1
|
Murk K, Ornaghi M, Schiweck J. Profilin Isoforms in Health and Disease - All the Same but Different. Front Cell Dev Biol 2021; 9:681122. [PMID: 34458253 PMCID: PMC8387879 DOI: 10.3389/fcell.2021.681122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Profilins are small actin binding proteins, which are structurally conserved throughout evolution. They are probably best known to promote and direct actin polymerization. However, they also participate in numerous cell biological processes beyond the roles typically ascribed to the actin cytoskeleton. Moreover, most complex organisms express several profilin isoforms. Their cellular functions are far from being understood, whereas a growing number of publications indicate that profilin isoforms are involved in the pathogenesis of various diseases. In this review, we will provide an overview of the profilin family and "typical" profilin properties including the control of actin dynamics. We will then discuss the profilin isoforms of higher animals in detail. In terms of cellular functions, we will focus on the role of Profilin 1 (PFN1) and Profilin 2a (PFN2a), which are co-expressed in the central nervous system. Finally, we will discuss recent findings that link PFN1 and PFN2a to neurological diseases, such as amyotrophic lateral sclerosis (ALS), Fragile X syndrome (FXS), Huntington's disease and spinal muscular atrophy (SMA).
Collapse
Affiliation(s)
- Kai Murk
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marta Ornaghi
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane Schiweck
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Park SC, Kim IR, Kim JY, Lee Y, Kim EJ, Jung JH, Jung YJ, Jang MK, Lee JR. Molecular mechanism of Arabidopsis thaliana profilins as antifungal proteins. Biochim Biophys Acta Gen Subj 2018; 1862:2545-2554. [PMID: 30056100 DOI: 10.1016/j.bbagen.2018.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND It remains an open question whether plant phloem sap proteins are functionally involved in plant defense mechanisms. METHODS The antifungal effects of two profilin proteins from Arabidopsis thaliana, AtPFN1 and AtPFN2, were tested against 11 molds and 4 yeast fungal strains. Fluorescence profiling, biophysical, and biochemical analyses were employed to investigate their antifungal mechanism. RESULTS Recombinant AtPFN1 and AtPFN2 proteins, expressed in Escherichia coli, inhibited the cell growth of various pathogenic fungal strains at concentrations ranging from 10 to 160 μg/mL. The proteins showed significant intracellular accumulation and cell-binding affinity for fungal cells. Interestingly, the AtPFN proteins could penetrate the fungal cell wall and membrane and act as inhibitors of fungal growth via generation of cellular reactive oxygen species and mitochondrial superoxide. This triggered the AtPFN variant-induced cell apoptosis, resulting in morphological changes in the cells. CONCLUSION PFNs may play a critical role as antifungal proteins in the Arabidopsis defense system against fungal pathogen attacks. GENERAL SIGNIFICANCE The present study indicates that two profilin proteins, AtPFN1 and AtPFN2, can act as natural antimicrobial agents in the plant defense system.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Il Ryong Kim
- National Institute of Ecology (NIE), Seocheon, Choongnam 33657, Republic of Korea; Division of Applied Life Science and PMBBRC, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Jin-Young Kim
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Yongjae Lee
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA; Goseong Agricultural Development/Technology Center, Goseong-gun, Gyeongsangnam-do 52930, Republic of Korea
| | - Eun-Ji Kim
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Ji Hyun Jung
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Young Jun Jung
- National Institute of Ecology (NIE), Seocheon, Choongnam 33657, Republic of Korea
| | - Mi-Kyeong Jang
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea.
| | - Jung Ro Lee
- National Institute of Ecology (NIE), Seocheon, Choongnam 33657, Republic of Korea.
| |
Collapse
|
3
|
Abstract
Animal cell migration constitutes a complex process involving a multitude of forces generated and maintained by the actin cytoskeleton. Dynamic changes of the cell surface, for instance to effect cell edge protrusion, are at the core of initiating migratory processes, both in tissue culture models and whole animals. Here we sketch different aspects of imaging representative molecular constituents in such actin-driven processes, which power and regulate the polymerisation of actin filaments into bundles and networks, constituting the building blocks of such protrusions. The examples presented illustrate both the diversity of subcellular distributions of distinct molecular components, according to their function, and the complexity of dynamic changes in protrusion size, shape, and/or orientation in 3D. Considering these dynamics helps mechanistically connecting subcellular distributions of molecular machines driving protrusion and migration with their biochemical function.
Collapse
Affiliation(s)
- Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frieda Kage
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany. .,Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
4
|
Abstract
beta-Actin mRNA is localized near the leading edge in several cell types where actin polymerization is actively promoting forward protrusion. The localization of the beta-actin mRNA near the leading edge is facilitated by a short sequence in the 3'UTR (untranslated region), the 'zipcode'. Localization of the mRNA at this region is important physiologically. Treatment of chicken embryo fibroblasts with antisense oligonucleotides complementary to the localization sequence (zipcode) in the 3'UTR leads to delocalization of beta-actin mRNA, alteration of cell phenotype and a decrease in cell motility. The dynamic image analysis system (DIAS) used to quantify movement of cells in the presence of sense and antisense oligonucleotides to the zipcode showed that net pathlength and average speed of antisense-treated cells were significantly lower than in sense-treated cells. This suggests that a decrease in persistence of direction of movement and not in velocity results from treatment of cells with zipcode-directed antisense oligonucleotides. We postulate that delocalization of beta-actin mRNA results in delocalization of nucleation sites and beta-actin protein from the leading edge followed by loss of cell polarity and directional movement. Hence the physiological consequences of beta-actin mRNA delocalization affect the stability of the cell phenotype.
Collapse
Affiliation(s)
- John Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
5
|
Kim JG, Moon MY, Kim HJ, Li Y, Song DK, Kim JS, Lee JY, Kim J, Kim SC, Park JB. Ras-related GTPases Rap1 and RhoA collectively induce the phagocytosis of serum-opsonized zymosan particles in macrophages. J Biol Chem 2011; 287:5145-55. [PMID: 22194606 DOI: 10.1074/jbc.m111.257634] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phagocytosis occurs primarily through two main processes in macrophages: the Fcγ receptor- and the integrin αMβ2-mediated processes. Complement C3bi-opsonized particles are known to be engulfed through integrin αMβ2-mediated process, which is regulated by RhoA GTPase. C3 toxin fused with Tat-peptide (Tat-C3 toxin), an inhibitor of the Rho GTPases, was shown to markedly inhibit the phagocytosis of serum (C3bi)-opsonized zymosans (SOZs). However, 8CPT-2Me-cAMP, an activator of exchange protein directly activated by cAMP (Epac, Rap1 guanine nucleotide exchange factor), restored the phagocytosis of the SOZs that was previously inhibited by the Tat-C3 toxin. In addition, a constitutively active form of Rap1 GTPase (CA-Rap1) also restored the phagocytosis that was previously reduced by a dominant negative form of RhoA GTPase (DN-RhoA). This suggests that Rap1 can replace the function of RhoA in the phagocytosis. Inversely, CA-RhoA rescued the phagocytosis that was suppressed by DN-Rap1. These findings suggest that both RhoA and Rap1 GTPases collectively regulate the phagocytosis of SOZs. In addition, filamentous actin was reduced by the Tat-C3 toxin, which was again restored by 8CPT-2Me-cAMP. Small interfering profilin suppressed the phagocytosis, suggesting that profilin is essential for the phagocytosis of SOZs. Furthermore, 8CPT-2Me-cAMP increased the co-immunoprecipitation of profilin with Rap1, whereas Tat-C3 toxin decreased that of profilin with RhoA. Co-immunoprecipitations of profilin with actin, Rap1, and RhoA GTPases were augmented in the presence of GTPγS rather than GDP. Therefore, we propose that both Rap1 and RhoA GTPases regulate the formation of filamentous actin through the interaction between actin and profilin, thereby collectively inducing the phagocytosis of SOZs in macrophages.
Collapse
Affiliation(s)
- Jae-Gyu Kim
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Defining a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia. Cell Host Microbe 2010; 7:388-98. [PMID: 20478540 DOI: 10.1016/j.chom.2010.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/09/2010] [Accepted: 03/25/2010] [Indexed: 01/15/2023]
Abstract
Many Rickettsia species are intracellular bacterial pathogens that use actin-based motility for spread during infection. However, while other bacteria assemble actin tails consisting of branched networks, Rickettsia assemble long parallel actin bundles, suggesting the use of a distinct mechanism for exploiting actin. To identify the underlying mechanisms and host factors involved in Rickettsia parkeri actin-based motility, we performed an RNAi screen targeting 115 actin cytoskeletal genes in Drosophila cells. The screen delineated a set of four core proteins-profilin, fimbrin/T-plastin, capping protein, and cofilin--as crucial for determining actin tail length, organizing filament architecture, and enabling motility. In mammalian cells, these proteins were localized throughout R. parkeri tails, consistent with a role in motility. Profilin and fimbrin/T-plastin were critical for the motility of R. parkeri but not Listeria monocytogenes. Our results highlight key distinctions between the evolutionary strategies and molecular mechanisms employed by bacterial pathogens to assemble and organize actin.
