, Nemoto T, Hatakeyama H, Liu TT, Takahashi N. Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization. Adv Drug Deliv Rev 2006; 58:850-77. [PMID: 16996640 DOI: 10.1016/j.addr.2006.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 07/13/2006] [Indexed: 12/17/2022]
Abstract
Two-photon excitation imaging is the least invasive optical approach to study living tissues. We have established two-photon extracellular polar-tracer (TEP) imaging with which it is possible to visualize and quantify all exocytic events in the plane of focus within secretory tissues. This technology also enables estimate of the precise diameters of vesicles independently of the spatial resolution of the optical microscope, and determination of the fusion pore dynamics at nanometer resolution using TEP-imaging based quantification (TEPIQ). TEP imaging has been applied to representative secretory glands, e.g., exocrine pancreas, endocrine pancreas, adrenal medulla and a pheochromocytoma cell line (PC12), and has revealed unexpected diversity in the spatial organization of exocytosis and endocytosis crucial for the physiology and pathology of secretory tissues and neurons. TEP imaging and TEPIQ analysis are powerful tools for elucidating the molecular and cellular mechanisms of exocytosis and certain related diseases, such as diabetes mellitus, and the development of new therapeutic agents and diagnostic tools.
Collapse
Affiliation(s)
- Haruo Kasai
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Loftus SK, Cannons JL, Incao A, Pak E, Chen A, Zerfas PM, Bryant MA, Biesecker LG, Schwartzberg PL, Pavan WJ. Acinar cell apoptosis in Serpini2-deficient mice models pancreatic insufficiency. PLoS Genet 2006; 1:e38. [PMID: 16184191 PMCID: PMC1231717 DOI: 10.1371/journal.pgen.0010038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 08/18/2005] [Indexed: 11/18/2022] Open
Abstract
Pancreatic insufficiency (PI) when left untreated results in a state of malnutrition due to an inability to absorb nutrients. Frequently, PI is diagnosed as part of a larger clinical presentation in cystic fibrosis or Shwachman-Diamond syndrome. In this study, a mouse model for isolated exocrine PI was identified in a mouse line generated by a transgene insertion. The trait is inherited in an autosomal recessive pattern, and homozygous animals are growth retarded, have abnormal immunity, and have reduced life span. Mice with the disease locus, named pequeño (pq), exhibit progressive apoptosis of pancreatic acinar cells with severe exocrine acinar cell loss by 8 wk of age, while the islets and ductal tissue persist. The mutation in pq/pq mice results from a random transgene insertion. Molecular characterization of the transgene insertion site by fluorescent in situ hybridization and genomic deletion mapping identified an approximately 210-kb deletion on Chromosome 3, deleting two genes. One of these genes, Serpini2, encodes a protein that is a member of the serpin family of protease inhibitors. Reintroduction of only the Serpini2 gene by bacterial artificial chromosome transgenic complementation corrected the acinar cell defect as well as body weight and immune phenotypes, showing that deletion of Serpini2 causes the pequeño phenotype. Dietary supplementation of pancreatic enzymes also corrected body size, body weight, and immunodeficiency, and increased the life span of Serpini2-deficient mice, despite continued acinar cell loss. To our knowledge, this study describes the first characterized genetic animal model for isolated PI. Genetic complementation of the transgene insertion mutant demonstrates that Serpini2 deficiency directly results in the acinar cell apoptosis, malabsorption, and malnutrition observed in pq/pq mice. The rescue of growth retardation, immunodeficiency, and mortality by either Serpini2 bacterial artificial chromosome transgenic expression or by pancreatic enzyme supplementation demonstrates that these phenotypes are secondary to malnutrition in pq/pq mice.
