1
|
Fernández-Infante C, Hernández-Cano L, Herranz Ó, Berrocal P, Sicilia-Navarro C, González-Porras JR, Bastida JM, Porras A, Guerrero C. Platelet C3G: a key player in vesicle exocytosis, spreading and clot retraction. Cell Mol Life Sci 2024; 81:84. [PMID: 38345631 PMCID: PMC10861696 DOI: 10.1007/s00018-023-05109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 02/15/2024]
Abstract
C3G is a Rap1 GEF that plays a pivotal role in platelet-mediated processes such as angiogenesis, tumor growth, and metastasis by modulating the platelet secretome. Here, we explore the mechanisms through which C3G governs platelet secretion. For this, we utilized animal models featuring either overexpression or deletion of C3G in platelets, as well as PC12 cell clones expressing C3G mutants. We found that C3G specifically regulates α-granule secretion via PKCδ, but it does not affect δ-granules or lysosomes. C3G activated RalA through a GEF-dependent mechanism, facilitating vesicle docking, while interfering with the formation of the trans-SNARE complex, thereby restricting vesicle fusion. Furthermore, C3G promotes the formation of lamellipodia during platelet spreading on specific substrates by enhancing actin polymerization via Src and Rac1-Arp2/3 pathways, but not Rap1. Consequently, C3G deletion in platelets favored kiss-and-run exocytosis. C3G also controlled granule secretion in PC12 cells, including pore formation. Additionally, C3G-deficient platelets exhibited reduced phosphatidylserine exposure, resulting in decreased thrombin generation, which along with defective actin polymerization and spreading, led to impaired clot retraction. In summary, platelet C3G plays a dual role by facilitating platelet spreading and clot retraction through the promotion of outside-in signaling while concurrently downregulating α-granule secretion by restricting granule fusion.
Collapse
Affiliation(s)
- Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Óscar Herranz
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Pablo Berrocal
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Carmen Sicilia-Navarro
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - José Ramón González-Porras
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - José María Bastida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
2
|
Ndlovu E, Malpartida L, Sultana T, Dahms TES, Dague E. Host Cell Geometry and Cytoskeletal Organization Governs Candida-Host Cell Interactions at the Nanoscale. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37888912 DOI: 10.1021/acsami.3c09870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Candida is one of the most common opportunistic fungal pathogens in humans. Its adhesion to the host cell is required in parasitic states and is important for pathogenesis. Many studies have shown that there is an increased risk of developing candidiasis when normal tissue barriers are weakened or when immune defenses are compromised, for example, during cancer treatment that induces immunosuppression. The mechanical properties of malignant cells, such as adhesiveness and viscoelasticity, which contribute to cellular invasion and migration are different from those of noncancerous cells. To understand host invasion and its relationship with host cell health, we probed the interaction of Candida spp. with cancerous and noncancerous human cell lines using atomic force microscopy in the single-cell force spectroscopy mode. There was significant adhesion between Candida and human cells, with more adhesion to cancerous versus noncancerous cell lines. This increase in adhesion is related to the mechanobiological properties of cancer cells, which have a disorganized cytoskeleton and lower rigidity. Altered geometry and cytoskeletal disruption of the human cells impacted adhesion parameters, underscoring the role of cytoskeletal organization in Candida-human cell adhesion and implicating the manipulation of cell properties as a potential future therapeutic strategy.
Collapse
Affiliation(s)
- Easter Ndlovu
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Lucas Malpartida
- National Centre for Scientific Research, Laboratory for Analysis and Architecture of Systems (LAAS), 7 Avenue du Colonel Roche, BP 54200, Toulouse cedex 4 31031, France
| | - Taranum Sultana
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina S4S 0A2, Saskatchewan, Canada
| | - Etienne Dague
- National Centre for Scientific Research, Laboratory for Analysis and Architecture of Systems (LAAS), 7 Avenue du Colonel Roche, BP 54200, Toulouse cedex 4 31031, France
| |
Collapse
|
3
|
Matsubara T, Addison WN, Kokabu S, Neff L, Horne W, Gori F, Baron R. Characterization of unique functionalities in c-Src domains required for osteoclast podosome belt formation. J Biol Chem 2021; 296:100790. [PMID: 34019873 PMCID: PMC8196221 DOI: 10.1016/j.jbc.2021.100790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 10/26/2022] Open
Abstract
Deletion of c-Src, a ubiquitously expressed tyrosine kinase, results in osteoclast dysfunction and osteopetrosis, in which bones harden into "stone." In contrast, deletion of the genes encoding other members of the Src family kinase (SFK) fails to produce an osteopetrotic phenotype. This suggests that c-Src performs a unique function in the osteoclast that cannot be compensated for by other SFKs. We aimed to identify the molecular basis of this unique role in osteoclasts and bone resorption. We found that c-Src, Lyn, and Fyn were the most highly expressed SFKs in WT osteoclasts, whereas Hck, Lck, Blk, and Fgr displayed low levels of expression. Formation of the podosome belt, clusters of unique actin assemblies, was disrupted in src-/- osteoclasts; introduction of constitutively activated SFKs revealed that only c-Src and Fyn could restore this process. To identify the key structural domains responsible, we constructed chimeric Src-Hck and Src-Lyn constructs in which the unique, SH3, SH2, or catalytic domains had been swapped. We found that the Src unique, SH3, and kinase domains were each crucial to establish Src functionality. The SH2 domain could however be substituted with Lyn or Hck SH2 domains. Furthermore, we demonstrate that c-Src's functionality is, in part, derived from an SH3-proximal proline-rich domain interaction with c-Cbl, leading to phosphorylation of c-Cbl Tyr700. These data help clarify Src's unique functionality in the organization of the cytoskeleton in osteoclasts, required for efficient bone resorption and explain why c-Src cannot be replaced, in osteoclasts, by other SFKs.
Collapse
Affiliation(s)
- Takuma Matsubara
- Division of Bone and Mineral Research, Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Fukuoka, Japan.
| | - William N Addison
- Division of Bone and Mineral Research, Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Fukuoka, Japan
| | - Lynn Neff
- Division of Bone and Mineral Research, Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - William Horne
- Division of Bone and Mineral Research, Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Francesca Gori
- Division of Bone and Mineral Research, Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School and Endocrine Unit, MGH, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Tsai HJ, Chien KY, Liao HR, Shih MS, Lin YC, Chang YW, Cheng JC, Tseng CP. Functional links between Disabled-2 Ser723 phosphorylation and thrombin signaling in human platelets. J Thromb Haemost 2017; 15:2029-2044. [PMID: 28876503 DOI: 10.1111/jth.13785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Indexed: 01/17/2023]
Abstract
Essentials Disabled-2 (Dab2) phosphorylation status in thrombin signaling of human platelet was investigated. Ser723 was the major Dab2 phosphorylation site in human platelets stimulated by thrombin. Dab2 S723 phosphorylation (pS723) caused the dissociation of Dab2-CIN85 protein complex. Dab2-pS723 regulated ADP release and integrin αIIbβ3 activation in thrombin-treated platelets. SUMMARY Background Disabled-2 (Dab2) is a platelet protein that is functionally involved in thrombin signaling in mice. It is unknown whether or not Dab2 undergoes phosphorylation during human platelet activation. Objectives To investigate the phosphorylation status of Dab2 and its functional consequences in thrombin-stimulated human platelets. Methods Dab2 was immunoprecipitated from resting and thrombin-stimulated platelet lysates for differential isotopic labeling. After enrichment of the phosphopeptides, the phosphorylation sites were analyzed by mass spectrometry. The corresponding phospho-specific antibody was generated. The protein kinases responsible for and the functional significance of Dab2 phosphorylation were defined by the use of signaling pathway inhibitors/activators, protein kinase assays, and various molecular approaches. Results Dab2 was phosphorylated at Ser227, Ser394, Ser401 and Ser723 in thrombin-stimulated platelets, with Ser723 phosphorylation being the most significantly increased by thrombin. Dab2 was phosphorylated by protein kinase C at Ser723 in a Gαq -dependent manner. ADP released from the stimulated platelets further activated the Gβγ -dependent pathway to sustain Ser723 phosphorylation. The Cbl-interacting protein of 85 kDa (CIN85) bound to Dab2 at a motif adjacent to Ser723 in resting platelets. The consequence of Ser723 phosphorylation was the dissociation of CIN85 from the Dab2-CIN85 complex. These molecular events led to increases in fibrinogen binding and platelet aggregation in thrombin-stimulated platelets by regulating αIIb β3 activation and ADP release. Conclusions Dab2 Ser723 phosphorylation is a key molecular event in thrombin-stimulated inside-out signaling and platelet activation, contributing to a new function of Dab2 in thrombin signaling.
Collapse
Affiliation(s)
- H-J Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - K-Y Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Clinical Proteomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - H-R Liao
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - M-S Shih
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Y-C Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Y-W Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - J-C Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, China Medical University, Taichung, Taiwan
| | - C-P Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
5
|
Galvagni F, Nardi F, Maida M, Bernardini G, Vannuccini S, Petraglia F, Santucci A, Orlandini M. CD93 and dystroglycan cooperation in human endothelial cell adhesion and migration adhesion and migration. Oncotarget 2017; 7:10090-103. [PMID: 26848865 PMCID: PMC4891106 DOI: 10.18632/oncotarget.7136] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023] Open
Abstract
CD93 is a transmembrane glycoprotein predominantly expressed in endothelial cells. Although CD93 displays proangiogenic activity, its molecular function in angiogenesis still needs to be clarified. To get molecular insight into the biological role of CD93 in the endothelium, we performed proteomic analyses to examine changes in the protein profile of endothelial cells after CD93 silencing. Among differentially expressed proteins, we identified dystroglycan, a laminin-binding protein involved in angiogenesis, whose expression is increased in vascular endothelial cells within malignant tumors. Using immunofluorescence, FRET, and proximity ligation analyses, we observed a close interaction between CD93 and β-dystroglycan. Moreover, silencing experiments showed that CD93 and dystroglycan promoted endothelial cell migration and organization into capillary-like structures. CD93 proved to be phosphorylated on tyrosine 628 and 644 following cell adhesion on laminin through dystroglycan. This phosphorylation was shown to be necessary for a proper endothelial migratory phenotype. Moreover, we showed that during cell spreading phosphorylated CD93 recruited the signaling protein Cbl, which in turn was phosphorylated on tyrosine 774. Altogether, our results identify a new signaling pathway which is activated by the cooperation between CD93 and dystroglycan and involved in the control of endothelial cell function.