Collapse
|
7
|
Dominguez R. Actin filament nucleation and elongation factors--structure-function relationships. Crit Rev Biochem Mol Biol 2009; 44:351-66. [PMID: 19874150 DOI: 10.3109/10409230903277340] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The spontaneous and unregulated polymerization of actin filaments is inhibited in cells by actin monomer-binding proteins such as profilin and Tbeta4. Eukaryotic cells and certain pathogens use filament nucleators to stabilize actin polymerization nuclei, whose formation is rate-limiting. Known filament nucleators include the Arp2/3 complex and its large family of nucleation promoting factors (NPFs), formins, Spire, Cobl, VopL/VopF, TARP and Lmod. These molecules control the time and location for polymerization, and additionally influence the structures of the actin networks that they generate. Filament nucleators are generally unrelated, but with the exception of formins they all use the WASP-Homology 2 domain (WH2 or W), a small and versatile actin-binding motif, for interaction with actin. A common architecture, found in Spire, Cobl and VopL/VopF, consists of tandem W domains that bind three to four actin subunits to form a nucleus. Structural considerations suggest that NPFs-Arp2/3 complex can also be viewed as a specialized form of tandem W-based nucleator. Formins are unique in that they use the formin-homology 2 (FH2) domain for interaction with actin and promote not only nucleation, but also processive barbed end elongation. In contrast, the elongation function among W-based nucleators has been "outsourced" to a dedicated family of proteins, Eva/VASP, which are related to WASP-family NPFs.
Collapse
Affiliation(s)
- Roberto Dominguez
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
8
|
Li Y, Grenklo S, Higgins T, Karlsson R. The profilin:actin complex localizes to sites of dynamic actin polymerization at the leading edge of migrating cells and pathogen-induced actin tails. Eur J Cell Biol 2008; 87:893-904. [PMID: 18707793 DOI: 10.1016/j.ejcb.2008.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 12/11/2022] Open
Abstract
A unique set of affinity-purified anti-profilin and anti-actin antibodies generated against a covalently coupled version of the profilin:actin complex was used to assess the distribution of profilin and non-filamentous actin in mouse melanoma cells. In agreement with the profilin:actin complex being the principal source of actin for filament formation, we observed extensive co-distribution of both antibody preparations with vasodilator-stimulated phosphoprotein (VASP) and the p34 subunit of the Arp2/3 complex, both of which are components of actin polymer-forming protein complexes in the cell. This suggests that the localization of profilin and actin revealed with these antibodies in fact reflects the distribution of the profilin:actin complex rather than the two proteins separately. Significantly, protruding lamellipodia and filopodia showed intensive labeling. The two antibody preparations were also used to stain HeLa cells infected with Listeria monocytogenes or vaccinia virus. In both cases, the pattern of antibody staining of the pathogen-induced microfilament arrangement differed, suggesting a varying accessibility for the antibody-binding epitopes.
Collapse
Affiliation(s)
- Yu Li
- Department of Cell Biology, WGI, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
9
|
Schmidt von Braun S, Schleiff E. Moving the green: CHUP1 and chloroplast movement-An obvious relationship? PLANT SIGNALING & BEHAVIOR 2008; 3:488-9. [PMID: 19704495 PMCID: PMC2634439 DOI: 10.4161/psb.3.7.5683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 01/31/2008] [Indexed: 05/20/2023]
Abstract
Chloroplast movement as a response of plants to light variations is presented as an example in each classical textbook, showing that these organelles accumulate in response to low light and avoid high light irradiation. In sharp contrast to the morphological discovery of the phenomenon, which dates back more than a century, the molecular understanding of this effect is just at its beginning and only recently first components of the signal cascade initiating this process were described. Among these, a protein termed CHUP1 was identified. This protein is present in the outer membrane of chloroplasts and thereby discussed as the first component of a possible 'moving ensemble' assembling at the 'moved cargo'. The protein is able to interact with actin and profilin-and even more, is able to regulate this interaction in vitro. Thereby, today it can be stated that actin filament reformation and chloroplast repositioning are coordinated if not dependent on each other.
Collapse
Affiliation(s)
- Serena Schmidt von Braun
- JWGU Frankfurt am Main; Cluster of Excellence Macromolecular Complexes; Department of Biosciences; Frankfurt, Germany
| | | |
Collapse
|
10
|
Kursula P, Kursula I, Massimi M, Song YH, Downer J, Stanley WA, Witke W, Wilmanns M. High-resolution Structural Analysis of Mammalian Profilin 2a Complex Formation with Two Physiological Ligands: The Formin Homology 1 Domain of mDia1 and the Proline-rich Domain of VASP. J Mol Biol 2008; 375:270-90. [DOI: 10.1016/j.jmb.2007.10.050] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 10/15/2007] [Accepted: 10/17/2007] [Indexed: 12/28/2022]
|
11
|
Ju T, Peti W. Backbone and sidechain (1)H, (15)N and (13)C assignments of the human G-actin binding protein profilin IIa. BIOMOLECULAR NMR ASSIGNMENTS 2007; 1:205-207. [PMID: 19636866 DOI: 10.1007/s12104-007-9057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 10/18/2007] [Indexed: 05/28/2023]
Abstract
The resonance assignment of the human profilin IIa have been determined, based on triple-resonance experiments using uniformly [(13)C,(15)N]-labeled protein. These assignments facilitate further studies of interactions between profilin IIa and its poly-L: -proline rich ligands.
Collapse
Affiliation(s)
- Tingting Ju
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
12
|
Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc Natl Acad Sci U S A 2007; 104:17117-22. [PMID: 17942696 DOI: 10.1073/pnas.0703196104] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microbial pathogens use a variety of mechanisms to disrupt the actin cytoskeleton during infection. Vibrio parahaemolyticus (V. para) is a Gram-negative bacterium that causes gastroenteritis, and new pandemic strains are emerging throughout the world. Analysis of the V. para genome revealed a type III secretion system effector, VopL, encoding three Wiskott-Aldrich homology 2 domains that are interspersed with three proline-rich motifs. Infection of HeLa cells with V. para induces the formation of long actin fibers in a VopL-dependent manner. Transfection of VopL promotes the assembly of actin stress fibers. In vitro, recombinant VopL potently induces assembly of actin filaments that grow at their barbed ends, independent of eukaryotic factors. Vibrio VopL is predicted to be a bacterial virulence factor that disrupts actin homeostasis during an enteric infection of the host.
Collapse
|
13
|
Ferron F, Rebowski G, Lee SH, Dominguez R. Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP. EMBO J 2007; 26:4597-606. [PMID: 17914456 PMCID: PMC2063483 DOI: 10.1038/sj.emboj.7601874] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/10/2007] [Indexed: 11/09/2022] Open
Abstract
Cells sustain high rates of actin filament elongation by maintaining a large pool of actin monomers above the critical concentration for polymerization. Profilin-actin complexes constitute the largest fraction of polymerization-competent actin monomers. Filament elongation factors such as Ena/VASP and formin catalyze the transition of profilin-actin from the cellular pool onto the barbed end of growing filaments. The molecular bases of this process are poorly understood. Here we present structural and energetic evidence for two consecutive steps of the elongation mechanism: the recruitment of profilin-actin by the last poly-Pro segment of vasodilator-stimulated phosphoprotein (VASP) and the binding of profilin-actin simultaneously to this poly-Pro and to the G-actin-binding (GAB) domain of VASP. The actin monomer bound at the GAB domain is proposed to be in position to join the barbed end of the growing filament concurrently with the release of profilin.