Collapse
Affiliation(s)
- Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Füllekrug J, Shevchenko A, Shevchenko A, Simons K. Identification of glycosylated marker proteins of epithelial polarity in MDCK cells by homology driven proteomics. BMC BIOCHEMISTRY 2006; 7:8. [PMID: 16533391 PMCID: PMC1421407 DOI: 10.1186/1471-2091-7-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 03/13/2006] [Indexed: 11/24/2022]
Abstract
Background MDCK cells derived from canine kidney are an important experimental model system for investigating epithelial polarity in mammalian cells. Monoclonal antibodies against apical gp114 and basolateral p58 have served as important tools in these studies. However, the molecular identity of these membrane glycoproteins has not been known. Results We have identified the sialoglycoprotein gp114 as a dog homologue of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family. Gp114 was enriched from tissue culture cells by subcellular fractionation and immunoaffinity chromatography. The identification was based on tandem mass spectrometry and homology based proteomics. In addition, the p58 basolateral marker glycoprotein was found to be the β subunit of Na+K+-ATPase. Conclusion Gp114 has been characterized previously regarding glycosylation dependent trafficking and lipid raft association. The identification as a member of the canine CEACAM family will enable synergy between the fields of epithelial cell biology and other research areas. Our approach exemplifies how membrane proteins can be identified from species with unsequenced genomes by homology based proteomics. This approach is applicable to any model system.
Collapse
Affiliation(s)
- Joachim Füllekrug
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- University of Heidelberg, Internal Medicine IV, Molecular Cell Biology Group, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Anna Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kai Simons
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
23
|
Yu S, Michie SA, Lowe AW. Absence of the Major Zymogen Granule Membrane Protein, GP2, Does Not Affect Pancreatic Morphology or Secretion. J Biol Chem 2004; 279:50274-9. [PMID: 15385539 DOI: 10.1074/jbc.m410599200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of digestive enzymes in humans are produced in the pancreas where they are stored in zymogen granules before secretion into the intestine. GP2 is the major membrane protein present in zymogen granules of the exocrine pancreas. Numerous studies have shown that GP2 binds digestive enzymes such as amylase, thereby supporting a role in protein sorting to the zymogen granule. Other studies have suggested that GP2 is important in the formation of zymogen granules. A knock-out mouse was generated for GP2 to study the impact of the protein on pancreatic function. GP2-deficient mice displayed no gross signs of nutrient malab-sorption such as weight loss, growth retardation, or diarrhea. Zymogen granules in the GP2 knock-out mice appeared normal on electron microscopy and contained the normal complement of proteins excluding GP2. Primary cultures of pancreatic acini appropriately responded to secretagogue stimulation with the secretion of digestive enzymes. The course of experimentally induced pancreatitis was also examined in the knock-out mice because proteins known to associate with GP2 have been found to possess a protective role. When GP2 knock-out mice were subjected to two different models of pancreatitis, no major differences were detected. In conclusion, GP2 is not essential for pancreatic exocrine secretion or zymogen granule formation. It is unlikely that GP2 serves a major intracellular role within the pancreatic acinar cell and may be functionally active after it is secreted from the pancreas.
Collapse
Affiliation(s)
- Su Yu
- Department of Medicine, Satnford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
24
|
Yu S, Hao Y, Lowe AW. Effects of GP2 expression on secretion and endocytosis in pancreatic AR4-2J cells. Biochem Biophys Res Commun 2004; 322:320-5. [PMID: 15313209 DOI: 10.1016/j.bbrc.2004.07.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Indexed: 10/26/2022]
Abstract
GP2 is the major membrane protein present in secretory granules of the exocrine pancreas. GP2's function is unknown, but a role in digestive enzyme packaging or secretion from secretory granules has been proposed. In addition, GP2 has been proposed to influence endocytosis and membrane recycling following stimulated secretion. Adenovirus-mediated GP2 overexpression in the rat pancreatic cell line AR4-2J was used to study its impact on digestive enzyme secretion and membrane recycling. Immunoelectron microscopy showed that GP2 and amylase co-localized in secretory granules in infected AR4-2J cells. CCK-8 stimulation resulted in a fourfold increase in amylase secretion with or without GP2 expression. GP2 expression also did not influence endocytosis following CCK-8 stimulation. Thus, GP2 expression in AR4-2J cells does not affect amylase packaging in secretory granules or stimulated secretion. GP2 expression also does not influence membrane recycling in response to stimulated stimulation in AR4-2J cells.