Collapse
Affiliation(s)
- Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Federica Nardi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Marco Maida
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Silvia Vannuccini
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, 53100 Siena, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, Obstetrics and Gynecology, University of Siena, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| |
Collapse
|
6
|
Missaire M, Hindges R. The role of cell adhesion molecules in visual circuit formation: from neurite outgrowth to maps and synaptic specificity. Dev Neurobiol 2015; 75:569-83. [PMID: 25649254 PMCID: PMC4855686 DOI: 10.1002/dneu.22267] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/08/2022]
Abstract
The formation of visual circuitry is a multistep process that involves cell–cell interactions based on a range of molecular mechanisms. The correct implementation of individual events, including axon outgrowth and guidance, the formation of the topographic map, or the synaptic targeting of specific cellular subtypes, are prerequisites for a fully functional visual system that is able to appropriately process the information captured by the eyes. Cell adhesion molecules (CAMs) with their adhesive properties and their high functional diversity have been identified as key actors in several of these fundamental processes. Because of their growth‐promoting properties, CAMs play an important role in neuritogenesis. Furthermore, they are necessary to control additional neurite development, regulating dendritic spacing and axon pathfinding. Finally, trans‐synaptic interactions of CAMs ensure cell type‐specific connectivity as a basis for the establishment of circuits processing distinct visual features. Recent discoveries implicating CAMs in novel mechanisms have led to a better general understanding of neural circuit formation, but also revealed an increasing complexity of their function. This review aims at describing the different levels of action for CAMs to shape neural connectivity, with a special focus on the visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 569–583, 2015
Collapse
Affiliation(s)
- Mégane Missaire
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Robert Hindges
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| |
Collapse
|
7
|
Anekal PV, Yong J, Manser E. Arg kinase-binding protein 2 (ArgBP2) interaction with α-actinin and actin stress fibers inhibits cell migration. J Biol Chem 2014; 290:2112-25. [PMID: 25429109 DOI: 10.1074/jbc.m114.610725] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell migration requires dynamic remodeling of the actomyosin network. We report here that an adapter protein, ArgBP2, is a component of α-actinin containing stress fibers and inhibits migration. ArgBP2 is undetectable in many commonly studied cancer-derived cell lines. COS-7 and HeLa cells express ArgBP2 (by Western analysis), but expression was detectable only in approximately half the cells by immunofluorescence. Short term clonal analysis demonstrated 0.2-0.3% of cells switch ArgBP2 expression (on or off) per cell division. ArgBP2 can have a fundamental impact on the actomyosin network: ArgBP2 positive COS-7 cells, for example, are clearly distinguishable by their denser actomyosin (stress fiber) network. ArgBP2γ binding to α-actinin appears to underlie its ability to localize to stress fibers and decrease cell migration. We map a small α-actinin binding region in ArgBP2 (residues 192-228) that is essential for these effects. Protein kinase A phosphorylation of ArgBP2γ at neighboring Ser-259 and consequent 14-3-3 binding blocks its interaction with α-actinin. ArgBP2 is known to be down-regulated in some aggressively metastatic cancers. Our work provides a biochemical explanation for the anti-migratory effect of ArgBP2.
Collapse
Affiliation(s)
- Praju Vikas Anekal
- From the sGSK Group Institute of Molecular and Cell Biology (IMCB), Proteos Building, 61 Biopolis Drive, 138673 Singapore
| | - Jeffery Yong
- From the sGSK Group Institute of Molecular and Cell Biology (IMCB), Proteos Building, 61 Biopolis Drive, 138673 Singapore
| | - Ed Manser
- From the sGSK Group Institute of Molecular and Cell Biology (IMCB), Proteos Building, 61 Biopolis Drive, 138673 Singapore, the Institute of Medical Biology (IMB), 8A Biomedical Grove, 06-06 Immunos Building, 138648 Singapore, and the Department of Pharmacology, National University of Singapore, 119077 Singapore
| |
Collapse
|
8
|
Lee H, Tsygankov AY. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol 2013; 228:2285-93. [DOI: 10.1002/jcp.24412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| | - Alexander Y. Tsygankov
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| |
Collapse
|
9
|
SLI-1 Cbl inhibits the engulfment of apoptotic cells in C. elegans through a ligase-independent function. PLoS Genet 2012; 8:e1003115. [PMID: 23271977 PMCID: PMC3521709 DOI: 10.1371/journal.pgen.1003115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/11/2012] [Indexed: 11/19/2022] Open
Abstract
The engulfment of apoptotic cells is required for normal metazoan development and tissue remodeling. In Caenorhabditis elegans, two parallel and partially redundant conserved pathways act in cell-corpse engulfment. One pathway, which includes the small GTPase CED-10 Rac and the cytoskeletal regulator ABI-1, acts to rearrange the cytoskeleton of the engulfing cell. The CED-10 Rac pathway is also required for proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. The second pathway includes the receptor tyrosine kinase CED-1 and might recruit membranes to extend the surface of the engulfing cell. Cbl, the mammalian homolog of the C. elegans E3 ubiquitin ligase and adaptor protein SLI-1, interacts with Rac and Abi2 and modulates the actin cytoskeleton, suggesting it might act in engulfment. Our genetic studies indicate that SLI-1 inhibits apoptotic cell engulfment and DTC migration independently of the CED-10 Rac and CED-1 pathways. We found that the RING finger domain of SLI-1 is not essential to rescue the effects of SLI-1 deletion on cell migration, suggesting that its role in this process is ubiquitin ligase-independent. We propose that SLI-1 opposes the engulfment of apoptotic cells via a previously unidentified pathway.
Collapse
|
10
|
Lee H, Tsygankov AY. c-Cbl regulates glioma invasion through matrix metalloproteinase 2. J Cell Biochem 2011; 111:1169-78. [PMID: 20717917 DOI: 10.1002/jcb.22839] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
c-Cbl, a multifunctional adaptor and an E3 ubiquitin ligase, plays a role in such cytoskeleton-mediated events as cell adhesion and migration. Invasiveness of human glioma is dependent on cell adhesion, migration, and degradation of extracellular matrix (ECM). However, the function of c-Cbl in glioma invasion has never been investigated. We report here, for the first time, that c-Cbl plays a positive role in the invasion of ECM by SNB19 glioma cells. RNAi-mediated depletion of c-Cbl decreases SNB19 cell invasion and expression of matrix metalloproteinase 2 (MMP2). Consistent with these findings, SNB19 cells expressing wild-type, but not mutant c-Cbl show increased invasion and MMP2 expression. We demonstrate that the observed role of c-Cbl in invasion of SNB19 cells is not mediated by the previously shown effects of c-Cbl on cell adhesion and migration or on EGFR signaling. Together, our results suggest that c-Cbl promotes glioma invasion through up-regulation of MMP2.
Collapse
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
11
|
Ye S, Cihil K, Stolz DB, Pilewski JM, Stanton BA, Swiatecka-Urban A. c-Cbl facilitates endocytosis and lysosomal degradation of cystic fibrosis transmembrane conductance regulator in human airway epithelial cells. J Biol Chem 2010; 285:27008-27018. [PMID: 20525683 DOI: 10.1074/jbc.m110.139881] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl(-) channel expressed in the apical membrane of fluid-transporting epithelia. The apical membrane density of CFTR channels is determined, in part, by endocytosis and the postendocytic sorting of CFTR for lysosomal degradation or recycling to the plasma membrane. Although previous studies suggested that ubiquitination plays a role in the postendocytic sorting of CFTR, the specific ubiquitin ligases are unknown. c-Cbl is a multifunctional molecule with ubiquitin ligase activity and a protein adaptor function. c-Cbl co-immunoprecipitated with CFTR in primary differentiated human bronchial epithelial cells and in cultured human airway cells. Small interfering RNA-mediated silencing of c-Cbl increased CFTR expression in the plasma membrane by inhibiting CFTR endocytosis and increased CFTR-mediated Cl(-) currents. Silencing c-Cbl did not change the expression of the ubiquitinated fraction of plasma membrane CFTR. Moreover, the c-Cbl mutant with impaired ubiquitin ligase activity (FLAG-70Z-Cbl) did not affect the plasma membrane expression or the endocytosis of CFTR. In contrast, the c-Cbl mutant with the truncated C-terminal region (FLAG-Cbl-480), responsible for protein adaptor function, had a dominant interfering effect on the endocytosis and plasma membrane expression of CFTR. Moreover, CFTR and c-Cbl co-localized and co-immunoprecipitated in early endosomes, and silencing c-Cbl reduced the amount of ubiquitinated CFTR in early endosomes. In summary, our data demonstrate that in human airway epithelial cells, c-Cbl regulates CFTR by two mechanisms: first by acting as an adaptor protein and facilitating CFTR endocytosis by a ubiquitin-independent mechanism, and second by ubiquitinating CFTR in early endosomes and thereby facilitating the lysosomal degradation of CFTR.
Collapse
Affiliation(s)
- Siying Ye
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Kristine Cihil
- Department of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224
| | - Donna Beer Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201
| | - Joseph M Pilewski
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 152224
| | - Bruce A Stanton
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Agnieszka Swiatecka-Urban
- Department of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224; Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201.
| |
Collapse
|
12
|
Abella JV, Vaillancourt R, Frigault MM, Ponzo MG, Zuo D, Sangwan V, Larose L, Park M. The Gab1 scaffold regulates RTK-dependent dorsal ruffle formation through the adaptor Nck. J Cell Sci 2010; 123:1306-19. [PMID: 20332103 DOI: 10.1242/jcs.062570] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The polarised distribution of signals downstream from receptor tyrosine kinases (RTKs) regulates fundamental cellular processes that control cell migration, growth and morphogenesis. It is poorly understood how RTKs are involved in the localised signalling and actin remodelling required for these processes. Here, we show that the Gab1 scaffold is essential for the formation of a class of polarised actin microdomain, namely dorsal ruffles, downstream from the Met, EGF and PDGF RTKs. Gab1 associates constitutively with the actin-nucleating factor N-WASP. Following RTK activation, Gab1 recruits Nck, an activator of N-WASP, into a signalling complex localised to dorsal ruffles. Formation of dorsal ruffles requires interaction between Gab1 and Nck, and also requires functional N-WASP. Epithelial cells expressing Gab1DeltaNck (Y407F) exhibit decreased Met-dependent Rac activation, fail to induce dorsal ruffles, and have impaired cell migration and epithelial remodelling. These data show that a Gab1-Nck signalling complex interacts with several RTKs to promote polarised actin remodelling and downstream biological responses.
