1
|
Gao R, Song SJ, Tian MY, Wang LB, Zhang Y, Li X. Myelin debris phagocytosis in demyelinating disease. Glia 2024; 72:1934-1954. [PMID: 39073200 DOI: 10.1002/glia.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
Collapse
Affiliation(s)
- Rui Gao
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng-Jiao Song
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng-Yuan Tian
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Li-Bin Wang
- Neurosurgery Department, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, Guangdong, China
| | - Yuan Zhang
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Li
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Martellucci S, Flütsch A, Carter M, Norimoto M, Pizzo D, Mantuano E, Sadri M, Wang Z, Chillin-Fuentes D, Rosenthal SB, Azmoon P, Gonias SL, Campana WM. Axon-derived PACSIN1 binds to the Schwann cell survival receptor, LRP1, and transactivates TrkC to promote gliatrophic activities. Glia 2024; 72:916-937. [PMID: 38372375 DOI: 10.1002/glia.24510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
Schwann cells (SCs) undergo phenotypic transformation and then orchestrate nerve repair following PNS injury. The ligands and receptors that activate and sustain SC transformation remain incompletely understood. Proteins released by injured axons represent important candidates for activating the SC Repair Program. The low-density lipoprotein receptor-related protein-1 (LRP1) is acutely up-regulated in SCs in response to injury, activating c-Jun, and promoting SC survival. To identify novel LRP1 ligands released in PNS injury, we applied a discovery-based approach in which extracellular proteins in the injured nerve were captured using Fc-fusion proteins containing the ligand-binding motifs of LRP1 (CCR2 and CCR4). An intracellular neuron-specific protein, Protein Kinase C and Casein Kinase Substrate in Neurons (PACSIN1) was identified and validated as an LRP1 ligand. Recombinant PACSIN1 activated c-Jun and ERK1/2 in cultured SCs. Silencing Lrp1 or inhibiting the LRP1 cell-signaling co-receptor, the NMDA-R, blocked the effects of PACSIN1 on c-Jun and ERK1/2 phosphorylation. Intraneural injection of PACSIN1 into crush-injured sciatic nerves activated c-Jun in wild-type mice, but not in mice in which Lrp1 is conditionally deleted in SCs. Transcriptome profiling of SCs revealed that PACSIN1 mediates gene expression events consistent with transformation to the repair phenotype. PACSIN1 promoted SC migration and viability following the TNFα challenge. When Src family kinases were pharmacologically inhibited or the receptor tyrosine kinase, TrkC, was genetically silenced or pharmacologically inhibited, PACSIN1 failed to induce cell signaling and prevent SC death. Collectively, these studies demonstrate that PACSIN1 is a novel axon-derived LRP1 ligand that activates SC repair signaling by transactivating TrkC.
Collapse
Affiliation(s)
- Stefano Martellucci
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Andreas Flütsch
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Mark Carter
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Masaki Norimoto
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Elisabetta Mantuano
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Mahrou Sadri
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Zixuan Wang
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Daisy Chillin-Fuentes
- Center for Computational Biology & Bioinformatics, Altman Clinical & Translational Research Institute, University of California San Diego, La Jolla, California, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Altman Clinical & Translational Research Institute, University of California San Diego, La Jolla, California, USA
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Wendy M Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
- Program in Neurosciences, University of California San Diego, La Jolla, California, USA
- Division of Research, San Diego VA Health Care System, San Diego, California, USA
| |
Collapse
|
3
|
Chambel SS, Cruz CD. Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation. Neural Regen Res 2023; 18:2573-2581. [PMID: 37449592 DOI: 10.4103/1673-5374.373674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
Collapse
Affiliation(s)
- Sílvia Sousa Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Li X, Pu X, Wang X, Wang J, Liao X, Huang Z, Yin G. A dual-targeting peptide for glioblastoma screened by phage display peptide library biopanning combined with affinity-adaptability analysis. Int J Pharm 2023; 644:123306. [PMID: 37572856 DOI: 10.1016/j.ijpharm.2023.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
The obstruction of blood-brain barrier (BBB) and the poor specific targeting are still the major obstacles and challenges of targeted nano-pharmaceutical therapy for glioblastoma (GBM) up to now. It is critical to find appropriate targeting ligands that can effectively mediate the nano-pharmaceuticals to penetrate brain capillary endothelial cells (BCECs) and then specifically bind to glioblastoma cells (GCs). Herein, a dual-targeting ligand for GBM was screened by the combination of phage display peptide library biopanning and affinity-adaptability analysis. Based on the acquisition of sub-library of peptide which exhibited the specific affinity to both BCECs and GCs, a comparison parameter of relative affinity was deliberately introduced to evaluate the relative affinity of candidate peptides to U251-MG cells and bEnd.3 cells. The optimized WTW peptide (sequenced as WTWEYTK) was provided with a high relative affinity (RU/B = 2.44), implying that its high affinity to U251-MG cells and moderate affinity to bEnd.3 cells might synergistically promote its receptor-mediated internalization and transport, the dissociation from bEnd.3, and the binding to U251-MG. The results of BBB model trials in vitro showed that the BBB penetration efficiency and GBM accumulation of WTW peptide were significantly higher than those of WSL peptide, GNH peptide, and REF peptide. Results of orthotopic GBM xenograft model assays in vivo also indicated that WTW peptide had successfully penetrated the BBB and improved accumulation in GBM. The screened WTW peptide might be the potential dual-targeting ligand to motivate the advancement of GBM targeted therapy.