Collapse
Affiliation(s)
- Su Yu
- Department of Medicine and the Digestive Disease Center, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
25
|
Boulatnikov I, De Lisle RC. Binding of the Golgi sorting receptor muclin to pancreatic zymogens through sulfated O-linked oligosaccharides. J Biol Chem 2004; 279:40918-26. [PMID: 15292166 DOI: 10.1074/jbc.m406213200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorting and packaging of regulated secretory proteins involves protein aggregation in the trans-Golgi network and secretory granules. In this work, we characterized the pH-dependent interactions of pancreatic acinar cell-regulated secretory proteins (zymogens) with Muclin, a putative Golgi cargo receptor. In solution, purified Muclin co-aggregated with isolated zymogens at mildly acidic pH. In an overlay assay, [35S]sulfate biosynthetically labeled Muclin bound directly at mildly acidic pH to the zymogen granule content proteins amylase, prolipase, pro-carboxypeptidase A1, pro-elastase II, chymotrypsinogen B, and Reg1. Denaturation of Muclin with reducing agents to break the numerous intrachain disulfide bonds in Muclin's scavenger receptor cysteine-rich and CUB domains did not interfere with binding. Non-sulfated [35S]Met/Cys-labeled Muclin showed decreased binding in the overlay assay. Extensive Pronase E digestion of unlabeled Muclin was used to produce glycopeptides, which competed for binding of [35S]sulfate-labeled Muclin to zymogens. The results demonstrate that the sulfated, O-glycosylated groups are responsible for the pH-dependent interactions of Muclin with the zymogens. The behavior of Muclin fulfils the requirement of a Golgi cargo receptor to bind to regulated secretory proteins under the mildly acidic pH conditions that exist in the trans-Golgi network.
Collapse
Affiliation(s)
- Igor Boulatnikov
- Department of Anatomy , University of Kansas School of Medicine, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
26
|
Niemann CU, Cowland JB, Klausen P, Askaa J, Calafat J, Borregaard N. Localization of serglycin in human neutrophil granulocytes and their precursors. J Leukoc Biol 2004; 76:406-15. [PMID: 15136585 DOI: 10.1189/jlb.1003502] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Serglycin is a major proteoglycan of hematopoietic cells. It is thought to play a role in the packaging of granule proteins in human neutrophil granulocytes. The presence of serglycin in myeloid cells has been demonstrated only at the transcriptional level. We generated a polyclonal antibody against recombinant human serglycin. Here, we show the localization of serglycin in humans during neutrophil differentiation. Immunocytochemistry revealed serglycin immunoreactivity in the Golgi area of promyelocytes (PM) and myelocytes (MC), as well as in a few band cells and mature neutrophil granulocytes. Granular staining was detected near the Golgi apparatus in some of the PM, and the major part of the cytoplasm was negative. Immunoelectron microscopy showed serglycin immunoreactivity located to the Golgi apparatus and a few immature granules of PM and MC. The decreasing level of serglycin protein during myeloid differentiation coincided with a decrease of mRNA expression, as evaluated by Northern blotting. Subcellular fractions of neutrophil granulocytes were obtained. Serglycin immunoreactivity was detected in the fraction containing Golgi apparatus, plasma membrane, and secretory vesicles by Western blotting and enzyme-linked immunosorbent assay. Serglycin was not detected in subcellular fractions containing primary, secondary, or tertiary granules. Together, these findings indicate that serglycin is located to the Golgi apparatus and a few immature granules during neutrophil differentiation. This is consistent with a function for serglycin in formation of granules in neutrophil granulocytes. Our findings contrast the view that native serglycin is present in mature granules and plays a role in packaging and regulating the activity of proteolytic enzymes there.