Collapse
Affiliation(s)
- François Ferron
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Grzegorz Rebowski
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sung Haeng Lee
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Roberto Dominguez
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Physiology, University of Pennsylvania School of Medicine, A507 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6058, USA. Tel.: +1 215 573 4559; Fax: +1 215 573 5851; E-mail:
| |
Collapse
|
14
|
Chereau D, Dominguez R. Understanding the role of the G-actin-binding domain of Ena/VASP in actin assembly. J Struct Biol 2006; 155:195-201. [PMID: 16684607 DOI: 10.1016/j.jsb.2006.01.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Accepted: 01/22/2006] [Indexed: 11/26/2022]
Abstract
The Ena/VASP and WASP family of proteins play distinct roles in actin cytoskeleton remodeling. Ena/VASP is linked to actin filament elongation, whereas WASP plays a role in filament nucleation and branching mediated by Arp2/3 complex. The molecular mechanisms controlling both processes are only emerging. Both Ena/VASP and WASP are multidomain proteins. They both present poly-Pro regions, which mediate the binding of profilin-actin, followed by G-actin-binding (GAB) domains of the WASP-homology 2 (WH2) type. However, the WH2 of Ena/VASP is somewhat different from that of WASP, and has been poorly characterized. Here we demonstrate that this WH2 binds profilin-actin with higher affinity than actin alone. The results are consistent with a model whereby allosteric modulation of affinity drives the transition of profilin-actin from the poly-Pro region to the WH2 and then to the barbed end of the filament during elongation. Therefore, the function of the WH2 in Ena/VASP appears to be to "process" profilin-actin for its incorporation at the barbed end of the growing filament. Conformational changes in the newly incorporated actin subunit, resulting either from nucleotide hydrolysis or from the G- to F-actin transition, may serve as a "sensor" for the processive stepping of Ena/VASP. Conserved domain architecture suggests that WASP may work similarly.
Collapse
Affiliation(s)
- David Chereau
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA
| | | |
Collapse
|
15
|
Soo FS, Theriot JA. Large-scale quantitative analysis of sources of variation in the actin polymerization-based movement of Listeria monocytogenes. Biophys J 2005; 89:703-23. [PMID: 15879472 PMCID: PMC1366568 DOI: 10.1529/biophysj.104.051219] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 04/25/2005] [Indexed: 11/18/2022] Open
Abstract
During the actin polymerization-based movement of Listeria monocytogenes, individual bacteria are rapidly propelled through the host cell cytoplasm by the growth of a filamentous actin tail. The rate of propulsion varies significantly among individuals and over time. To study this variation, we used a high-throughput tracking technique to record the movement of a large number (approximately 7900) of bacteria in Xenopus frog egg extract. Most bacteria (70%) appeared to maintain an individual characteristic speed over several minutes, suggesting that the major source of variation in average speed is intrinsic to the bacterium. Thirty percent of bacteria had significant changes in speed over time spans of a few minutes, including 17% that appeared to collide with obstacles and 13% that moved with a significant periodic component. For the latter, the peak frequency was proportional to speed, suggesting a mechanism with a fixed spatial scale of approximately 0.6 bacterial length. Near the rear of the bacterium, temporal fluctuations in actin density were positively correlated with fluctuations in speed, whereas near the front the correlation was negative. A comparison of the performance of linear models that predict motion given actin density suggests that the mechanism has a history of 5-10 s, and that fluctuations in actin density near the front of the bacteria contain more predictive information than the rear. Our results are consistent with physical models where bacterial speed is governed by the rate of dissociation of bonds between the bacterial surface and the actin tail, and individual variation is determined by long-lived intrinsic variability in bacterial surface properties.
Collapse
Affiliation(s)
- Frederick S Soo
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
16
|
Barzik M, Kotova TI, Higgs HN, Hazelwood L, Hanein D, Gertler FB, Schafer DA. Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J Biol Chem 2005; 280:28653-62. [PMID: 15939738 PMCID: PMC1747414 DOI: 10.1074/jbc.m503957200] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ena/VASP proteins influence the organization of actin filament networks within lamellipodia and filopodia of migrating cells and in actin comet tails. The molecular mechanisms by which Ena/VASP proteins control actin dynamics are unknown. We investigated how Ena/VASP proteins regulate actin polymerization at actin filament barbed ends in vitro in the presence and absence of barbed end capping proteins. Recombinant His-tagged VASP increased the rate of actin polymerization in the presence of the barbed end cappers, heterodimeric capping protein (CP), CapG, and gelsolin-actin complex. Profilin enhanced the ability of VASP to protect barbed ends from capping by CP, and this required interactions of profilin with G-actin and VASP. The VASP EVH2 domain was sufficient to protect barbed ends from capping, and the F-actin and G-actin binding motifs within EVH2 were required. Phosphorylation by protein kinase A at sites within the VASP EVH2 domain regulated anti-capping and F-actin bundling by VASP. We propose that Ena/VASP proteins associate at or near actin filament barbed ends, promote actin assembly, and restrict the access of barbed end capping proteins.
Collapse
Affiliation(s)
- Melanie Barzik
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 the
| | - Tatyana I. Kotova
- From the Department of Biology, University of Virginia, Charlottesville, VA 22903, the
| | - Henry N. Higgs
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755 and the
| | | | - Dorit Hanein
- Cell Adhesion Program, The Burnham Institute, La Jolla, CA 92037
| | - Frank B. Gertler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 the
| | - Dorothy A. Schafer
- From the Department of Biology, University of Virginia, Charlottesville, VA 22903, the
- Address correspondence to: Dorothy A. Schafer, Department of Biology, University of Virginia, Charlottesville, VA 22903, Tel. 434-243-5297; Fax. 434-982-5626;
| |
Collapse
|
17
|
Lederer M, Jockusch BM, Rothkegel M. Profilin regulates the activity of p42POP, a novel Myb-related transcription factor. J Cell Sci 2004; 118:331-41. [PMID: 15615774 DOI: 10.1242/jcs.01618] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Profilins, regulators of cytoplasmic actin dynamics, also bind to several nuclear proteins but the significance of these interactions is mostly unclear. Here, we describe a novel Myb-related transcription factor, p42POP, as a new ligand for profilin and show that profilin regulates its activity. p42POP comprises a unique combination of domains and is widely expressed in mouse tissues. In contrast to many other Myb proteins, it contains only one functional tryptophan-cluster motif. This is followed by an acidic domain, a leucine zipper that mediates dimerization and functional nuclear import and export signals that can direct p42POP to either the nuclear or the cytoplasmic compartment. Binding to profilins is mediated by a proline-rich cluster. p42POP-profilin complexes can be precipitated from cell lysates. In transfected cells displaying p42POP in the nucleus, nuclear profilin is markedly increased. When p42POP is anchored at mitochondrial membranes, profilin is targeted to this location. Hence, in a cellular environment, p42POP and profilin are found in the same protein complex. In luciferase assays, p42POP acts as repressor and this activity is substantially reduced by profilins, indicating that profilin can regulate p42POP activity and is therefore involved in gene regulation.
Collapse
Affiliation(s)
- Marcell Lederer
- Cell Biology, Zoological Institute, Technical University of Braunschweig, 38092 Braunschweig, Germany
| | | | | |
Collapse
|
18
|
Disanza A, Carlier MF, Stradal TEB, Didry D, Frittoli E, Confalonieri S, Croce A, Wehland J, Di Fiore PP, Scita G. Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol 2004; 6:1180-8. [PMID: 15558031 DOI: 10.1038/ncb1199] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 10/27/2004] [Indexed: 12/15/2022]
Abstract
Actin filament barbed-end capping proteins are essential for cell motility, as they regulate the growth of actin filaments to generate propulsive force. One family of capping proteins, whose prototype is gelsolin, shares modular architecture, mechanism of action, and regulation through signalling-dependent mechanisms, such as Ca(2+) or phosphatidylinositol-4,5-phosphate binding. Here we show that proteins of another family, the Eps8 family, also show barbed-end capping activity, which resides in their conserved carboxy-terminal effector domain. The isolated effector domain of Eps8 caps barbed ends with an affinity in the nanomolar range. Conversely, full-length Eps8 is auto-inhibited in vitro, and interaction with the Abi1 protein relieves this inhibition. In vivo, Eps8 is recruited to actin dynamic sites, and its removal impairs actin-based propulsion. Eps8-family proteins do not show any similarity to gelsolin-like proteins. Thus, our results identify a new family of actin cappers, and unveil novel modalities of regulation of capping through protein-protein interactions. One established function of the Eps8-Abi1 complex is to participate in the activation of the small GTPase Rac, suggesting a multifaceted role for this complex in actin dynamics, possibly through the participation in alternative larger complexes.