Collapse
Affiliation(s)
- Jasmine V Abella
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Purev E, Neff L, Horne WC, Baron R. c-Cbl and Cbl-b act redundantly to protect osteoclasts from apoptosis and to displace HDAC6 from beta-tubulin, stabilizing microtubules and podosomes. Mol Biol Cell 2009; 20:4021-30. [PMID: 19641021 DOI: 10.1091/mbc.e09-03-0248] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
c-Cbl and Cbl-b are highly conserved adaptor proteins that participate in integrin signaling, regulating cytoskeletal organization, motility, and bone resorption. Deletion of both c-Cbl and Cbl-b in mice leads to embryonic lethality, indicating that the two proteins perform essential redundant functions. To examine the redundant actions of c-Cbl and Cbl-b in osteoclasts, we depleted c-Cbl in Cbl-b(-/-) osteoclasts by using a short hairpin RNA. Depleting both Cbl proteins disrupted both the podosome belt and the microtubule network and decreased bone-resorbing activity. Stabilizing the microtubules with paclitaxel or inhibiting histone deacetylase 6 (HDAC6), which destabilizes microtubules by deacetylating beta-tubulin, protected both the microtubule network and the podosome belt. Examination of the mechanism involved demonstrated that the conserved four-helix bundle of c-Cbl's tyrosine kinase binding domain bound to beta-tubulin, and both c-Cbl and Cbl-b displaced HDAC6. In addition to the effects on microtubules and the podosome belt, depleting both Cbls significantly increased the levels of the proapoptotic protein Bim and apoptosis relative to the levels induced by eliminating either protein alone. Thus, both c-Cbl and Cbl-b promote bone resorption via the stabilization of microtubules, allowing the formation of the podosome belt in osteoclasts, and by promoting osteoclast survival.
Collapse
Affiliation(s)
- Enkhtsetseg Purev
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
14
|
Peterson ME, Long EO. Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. Immunity 2008; 29:578-88. [PMID: 18835194 PMCID: PMC2639764 DOI: 10.1016/j.immuni.2008.07.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 06/25/2008] [Accepted: 07/30/2008] [Indexed: 01/10/2023]
Abstract
Many cellular responses, such as autoimmunity and cytotoxicity, are controlled by receptors with cytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs). Here, we showed that binding of inhibitory natural killer (NK) cell receptors to human leukocyte antigen (HLA) class I on target cells induced tyrosine phosphorylation of the adaptor Crk, concomitant with dephosphorylation of the guanine exchange factor Vav1. Furthermore, Crk dissociated from the guanine exchange factor C3G and bound to the tyrosine kinase c-Abl during inhibition. Membrane targeting of a tyrosine-mutated form of Crk could overcome inhibition of NK cell cytotoxicity, providing functional evidence that Crk phosphorylation contributes to inhibition. The specific phosphorylation of Crk and its dissociation from a signaling complex, observed here with two types of inhibitory receptors, expands the signaling potential of the large ITIM-receptor family and reveals an unsuspected component of the inhibitory mechanism.
Collapse
Affiliation(s)
- Mary E. Peterson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
15
|
Lu C, Ren W, Su XM, Chen JQ, Wu SH, Guo XR, Huang SM, Chen LH, Zhou GP. CREB and Sp1 regulate the human CD2AP gene promoter activity in renal tubular epithelial cells. Arch Biochem Biophys 2008; 474:143-9. [PMID: 18396147 DOI: 10.1016/j.abb.2008.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 03/24/2008] [Indexed: 11/28/2022]
Abstract
The human CD2-associated protein (CD2AP) is involved in several molecular signaling pathways and is an important factor responsible for nephrotic syndrome. Here we report the identification of the transcription start point and promoter region of the human CD2AP gene in renal tubular epithelial cells. With luciferase assays and deletion analysis, we found that the region between -558 and -1bp ahead of the transcription start point is indispensable for the promoter activity of the human CD2AP gene. A CREB site and two Sp1 sites were essential for maintaining the basal transcriptional activity of the human CD2AP promoter. Overexpression of phosphorylated CREB and Sp1 transactivated the human CD2AP promoter, whereas small interfering RNA-mediated blockage of CREB and Sp1 genes expressions inhibited markedly its activity. These findings provide the first analysis of the human CD2AP gene promoter and demonstrate that not only CREB but also Sp1 plays a critical role in regulating basal CD2AP promoter activity in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Chao Lu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee H, Gaughan JP, Tsygankov AY. c-Cbl facilitates cytoskeletal effects in v-Abl transformed fibroblast through Rac1- and Rap1-mediated signaling. Int J Biochem Cell Biol 2008; 40:1930-43. [PMID: 18403249 DOI: 10.1016/j.biocel.2008.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 01/24/2008] [Accepted: 02/10/2008] [Indexed: 11/24/2022]
Abstract
c-Cbl functions as a multifunctional adaptor and an E3 ubiquitin ligase. Several studies have shown that c-Cbl is involved in cytoskeleton-mediated events, but the molecular mechanisms linking c-Cbl to cytoskeletal rearrangements remain to be elucidated. Our previous results indicated that c-Cbl facilitates spreading and migration of v-Abl-transformed NIH 3T3 fibroblasts and suggested that small GTPases play important roles in the cytoskeletal effects of c-Cbl in this system. To elucidate the individual contributions of small GTPases to these effects, we assessed the roles of endogenous Rac1, RhoA and Rap1 in the c-Cbl-dependent spreading and migration of v-Abl-transformed fibroblasts overexpressing c-Cbl, using RNAi. Furthermore, since it has been shown that Rap1 can act as an upstream regulator of Rac1 in inducing cell spreading, we analyzed the interplay between Rap1 and Rac1 in the signaling pathways connecting c-Cbl to the cytoskeletal events. Our results indicate that Rac1 is essential for cell migration and spreading, whereas activation of RhoA exerts a negative effect. We have also shown that Rap1 is essential for cell spreading, although not for migration in our experimental system. Furthermore, we provide evidence that Rap1 is located upstream of Rac1 in one of the signaling pathways that regulate c-Cbl-facilitated cell spreading. Overall, our findings are consistent with the model describing the connection of c-Cbl to the cytoskeletal rearrangements via two pathways, one of which is mediated by PI3K and Rac1, and the other, by CrkL/C3G, Rap1 and Rac1.
Collapse
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
17
|
Adachi R, Suzuki K. Lyn, one of the Src-family tyrosine kinases expressed in phagocytes, plays an important role in beta2 integrin-signalling pathways in opsonized zymosan-activated macrophage-like U937 cells. Cell Biochem Funct 2007; 25:323-33. [PMID: 17173331 DOI: 10.1002/cbf.1393] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have investigated the contribution of Hck, Lyn and Fgr, highly expressed Src family tyrosine kinases (SFKs) in signalling pathways in opsonized zymosan (OZ)-activated phagocytes by using short interfering RNAs (siRNAs). Treatment of macrophage-like U937 cells with the siRNAs targeted to these transcripts decreased the protein content of each kinase to less than half that of untreated cells. Among these siRNAs, siRNA targeted to Lyn was the most effective in diminishing two kinds of phagocyte functions, that is oxidative burst and phagocytosis. Phosphorylation of c-Cbl, a multidomain adaptor protein in the beta2 integrin-signalling pathway, was also largely inhibited by treatment with siRNA to Lyn. Thus, the results with siRNAs highly specific for Hck, Lyn and Fgr suggested that, among these three SFKs, Lyn plays the most important role in signalling pathways downstream of beta2 integrins in OZ-stimulated phagocytes.
Collapse
Affiliation(s)
- Reiko Adachi
- Division of Biosignaling, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan.
| | | |
Collapse
|
18
|
Abstract
Cbl proteins are ubiquitin ligases and multifunctional adaptor proteins that are implicated in the regulation of signal transduction in various cell types and in response to different stimuli. Cbl-associated proteins can assemble together at a given time or space inside the cell, and such an interactome can form signal competent networks that control many physiological processes. Dysregulation of spatial or temporal constraints in the Cbl interactome results in the development of human pathologies such as immune diseases, diabetes and cancer.
Collapse
Affiliation(s)
- Mirko H H Schmidt
- Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
19
|
Hasdemir B, Bunnett NW, Cottrell GS. Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) mediates post-endocytic trafficking of protease-activated receptor 2 and calcitonin receptor-like receptor. J Biol Chem 2007; 282:29646-57. [PMID: 17675298 DOI: 10.1074/jbc.m702974200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The E3 ligase c-Cbl ubiquitinates protease-activated receptor 2 (PAR(2)), which is required for post-endocytic sorting of PAR(2) to lysosomes, where degradation arrests signaling. The mechanisms of post-endocytic sorting of ubiquitinated receptors are incompletely understood. Here, we investigated the role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), in post-endocytic sorting and signaling of PAR(2). In HEK-PAR(2) cells, PAR(2) activating peptide (PAR(2)-AP) induced PAR(2) trafficking from the cell surface to early endosomes containing endogenous HRS, and then to lysosomes. HRS overexpression or knockdown with small interfering RNA caused formation of enlarged HRS-positive endosomes, where activated PAR(2) and c-Cbl accumulated, and PAR(2) failed to traffic to lysosomes. Overexpression of HRS prevented PAR(2)-AP-induced degradation of PAR(2), as determined by Western blotting. Overexpression of HRS mutant lacking an ubiquitin-binding motif similarly caused retention of PAR(2) in enlarged endosomes. Moreover, HRS overexpression or knockdown caused retention of ubiquitin-resistant PAR(2)Delta14K/R in enlarged HRS-containing endosomes, preventing recycling and resensitization of PAR(2)Delta14K/R. HRS overexpression or knockdown similarly prevented lysosomal trafficking and recycling of calcitonin receptor-like receptor, a non-ubiquitinated receptor that traffics to lysosomes after sustained activation and recycles after transient activation. Thus, HRS plays a critically important role in the post-endocytic sorting of single receptors, PAR(2) and CLR, to both degradative and recycling pathways. This sorting role for HRS is independent of its ubiquitin-interacting motif, and it can regulate trafficking of both ubiquitinated and non-ubiquitinated PAR(2) and non-ubiquitinated CLR. The ultimate sorting decision to degradative or recycling pathways appears to occur downstream from HRS.