Collapse
Affiliation(s)
- Carsten Utoft Niemann
- Rigshospitalet, Department of Haematology, Granulocytlaboratoriet, Building 9322, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Regulated secretion and exocytosis require the selective packaging of regulated secretory proteins in secretory storage organelles and the controlled docking and fusion of these organelles with the plasma membrane. Secretory granule biogenesis involves sorting of secretory proteins and membrane components both at the level of the trans-Golgi network and the immature secretory granule. Sorting is thought to be mediated by selective protein aggregation and the interaction of these proteins with specific membrane domains. There is now considerable interest in the understanding of the complex lipid-protein and protein-protein interactions at the trans-Golgi network and the granule membrane. A role for lipid microdomains and associated sorting receptors in membrane targeting and granule formation is vividly discussed for (neuro)endocrine cells. In exocrine cells, however, little has been known of granule membrane composition and membrane protein function. With the cloning and characterization of granule membrane proteins and their interactions at the inner leaflet of zymogen granules of pancreatic acinar cells, it is now possible to elucidate their function in membrane targeting and sorting of zymogens at the molecular level.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, Robert Koch Str 6, 35037 Marburg, Germany
| |
Collapse
|
28
|
Collette J, Bocock JP, Ahn K, Chapman RL, Godbold G, Yeyeodu S, Erickson AH. Biosynthesis and alternate targeting of the lysosomal cysteine protease cathepsin L. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:1-51. [PMID: 15548418 DOI: 10.1016/s0074-7696(04)41001-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Upregulation of cathepsin L expression, whether during development or cell transformation, or mediated by ectopic expression from a plasmid, alters the targeting of the protease and thus its physiological function. Upregulated procathepsin L is targeted to small dense core vesicles and to the dense cores of multivesicular bodies, as well as to lysosomes and to the plasma membrane for selective secretion. The multivesicular vesicles resemble secretory lysosomes characterized in specialized cell types in that they are endosomes that stably store an upregulated protein and they possess the tetraspanin CD63. Morphologically the multivesicular endosomes also resemble late endosomes, but they store procathepsin L, not the active protease, and they are not the major site for LAMP-1 accumulation. Distinction between the lysosomal proenzyme and active protease thus identifies two populations of multivesicular endosomes in fibroblasts, one a storage compartment and one an enzymatically active compartment. A distinctive targeting pathway using aggregation is utilized to enrich the storage endosomes with a particular lysosomal protease that can potentially activate and be secreted.
Collapse
Affiliation(s)
- John Collette
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, Miami, Florida 33101 USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Lemansky P, Gerecitano-Schmidek M, Das RC, Schmidt B, Hasilik A. Targeting myeloperoxidase to azurophilic granules in HL-60 cells. J Leukoc Biol 2003; 74:542-50. [PMID: 12960244 DOI: 10.1189/jlb.1202616] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Myeloperoxidase (MPO) is a cationic protein and one of the major constituents of azurophilic granules in neutrophils. Here, we examined whether intracellular transport of MPO and serglycin, a chondroitin sulfate (CS)-bearing proteoglycan, is correlated. First, we examined binding of MPO to CS-Sepharose and measured an ionic interaction, which was disrupted by 200-400 mM NaCl. Next, HL-60 promyelocytes were activated with a phorbol ester, which induced an almost complete rerouting of serglycin from the granular to the secretory pathway, concomitant with a similar effect on MPO transport and secretion. We then used the membrane-permeable cross-linker dithiobis(succininmidylpropionate; DSP) after labeling HL-60 cells with [35S]methionine and [35S]cysteine for 19 h. Immunoprecipitation of MPO revealed its cross-linking to high molecular material having the appearance of a proteoglycan in sodium dodecyl sulfate-polyacrylamide gels. This assumption was confirmed by labeling HL-60 cells with [35S]sulfate for 10 min followed by DSP cross-linking and immunoprecipitation. From three granular enzymes immunoprecipitated, only the cationic MPO was cross-linked to [35S]sulfate-labeled serglycin in appreciable quantities, whereas cathepsin D or beta-N-acetylhexosaminidase was not. Thus, intracellular transport of MPO appears to be linked to that of serglycin. Extracts from high buoyant density organelles from human placenta containing MPO activity were subjected to CS-affinity chromatography. Proteins binding to CS were identified by mass spectrometry as MPO, lactoferrin, cathepsin G, and azurocidin/cationic antimicrobial protein of molecular weight 37 kDa, suggesting that serglycin may be a general transport vehicle for the cationic granular proteins of neutrophils.
