1
|
Tsuji M. A ligand-entry surface of the nuclear receptor superfamily consists of the helix H3 of the ligand-binding domain. J Mol Graph Model 2015; 62:262-275. [PMID: 26544573 DOI: 10.1016/j.jmgm.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/24/2015] [Accepted: 10/06/2015] [Indexed: 01/02/2023]
Abstract
We successfully simulated receptor-ligand complex holo-form formation using the human retinoid X receptor-α ligand-binding domain (LBD) and its natural ligand, 9-cis retinoic acid. The success of this simulation was strongly dependent on the findings for an initial structure between the apo-LBD and the ligand as well as the discovery of the driving forces underlying the ligand-trapping and subsequent ligand-induction processes. Here, we would like to propose the "helix H3 three-point initial-binding hypothesis," which was instrumental in simulating the nuclear receptor (NR) superfamily. Using this hypothesis, we also succeeded in simulating holo-form formation of the human retinoic acid receptor-γ LBD and its natural ligand, all-trans retinoic acid. It is hoped that this hypothesis will facilitate novel understanding of both the ligand-trapping mechanism and the simultaneous C-terminal folding process in NR LBDs, as well as provide a new approach to drug design using a structure-based perspective.
Collapse
Affiliation(s)
- Motonori Tsuji
- Institute of Molecular Function, 2-105-14 Takasu, Misato-shi, Saitama 341-0037, Japan.
| |
Collapse
|
2
|
Choschzick I, Hirseland E, Cramer H, Schultz S, Leppert J, Tronnier V, Zechel C. Responsiveness of stem-like human glioma cells to all-trans retinoic acid and requirement of retinoic acid receptor isotypes α, β and γ. Neuroscience 2014; 279:44-64. [PMID: 25171789 DOI: 10.1016/j.neuroscience.2014.07.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/01/2014] [Accepted: 07/30/2014] [Indexed: 01/12/2023]
Abstract
Retinoic acid (RA) is required for development and homeostasis of the normal mammalian brain and may play a role in the initiation and progression of malignant brain tumors, such as the glioblastoma multiforme (GBM) and the gliosarcoma (Gsarc). The subpopulation of stem-like glioma cells (SLGCs) was shown to resist standard glioma radio-/chemotherapy and to propagate tumor regrowth. We used phenotypically distinct, self-renewing SLGC lines from six human GBMs, two Gsarcs, and two subcloned SLGC derivatives in order to investigate their responsiveness to all-trans retinoic acid (atRA) and to identify the RA-receptor (RAR) isotypes involved. In general, atRA exerted a pro-proliferative and pro-survival effect on SLGCs, though the efficacy was distinct. By means of RAR isotype-selective retinoids we disclosed that these effects were mediated by RARα and RARγ, except for one SLGC line, in which the pro-proliferative signal was induced by the RARβ-selective retinoid. Only one GBM-derived cell line (T1338) and a subpopulation of another (T1389) displayed neural differentiation in response to atRA. Differentiation of T1338 was induced by RARα and RARγ isotype-selective retinoids, associated with down-regulation of Sox2, and the failure to induce orthotopic tumors in the brains of SCID mice. The differential responsiveness of the SLGC lines appeared unrelated to the expression of RARβ, as (i) atRA augmented RAR isotype mRNA expression and particularly rarβ mRNA in all SLGC lines, (ii) rarβ promoter hypomethylation in the SLGC lines was not related to differentiation and (iii) the induction of T1338 differentiation was by RARα- and RARγ-selective ligands.
Collapse
Affiliation(s)
- I Choschzick
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany
| | - E Hirseland
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany; Department of Radiation Oncology, University of Lübeck, D-23538 Lübeck, Germany
| | - H Cramer
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany
| | - S Schultz
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany; Department of Radiation Oncology, University of Lübeck, D-23538 Lübeck, Germany
| | - J Leppert
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany
| | - V Tronnier
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany
| | - C Zechel
- Department of Neurosurgery, University of Lübeck, D-23538 Lübeck, Germany.