Collapse
Affiliation(s)
- Burcu Hasdemir
- Department of Surgery, University of California, San Francisco, California 94143-0660, USA
| | | | | |
Collapse
|
20
|
Park SY, Li H, Avraham S. RAFTK/Pyk2 regulates EGF-induced PC12 cell spreading and movement. Cell Signal 2007; 19:289-300. [PMID: 16945503 DOI: 10.1016/j.cellsig.2006.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 06/29/2006] [Accepted: 07/04/2006] [Indexed: 01/13/2023]
Abstract
The protein tyrosine kinase RAFTK, also termed Pyk2, is a member of the focal adhesion kinase (FAK) subfamily. In this report, we show the role of RAFTK in neuroendocrine PC12 cells upon epidermal growth factor (EGF) stimulation. Following EGF treatment, we observed that RAFTK was tyrosine-phosphorylated in a time- and dose-dependent manner, while FAK was constitutively phosphorylated and primarily regulated by cell adhesion. Moreover, we found that RAFTK associated with the phosphorylated EGF receptor (EGFR) upon EGF stimulation. RAFTK phosphorylation was mediated primarily through PLCgamma-IP3-Ca(2+) signaling and partially through PI3-Kinase. Furthermore, overexpression of PRNK, a specific dominant-negative construct of RAFTK, was sufficient to block EGF-induced cell spreading and movement. Paxillin, a key modulator of the actin cytoskeleton and an RAFTK substrate, was also phosphorylated following EGF treatment. EGF induced a dynamic reorganization of RAFTK and paxillin at neuronal adhesion sites, with the specific localization of paxillin at the inner juxtaposition of RAFTK. Additionally, we observed that RAFTK associated with the scaffold protein c-Cbl and mediated its phosphorylation. Our data demonstrate that while FAK mediated cell adhesion, RAFTK was localized at the cytoplasm where it mediated inside-out signaling through intracellular Ca(2+), thus leading to cell spreading and movement upon EGF stimulation.
Collapse
Affiliation(s)
- Shin-Young Park
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02215, USA
| | | | | |
Collapse
|
21
|
Swaminathan G, Feshchenko EA, Tsygankov AY. c-Cbl-facilitated cytoskeletal effects in v-Abl-transformed fibroblasts are regulated by membrane association of c-Cbl. Oncogene 2007; 26:4095-105. [PMID: 17237826 DOI: 10.1038/sj.onc.1210184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The multi-functional protein c-Cbl is an important modulator of actin cytoskeletal dynamics in diverse biological systems. We had previously reported that c-Cbl facilitates cell spreading and adhesion and suppresses anchorage-independent growth of v-Abl-transformed fibroblasts. To assess the importance of membrane localization of c-Cbl for the observed effects of c-Cbl in v-Abl-3T3 cells, we first mapped the membrane interactive domain(s) of c-Cbl. Our studies indicate that localization of c-Cbl to the membrane is likely to be mediated by the tyrosine kinase binding (TKB) domain and the proline-rich region of c-Cbl, whereas C-terminal tyrosine phosphorylation does not play a role. The association of v-Cbl, which encompasses the TKB domain, with the membrane was unusual as it was not entirely dependent on SH2-phosphotyrosine interactions. Our studies further demonstrate that Src-like adaptor protein (SLAP), which binds to v-Cbl in a tyrosine phosphorylation-independent manner, facilitates membrane association of Cbl. The interaction between c-Cbl and SLAP in v-Abl-3T3 cells positively influenced c-Cbl-mediated spreading and adhesion of these cells. SLAP appears to exert its effects not simply by increasing the amount of c-Cbl in the membrane but by facilitating binding of p85-phosphatidylinositol-3-kinase (PI3K) with membrane-associated c-Cbl.
Collapse
Affiliation(s)
- G Swaminathan
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
22
|
Sanjay A, Miyazaki T, Itzstein C, Purev E, Horne WC, Baron R. Identification and functional characterization of an Src homology domain 3 domain-binding site on Cbl. FEBS J 2006; 273:5442-56. [PMID: 17094785 DOI: 10.1111/j.1742-4658.2006.05535.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540-551), which corresponds to residues 540-551 of Cbl, inhibited the binding of a GST-Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540-551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543-548 reduced Src binding to the Cbl 479-636 fragment significantly more than mutating the prolines in the PPVPPR(494-499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543-548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540-546) sequence is a functionally important binding site for Src.
Collapse
Affiliation(s)
- Archana Sanjay
- Departments of Orthopedics & Rehabilitation and Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
23
|
Swaminathan G, Tsygankov AY. The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 2006; 209:21-43. [PMID: 16741904 DOI: 10.1002/jcp.20694] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The proto-oncogenic protein c-Cbl was discovered as the cellular form of v-Cbl, a retroviral transforming protein. This was followed over the years by important discoveries, which identified c-Cbl and other Cbl-family proteins as key players in several signaling pathways. c-Cbl has donned the role of a multivalent adaptor protein, capable of interacting with a plethora of proteins, and has been shown to positively influence certain biological processes. The identity of c-Cbl as an E3 ubiquitin ligase unveiled the existence of an important negative regulatory pathway involved in maintaining homeostasis in protein tyrosine kinase (PTK) signaling. Recent years have also seen the emergence of novel regulators of Cbl, which have provided further insights into the complexity of Cbl-influenced pathways. This review will endeavor to provide a summary of current studies focused on the effects of Cbl proteins on various biological processes and the mechanism of these effects. The major sections of the review are as follows: Structure and genomic organization of Cbl proteins; Phosphorylation of Cbl; Interactions of Cbl; Localization of Cbl; Mechanism of effects of Cbl: (a) Ubiquitylation-dependent events: This section elucidates the mechanism of Cbl-mediated downregulation of EGFR and details the PTK and non-PTKs targeted by Cbl. In addition, it addresses the functional requirements for E3 Ubiquitin ligase activity of Cbl and negative regulation of Cbl-mediated downregulation of PTKs, (b) Adaptor functions: This section discusses the mechanisms of adaptor functions of Cbl in mitogen-activated protein kinase (MAPK) activation, insulin signaling, regulation of Ras-related protein 1 (Rap1), PI-3' kinase signaling, and regulation of Rho-family GTPases and cytoskeleton; Biological functions: This section gives an account of the diverse biological functions of Cbl and includes the role of Cbl in transformation, T-cell signaling and thymus development, B-cell signaling, mast-cell degranulation, macrophage functions, bone development, neurite growth, platelet activation, muscle degeneration, and bacterial invasion; Conclusions and perspectives.
Collapse
Affiliation(s)
- Gayathri Swaminathan
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
24
|
Abstract
Osteoclasts are multinucleated cells derived from hematopoietic precursors that are primarily responsible for the degradation of mineralized bone during bone development, homeostasis and repair. In various skeletal disorders such as osteoporosis, hypercalcemia of malignancy, tumor metastases and Paget's disease, bone resorption by osteoclasts exceeds bone formation by osteoblasts leading to decreased bone mass, skeletal fragility and bone fracture. The overall rate of osteoclastic bone resorption is regulated either at the level of differentiation of osteoclasts from their monocytic/macrophage precursor pool or through the regulation of key functional proteins whose specific activities in the mature osteoclast control its attachment, migration and resorption. Thus, reducing osteoclast numbers and/or decreasing the bone resorbing activity of osteoclasts are two common therapeutic approaches for the treatment of hyper-resorptive skeletal diseases. In this review, several of the key functional players involved in the regulation of osteoclast activity will be discussed.
Collapse
Affiliation(s)
- Angela Bruzzaniti
- Department of Orthopaedics, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
25
|
Horne WC, Sanjay A, Bruzzaniti A, Baron R. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 2006; 208:106-25. [PMID: 16313344 DOI: 10.1111/j.0105-2896.2005.00335.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The osteoclast resorbs mineralized bone during bone development, homeostasis, and repair. The deletion of the gene encoding the nonreceptor tyrosine kinase c-Src produces an osteopetrotic skeletal phenotype that is the consequence of the inability of the mature osteoclast to efficiently resorb bone. Src-/- osteoclasts exhibit reduced motility and abnormal organization of the apical secretory domain (the ruffled border) and attachment-related cytoskeletal elements that are necessary for bone resorption. A key function of Src in osteoclasts is to promote the rapid assembly and disassembly of the podosomes, the specialized integrin-based attachment structures of osteoclasts and other highly motile cells. Once recruited to the activated integrins, especially alphavbeta3), by the adhesion tyrosine kinase Pyk2, Src binds and phosphorylates Cbl and Cbl-b, homologous multisite adapter proteins with ubiquitin ligase activity. The Cbl proteins in turn recruit and activate additional signaling effectors, including phosphatidylinositol 3-kinase and dynamin, which play key roles in the development of cell polarity and the regulation of cell attachment and motility. In addition, Src and the Cbl proteins contribute to signaling cascades that are activated by several important receptors, including receptor activator of nuclear factor kappaB and the macrophage colony-stimulating factor receptor, and also downregulate the signaling from many of these receptors.