Collapse
Affiliation(s)
- Peter Lemansky
- Institut für Physiologische Chemie, Philipps-Universität Marburg, Germany.
| | | | | | | | | |
Collapse
|
30
|
Pejler G, Winberg JO, Vuong TT, Henningsson F, Uhlin-Hansen L, Kimata K, Kolset SO. Secretion of macrophage urokinase plasminogen activator is dependent on proteoglycans. ACTA ACUST UNITED AC 2003; 270:3971-80. [PMID: 14511379 DOI: 10.1046/j.1432-1033.2003.03785.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The importance of proteoglycans for secretion of proteolytic enzymes was studied in the murine macrophage cell line J774. Untreated or 4beta-phorbol 12-myristate 13-acetate (PMA)-stimulated macrophages were treated with hexyl-beta-d-thioxyloside to interfere with the attachment of glycosaminoglycan chains to their respective protein cores. Activation of the J774 macrophages with PMA resulted in increased secretion of trypsin-like serine proteinase activity. This activity was completely inhibited by plasminogen activator inhibitor 1 and by amiloride, identifying the activity as urokinase plasminogen activator (uPA). Treatment of both the unstimulated or PMA-stimulated macrophages with xyloside resulted in decreased uPA activity and Western blotting analysis revealed an almost complete absence of secreted uPA protein after xyloside treatment of either control- or PMA-treated cells. Zymography analyses with gels containing both gelatin and plasminogen confirmed these findings. The xyloside treatment did not reduce the mRNA levels for uPA, indicating that the effect was at the post-translational level. Treatment of the macrophages with xylosides did also reduce the levels of secreted matrix metalloproteinase 9. Taken together, these findings indicate a role for proteoglycans in the secretion of uPA and MMP-9.
Collapse
Affiliation(s)
- Gunnar Pejler
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
31
|
Biederbick A, Licht A, Kleene R. Serglycin proteoglycan is sorted into zymogen granules of rat pancreatic acinar cells. Eur J Cell Biol 2003; 82:19-29. [PMID: 12602945 DOI: 10.1078/0171-9335-00287] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Serglycin is known as a secretory granule proteoglyean in hematopoietic cells. In this study we identified a high-molecular-weight molecule in aggregated content proteins of zymogen granules of pancreatic acinar cells. The amino acid composition of the isolated protein showed high similarity to serglycin proteoglycan core protein. To confirm the expression of serglycin proteoglycan in pancreatic acinar cells we cloned the rat pancreas cDNA of serglycin core protein and detected the serglycin mRNA in pancreas tissue and AR4-2J cells by reverse transcription-PCR. In AR4-2J cells, transfected with serglycin fused to green fluorescent protein (EGFP), serglycin localized within a web-like pattern in the perinuclear space as well as with a punctate pattern distributed in the cytoplasm. The perinuclear structures colocalized with the Golgi membrane-associated protein p115 and the punctate structures with the secretory enzyme procarboxypeptidase A, indicating that the serglycin-EGFP fusion protein travels through compartments of the secretory pathway and is sorted into secretory granules. Using an antiserum against serglycin core protein immunofluorescence as well as immunogold electron microscopy analysis conrirmed the subcellular distribution of serglycin proteoglycan in zymogen granules of pancreatic acinar cells. To prevent glycosylation of serglycin core protein we incubated AR4-2J cells with 2 mM p-nitrophenyl-beta-D-xylopyranoside (PNP-xyloside), which serves as alternate substrate for glycosaminoglycan chain attachment. Furthermore, we deleted the serine/glycine repeat region in the serglycin core protein. In both approaches the transfected serglycin-EGFP fusion protein could be detected predominantly in perinuclear Golgi membrane structures, while in control cells the serglycin fusion protein was mostly sorted into the secretory granules. Additionally, we show that sorting of secretory enzymes like amylase
Collapse
Affiliation(s)
- Annette Biederbick
- Department of Cell Biology and Cell Pathology, Philipps University, Marburg, Germany.