| |
Collapse
|
3
|
Al Tanoury Z, Piskunov A, Andriamoratsiresy D, Gaouar S, Lutzing R, Ye T, Jost B, Keime C, Rochette-Egly C. Genes involved in cell adhesion and signaling: a new repertoire of retinoic acid receptor target genes in mouse embryonic fibroblasts. J Cell Sci 2014; 127:521-33. [PMID: 24357724 DOI: 10.1242/jcs.131946] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Nuclear retinoic acid (RA) receptors (RARα, β and γ) are ligand-dependent transcription factors that regulate the expression of a battery of genes involved in cell differentiation and proliferation. They are also phosphoproteins and we previously showed the importance of their phosphorylation in their transcriptional activity. In the study reported here, we conducted a genome-wide analysis of the genes that are regulated by RARs in mouse embryonic fibroblasts (MEFs) by comparing wild-type MEFs to MEFs lacking the three RARs. We found that in the absence of RA, RARs control the expression of several gene transcripts associated with cell adhesion. Consequently the knockout MEFs are unable to adhere and to spread on substrates and they display a disrupted network of actin filaments, compared with the WT cells. In contrast, in the presence of the ligand, RARs control the expression of other genes involved in signaling and in RA metabolism. Taking advantage of rescue cell lines expressing the RARα or RARγ subtypes (either wild-type or mutated at the N-terminal phosphorylation sites) in the null background, we found that the expression of RA-target genes can be controlled either by a specific single RAR or by a combination of RAR isotypes, depending on the gene. We also selected genes that require the phosphorylation of the receptors for their regulation by RA. Our results increase the repertoire of genes that are regulated by RARs and highlight the complexity and diversity of the transcriptional programs regulated by RARs, depending on the gene.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Lalevée S, Bour G, Quinternet M, Samarut E, Kessler P, Vitorino M, Bruck N, Delsuc MA, Vonesch JL, Kieffer B, Rochette-Egly C. Vinexinß, an atypical "sensor" of retinoic acid receptor gamma signaling: union and sequestration, separation, and phosphorylation. FASEB J 2010; 24:4523-34. [PMID: 20634350 DOI: 10.1096/fj.10-160572] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The transcriptional activity of nuclear retinoic acid receptors (RARs) relies on the association/dissociation of coregulators at the ligand-binding domain. However, we determined that the N-terminal domain (NTD) also plays a role through its phosphorylation, and we isolated vinexinβ, a cytoskeleton protein with three SH3 domains, as a new partner of the RARγ NTD. Here we deciphered the mechanism of the interaction and its role in RARγ-mediated transcription. By combining molecular and biophysical (surface plasmon resonance, NMR, and fluorescence resonance energy transfer) approaches, we demonstrated that the third SH3 domain of vinexinβ interacts with a proline-rich domain (PRD) located in RARγ NTD and that phosphorylation at a serine located in the PRD abrogates the interaction. The affinity of the interaction was also evaluated. In vivo, vinexinβ represses RARγ-mediated transcription and we dissected the underlying mechanism in chromatin immunoprecipitation experiments performed with F9 cells expressing RARγ wild type or mutated at the phosphorylation site. In the absence of retinoic acid (RA), vinexinβ does not occupy RARγ target gene promoters and sequesters nonphosphorylated RARγ out of promoters. In response to RA, RARγ becomes phosphorylated and dissociates from vinexinβ. This separation allows RARγ to occupy promoters. This is the first report of an RAR corepressor association/dissociation out of promoters and regulated by phosphorylation.
Collapse
Affiliation(s)
- Sébastien Lalevée
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U596, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Parrella E, Giannì M, Fratelli M, Barzago MM, Raska I, Diomede L, Kurosaki M, Pisano C, Carminati P, Merlini L, Dallavalle S, Tavecchio M, Rochette-Egly C, Terao M, Garattini E. Antitumor activity of the retinoid-related molecules (E)-3-(4'-hydroxy-3'-adamantylbiphenyl-4-yl)acrylic acid (ST1926) and 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) in F9 teratocarcinoma: Role of retinoic acid receptor gamma and retinoid-independent pathways. Mol Pharmacol 2006; 70:909-24. [PMID: 16788091 DOI: 10.1124/mol.106.023614] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retinoid-related molecules (RRMs) ST1926 [(E)-3-(4'-hydroxy-3'-adamantylbiphenyl-4-yl)acrylic acid] and CD437 (6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid) are promising anticancer agents. We compared the retinoic acid receptor (RAR) trans-activating properties of the two RRMs and all-trans-retinoic acid (ATRA). ST1926 and CD437 are better RARgamma agonists than ATRA. We used three teratocarcinoma cell lines to evaluate the significance of RARgamma in the activity of RRMs: F9-wild type (WT); F9gamma-/-, lacking the RARgamma gene; F9gamma51, aF9gamma-/-derivative, complemented for the RARgamma deficit. Similar to ATRA, ST1926 and CD437 activate cytodifferentiation only in F9-WT cells. Unlike ATRA, ST1926 and CD437 arrest cells in the G2/M phase of the cell cycle and induce apoptosis in all F9 cell lines. Our data indicate that RARgamma and the classic retinoid pathway are not relevant for the antiproliferative and apoptotic activities of RRMs in vitro. Increases in cytosolic calcium are fundamental for apoptosis, in that intracellular calcium chelators abrogate the process. Comparison of the gene expression profiles associated with ST1926 and ATRA in F9-WT and F9gamma-/-indicates that the RRM activates a conspicuous nonretinoid response in addition to the classic and RAR-dependent pathway. The pattern of genes regulated by ST1926 selectively, in a RARgamma-independent manner, provides novel insights into the possible molecular determinants underlying the activity of RRMs in vitro. Furthermore, it suggests that RARgamma-dependent responses are relevant to the activity of RRMs in vivo. Indeed, the receptor hinders the antitumor activity in vivo, in that both syngeneic and immunosuppressed SCID mice bearing F9gamma-/- tumors have increased life spans after treatment with ST1926 and CD437 relative to their F9-WT counterparts.