Collapse
Affiliation(s)
- William C Horne
- Department of Orthopaedics and Rehabilitation and Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8044, USA
| | | | | | | |
Collapse
|
26
|
Teckchandani AM, Birukova AA, Tar K, Verin AD, Tsygankov AY. The multidomain protooncogenic protein c-Cbl binds to tubulin and stabilizes microtubules. Exp Cell Res 2005; 306:114-27. [PMID: 15878338 DOI: 10.1016/j.yexcr.2005.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 01/27/2005] [Accepted: 02/15/2005] [Indexed: 11/18/2022]
Abstract
The protooncogenic protein c-Cbl is known to regulate the actin cytoskeleton. In this study, we present results indicating that c-Cbl can also regulate the microtubular network. We have shown that c-Cbl binds to tubulin and microtubules through its tyrosine kinase binding (TKB) domain. However, the character of the interactions described in this report is novel, since the G306E mutation, which disrupts the ability of c-Cbl's TKB to bind to tyrosine-phosphorylated proteins, does not affect the observed interaction between c-Cbl and microtubules. Furthermore, overexpression of c-Cbl in human pulmonary artery endothelial cells and COS-7 cells leads to microtubule stabilization. We demonstrate that this effect of c-Cbl is mediated by TKB, and, like c-Cbl binding to microtubules, is independent of the ability of TKB to bind to tyrosine-phosphorylated proteins. Finally, we have shown that c-Cbl directly polymerizes microtubules in vitro, and that TKB is necessary and sufficient for this effect of c-Cbl. In this last phenomenon, as well as in the previous ones, the effect of TKB is not sensitive to the inactivating G306E mutation. Overall, the results presented in this report suggest a novel function for c-Cbl-microtubule binding and stabilization.
Collapse
Affiliation(s)
- Anjali M Teckchandani
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
27
|
Jacob C, Cottrell GS, Gehringer D, Schmidlin F, Grady EF, Bunnett NW. c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2. J Biol Chem 2005; 280:16076-87. [PMID: 15708858 DOI: 10.1074/jbc.m500109200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mechanisms that arrest G-protein-coupled receptor (GPCR) signaling prevent uncontrolled stimulation that could cause disease. Although uncoupling from heterotrimeric G-proteins, which transiently arrests signaling, is well described, little is known about the mechanisms that permanently arrest signaling. Here we reported on the mechanisms that terminate signaling by protease-activated receptor 2 (PAR(2)), which mediated the proinflammatory and nociceptive actions of proteases. Given its irreversible mechanism of proteolytic activation, PAR(2) is a model to study the permanent arrest of GPCR signaling. By immunoprecipitation and immunoblotting, we observed that activated PAR(2) was mono-ubiquitinated. Immunofluorescence indicated that activated PAR(2) translocated from the plasma membrane to early endosomes and lysosomes where it was degraded, as determined by immunoblotting. Mutant PAR(2) lacking intracellular lysine residues (PAR(2)Delta14K/R) was expressed at the plasma membrane and signaled normally but was not ubiquitinated. Activated PAR(2) Delta14K/R internalized but was retained in early endosomes and avoided lysosomal degradation. Activation of wild type PAR(2) stimulated tyrosine phosphorylation of the ubiquitin-protein isopeptide ligase c-Cbl and promoted its interaction with PAR(2) at the plasma membrane and in endosomes in an Src-dependent manner. Dominant negative c-Cbl lacking the ring finger domain inhibited PAR(2) ubiquitination and induced retention in early endosomes, thereby impeding lysosomal degradation. Although wild type PAR(2) was degraded, and recovery of agonist responses required synthesis of new receptors, lysine mutation and dominant negative c-Cbl impeded receptor ubiquitination and degradation and allowed PAR(2) to recycle and continue to signal. Thus, c-Cbl mediated ubiquitination and lysosomal degradation of PAR(2) to irrevocably terminate signaling by this and perhaps other GPCRs.
Collapse
Affiliation(s)
- Claire Jacob
- Departments of Surgery and Physiology, University of California, San Francisco, California 94143-0660, USA
| | | | | | | | | | | |
Collapse
|
28
|
Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis ASG. Use of nanotopography to study mechanotransduction in fibroblasts--methods and perspectives. Eur J Cell Biol 2005; 83:159-69. [PMID: 15260438 DOI: 10.1078/0171-9335-00369] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The environment around a cell during in vitro culture is unlikely to mimic those in vivo. Preliminary experiments with nanotopography have shown that nanoscale features can strongly influence cell morphology, adhesion, proliferation and gene regulation, but the mechanisms mediating this cell response remain unclear. In this perspective article, we attempt to illustrate that a possible mechanism is direct transmittal of forces encountered by cells during spreading to the nucleus via the cytoskeleton. We further try to illustrate that this 'self-induced' mechanotransduction may alter gene expression by changing interphase chromosome positioning. Whilst the observations described here to show how we think nanotopography can be developed as a tool to look at mechanotransduction are preliminary, we feel they indicate that topography may give cell biologists a non-invasive tool with which to investigate in vitro cellular mechanisms.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
29
|
Haglund K, Ivankovic-Dikic I, Shimokawa N, Kruh GD, Dikic I. Recruitment of Pyk2 and Cbl to lipid rafts mediates signals important for actin reorganization in growing neurites. J Cell Sci 2004; 117:2557-68. [PMID: 15128873 DOI: 10.1242/jcs.01148] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protein tyrosine kinase Pyk2 and multifunctional adaptor protein Cbl are implicated in the regulation of the cytoskeleton in several cell types. We report that Pyk2 and Cbl form a signaling complex that is translocated to lipid rafts and is enriched in growth cones of differentiating PC12 cells following growth factor stimulation. We found that Pyk2 and Cbl interacted with the adaptor protein ArgBP2, which also bound to flotillin-1, a component of lipid raft microdomains. These interactions contributed to recruitment of the Pyk2/Cbl complex to lipid raft compartments. In addition, Pyk2, Cbl and ArgBP2 were found co-localized with actin in axons and growth cones of differentiated PC12 cells. Moreover, co-expression of Pyk2, ArgBP2 and Cbl facilitated growth factor-induced formation of lamellipodia at the tip of neurites. Formation of these growth cone lamellipodia was dependent on intact lipid rafts and the Cbl-associated effectors Crk and phosphatidylinositol 3 (PI 3)-kinase. Our results indicate that recruitment of Pyk2/Cbl complexes to lipid rafts participates in growth factor-induced regulation of the actin cytoskeleton in growing neurites.
Collapse
Affiliation(s)
- Kaisa Haglund
- Institute for Biochemistry II, Building 75, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
30
|
Szymkiewicz I, Destaing O, Jurdic P, Dikic I. SH3P2 in complex with Cbl and Src. FEBS Lett 2004; 565:33-8. [PMID: 15135048 DOI: 10.1016/j.febslet.2004.03.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 03/17/2004] [Accepted: 03/25/2004] [Indexed: 11/28/2022]
Abstract
In this report, we describe SH3P2, an SH3-domain containing protein, as a novel Cbl-interacting molecule that is a substrate of tyrosine kinase Src. We identified a specific polyproline motif of Cbl responsible for binding of SH3P2 and Src, and observed mutual sequestration of Src and SH3P2 from monomer Cbl molecules. In adherent cells, SH3P2 associated with Cbl and fibrilar actin and was localized at focal contacts in fibroblasts as well as at the apical part of podosome rings in differentiated osteoclasts. Our data implicate that SH3P2, a novel component of adhesion sites, is involved in Cbl and Src-mediated pathways.
Collapse
Affiliation(s)
- Iwona Szymkiewicz
- Institute of Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| | | | | | | |
Collapse
|
31
|
Fernandis AZ, Prasad A, Band H, Klösel R, Ganju RK. Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 2004; 23:157-67. [PMID: 14712221 DOI: 10.1038/sj.onc.1206910] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemokine-CXCL12 and its receptor, CXCR4, have recently been shown to play an important role in regulating the directional migration of breast cancer cells to sites of metastasis. In the present study, we showed that CXCL12 enhanced the chemotaxis, chemoinvasion and adhesive properties of breast cancer cells; parameters that are critical for development of metastasis. We have also evaluated the signaling mechanisms that regulate CXCL12-induced and CXCR4-mediated breast cancer cell motility and invasion. These studies revealed that CXCL12 induces the tyrosine phosphorylation of focal adhesion kinase (FAK) at residues 397 and 577, and of RAFTK/Pyk2 at residues 402 and 579/580. The cytoskeletal proteins paxillin and Crk, as well as tyrosine phosphatase SHP2 and adaptor protein Cbl, were also phosphorylated. CXCL12 induced the activation of PI 3-kinase, and increased its association with Cbl and SHP2. PI 3-kinase, RAFTK/Pyk2 and tyrosine phosphatase inhibitors significantly blocked CXCL12-induced chemotaxis and chemoinvasion. The role of SHP2 and Cbl in CXCL12-induced chemotaxis and chemoinvasion in breast cancer cells was further defined by transiently overexpressing wild-type SHP2, wild-type Cbl, dominant-negative SHP2, Cbl mutants 70Z/3 and G306E or double transfectants of the Cbl and SHP2 constructs. We found a novel role of Cbl in CXCL12-induced chemotaxis, which may be mediated through the activation and formation of a multimeric complex comprised of Cbl, SHP2 and PI 3-kinase. We also observed the activation of matrix metalloproteinases 2 and 9 upon CXCL12 stimulation. These studies provide new information regarding signaling pathways that may regulate CXCL12-induced metastasis in breast cancer cells.
Collapse
Affiliation(s)
- Aaron Zefrin Fernandis
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
32
|
Dalby MJ, Giannaras D, Riehle MO, Gadegaard N, Affrossman S, Curtis ASG. Rapid fibroblast adhesion to 27nm high polymer demixed nano-topography. Biomaterials 2004; 25:77-83. [PMID: 14580911 DOI: 10.1016/s0142-9612(03)00475-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well known that many cell types react strongly to micro-topography. It is rapidly becoming clear than cells will also react to nano-topography. Polymer demixing is a rapid and low-cost chemical method of producing nano-topography. This manuscript investigates human fibroblast response to 27nm high nano-islands produced by polymer demixing. Cell spreading, cytoskeleton, focal adhesion and Rac localisation were studied. The results showed that an initial rapid adhesion and cytoskeletal formation on the islands at 4 days of culture gave way to poorly formed contacts and vimentin cytoskeleton at 30 days of culture.