| | | | | |
Collapse
|
32
|
Venkatesh SG, Gorr SU. A sulfated proteoglycan is necessary for storage of exocrine secretory proteins in the rat parotid gland. Am J Physiol Cell Physiol 2002; 283:C438-45. [PMID: 12107053 DOI: 10.1152/ajpcell.00552.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sulfated proteoglycans have been proposed to play a role in the sorting and storage of secretory proteins in exocrine secretory granules. Rat parotid acinar cells expressed a 40- to 60-kDa proteoglycan that was stored in secretory granules. Treatment of the tissue with the proteoglycan synthesis inhibitor paranitrophenyl xyloside resulted in the complete abrogation of the sulfated proteoglycan. Pulse-chase experiments in the presence of the xyloside analog showed a significant reduction in the stimulated secretion and granule storage of the newly synthesized regulated secretory proteins amylase and parotid secretory protein. Inhibition of proteoglycan sulfation by chlorate did not affect the sorting of these proteins. The effect of proteoglycan synthesis inhibition on protein sorting was completely reversed upon treatment with a weak acid. These results suggest that the sulfated proteoglycan is necessary for sorting and storage of regulated secretory proteins in the exocrine parotid gland. Preliminary evidence suggests that the mechanism involves the modulation of granule pH by the proteoglycan rather than a direct interaction with other granule components.
Collapse
Affiliation(s)
- S G Venkatesh
- Department of Periodontics, Endodontics, and Dental Hygiene, University of Louisville Health Sciences Center, Louisville, Kentucky 40292, USA
| | | |
Collapse
|
33
|
Abstract
Packaging of proteins into regulated secretory granules is mediated by the mildly acidic pH of the trans Golgi network and immature secretory granules. This need for an acidic pH indicates that ionic interactions are important. The mouse pancreatic acinar cell contains four major sulfated glycoproteins,including the zymogen granule structural component Muclin. I tested the hypothesis that sulfation and the O-linked glycosylation to which the sulfates are attached are required for normal formation of zymogen granules in the exocrine pancreas. Post-translational processing was perturbed with two chemicals: sodium chlorate was used to inhibit sulfation and benzyl-N-acetyl-α-galactosaminide was used to inhibit O-linked oligosaccharide elongation. Both chemicals resulted in the accumulation in the Golgi region of the cell of large vacuoles that appear to be immature secretory granules, and the effect was much more extensive with benzyl-N-acetyl-α-galactosaminide than chlorate. Both chemical treatments inhibited basal secretion at prolonged chase times, and again benzyl-N-acetyl-α-galactosaminide had a greater effect than chlorate. In addition, benzyl-N-acetyl-α-galactosaminide, but not chlorate, totally inhibited stimulated secretion of newly synthesized proteins. These data provide evidence for a role of sulfated O-linked glycoproteins in protein condensation and maturation of zymogen granules. Under maximal inhibition of O-linked oligosaccharide biosynthesis, anterograde post-Golgi traffic in the regulated pathway is almost totally shut down, demonstrating the importance of these post-translational modifications in progression of secretory proteins through the regulated pathway and normal granule formation in the pancreatic acinar cell.