Collapse
|
6
|
Bour G, Taneja R, Rochette‐Egly C. Mouse embryocarcinoma F9 cells and retinoic acid: A model to study the molecular mechanisms of endodermal differentiation. NUCLEAR RECEPTORS IN DEVELOPMENT 2006. [DOI: 10.1016/s1574-3349(06)16007-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Gianní M, Tarrade A, Nigro EA, Garattini E, Rochette-Egly C. The AF-1 and AF-2 domains of RAR gamma 2 and RXR alpha cooperate for triggering the transactivation and the degradation of RAR gamma 2/RXR alpha heterodimers. J Biol Chem 2003; 278:34458-66. [PMID: 12824162 DOI: 10.1074/jbc.m304952200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, liganded RAR gamma 2/RXR alpha heterodimers activate the transcription of retinoic acid (RA) target genes and then are degraded through the ubiquitin-proteasome pathway. In this study, we dissected the role of the RAR gamma 2 and RXR alpha partners as well as of their respective AF-1 and AF-2 domains in the processes of transactivation and degradation. RAR gamma 2 is the "engine" initiating transcription and its own degradation subsequent to ligand binding. Integrity of its AF-2 domain and phosphorylation of its AF-1 domain are required for both the degradation and the transactivation of the receptor. Deletion of the whole AF-1 domain does not impair these processes but shifts the receptor toward other proteolytic pathways through RXR alpha. In contrast, RXR alpha plays only a modulatory role, cooperating with RAR gamma 2 through its AF-2 domain and its phosphorylated AF-1 domain in both the transcription activity and the degradation of the RAR gamma 2/RXR alpha heterodimers. Our results underline that the AF-1 and AF-2 domains of each heterodimer partner cooperate with one other and that this cooperation is relevant for both the transcription and degradation processes.
Collapse
Affiliation(s)
- Maurizio Gianní
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) CNRS INSERM ULP, UMR 7104, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
8
|
Bastien J, Adam-Stitah S, Plassat JL, Chambon P, Rochette-Egly C. The phosphorylation site located in the A region of retinoic X receptor alpha is required for the antiproliferative effect of retinoic acid (RA) and the activation of RA target genes in F9 cells. J Biol Chem 2002; 277:28683-9. [PMID: 12032153 DOI: 10.1074/jbc.m203623200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse F9 embryocarcinoma cells constitute a well established cell autonomous model system for investigating retinoic acid (RA) signaling in vitro. RA induces the differentiation of F9 cells grown as monolayers into endodermal-like cells and decreases their rate of proliferation. Knock-out of the retinoic X receptor alpha (RXRalpha) gene abolishes endodermal differentiation and the induction of several endogenous RA-responsive genes. RXRalpha null cells are also drastically impaired in their antiproliferative response to RA. The role of the RXRalpha phosphorylation site located in the N-terminal A region (Ser(22)) has been investigated here by establishing cell lines re-expressing RXRalpha either wild type or mutated at the phosphorylation site (RXRalphaS22A) in a RXRalpha-null background. We show that Ser(22) is dispensable for RA-induced endodermal differentiation but is crucial for the expression of several RA-responsive genes. Ser(22) is also indispensable for the antiproliferative effect of RA and necessary for the RA-induced down-regulation of p21(CIP) and p27(KIP) CKIs proteins that are known to be involved in the control of cell cycle progression.
Collapse
Affiliation(s)
- Julie Bastien
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, BP 163, 67404 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
9
|
Rees WD. Manipulating the sulfur amino acid content of the early diet and its implications for long-term health. Proc Nutr Soc 2002; 61:71-7. [PMID: 12002797 DOI: 10.1079/pns2001137] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Epidemiological studies of human populations show that poor growth in utero predisposes an individual to the later development of type 2 (non-insulin-dependent) diabetes mellitus and hypertension in adulthood. This phenomenon is not confined to man; feeding pregnant rats diets moderately deficient in protein has a similar effect, programming the adult blood pressure and glucose metabolism of the offspring. A restriction in the amino acid supply was thought to cause poor fetal growth. However, recent experiments have shown that this is not the case and instead have implicated the metabolism of the S-containing amino acids. Many semi-synthetic experimental diets contain an imbalance in S-containing amino acids, forcing the animal to synthesise a sizeable part of its cysteine requirement from methionine. Unfortunately, when the diet is low in protein, the oxidation of amino acids is reduced, perturbing methionine metabolism and increasing levels of homocysteine. It is this interaction between protein content and composition of the diet which influences neonatal viability and may also determine the long-term health of the offspring. An excess of homocysteine is known to affect levels of two of the main mediators of cellular methylation reactions, S-adenosyl methionine and methylene tetrahydrofolate. S-adenosyl methionine is the methyl donor for the methylation of newly-synthesised DNA, regulating chromatin assembly and gene expression. The balance between S-adenosyl methionine and the methylated derivatives of folic acid may be critical for the development of differentiating cells and the long-term regulation of gene expression.
Collapse
|