Collapse
Affiliation(s)
- M J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow, G12 8QQ, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Ohana-Malka O, Benharroch D, Isakov N, Prinsloo I, Shubinsky G, Sacks M, Gopas J. Selectins and anti-CD15 (Lewis x/a) antibodies transmit activation signals in Hodgkin's lymphoma-derived cell lines. Exp Hematol 2003; 31:1057-65. [PMID: 14585370 DOI: 10.1016/s0301-472x(03)00237-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The CD15 (Lewis x) cell surface oligosaccharide moiety is expressed in a variety of normal and tumor cells and recognized by selectins. The detection of CD15 on malignant Hodgkin-Reed-Sternberg (HRS) cells serves as a diagnostic marker of Hodgkin's lymphoma (HL). Retrospective studies suggest that the expression of nonsialylated CD15 molecules on HRS cells has a positive prognostic value while presence of sialylated CD15 may correlate with a poor outcome. However, the relevance of the CD15 antigen expression to the pathobiology of the disease is not clear. In this work, we studied the contribution of CD15 to cell adhesion and the activation of signaling cascades in two HL-derived cell lines, KMH-2 and L428. METHODS Immobilized anti-CD15 monoclonal antibodies and recombinant E- and P-selectins were used to activate KMH-2 and L428 cells. Immunoblotting, immunoprecipitation, and the electrophoretic mobility shift assay were performed to detect tyrosine phosphorylation of c-Cbl, c-Jun nuclear translocation, and AP-1 DNA binding. RESULTS Treatment of cells with antibodies against the sialylated and nonsialylated forms of CD15, or with immobilized selectins, induced changes in cell morphology. Tyrosine phosphorylation of c-Cbl, together with tyrosine phosphorylation of multiple protein substrates, was also induced. In addition, binding of the CD15 molecules induced nuclear translocation of c-Jun and an increase in AP-1 DNA binding activity. CONCLUSIONS We suggest that CD15 has a dual physiological role, both as an adhesion molecule recognized by selectins and as a regulatory molecule upstream to specific intracellular signaling cascades with implications to the pathogenesis of HL.
Collapse
Affiliation(s)
- Ofra Ohana-Malka
- Department of Microbiology and Immunology, and the Cancer Research Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|
34
|
Scaife RM, Job D, Langdon WY. Rapid microtubule-dependent induction of neurite-like extensions in NIH 3T3 fibroblasts by inhibition of ROCK and Cbl. Mol Biol Cell 2003; 14:4605-17. [PMID: 12960437 PMCID: PMC266776 DOI: 10.1091/mbc.e02-11-0739] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A number of key cellular functions, such as morphological differentiation and cell motility, are closely associated with changes in cytoskeletal dynamics. Many of the principal signaling components involved in actin cytoskeletal dynamics have been identified, and these have been shown to be critically involved in cell motility. In contrast, signaling to microtubules remains relatively uncharacterized, and the importance of signaling pathways in modulation of microtubule dynamics has so far not been established clearly. We report here that the Rho-effector ROCK and the multiadaptor proto-oncoprotein Cbl can profoundly affect the microtubule cytoskeleton. Simultaneous inhibition of these two signaling molecules induces a dramatic rearrangement of the microtubule cytoskeleton into microtubule bundles. The formation of these microtubule bundles, which does not involve signaling by Rac, Cdc42, Crk, phosphatidylinositol 3-kinase, and Abl, is sufficient to induce distinct neurite-like extensions in NIH 3T3 fibroblasts, even in the absence of microfilaments. This novel microtubule-dependent function that promotes neurite-like extensions is not dependent on net changes in microtubule polymerization or stabilization, but rather involves selective elongation and reorganization of microtubules into long bundles.
Collapse
Affiliation(s)
- Robin M Scaife
- Department of Pathology, University of Western Australia, Crawley, WA 6009, Australia.
| | | | | |
Collapse
|
35
|
Chiusaroli R, Sanjay A, Henriksen K, Engsig MT, Horne WC, Gu H, Baron R. Deletion of the gene encoding c-Cbl alters the ability of osteoclasts to migrate, delaying resorption and ossification of cartilage during the development of long bones. Dev Biol 2003; 261:537-47. [PMID: 14499658 DOI: 10.1016/s0012-1606(03)00299-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During development of the skeleton, osteoclast (OC) recruitment and migration are required for the vascular invasion of the cartilaginous anlage and the ossification of long bones. c-Cbl lies downstream of the vitronectin receptor and forms a complex with c-Src and Pyk2 in a signaling pathway that is required for normal osteoclast motility. To determine whether the decreased motility we observed in vitro in c-Cbl(-/-) OCs translated into decreased cell migration in vivo, we analyzed the long bones of c-Cbl(-/-) mice during development. Initiation of vascularization and replacement of cartilage by bone were delayed in c-Cbl(-/-) mice, due to decreased osteoclast invasion of the hypertrophic cartilage through the bone collar. Furthermore, c-Cbl(-/-) mice show a delay in the formation of secondary centers of ossification, a thicker hypertrophic zone of the growth plate, and a prolonged presence of cartilaginous remnants in the spongiosa, confirming a decrease in resorption of the calcified cartilage. Thus, the decrease in motility of c-Cbl(-/-) osteoclasts observed in vitro results in a decreased ability of osteoclasts to invade and resorb bone and mineralized cartilage in vivo. These results confirm that c-Cbl plays an important role in osteoclast motility and resorbing activity.
Collapse
Affiliation(s)
- Riccardo Chiusaroli
- Department of Orthopaedics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Schmidt MHH, Chen B, Randazzo LM, Bogler O. SETA/CIN85/Ruk and its binding partner AIP1 associate with diverse cytoskeletal elements, including FAKs, and modulate cell adhesion. J Cell Sci 2003; 116:2845-55. [PMID: 12771190 DOI: 10.1242/jcs.00522] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The adaptor protein SETA/CIN85/Ruk is involved in regulating diverse signal transduction pathways, including the internalization of tyrosine kinase receptors via the Cbl ubiquitin ligases, and attenuating PI3K activity by interaction with its regulatory subunit. Here we present evidence for a new aspect of SETA function, based on the initial observation that it co-localizes with actin in microfilaments and at focal adhesions, and with microtubules. Although there was no evidence for direct molecular interactions between SETA and cytoskeletal proteins, the SETA-interacting protein AIP1, which is a rat ortholog of the Xenopus src substrate Xp95, strongly interacted with structural proteins of the cytoskeleton, including actin and tubulins. Both SETA and AIP1 interacted with focal adhesion kinase (FAK) and proline rich tyrosine kinase 2 (PYK-2), and c-Cbl interacted with PYK-2. AIP1, which interacted more strongly than either SETA or c-Cbl, required an intact consensus tyrosine kinase phosphorylation sequence at Y319 to bind to focal adhesion kinases, which suggests that phosphorylation is an important mediator of this complex. SETA, which interacted as a dimer with focal adhesion kinases, promoted the interaction between PYK-2 and AIP1. Direct analysis of the impact of these proteins on cell adhesion, by use of an electrical cell-substrate impedance sensor (ECIS), showed that SETA promoted cell adhesion while AIP1 and c-Cbl reduced it. Furthermore, the ability of AIP1 and AIP1 mutants to decrease cell adhesion in ECIS analysis correlated with their presence in PYK-2 complexes, providing a direct link between AIP1-mediated molecular interactions and cellular behavior. Transfection of AIP1 also reduced the level of phosphorylation of endogenous PYK-2 and FAK, suggesting that this protein may directly regulate focal adhesion kinases, and thereby cell adhesion. These data are the first to implicate the adaptor protein SETA and its binding partner AIP1 as being involved with the cytoskeleton and in the regulation of cell adhesion, and suggest that they may be part of the focal adhesion kinase regulatory complex.
Collapse
Affiliation(s)
- Mirko H H Schmidt
- William and Karen Davidson Laboratory of Brain Tumor Biology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
37
|
Caveggion E, Continolo S, Pixley FJ, Stanley ER, Bowtell DDL, Lowell CA, Berton G. Expression and tyrosine phosphorylation of Cbl regulates macrophage chemokinetic and chemotactic movement. J Cell Physiol 2003; 195:276-89. [PMID: 12652654 DOI: 10.1002/jcp.10236] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Primary macrophages isolated from hck(-/-)fgr(-/-) mice display altered morphology and F-actin cytoskeletal structures and reduced migration. The ability of phorbol myristyl acetate (PMA), a protein kinase C activator that has been reported to increase macrophage spreading and carcinoma cell motility, to rescue these hck(-/-)fgr(-/-) defects was tested. Although PMA-treated wild-type and hck(-/-)fgr(-/-) macrophages exhibited a similar flattened, spread phenotype, PMA did not rescue the hck(-/-)fgr(-/-) macrophage migration defect. Instead, both PMA-treated wild type and hck(-/-)fgr(-/-) macrophages were defective in spontaneous and chemotactic migration and tyrosine phosphorylation of the Cbl protooncoprotein was decreased in both. Moreover, c-cbl(-/-) macrophages displayed the same impairment of motility as hck(-/-)fgr(-/-) macrophages and a similar morphology with less polarization and more dorsal ruffling than wild-type macrophages. As Hck and Fgr expression and activity were not decreased in c-cbl(-/-) macrophages, these results suggest that Cbl is likely to be an important downstream mediator of the Src family kinase-regulated macrophage motility pathway.