Collapse
Affiliation(s)
- Robert C De Lisle
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City 66160, USA.
| |
Collapse
|
34
|
Abstract
INTRODUCTION The pancreatic exocrine secretory granule, the zymogen granule, releases digestive enzymes into the intestine. GP2 is the most abundant zymogen granule membrane protein. Coincident with exocrine secretion, GP2 is released from the membrane and secreted into the pancreatic duct. AIM To characterize changes in the structure of GP2 as it progresses through the secretory pathway. METHODOLOGY Polarized MDCK cells that express the rat GP2 gene were used to examine the sequential processing of the polypeptide backbone. RESULTS Within the cell, GP2 is initially proteolytically processed from a 55- to a 53-kd form at or before the trans-Golgi network. The protein is then processed to a 51-kd form, which is found on the apical plasma membrane and in secretions. Similar processing was also observed in primary rat pancreatic cultures and in MDCK cells that express human GP2. The amino-terminal sequence of human GP2 derived from pancreatic secretions was determined for two human patients and began at Gly39, revealing a potential processing site. CONCLUSIONS In contrast to other digestive enzymes secreted by the pancreas that are activated by proteolysis in the intestine, GP2 undergoes sequential intracellular cleavage. Alterations in GP2 structure by proteolysis may regulate GP2 function at specific sites within the pancreatic cell.
Collapse
Affiliation(s)
- Benjamin A Fritz
- The Department of Medicine and Digestive Disease Center, Stanford University, Stanford, California 94305-5187, USA
| | | | | | | |
Collapse
|
35
|
Abstract
The pancreatic acinar cell synthesises a variety of digestive enzymes. In transit through the secretory pathway, these enzymes are separated from constitutively secreted proteins and packaged into zymogen granules, which are localised in the apical pole of the cell. Stimulation of the cell by secretagogues such as acetylcholine and cholecystokinin, acting at receptors on the basolateral plasma membrane, causes the generation of an intracellular Ca(2+) signal. This signal, in turn, triggers the fusion of the zymogen granules with the apical plasma membrane, leading to the polarised secretion of the enzymes. This review describes recent advances in our understanding of the control of secretion in the acinar cell. In particular, we discuss the mechanisms underlying the sorting of digestive enzymes into the zymogen granules, the molecular components of the exocytotic "membrane fusion machine," the generation and propagation of the Ca(2+ signal and the development of new techniques for the visualisation of single granule fusion events.
Collapse
Affiliation(s)
- Barbara Wäsle
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1QJ, Cambridge, UK
| | | |
Collapse
|
36
|
Abstract
The mechanism for vacuolar sorting of seed storage proteins is as yet poorly understood and no receptor has been identified to date. The homotrimeric glycoprotein phaseolin, which is the major storage protein of the common bean, requires a transient tetrapeptide at the C-terminus for its vacuolar sorting. A mutated construct without the tetrapeptide is secreted. We show here that coexpression of wild-type phaseolin and the mutated, secreted form in transgenic tobacco results in the formation of mixed trimers and partial vacuolar delivery of the mutated polypeptides and partial secretion of wild-type polypeptides. This indicates that the sorting signal has a cumulative effect within a phaseolin trimer. The result is discussed in the light of the hypothesized mechanisms for vacuolar sorting of seed storage proteins.