Collapse
Affiliation(s)
- Andrea Disanza
- IFOM Istituto FIRC di Oncologia Molecolare Via Adamello 16, 20139, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rottner K, Lommel S, Wehland J, Stradal TEB. Pathogen-induced actin filament rearrangement in infectious diseases. J Pathol 2004; 204:396-406. [PMID: 15495265 DOI: 10.1002/path.1638] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Host defence mechanisms involve the establishment and maintenance of numerous barriers to infectious microbes, including skin and mucosal surfaces, connective tissues, and a sophisticated immune system to detect and destroy invaders. Defeating these defence mechanisms and breaching the cell membrane barrier is the ultimate challenge for most pathogens. By invading the host and, moreover, by penetrating into individual host cells, pathogens gain access to a protective niche, not only to avoid immune clearance, but also to replicate and to disseminate from cell to cell within the infected host. Many pathogens are accomplishing these challenges by exploiting the actin cytoskeleton in a highly sophisticated manner as a result of having evolved common as well as unique strategies.
Collapse
Affiliation(s)
- Klemens Rottner
- Cytoskeleton Dynamics Group, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
20
|
Yarmola EG, Bubb MR. Effects of profilin and thymosin beta4 on the critical concentration of actin demonstrated in vitro and in cell extracts with a novel direct assay. J Biol Chem 2004; 279:33519-27. [PMID: 15184365 DOI: 10.1074/jbc.m404392200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The free actin concentration at steady state, Ac, is a variable that determines how actin regulatory proteins influence the extent of actin polymerization. We describe a novel method employing fluorescence anisotropy to directly measure Ac in any sample after the addition of a trace amount of labeled thymosin beta4 or thymosin beta4 peptide. Using this assay, we confirm earlier theoretical work on the helical polymerization of actin and confirm the effects of actin filament-stabilizing drugs and capping proteins on Ac, thereby validating the assay. We also confirm a controversial prior observation that profilin lowers the critical concentration of Mg2+-actin. A general mechanism is proposed to explain this effect, and the first quantitative dose-response curve for the effect of profilin on Ac facilitates its evaluation. This mechanism also predicts the effect of profilin on critical concentration in the presence of the limited amount of capping protein, which is the condition often found in cells, and the effect of profilin on critical concentration in cell extracts is demonstrated for the first time. Additionally, nonlinear effects of thymosin beta4 on the steady state amount of F-actin are explained by the observed changes in Ac. This assay has potential in vivo applications that complement those demonstrated in vitro.
Collapse
Affiliation(s)
- Elena G Yarmola
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | |
Collapse
|
21
|
Cameron LA, Robbins JR, Footer MJ, Theriot JA. Biophysical parameters influence actin-based movement, trajectory, and initiation in a cell-free system. Mol Biol Cell 2004; 15:2312-23. [PMID: 15004224 PMCID: PMC404025 DOI: 10.1091/mbc.e03-12-0913] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 02/20/2004] [Accepted: 02/23/2004] [Indexed: 11/11/2022] Open
Abstract
Using a biochemically complex cytoplasmic extract to reconstitute actin-based motility of Listeria monocytogenes and polystyrene beads coated with the bacterial protein ActA, we have systematically varied a series of biophysical parameters and examined their effects on initiation of motility, particle speed, speed variability, and path trajectory. Bead size had a profound effect on all aspects of motility, with increasing size causing slower, straighter movement and inhibiting symmetry-breaking. Speed also was reduced by extract dilution, by addition of methylcellulose, and paradoxically by addition of excess skeletal muscle actin, but it was enhanced by addition of nonmuscle (platelet) actin. Large, persistent individual variations in speed were observed for all conditions and their relative magnitude increased with extract dilution, indicating that persistent alterations in particle surface properties may be responsible for intrinsic speed variations. Trajectory curvature was increased for smaller beads and also for particles moving in the presence of methylcellulose or excess skeletal muscle actin. Symmetry breaking and movement initiation occurred by two distinct modes: either stochastic amplification of local variation for small beads in concentrated extracts, or gradual accumulation of strain in the actin gel for large beads in dilute extracts. Neither mode was sufficient to enable spherical particles to break symmetry in the cytoplasm of living cells.
Collapse
Affiliation(s)
- Lisa A Cameron
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
22
|
Krause M, Dent EW, Bear JE, Loureiro JJ, Gertler FB. Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 2004; 19:541-64. [PMID: 14570581 DOI: 10.1146/annurev.cellbio.19.050103.103356] [Citation(s) in RCA: 521] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ena/VASP proteins are a conserved family of actin regulatory proteins made up of EVH1, EVH2 domains, and a proline-rich central region. They have been implicated in actin-based processes such as fibroblast migration, axon guidance, and T cell polarization and are important for the actin-based motility of the intracellular pathogen Listeria monocytogenes. Mechanistically, these proteins associate with barbed ends of actin filaments and antagonize filament capping by capping protein (CapZ). In addition, they reduce the density of Arp2/3-dependent actin filament branches and bind Profilin at sites of actin polymerization. Vertebrate Ena/VASP proteins are substrates for PKA/PKG serine/threonine kinases. Phosphorylation by these kinases appears to modulate Ena/VASP function within cells, although the mechanism underlying this regulation remains to be determined.
Collapse
Affiliation(s)
- Matthias Krause
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
23
|
Ally S, Sauer NJ, Loureiro JJ, Snapper SB, Gertler FB, Goldberg MB. Shigella interactions with the actin cytoskeleton in the absence of Ena/VASP family proteins. Cell Microbiol 2004; 6:355-66. [PMID: 15009027 DOI: 10.1046/j.1462-5822.2003.00359.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Shigella move through the cytosol of infected cells by assembly of a propulsive actin tail at one end of the bacterium. Vasodilator-stimulated phosphoprotein (VASP), a member of the Ena/VASP family of proteins, is important in cellular actin dynamics and is present on intracellular Shigella. VASP binds both profilin, an actin monomer-binding protein, and vinculin, a component of intercellular contacts that also binds the Shigella actin assembly protein IcsA. It has been postulated that VASP might serve as a linker between vinculin and profilin on intracellular Shigella, thereby delivering profilin to the Shigella actin assembly machinery. We show that Shigella actin-based motility is unaltered in cells that are deficient for the Ena/VASP family of proteins. In these cells, Shigella form normal-appearing actin tails and move at rates that are comparable to the rates of bacterial movement in Ena/VASP-deficient cells complemented with the Ena/VASP family member Mena. Finally, whereas vinculin can bind the Arp2/3 complex, we show that Arp2/3 recruitment to Shigella is not correlated with vinculin recruitment, indicating that the role of vinculin in Shigella motility is not recruitment of Arp2/3. Thus, although VASP is recruited to the surface of intracellular Shigella, it is not essential for Shigella actin-based motility.
Collapse
Affiliation(s)
- Shabeen Ally
- Infectious Disease Division, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Regulation of cytoskeletal dynamics is required to coordinate cell movement, adhesion and shape change. The Ena/VASP protein family is thought to play an important role in linking signaling pathways to remodeling of the actin cytoskeleton. This review will examine the mechanisms by which Ena/VASP function might control actin dynamics and how these proteins are linked to various signaling pathways.
Collapse
|
25
|
Nakagawa H, Miki H, Nozumi M, Takenawa T, Miyamoto S, Wehland J, Small JV. IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. J Cell Sci 2003; 116:2577-83. [PMID: 12734400 DOI: 10.1242/jcs.00462] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insulin receptor tyrosine kinase substrate p53 (IRSp53) links Rac and WAVE2 and has been implicated in lamellipodia protrusion. Recently, however, IRSp53 has been reported to bind to both Cdc42 and Mena to induce filopodia. To shed independent light on IRSp53 function we determined the localisations and dynamics of IRSp53 and WAVE2 in B16 melanoma cells. In cells spread well on a laminin substrate, IRSp53 was localised by antibody labelling at the tips of both lamellipodia and filopodia. The same localisation was observed in living cells with IRSp53 tagged with enhanced green florescence protein (EGFP-IRSp53), but only during protrusion. From the transfection of deletion mutants the N-terminal region of IRSp53, which binds active Rac, was shown to be responsible for its localisation. Although IRSp53 has been reported to regulate filopodia formation with Mena, EGFP-IRSp53 showed the same localisation in MVD7 Ena/VASP (vasodilator stimulated phosphoprotein) family deficient cells. WAVE2 tagged with DsRed1 colocalised with EGFP-IRSp53 at the tips of protruding lamellipodia and filopodia and, in double-transfected cells, the IRSp53 signal in filopodia decreased before that of WAVE2 during retraction. These results suggest an alternative modulatory role for IRSp53 in the extension of both filopodia and lamellipodia, through WAVE2.