Collapse
Affiliation(s)
- Elena Caveggion
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Cormont M, Metón I, Mari M, Monzo P, Keslair F, Gaskin C, McGraw TE, Le Marchand-Brustel Y. CD2AP/CMS regulates endosome morphology and traffic to the degradative pathway through its interaction with Rab4 and c-Cbl. Traffic 2003; 4:97-112. [PMID: 12559036 DOI: 10.1034/j.1600-0854.2003.40205.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The small GTPase Rab4 is involved in endocytosis through sorting and recycling early endosomes. To better understand the role of Rab4 in regulation of vesicular trafficking, we searched for effectors that specifically interact with Rab4-Q67L, the GTP-bound form of Rab4. We cloned an ubiquitous 80-kDa protein, identical to CD2-associated protein/Cas ligand with multiple SH3 domains (CD2AP/CMS), that interacts with Rab4-Q67L in the yeast two-hybrid system and in vitro. CD2AP/CMS expressed in mammalian cells was localized to punctate structures and along actin filaments. None of the known markers of early endosomes [Early Endosomes Antigen 1 (EEA1), Rab5 and Rab11] colocalized with the CD2AP/CMS-positive vesicles. However, coexpression of Rab4-Q67L with CD2AP/CMS induces a significant enlargement of EEA1-positive early endosomes. Rab4, CD2AP/CMS and Rab7 colocalized in these modified endosomes. Coexpression of c-Cbl and CD2AP/CMS also resulted in an enlargement of early endosomes. Using various truncated forms of CD2AP/CMS, we demonstrate that early endosomes enlargement requires that CD2AP/CMS interacts with both Rab4 and c-Cbl. The expression of a truncated form of CD2AP/CMS that retains the ability to interact with Rab4 but not c-Cbl inhibits ligand-induced PDGF receptor degradation. We propose that CD2AP/CMS, through interactions with Rab4 and c-Cbl, controls early endosome morphology and may play a role in traffic between early and late endosomes, and thus in the degradative pathway.
Collapse
Affiliation(s)
- Mireille Cormont
- Inserm U568, IFR 50, Faculty of Medicine, University of Nice, 06107 Nice cedex 02, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Scaife RM, Courtneidge SA, Langdon WY. The multi-adaptor proto-oncoprotein Cbl is a key regulator of Rac and actin assembly. J Cell Sci 2003; 116:463-73. [PMID: 12508108 DOI: 10.1242/jcs.00244] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of protein tyrosine kinase signaling pathways is a principal mechanism for promoting cellular activation. Biochemical and genetic analyses have implicated the multi-adaptor proto-oncogene protein Cbl as a key negative regulator of activated protein tyrosine kinases. By inhibiting the function of Cbl as a multi-domain adaptor protein, through expression of a truncated form (480-Cbl), we demonstrate that Cbl is a potent negative regulator of actin assembly in response to receptor tyrosine kinase (RTK) activation. Expression of 480-Cbl dramatically enhances RTK-dependent induction of actin dorsal ruffles, which correlates with a pronounced increase in Rac activation. By contrast, mitogenic signaling by RTK targets, such as PI 3-kinase and MAP kinases, as well as RTK-mediated tyrosine phosphorylation do not appear to be affected by 480-Cbl expression. Further, we determined that Cbl undergoes a striking RTK-activation-dependent translocation to sites of active actin dorsal ruffle nucleation. Hence, the selective regulation of RTK signaling to the actin cytoskeleton appears to result from recruitment of signaling proteins on a Cbl template bound to the actin cytoskeleton.
Collapse
Affiliation(s)
- Robin M Scaife
- Department of Pathology, University of Western Australia, QE II Medical Centre, Crawley WA 6009, Australia.
| | | | | |
Collapse
|
40
|
Corsois L, Quatannens B, Dumont P, Aumercier M, Defresne MP, Régnier DCL. Association of a new c-Cbl related protein with the very first stages of apoptosis induction. CANCER DETECTION AND PREVENTION 2002; 26:93-104. [PMID: 12102152 DOI: 10.1016/s0361-090x(02)00006-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study investigates the involvement of the c-cbl proto-oncogene during the first stages of the apoptotic process. We have already shown that a c-Cbl aptotosis-related protein of 90 kDa (CARP 90) is detected very rapidly in the cytoplasm as well as in the nucleus of murine thymocytes after hydrocortisone (HC) treatment. We report here that this protein appeared as well after in vivo treatment of mice by gamma-irradiation or injection of anti-CD3 monoclonal antibody, two potent thymic apoptosis inductors, providing a close relationship between the occurrence of apoptosis and the appearance of CARP 90. We showed that CARP 90 and p120(cbl) share numerous epitopes strikingly suggesting that CARP 90 is coded by c-cbl. In addition, KO mice do not sustain CARP 90 appearance. We finally showed that CARP 90 contains N- and C-terminal end epitopes of p120(cbl), which suggests that CARP 90 is an alternative spliced form of c-cbl. This protein was also observed under gamma-irradiation in tissues of different origin, which enlarges the physiological significance of this phenomenon. The very rapid CARP 90 appearance under apoptotic conditions in the nucleus of cells originating in different tissues makes this protein if not a possible new actor of the apoptotic process, at least an interesting marker of this process.
Collapse
Affiliation(s)
- Laurent Corsois
- Laboratory of Molecular Oncology, CNRS-UMR 8526, Institut Pasteur de Lille, France
| | | | | | | | | | | |
Collapse
|
41
|
Lehtonen S, Zhao F, Lehtonen E. CD2-associated protein directly interacts with the actin cytoskeleton. Am J Physiol Renal Physiol 2002; 283:F734-43. [PMID: 12217865 DOI: 10.1152/ajprenal.00312.2001] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CD2-associated protein (CD2AP) is an adapter protein associating with several membrane proteins, including nephrin, mutated in congenital nephrotic syndrome of the Finnish type, and polycystin-2, mutated in type 2 autosomal dominant polycystic kidney disease. Both proteins have critical roles in the maintenance of the integrity of the nephrons. Previous studies have suggested a role for CD2AP in the regulation of the organization of the actin cytoskeleton, but it has not been known whether the postulated association between CD2AP and actin is direct or mediated by other proteins. In this study, we address this question by using various cellular and biochemical approaches. We show that CD2AP and F-actin partially colocalize in cultured cells and that disruption of the actin cytoskeleton results in disorganization of endogenous CD2AP. Using cytoskeletal fractionation by differential centrifugation, we demonstrate that a proportion of CD2AP associates with the actin cytoskeleton. Furthermore, using pure actin and purified CD2AP fusion proteins in an F-actin coprecipitation assay, we show that CD2AP directly associates with filamentous actin and that this interaction is mediated by means of the COOH terminus of CD2AP. The present results suggest that CD2AP is involved in the regulation of the actin cytoskeleton and indicate that CD2AP may act as a direct adapter between the actin cytoskeleton and cell membrane proteins, such as nephrin and polycystin-2. Alterations in these interactions could explain some of the pathophysiological changes in congenital nephrotic syndrome and polycystic kidney disease.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Department of Pathology, Haartman Institute and Helsinki University Central Hospital, University of Helsinki, Finland
| | | | | |
Collapse
|
42
|
Goh ELK, Zhu T, Leong WY, Lobie PE. c-Cbl is a negative regulator of GH-stimulated STAT5-mediated transcription. Endocrinology 2002; 143:3590-603. [PMID: 12193575 DOI: 10.1210/en.2002-220374] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously demonstrated that cellular stimulation with GH results in the formation of a multiprotein signaling complex. One component of this multiprotein signaling complex is the adapter molecule c-Cbl. Here we have examined the role of c-Cbl in the mechanism of GH signal transduction. Forced expression of c-Cbl in NIH3T3 cells did not alter GH-stimulated Janus kinase 2 tyrosine phosphorylation nor GH-stimulated p44/42 MAPK activation and consequent Elk-1- mediated transcription. c-Cbl overexpression did, however, result in enhanced and prolonged GH-stimulated activation of phosphatidylinositol 3-kinase. Forced expression of c-Cbl did not affect GH-stimulated STAT5 tyrosine phosphorylation, nuclear translocation, nor binding to DNA but markedly abrogated GH-stimulated STAT5-mediated transactivation. c-Cbl overexpression resulted in increased ubiquitination and proteosomal degradation of STAT5 and increased degradation of GH-stimulated tyrosine phosphorylated STAT5. Cellular pretreatment with the proteosomal inhibitor MG132 reversed the effect of c-Cbl overexpression with prolonged duration of GH-stimulated STAT5 tyrosine phosphorylation and restoration of STAT5-mediated transcription. Thus, c-Cbl is a negative regulator of GH-stimulated STAT5-mediated transcription by direction of STAT5 for proteosomal degradation.
Collapse
Affiliation(s)
- Eyleen L K Goh
- Institute of Molecular and Cell Biology, National University of Singapore, Singapore 117609
| | | | | | | |
Collapse
|
43
|
Dalby MJ, Di Silvio L, Gurav N, Annaz B, Kayser MV, Bonfield W. Optimizing HAPEX topography influences osteoblast response. TISSUE ENGINEERING 2002; 8:453-67. [PMID: 12167231 DOI: 10.1089/107632702760184718] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
HAPEX (hydroxyapatite-reinforced polyethylene composite) is a second-generation orthopedic biomaterial designed as a bone analog material, which has found clinical success. The use of topography in cell engineering has been shown to affect cell attachment and subsequent response. Thus, by combining bioactivity and enhancing osteoblast response to the implant surface, improved tissue repair and implant life span may be achieved. In this study a primary human osteoblast-like cell model has been used to study the influence of surface topography and chemistry produced by three different production methods. Scanning electron microscopy, fluorescence microscopy, and confocal scanning laser microscopy have been used to study cell adhesion; tritiated thymidine uptake has been used to observe cell proliferation; and the reverse transcriptase-polymerase chain reaction and biochemical methods have been used to study phenotypic expression. Transmission electron microscopy has also been used to look at more long-term morphology. The results show that topography significantly influences cell response, and may be a means of enhancing bone apposition on HAPEX.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 800, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Bisson SA, Ujack EE, Robbins SM. Isolation and characterization of a novel, transforming allele of the c-Cbl proto-oncogene from a murine macrophage cell line. Oncogene 2002; 21:3677-87. [PMID: 12032836 DOI: 10.1038/sj.onc.1205510] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Revised: 03/22/2002] [Accepted: 03/22/2002] [Indexed: 11/08/2022]
Abstract
The c-Cbl proto-oncogene acts as an E3 ubiquitin ligase via its RING finger domain to negatively regulate activated cellular signal transduction pathways. We have identified an aberrant Cbl-protein of approximately 95 kDa, which we have called p95Cbl, from the murine reticulum sarcoma cell-line, J-774. Cloning of the p95Cbl cDNA revealed that it contains a deletion resulting in the loss of 111 amino acids, eliminating two critical tyrosine residues in the linker region as well as the entire RING finger domain. p95Cbl displays a propensity for its interaction with the Src-family kinase Hck over cellular Cbl expressed in the same cells. Like its wildtype counterpart, p95Cbl is inducibly tyrosine phosphorylated in response to Fcgamma receptor engagement on hematopoietic cells, however this phosphorylation is sustained beyond that of cellular Cbl. NIH3T3 fibroblasts stably expressing p95Cbl acquire the typical refractile morphology associated with cellular transformation and form colonies in a focus-formation assay. The exogenously expressed mutant protein is constitutively phosphorylated in fibroblasts and partitions into the particulate fraction of cells, while cellular Cbl is exclusively cytoplasmic. p95Cbl is a novel, oncogenic mutant of the c-Cbl proto-oncogene, which might act in a dominant negative fashion to prolong normal cellular signaling responses by interfering with the down-regulation of activated signaling complexes through c-Cbl.