Collapse
Affiliation(s)
- H Holkeri
- Istituto Biosintesi Vegetali, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milan, Italy
| | | |
Collapse
|
37
|
Schmidt K, Schrader M, Kern HF, Kleene R. Regulated apical secretion of zymogens in rat pancreas. Involvement of the glycosylphosphatidylinositol-anchored glycoprotein GP-2, the lectin ZG16p, and cholesterol-glycosphingolipid-enriched microdomains. J Biol Chem 2001; 276:14315-23. [PMID: 11152672 DOI: 10.1074/jbc.m006221200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the role of glycosphingolipid- and cholesterol-enriched microdomains, or rafts, in the sorting of digestive enzymes into zymogen granules destined for apical secretion and in granule formation. Isolated membranes of zymogen granules from pancreatic acinar cells showed an enrichment in cholesterol and sphingomyelin and formed detergent-insoluble glycolipid-enriched complexes. These complexes floated to the lighter fractions of sucrose density gradients and contained the glycosylphosphatidylinositol (GPI)-anchored glycoprotein GP-2, the lectin ZG16p, and sulfated matrix proteoglycans. Morphological and pulse-chase studies with isolated pancreatic lobules revealed that after inhibition of GPI-anchor biosynthesis by mannosamine or the fungal metabolite YW 3548, granule formation was impaired leading to an accumulation of newly synthesized proteins in the Golgi apparatus and the rough endoplasmic reticulum. Furthermore, the membrane attachment of matrix proteoglycans was diminished. After cholesterol depletion or inhibition of glycosphingolipid synthesis by fumonisin B1, the formation of zymogen granules as well as the formation of detergent-insoluble complexes was reduced. In addition, cholesterol depletion led to constitutive secretion of newly synthesized proteins, e.g. amylase, indicating that zymogens were missorted. Together, these data provide first evidence that in polarized acinar cells of the exocrine pancreas GPI-anchored proteins, e.g. GP-2, and cholesterol-sphingolipid-enriched microdomains are required for granule formation as well as for regulated secretion of zymogens and may function as sorting platforms for secretory proteins destined for apical delivery.
Collapse
Affiliation(s)
- K Schmidt
- Department of Cell Biology and Cell Pathology, Philipps University of Marbury, Robert-Koch Strasse 5, 35033 Marburg, Germany
| | | | | | | |
Collapse
|
38
|
Vayssié L, Garreau de Loubresse N, Sperling L. Growth and form of secretory granules involves stepwise assembly but not differential sorting of a family of secretory proteins in Paramecium. J Cell Sci 2001; 114:875-86. [PMID: 11181171 DOI: 10.1242/jcs.114.5.875] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramecium trichocysts are voluminous secretory vesicles consisting of a spindle-shaped body surmounted by a tip that serves to anchor them at exocytotic sites in the plasma membrane. This constrained shape is conferred by the proteins stored in the vesicles, which form an insoluble three-dimensional crystalline array. The constituent polypeptides (Trichocyst Matrix Proteins, TMPs), which assemble during trichocyst biogenesis, are produced by proteolytic processing of soluble proproteins encoded by a large multigene family. In order to investigate the functional significance of the TMP multigene family, which assures the synthesis of a mixture of related polypeptides, we have designed synthetic genes for heterologous expression of three different mature polypeptides, which were used to obtain sequence-specific rabbit antisera. We used these antisera to carry out immunolocalization experiments with wild-type trichocysts at different stages of development and found that the trichocyst matrix consists of two concentric layers containing different TMPs, and that the assembly of each layer corresponds to a distinct phase of trichocyst growth. Examination of mutant trichocysts created by targeted gene silencing of different TMP genes showed that the layer containing the products of the silenced genes is specifically affected, as are all subsequently assembled parts of the structure, consistent with an ordered assembly pathway. This stepwise assembly is not controlled by differential sorting of the TMPs, as single and double label experiments provided evidence that the different TMPs are delivered together to post-Golgi vesicles and developing trichocysts. We present a model for trichocyst biogenesis in which TMP assembly is controlled by protein processing.
Collapse
Affiliation(s)
- L Vayssié
- Centre de Génétique Moléculaire, CNRS, France
| | | | | |
Collapse
|