Collapse
Affiliation(s)
- Hiroyuki Nakagawa
- Department of Cell Biology, Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, Salzburg A-5020, Austria
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Ever since the discovery of class I myosins, the first nonmuscle myosins, about 30 years ago, the history of unconventional myosins has been linked to the organization and working of actin filaments. It slowly emerged from studies of class I myosins in lower eukaryotes that they are involved in mechanisms of endocytosis. Most interestingly, a flurry of recent findings assign a more active role to class I myosins in regulating the spatial and temporal organization of actin filament nucleation and elongation. The results highlight the multiple links between class I myosins and the major actin nucleator, the Arp2/3 complex, and its newly described activators. Two additional types of unconventional myosins, myosinIX, and Dictyostelium discoideum MyoM, have recently been tied to the signaling pathways controlling actin cytoskeleton remodeling. The present review surveys the links between these three classes of molecular motors and the complex cellular processes of endocytosis and actin dynamics, and concentrates on a working model accounting for the function of class I myosins via recruitment of the machinery responsible for actin nucleation and elongation.
Collapse
Affiliation(s)
- Thierry Soldati
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
27
|
Grenklo S, Geese M, Lindberg U, Wehland J, Karlsson R, Sechi AS. A crucial role for profilin-actin in the intracellular motility of Listeria monocytogenes. EMBO Rep 2003; 4:523-9. [PMID: 12776739 PMCID: PMC1319178 DOI: 10.1038/sj.embor.embor823] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have examined the effect of covalently crosslinked profilin-actin (PxA), which closely matches the biochemical properties of ordinary profilin-actin and interferes with actin polymerization in vitro and in vivo, on Listeria monocytogenes motility. PxA caused a marked reduction in bacterial motility, which was accompanied by the detachment of bacterial tails. The effect of PxA was dependent on its binding to proline-rich sequences, as shown by the inability of PH133SxA, which cannot interact with such sequences, to impair Listeria motility. PxA did not alter the motility of a Listeria mutant that is unable to recruit Ena (Enabled)/VASP (vasodilator-stimulated phosphoprotein) proteins and profilin to its surface. Finally, PxA did not block the initiation of actin-tail formation, indicating that profilin-actin is only required for the elongation of actin filaments at the bacterial surface. Our findings provide further evidence that profilin-actin is important for actin-based processes, and show that it has a key function in Listeria motility.
Collapse
Affiliation(s)
- Staffan Grenklo
- Department of Cell Biology, The Wenner–Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Marcus Geese
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - Uno Lindberg
- Department of Cell Biology, The Wenner–Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Jürgen Wehland
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - Roger Karlsson
- Department of Cell Biology, The Wenner–Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Antonio S. Sechi
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
- Tel: +49 531 6181241; Fax: +49 531 6181444;
| |
Collapse
|
28
|
Gatfield J, Pieters J. Molecular Mechanisms of Host–Pathogen Interaction: Entry and Survival of Mycobacteria in Macrophages. Adv Immunol 2003; 81:45-96. [PMID: 14711053 DOI: 10.1016/s0065-2776(03)81002-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- John Gatfield
- Biozentrum der Universitaet Basel, Department of Biochemistry, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | | |
Collapse
|
29
|
Abstract
Ena/VASP proteins are actin-binding proteins that localize to actin stress fibres, the tips of filopodia and the lamellipodial leading edge. In the past few years, a number of seemingly conflicting studies have confused the Ena/VASP field, pointing to roles for these proteins in both promotion and inhibition of actin-dependent processes. Recent discoveries resolve these contradictions and suggest a novel mechanism of Ena/VASP function, in which the proteins function as 'anti-capping' proteins that antagonize capping proteins at the barbed end of actin filaments.
Collapse
Affiliation(s)
- Matthias Krause
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | | | | | | |
Collapse
|
30
|
Geese M, Loureiro JJ, Bear JE, Wehland J, Gertler FB, Sechi AS. Contribution of Ena/VASP proteins to intracellular motility of listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization. Mol Biol Cell 2002; 13:2383-96. [PMID: 12134077 PMCID: PMC117321 DOI: 10.1091/mbc.e02-01-0058] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Listeria model system has been essential for the identification and characterization of key regulators of the actin cytoskeleton such as the Arp2/3 complex and Ena/vasodilator-stimulated phosphoprotein (VASP) proteins. Although the role of Ena/VASP proteins in Listeria motility has been extensively studied, little is known about the contributions of their domains and phosphorylation state to bacterial motility. To address these issues, we have generated a panel of Ena/VASP mutants and, upon expression in Ena/VASP-deficient cells, evaluated their contribution to Ena/VASP function in Listeria motility. The proline-rich region, the putative G-actin binding site, and the Ser/Thr phosphorylation of Ena/VASP proteins are all required for efficient Listeria motility. Surprisingly, the interaction of Ena/VASP proteins with F-actin and their potential ability to form multimers are both dispensable for their involvement in this process. Our data suggest that Ena/VASP proteins contribute to Listeria motility by regulating both the nucleation and elongation of actin filaments at the bacterial surface.
Collapse
Affiliation(s)
- Marcus Geese
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung, D-38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Loureiro JJ, Rubinson DA, Bear JE, Baltus GA, Kwiatkowski AV, Gertler FB. Critical roles of phosphorylation and actin binding motifs, but not the central proline-rich region, for Ena/vasodilator-stimulated phosphoprotein (VASP) function during cell migration. Mol Biol Cell 2002; 13:2533-46. [PMID: 12134088 PMCID: PMC117332 DOI: 10.1091/mbc.e01-10-0102] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Ena/vasodilator-stimulated phosphoprotein (VASP) protein family is implicated in the regulation of a number of actin-based cellular processes, including lamellipodial protrusion necessary for whole cell translocation. A growing body of evidence derived largely from in vitro biochemical experiments using purified proteins, cell-free extracts, and pathogen motility has begun to suggest various mechanistic roles for Ena/VASP proteins in the control of actin dynamics. Using complementation of phenotypes in Ena/VASP-deficient cells and overexpression in normal fibroblasts, we have assayed the function of a panel of mutants in one member of this family, Mena, by mutating highly conserved sequence elements found in this protein family. Surprisingly, deletion of sites required for binding of the actin monomer-binding protein profilin, a known ligand of Ena/VASP proteins, has no effect on the ability of Mena to regulate random cell motility. Our analysis revealed two features essential for Ena/VASP function in cell movement, cyclic nucleotide-dependent kinase phosphorylation sites and an F-actin binding motif. Interestingly, expression of the C-terminal EVH2 domain alone is sufficient to complement loss of Ena/VASP function in random cell motility.
Collapse
Affiliation(s)
- Joseph J Loureiro
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kinosian HJ, Selden LA, Gershman LC, Estes JE. Actin filament barbed end elongation with nonmuscle MgATP-actin and MgADP-actin in the presence of profilin. Biochemistry 2002; 41:6734-43. [PMID: 12022877 DOI: 10.1021/bi016083t] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have quantitated the in vitro interactions of profilin and the profilin-actin complex (PA) with the actin filament barbed end using profilin and nonmuscle beta,gamma-actin prepared from bovine spleen. Actin filament barbed end elongation was initiated from spectrin seeds in the presence of varying profilin concentrations and followed by light scattering. We find that profilin inhibits actin polymerization and that this effect is much more pronounced for beta,gamma-actin than for alpha-skeletal muscle actin. Profilin binds to beta,gamma-actin filament barbed ends with an equilibrium constant of 20 microM, decreases the filament elongation rate by blocking addition of actin monomers, and increases the dissociation rate of actin monomers from the filament end. PA containing bound MgADP supports elongation of the actin filament barbed end, indicating that ATP hydrolysis is not necessary for PA elongation of filaments. Initial analysis of the energetics for these reactions suggested an apparent greater negative free energy change for actin filament elongation from PA than elongation from monomeric actin. However, we calculate that the free energy changes for the two elongation pathways are equal if the profilin-induced weakening of nucleotide binding to actin is taken into consideration.
Collapse
Affiliation(s)
- Henry J Kinosian
- Center for Cell Biology and Cancer Research, Department of Medicine, Albany Medical College, Albany, NY 12208. USA.
| | | | | | | |
Collapse
|
33
|
Abstract
Lamellipodia, filopodia and membrane ruffles are essential for cell motility, the organization of membrane domains, phagocytosis and the development of substrate adhesions. Their formation relies on the regulated recruitment of molecular scaffolds to their tips (to harness and localize actin polymerization), coupled to the coordinated organization of actin filaments into lamella networks and bundled arrays. Their turnover requires further molecular complexes for the disassembly and recycling of lamellipodium components. Here, we give a spatial inventory of the many molecular players in this dynamic domain of the actin cytoskeleton in order to highlight the open questions and the challenges ahead.