Collapse
Affiliation(s)
- Sabine A Bisson
- Department of Oncology, The University of Calgary, 3330 Hospital Drive NW Calgary, Alberta T2N-4N1, Canada
| | | | | |
Collapse
|
45
|
Dalby MJ, Yarwood SJ, Riehle MO, Johnstone HJH, Affrossman S, Curtis ASG. Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res 2002; 276:1-9. [PMID: 11978003 DOI: 10.1006/excr.2002.5498] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is becoming clear that cells can respond not only to micometric scale topography, but may also to nanometric scale topography. The production of reproducibly sized nanometric features has relied heavily on expensive and time-consuming methods of manufacture, such as electron beam lithography. Polymer demixing of polystyrene and polybromostyrene has been found to produce nanoscale islands of reproducible height, and the islands have been previously shown to effect cell spreading compared to planar surfaces. This study observes morphological, cytoskeletal, and molecular changes in fibroblast reaction to 13-nm-high islands. The methods employed include scanning electron microscopy, fluorescent microscopy, and 1718 gene microarray. The results show that the cells respond to the islands by broad gene up-regulation, notably in the areas of cell signaling, proliferation, cytoskeleton, and production of extracellular matrix proteins. Microscopical results provide confirmation of the microarray findings.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
46
|
Hubberstey AV, Mottillo EP. Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization. FASEB J 2002; 16:487-99. [PMID: 11919151 DOI: 10.1096/fj.01-0659rev] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many extracellular signals elicit changes in the actin cytoskeleton, which are mediated through an array of signaling proteins and pathways. One family of proteins that plays a role in regulating actin remodeling in response to cellular signals are the cyclase-associated proteins (CAPs). CAPs are highly conserved monomeric actin binding proteins present in a wide range of organisms including yeast, fly, plants, and mammals. The original CAP was isolated as a component of the Saccharomyces cerevisiae adenylyl cyclase complex that serves as an effector of Ras during nutritional signaling. CAPs are multifunctional molecules that contain domains involved in actin binding, adenylyl cyclase association in yeast, SH3 binding, and oligomerization. Genetic studies in yeast have implicated CAPs in vesicle trafficking and endocytosis. CAPs play a developmental role in multicellular organisms, and studies of Drosophila have illuminated the importance of the actin cytoskeleton during eye development and in establishing oocyte polarity. This review will highlight the critical structural and functional domains of CAPs, describe recent studies that have implied important roles for these proteins in linking cell signaling with actin polymerization, and highlight their roles in vesicle trafficking and development.
Collapse
Affiliation(s)
- Andrew V Hubberstey
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada.
| | | |
Collapse
|
47
|
Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I. Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 2002; 416:183-7. [PMID: 11894095 DOI: 10.1038/416183a] [Citation(s) in RCA: 451] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cbl is a multi-adaptor protein involved in ligand-induced downregulation of receptor tyrosine kinases. It is thought that Cbl-mediated ubiquitination of active receptors is essential for receptor degradation and cessation of receptor-induced signal transduction. Here we demonstrate that Cbl additionally regulates epidermal growth factor (EGF) receptor endocytosis. Cbl rapidly recruits CIN85 (Cbl-interacting protein of 85K; ref. 6) and endophilins (regulatory components of clathrin-coated vesicles) to form a complex with activated EGF receptors, thus controlling receptor internalization. CIN85 was constitutively associated with endophilins, whereas CIN85 binding to the distal carboxy terminus of Cbl was increased on EGF stimulation. Inhibition of these interactions was sufficient to block EGF receptor internalization, delay receptor degradation and enhance EGF-induced gene transcription, without perturbing Cbl-directed receptor ubiquitination. Thus, the evolutionary divergent C terminus of Cbl uses a mechanism that is functionally separable from the ubiquitin ligase activity of Cbl to mediate ligand-dependent downregulation of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Philippe Soubeyran
- Ludwig Institute for Cancer Research, Box 595, Husargatan 3, Uppsala, S-75124, Sweden
| | | | | | | | | |
Collapse
|
48
|
Bard F, Patel U, Levy JB, Jurdic P, Horne WC, Baron R. Molecular complexes that contain both c-Cbl and c-Src associate with Golgi membranes. Eur J Cell Biol 2002; 81:26-35. [PMID: 11893076 DOI: 10.1078/0171-9335-00217] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cbl is an adaptor protein that is phosphorylated and recruited to several receptor and non-receptor tyrosine kinases upon their activation. After binding to the activated receptor, Cbl plays a key role as a kinase inhibitor and as an E3 ubiquitin ligase, thereby contributing to receptor down-regulation and internalization. In addition, Cbl translocates to intracellular vesicular compartments following receptor activation. We report here that Cbl also associates with Golgi membranes. Confocal immunofluorescence staining of Cbl in a variety of unstimulated cells, including CHO cells, revealed a prominent perinuclear colocalization of Cbl and a Golgi marker. Both the prominent Cbl staining and the Golgi marker were dispersed by brefeldin A. Subcellular fractionation of CHO cells demonstrated that about 10% of Cbl is stably associated with membranes, and that Golgi-enriched membrane fractions produced by isopycnic density centrifugation and free-flow electrophoresis are also enriched in Cbl, relative to other membrane fractions. The membrane-bound Cbl was hyperphosphorylated and it co-immunoprecipitated with endogenous Src. By immunofluorescence, some Src colocalized with Cbl and Golgi markers, and Src, like Cbl, was present in the Golgi-enriched fraction prepared by sequential density centrifugation and free-flow electrophoresis. Transfection of an activated form of Src, but not wild-type Src, increased the amount of Src that co-immunoprecipitated with Cbl, and increased the intensity of Cbl staining on the Golgi. This result, together with the increased tyrosine phosphorylation of the membrane-associated Cbl, suggests that Golgi-associated Cbl could be part of a molecular complex that contains activated Src. The localization and interaction of Src and Cbl at the Golgi and the regulation of the interaction of Cbl with Golgi membrane suggest that this complex may contribute to the regulation of Golgi function.
Collapse
Affiliation(s)
- Frederic Bard
- Department of Orthopaedics, Yale University School of Medicine, New Haven, CT 06520-8044, USA
| | | | | | | | | | | |
Collapse
|
49
|
Dalby MJ, Di Silvio L, Harper EJ, Bonfield W. Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials 2002; 23:569-76. [PMID: 11761177 DOI: 10.1016/s0142-9612(01)00139-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Poly(methylmethacrylate) (PMMA) is the current standard for cement held prostheses. It forms a strong bond with the implant, but the bond between the cement and the bone is considered to be weak, with fibroblastic cells observed at the implant site, rather than direct bone contact, a contributing factor leading to implant failure. Incorporation of hydroxyapatite (HA) increases the biological response to the cement from tissue around the implant site, thus giving increased bone apposition. In this study, PMMA discs with 0, 4.6 and 8.8 vol%. HA were examined. Primary human osteoblast-like cells (HOBs) were used for the biological evaluation of the response to the cements in vitro. Morphology was observed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Measurement of tritiated thymidine (3H-TdR) incorporation and alkaline phosphatase (ALP) activity were used to assess proliferation and differentiation. A synergy between increasing focal contact formation, cytoskeletal organisation, cell proliferation and expression of phenotype was observed with increasing HA volume. Preferential anchorage of HOBs to HA rather than PMMA was a prominent observation.
Collapse
Affiliation(s)
- M J Dalby
- IRC in Biomedical Materials, Institute of Orthopaedics, Stanmore, Middlesex, UK.
| | | | | | | |
Collapse
|
50
|
Zamora-Leon SP, Lee G, Davies P, Shafit-Zagardo B. Binding of Fyn to MAP-2c through an SH3 binding domain. Regulation of the interaction by ERK2. J Biol Chem 2001; 276:39950-8. [PMID: 11546790 DOI: 10.1074/jbc.m107807200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Microtubule-associated protein 2 (MAP-2) isoforms are developmentally expressed in the nervous system and contain a number of functional domains. Adjacent to the first repeat of the microtubule-binding domain is an RTPPKSP motif for binding SH3 domains. To identify SH3-containing proteins that interact with MAP-2, transfections, filter overlay assays, glutathione S-transferase (GST)-mediated binding assays, co-immunoprecipitations and enzyme-linked immunosorbent assays were performed. Transfections of MAP-2a, MAP-2b, and MAP-2c constructs into COS7 cells, followed by incubation of the cell lysates with SH3-GST fusion proteins, determined that the strongest interaction was between MAP-2c and the non-receptor tyrosine kinase Fyn; however, MAP-2b and MAP-2c also bound to Grb2. Co-immunoprecipitation of Fyn and MAP-2c from human fetal homogenates confirmed the interaction in vivo. MAP-2 synthetic peptides spanning the RTPPKSP motif bound to Fyn, and the interaction was regulated by phosphorylation. Co-transfections with MAP-2c and the extracellular signal-regulated kinase 2 (ERK2) demonstrated that MAP-2c is threonine/serine-phosphorylated on its RTPPKSP motif and that threonine phosphorylation abolished the MAP-2c/Fyn binding. Kinase assays and co-transfection of MAP-2c and Fyn confirmed that Fyn tyrosine kinase phosphorylates MAP-2c. Thus, the activation of signaling pathways may regulate cytoskeletal dynamics by altering the state of phosphorylation of MAP-2 by both ERK2 and Fyn kinase.
Collapse
Affiliation(s)
- S P Zamora-Leon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|