Collapse
Affiliation(s)
- J Victor Small
- Dept of Cell Biology, Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, 5020 Salzburg, Austria.
| | | | | | | |
Collapse
|
34
|
Abstract
Dynamin, the product of the shibire gene of Drosophila, is a GTPase critically required for endocytosis. Some studies have suggested a functional link between dynamin and the actin cytoskeleton. This link is of special interest, because there is evidence implicating actin dynamics in endocytosis. Here we show that endogenous dynamin 2, as well as green fluorescence protein fusion proteins of both dynamin 1 and 2, is present in actin comets generated by Listeria or by type I PIP kinase (PIPK) overexpression. In PIPK-induced tails, dynamin is further enriched at the interface between the tails and the moving organelles. Dynamin mutants harboring mutations in the GTPase domain inhibited nucleation of actin tails induced by PIPK and moderately reduced their speed. Although dynamin localization to the tails required its proline-rich domain, expression of a dynamin mutant lacking this domain also diminished tail formation. In addition, this mutant disrupted a membrane-associated actin scaffold (podosome rosette) previously shown to include dynamin. These findings suggest that dynamin is part of a protein network that controls nucleation of actin from membranes. At endocytic sites, dynamin may couple the fission reaction to the polymerization of an actin pool that functions in the separation of the endocytic vesicles from the plasma membrane.
Collapse
Affiliation(s)
- Eunkyung Lee
- Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | | |
Collapse
|
35
|
Coppolino MG, Krause M, Hagendorff P, Monner DA, Trimble W, Grinstein S, Wehland J, Sechi AS. Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcγ receptor signalling during phagocytosis. J Cell Sci 2001; 114:4307-18. [PMID: 11739662 DOI: 10.1242/jcs.114.23.4307] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis by macrophages and neutrophils involves the spatial and temporal reorganisation of the actin-based cytoskeleton at sites of particle ingestion. Local polymerisation of actin filaments supports the protrusion of pseudopodia that eventually engulf the particle. Here we have investigated in detail the cytoskeletal events initiated upon engagement of Fc receptors in macrophages. Ena/vasodilator-stimulated phosphoprotein (VASP) proteins were recruited to phagosomes forming around opsonised particles in both primary and immortalised macrophages. Not only did the localisation of Ena/VASP proteins coincide, spatially and temporally, with the phagocytosis-induced reorganisation of actin filaments, but their recruitment to the phagocytic cup was required for the remodelling of the actin cytoskeleton, extension of pseudopodia and efficient particle internalisation. We also report that SLP-76, Vav and profilin were recruited to forming phagosomes. Upon induction of phagocytosis, a large molecular complex, consisting in part of Ena/VASP proteins, the Fyn-binding/SLP-76-associated protein (Fyb/SLAP), Src-homology-2 (SH2)-domain-containing leukocyte protein of 76 kDa (SLP-76), Nck, and the Wiskott-Aldrich syndrome protein (WASP), was formed. Our findings suggest that activation of Fcγ receptors triggers two signalling events during phagocytosis: one through Fyb/SLAP that leads to recruitment of VASP and profilin; and another through Nck that promotes the recruitment of WASP. These converge to regulate actin polymerisation, controlling the assembly of actin structures that are essential for the process of phagocytosis.
Collapse
Affiliation(s)
- M G Coppolino
- Programme in Cell Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Machner MP, Urbanke C, Barzik M, Otten S, Sechi AS, Wehland J, Heinz DW. ActA from Listeria monocytogenes can interact with up to four Ena/VASP homology 1 domains simultaneously. J Biol Chem 2001; 276:40096-103. [PMID: 11489888 DOI: 10.1074/jbc.m104279200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The facultative intracellular human pathogenic bacterium Listeria monocytogenes actively recruits host actin to its surface to achieve motility within infected cells. The bacterial surface protein ActA is solely responsible for this process by mimicking fundamental steps of host cell actin dynamics. ActA, a modular protein, contains an N-terminal actin nucleation site and a central proline-rich motif of the 4-fold repeated consensus sequence FPPPP (FP(4)). This motif is specifically recognized by members of the Ena/VASP protein family. These proteins additionally recruit the profilin-G-actin complex increasing the local concentration of G-actin close to the bacterial surface. By using analytical ultracentrifugation, we show that a single ActA molecule can simultaneously interact with four Ena/VASP homology 1 (EVH1) domains. The four FP(4) sites have roughly equivalent affinities with dissociation constants of about 4 microm. Mutational analysis of the FP(4) motifs indicate that the phenylalanine is mandatory for ActA-EVH1 interaction, whereas in each case exchange of the third proline was tolerated. Finally, by using sedimentation equilibrium centrifugation techniques, we demonstrate that ActA is a monomeric protein. By combining these results, we formulate a stoichiometric model to describe how ActA enables Listeria to utilize efficiently resources of the host cell microfilament for its own intracellular motility.
Collapse
Affiliation(s)
- M P Machner
- Department of Structural Biology, German Research Center for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Krebs A, Rothkegel M, Klar M, Jockusch BM. Characterization of functional domains of mDia1, a link between the small GTPase Rho and the actin cytoskeleton. J Cell Sci 2001; 114:3663-72. [PMID: 11707518 DOI: 10.1242/jcs.114.20.3663] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The widely expressed diaphanous proteins, a subclass of formins, comprise links between the Rho GTPases and the actin-based cytoskeleton. They contain several functional domains that are thought to be responsible for interaction with different ligands: the FH1 domain for binding the actin-associated protein profilin; the RBD for targeting activated Rho; and the C-terminal CIID module for autoregulation of the overall diaphanous activity. Using deletion constructs of the murine mDia1, we have analyzed the functional properties of these three domains separately in in vitro assays and in transiently and stably transfected cell lines. We show that the proline-rich FH1 domain effectively binds to profilins in vitro as well as in cells, that the RBD complexes with the CIID in a species-restricted manner and that overexpression of RBD causes spontaneous ruffling and loss of stress fibers, together with loss of directional motility. Supertransfection of cells stably expressing the RBD with dominant negative Rac effectively suppresses ruffling. Our data contribute to the understanding of the function of these domains in linking the actin cytoskeleton with the Rho-signaling cascade. Furthermore, they suggest that inactivation of Rho by exogenous RBD causes upregulation of Rac activity in the transfected cells.
Collapse
Affiliation(s)
- A Krebs
- Cell Biology, Zoological Institute, Technical University of Braunschweig, D-38092 Braunschweig, Germany
| | | | | | | |
Collapse
|
38
|
Rottner K, Krause M, Gimona M, Small JV, Wehland J. Zyxin is not colocalized with vasodilator-stimulated phosphoprotein (VASP) at lamellipodial tips and exhibits different dynamics to vinculin, paxillin, and VASP in focal adhesions. Mol Biol Cell 2001; 12:3103-13. [PMID: 11598195 PMCID: PMC60159 DOI: 10.1091/mbc.12.10.3103] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Actin polymerization is accompanied by the formation of protein complexes that link extracellular signals to sites of actin assembly such as membrane ruffles and focal adhesions. One candidate recently implicated in these processes is the LIM domain protein zyxin, which can bind both Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the actin filament cross-linking protein alpha-actinin. To characterize the localization and dynamics of zyxin in detail, we generated both monoclonal antibodies and a green fluorescent protein (GFP)-fusion construct. The antibodies colocalized with ectopically expressed GFP-VASP at focal adhesions and along stress fibers, but failed to label lamellipodial and filopodial tips, which also recruit Ena/VASP proteins. Likewise, neither microinjected, fluorescently labeled zyxin antibodies nor ectopically expressed GFP-zyxin were recruited to these latter sites in live cells, whereas both probes incorporated into focal adhesions and stress fibers. Comparing the dynamics of zyxin with that of the focal adhesion protein vinculin revealed that both proteins incorporated simultaneously into newly formed adhesions. However, during spontaneous or induced focal adhesion disassembly, zyxin delocalization preceded that of either vinculin or paxillin. Together, these data identify zyxin as an early target for signals leading to adhesion disassembly, but exclude its role in recruiting Ena/VASP proteins to the tips of lamellipodia and filopodia.
Collapse
Affiliation(s)
- K Rottner
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung, D-38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
39
|
Nix DA, Fradelizi J, Bockholt S, Menichi B, Louvard D, Friederich E, Beckerle MC. Targeting of zyxin to sites of actin membrane interaction and to the nucleus. J Biol Chem 2001; 276:34759-67. [PMID: 11395501 DOI: 10.1074/jbc.m102820200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The localization of proteins to particular intracellular compartments often regulates their functions. Zyxin is a LIM protein found prominently at sites of cell adhesion, faintly in leading lamellipodia, and transiently in cell nuclei. Here we have performed a domain analysis to identify regions in zyxin that are responsible for targeting it to different subcellular locations. The N-terminal proline-rich region of zyxin, which harbors binding sites for alpha-actinin and members of the Ena/VASP family, concentrates in lamellipodial extensions and weakly in focal adhesions. The LIM region of zyxin displays robust targeting to focal adhesions. When overexpressed in cells, the LIM region of zyxin causes displacement of endogenous zyxin from focal adhesions. Upon mislocalization of full-length zyxin, at least one member of the Ena/VASP family is also displaced, and the organization of the actin cytoskeleton is perturbed. Zyxin also has the capacity to shuttle between the nucleus and focal adhesion sites. When nuclear export is inhibited, zyxin accumulates in cell nuclei. The nuclear accumulation of zyxin occurs asynchronously with approximately half of the cells exhibiting nuclear localization of zyxin within 2.3 h of initiating leptomycin B treatment. Our results provide insight into the functions of different zyxin domains.
Collapse
Affiliation(s)
- D A Nix
- Huntsman Cancer Institute and Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Stradal T, Courtney KD, Rottner K, Hahne P, Small JV, Pendergast AM. The Abl interactor proteins localize to sites of actin polymerization at the tips of lamellipodia and filopodia. Curr Biol 2001; 11:891-5. [PMID: 11516653 DOI: 10.1016/s0960-9822(01)00239-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell movement is mediated by the protrusion of cytoplasm in the form of sheet- and rod-like extensions, termed lamellipodia and filopodia. Protrusion is driven by actin polymerization, a process that is regulated by signaling complexes that are, as yet, poorly defined. Since actin assembly is controlled at the tips of lamellipodia and filopodia [1], these juxtamembrane sites are likely to harbor the protein complexes that control actin polymerization dynamics underlying cell motility. An understanding of the regulation of protrusion therefore requires the characterization of the molecular components recruited to these sites. The Abl interactor (Abi) proteins, targets of Abl tyrosine kinases [2-4], have been implicated in Rac-dependent cytoskeletal reorganization in response to growth factor stimulation [5]. Here, we describe the unique localization of Abi proteins in living, motile cells. We show that Abi-1 and Abi-2b fused to enhanced yellow fluorescent protein (EYFP) are recruited to the tips of lamellipodia and filopodia. We identify the targeting domain as the homologous N terminus of these two proteins. Our findings are the first to suggest a direct involvement of members of the Abi protein family in the control of actin polymerization in protrusion events, and establish the Abi proteins as potential regulators of motility.
Collapse
Affiliation(s)
- T Stradal
- Institute of Molecular Biology, Austrian Academy of Sciences, 5020, Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
41
|
Kim YS, Furman S, Sink H, VanBerkum MF. Calmodulin and profilin coregulate axon outgrowth in Drosophila. JOURNAL OF NEUROBIOLOGY 2001; 47:26-38. [PMID: 11257611 DOI: 10.1002/neu.1013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coordinated regulation of actin cytoskeletal dynamics is critical to growth cone movement. The intracellular molecules calmodulin and profilin actively regulate actin-based motility and participate in the signaling pathways used to steer growth cones. Here we show that in the developing Drosophila embryo, calmodulin and profilin convey complimentary information that is necessary for appropriate growth cone advance. Reducing calmodulin activity by expression of a dominant inhibitor (KA) stalls axon extension of pioneer neurons within the CNS, while a partial loss of profilin function decreases extension of motor axons in the periphery. Yet, surprisingly, when calmodulin and profilin are simultaneously reduced, the ability of both CNS pioneer axons and motor axons to extend beyond the choice points is restored. In the CNS, at the time when growth cones must decide whether to cross or not to cross the midline, a reduction in calmodulin and/or roundabout signaling causes axons to cross the midline inappropriately. These inappropriate crossings are suppressed when profilin activity is simultaneously reduced. Interestingly, the mutual suppression of calmodulin and profilin activity requires a minimal level of profilin. In KA combinations with profilin null alleles, defects in axon extension and midline guidance are synergistically enhanced rather than suppressed. Together, our data indicate that the growth cone must coordinate the activity of both calmodulin and profilin in order to advance past selected choice points, including those dictating midline crossovers.
Collapse
Affiliation(s)
- Y S Kim
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
42
|
Hahne P, Sechi A, Benesch S, Small JV. Scar/WAVE is localised at the tips of protruding lamellipodia in living cells. FEBS Lett 2001; 492:215-20. [PMID: 11257497 DOI: 10.1016/s0014-5793(01)02239-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cell motility entails the extension of cytoplasmic processes, termed lamellipodia and filopodia. Extension is driven by actin polymerisation at the tips of these processes via molecular complexes that remain to be characterised. We show here that a green fluorescent protein (GFP) fusion of the Wiskott-Aldrich syndrome protein family member Scar1/WAVE1 is specifically recruited to the tips of lamellipodia in living B16F1 melanoma cells. Scar1-GFP was recruited only to protruding lamellipodia and was absent from filopodia. The localisation of Scar was facilitated by the finding that the formerly described inhibition of lamellipodia formation by ectopical expression of Scar, could be overcome by the treatment of cells with aluminium fluoride. These findings show that Scar is strategically located at sites of actin polymerisation specifically engaged in the protrusion of lamellipodia.
Collapse
Affiliation(s)
- P Hahne
- Department of Cell Biology, Institute of Molecular Biology, Austrian Academy of Sciences, Salzburg, Austria
| | | | | | | |
Collapse
|
43
|
Cossart P, Bierne H. The use of host cell machinery in the pathogenesis of Listeria monocytogenes. Curr Opin Immunol 2001; 13:96-103. [PMID: 11154924 DOI: 10.1016/s0952-7915(00)00188-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The bacterial pathogen, Listeria monocytogenes, exploits the host cell's machinery, enabling the pathogen to enter into cells and spread from cell to cell. Three bacterial surface proteins are crucial for these processes: internalin and InlB, which mediate entry into cells, and ActA, which induces actin polymerisation at one pole of the bacterium and promotes intracellular and intercellular motility. Recent studies have identified several of the cellular factors involved in the entry process and major discoveries have unravelled the mechanisms underlying the actin-based motility. Increasing evidence shows that many cellular genes are up- or down-regulated during infection and probably play a role in the establishment of infection, inflammation and induction of the host immune response.
Collapse
Affiliation(s)
- P Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 28 Rue du Docteur Roux, Paris 75015, France.
| | | |
Collapse
|
44
|
Lambrechts A, Kwiatkowski AV, Lanier LM, Bear JE, Vandekerckhove J, Ampe C, Gertler FB. cAMP-dependent protein kinase phosphorylation of EVL, a Mena/VASP relative, regulates its interaction with actin and SH3 domains. J Biol Chem 2000; 275:36143-51. [PMID: 10945997 DOI: 10.1074/jbc.m006274200] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins of the Ena/VASP family are implicated in processes that require dynamic actin remodeling such as axon guidance and platelet activation. In this work, we explored some of the pathways that likely regulate actin dynamics in part via EVL (Ena/VASP-like protein). Two isoforms, EVL and EVL-I, were highly expressed in hematopoietic cells of thymus and spleen. In CD3-activated T-cells, EVL was found in F-actin-rich patches and at the distal tips of the microspikes that formed on the activated side of the T-cells. Like the other family members, EVL localized to focal adhesions and the leading edge of lamellipodia when expressed in fibroblasts. EVL was a substrate for the cAMP-dependent protein kinase, and this phosphorylation regulated several of the interactions between EVL and its ligands. Unlike VASP, EVL nucleated actin polymerization under physiological conditions, whereas phosphorylation of both EVL and VASP decreased their nucleating activity. EVL bound directly to the Abl, Lyn, and nSrc SH3 domains; the FE65 WW domain; and profilin, likely via its proline-rich core. Binding of Abl and nSrc SH3 domains, but not profilin or other SH3 domains, was abolished by cAMP-dependent protein kinase phosphorylation of EVL. We show strong cooperative binding of two profilin dimers on the polyproline sequence of EVL. Additionally, profilin competed with the SH3 domains for binding to partially overlapping binding sites. These data suggest that the function of EVL could be modulated in a complex manner by its interactions with multiple ligands and through phosphorylation by cyclic nucleotide dependent kinases.
Collapse
Affiliation(s)
- A Lambrechts
- Flanders Interuniversity Institute for Biotechnology, Department of Medical Protein Chemistry, Faculty of Medicine, Ghent University, Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
45
|
Di Nardo A, Gareus R, Kwiatkowski D, Witke W. Alternative splicing of the mouse profilin II gene generates functionally different profilin isoforms. J Cell Sci 2000; 113 Pt 21:3795-803. [PMID: 11034907 DOI: 10.1242/jcs.113.21.3795] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Profilins are a conserved family of proteins participating in actin dynamics and cell motility. In the mouse, two profilin genes are known. Profilin I is expressed universally at high levels, while profilin II is expressed mainly in the brain. Here we describe the occurrence of two mouse profilin II isoforms, A and B, which are derived by alternative splicing. They are identical through residue 107 of the protein, but then have distinct C-terminal sequences. Profilin IIA binds to poly-L-proline and actin with high affinity similar to profilin I. Profilin IIB on the other hand does not bind to actin and the affinity for poly-L-proline is greatly diminished. However, tubulin was found to bind to GST-profilin IIB, and in vivo GFP-profilin IIB was recruited to spindles and asters during mitosis in HeLa cells. Our results indicate unexpected diversity in the functions of the profilin family of proteins, and suggest that in mouse profilin IIA is intimately involved in actin dynamics, while profilin IIB associates with other cytoskeletal components.
Collapse
Affiliation(s)
- A Di Nardo
- EMBL-Monterotondo, Mouse Biology Programme, Via Ramarini 32, Rome, Italy
| | | | | | | |
Collapse
|
46
|
Cameron LA, Giardini PA, Soo FS, Theriot JA. Secrets of actin-based motility revealed by a bacterial pathogen. Nat Rev Mol Cell Biol 2000; 1:110-9. [PMID: 11253363 DOI: 10.1038/35040061] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Actin-based cell motility is a complex process involving a dynamic, self-organizing cellular system. Experimental problems initially limited our understanding of this type of motility, but the use of a model system derived from a bacterial pathogen has led to a breakthrough. Now, all the molecular components necessary for dynamic actin self-organization and motility have been identified, setting the stage for future mechanistic studies.
Collapse
Affiliation(s)
- L A Cameron
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive West, Stanford, California 94305-5307, USA
| | | | | | | |
Collapse
|
47
|
Harbeck B, Hüttelmaier S, Schluter K, Jockusch BM, Illenberger S. Phosphorylation of the vasodilator-stimulated phosphoprotein regulates its interaction with actin. J Biol Chem 2000; 275:30817-25. [PMID: 10882740 DOI: 10.1074/jbc.m005066200] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vasodilator-stimulated phosphoprotein (VASP) is a major substrate for cyclic nucleotide-dependent kinases in platelets and other cardiovascular cells. It promotes actin nucleation and binds to actin filaments in vitro and associates with stress fibers in cells. The VASP-actin interaction is salt-sensitive, arguing for electrostatic interactions. Hence, phosphorylation may significantly alter the actin binding properties of VASP. This hypothesis was investigated by analyzing complex formation of recombinant murine VASP with actin after phosphorylation with cAMP-dependent kinase in different assays. cAMP-dependent kinase phosphorylation had a negative effect on both actin nucleation and VASP interaction with actin filaments, with the actin nucleating capacity being more affected than actin filament binding and bundling. Replacing VASP residues known to be phosphorylated in vivo by acidic residues to mimic phosphorylation had similar although less dramatic effects on VASP-actin interactions. In contrast, phosphorylation had no significant effect on VASP oligomerization or its interaction with its known ligands profilin, vinculin, and zyxin. When overexpressing VASP mutants in eukaryotic cells, they all showed targeting to focal contacts and stress fibers. Our results imply that VASP phosphorylation may act as an immediate negative regulator of actin dynamics.
Collapse
Affiliation(s)
- B Harbeck
- Department of Cell Biology, Zoological Institute, Technical University of Braunschweig, D-38092 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
48
|
Mimuro H, Suzuki T, Suetsugu S, Miki H, Takenawa T, Sasakawa C. Profilin is required for sustaining efficient intra- and intercellular spreading of Shigella flexneri. J Biol Chem 2000; 275:28893-901. [PMID: 10867004 DOI: 10.1074/jbc.m003882200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of Shigella to mediate actin-based motility within the host cell is a prominent pathogenic feature of bacillary dysentery. The ability is dependent on the interaction of VirG with neural Wiskott-Aldrich syndrome protein (N-WASP), which in turn mediates recruitment of Arp2/3 complex and several actin-related proteins. In the present study, we show that profilin I is essential to the rapid movement of Shigella in epithelial cells, for which the capacity of profilin to interact with G-actin and N-WASP is critical. In COS-7 cells overexpressing either mutated profilin H119E, which failed to bind G-actin, or H133S, which is unable to interact with poly-l-proline, Shigella motility was significantly inhibited. Similarly, depletion of profilin from Xenopus egg extracts resulted in a decrease in bacterial motility that was completely rescued by adding back profilin I but not H119E or H133S. In COS-7 cells overexpressing a N-WASP mutant lacking the proline-rich domain (Deltap) unable to interact with profilin, the actin tail formation of intracellular Shigella was inhibited. In N-WASP-depleted extracts, addition of Deltap but not full-length N-WASP was unable to restore the bacterial motility. Furthermore, in a plaque formation assay with Madin-Darby canine kidney cell monolayers infected by Shigella, Madin-Darby canine kidney cells stably expressing H119E, H133S, or Deltap reduced the bacterial cell-to-cell spreading. These results indicate that profilin I associated with N-WASP is an essential host factor for sustaining efficient intra- and intercellular spreading of Shigella.
Collapse
Affiliation(s)
- H Mimuro
- Division of Bacterial Infection, Department of Microbiology and Immunology, Department of Biochemistry, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Wittenmayer N, Rothkegel M, Jockusch BM, Schlüter K. Functional characterization of green fluorescent protein-profilin fusion proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5247-56. [PMID: 10931210 DOI: 10.1046/j.1432-1327.2000.01600.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To clarify the role of profilins in cells, fusion proteins constructed with green fluorescent protein (GFP) should be extremely helpful. As profilins are considerably smaller than the GFP fusion partner (14-17 kDa compared with 27 kDa, respectively), we characterized the fusion proteins in vitro, to ascertain their biological function. We fused mouse profilin I and II to either the C-terminus or N-terminus of GFP. These fusion proteins were expressed in Escherichia coli and affinity-purified on polyproline-Sepharose. Interaction with vasodilator-stimulated phosphoprotein, a proline-rich ligand of profilin, was investigated by ELISA, as was binding to PtdIns(4,5)P2. The affinity for actin was quantitatively determined in polymerization assays. Our results show that fusion of GFP to the C-terminus of profilin I abolishes polyproline binding. In contrast, the other fusion proteins bound to polyproline-Sepharose and VASP. Binding to PtdIns(4,5)P2 was not significantly altered. Furthermore, fusion of either isoform with GFP did not decrease the affinity for actin. In localization studies with mammalian cells, all fusion proteins showed the localization expected for profilin in areas of high actin dynamics, such as leading lamellae and ruffles induced by epidermal growth factor. However, with regard to our in vitro data, we suspect that only a minor fraction of profilin I carrying the GFP at the C-terminus can target these sites. Therefore, other constructs should be preferred for further in vivo studies.
Collapse
Affiliation(s)
- N Wittenmayer
- Cell Biology Group, Zoological Institute, Technical University, Braunschweig, Germany
| | | | | | | |
Collapse
|
50
|
Bear JE, Loureiro JJ, Libova I, Fässler R, Wehland J, Gertler FB. Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 2000; 101:717-28. [PMID: 10892743 DOI: 10.1016/s0092-8674(00)80884-3] [Citation(s) in RCA: 378] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ena/VASP proteins have been implicated in cell motility through regulation of the actin cytoskeleton and are found at focal adhesions and the leading edge. Using overexpression, loss-of-function, and inhibitory approaches, we find that Ena/VASP proteins negatively regulate fibroblast motility. A dose-dependent decrease in movement is observed when Ena/VASP proteins are overexpressed in fibroblasts. Neutralization or deletion of all Ena/VASP proteins results in increased cell movement. Selective depletion of Ena/VASP proteins from focal adhesions, but not the leading edge, has no effect on motility. Constitutive membrane targeting of Ena/VASP proteins inhibits motility. These results are in marked contrast to current models for Ena/VASP function derived mainly from their role in the actin-driven movement of Listeria monocytogenes.
Collapse
Affiliation(s)
- J E Bear
- Department of Biology, Massachusetts Institute of Technology, Cambridge, USA
| | | | | | | | | | | |
Collapse
|