Collapse
Affiliation(s)
- Xiaoxu Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xingming Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Zhongbin Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
5
|
Mantuano E, Zampieri C, Azmoon P, Gunner CB, Heye KR, Gonias SL. An LRP1-binding motif in cellular prion protein replicates cell-signaling activities of the full-length protein. JCI Insight 2023; 8:e170121. [PMID: 37368488 PMCID: PMC10445690 DOI: 10.1172/jci.insight.170121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) functions as a receptor for nonpathogenic cellular prion protein (PrPC), which is released from cells by ADAM (a disintegrin and metalloproteinase domain) proteases or in extracellular vesicles. This interaction activates cell signaling and attenuates inflammatory responses. We screened 14-mer PrPC-derived peptides and identified a putative LRP1 recognition motif in the PrPC sequence spanning residues 98-111. A synthetic peptide (P3) corresponding to this region replicated the cell-signaling and biological activities of full-length shed PrPC. P3 blocked LPS-elicited cytokine expression in macrophages and microglia and rescued the heightened sensitivity to LPS in mice in which the PrPC gene (Prnp) had been deleted. P3 activated ERK1/2 and induced neurite outgrowth in PC12 cells. The response to P3 required LRP1 and the NMDA receptor and was blocked by the PrPC-specific antibody, POM2. P3 has Lys residues, which are typically necessary for LRP1 binding. Converting Lys100 and Lys103 into Ala eliminated the activity of P3, suggesting that these residues are essential in the LRP1-binding motif. A P3 derivative in which Lys105 and Lys109 were converted into Ala retained activity. We conclude that the biological activities of shed PrPC, attributed to interaction with LRP1, are retained in synthetic peptides, which may be templates for therapeutics development.
Collapse
|
6
|
Faissner A. Low-density lipoprotein receptor-related protein-1 (LRP1) in the glial lineage modulates neuronal excitability. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1190240. [PMID: 37383546 PMCID: PMC10293750 DOI: 10.3389/fnetp.2023.1190240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CNS, it has primarily been studied as a receptor and clearance agent of pathogenic factors such as Aβ-peptide and, lately, Tau protein that is relevant for tissue homeostasis and protection against neurodegenerative processes. Recently, it was found that LRP1 expresses the Lewis-X (Lex) carbohydrate motif and is expressed in the neural stem cell compartment. The removal of Lrp1 from the cortical radial glia compartment generates a strong phenotype with severe motor deficits, seizures and a reduced life span. The present review discusses approaches that have been taken to address the neurodevelopmental significance of LRP1 by creating novel, lineage-specific constitutive or conditional knockout mouse lines. Deficits in the stem cell compartment may be at the root of severe CNS pathologies.
Collapse
|
7
|
Velmurugan GV, Hubbard WB, Prajapati P, Vekaria HJ, Patel SP, Rabchevsky AG, Sullivan PG. LRP1 Deficiency Promotes Mitostasis in Response to Oxidative Stress: Implications for Mitochondrial Targeting after Traumatic Brain Injury. Cells 2023; 12:1445. [PMID: 37408279 PMCID: PMC10217498 DOI: 10.3390/cells12101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
The brain undergoes oxidative stress and mitochondrial dysfunction following physiological insults such as Traumatic brain injury (TBI), ischemia-reperfusion, and stroke. Pharmacotherapeutics targeting mitochondria (mitoceuticals) against oxidative stress include antioxidants, mild uncouplers, and enhancers of mitochondrial biogenesis, which have been shown to improve pathophysiological outcomes after TBI. However, to date, there is no effective treatment for TBI. Studies have suggested that the deletion of LDL receptor-related protein 1 (LRP1) in adult neurons or glial cells could be beneficial and promote neuronal health. In this study, we used WT and LRP1 knockout (LKO) mouse embryonic fibroblast cells to examine mitochondrial outcomes following exogenous oxidative stress. Furthermore, we developed a novel technique to measure mitochondrial morphometric dynamics using transgenic mitochondrial reporter mice mtD2g (mitochondrial-specific Dendra2 green) in a TBI model. We found that oxidative stress increased the quantity of fragmented and spherical-shaped mitochondria in the injury core of the ipsilateral cortex following TBI, whereas rod-like elongated mitochondria were seen in the corresponding contralateral cortex. Critically, LRP1 deficiency significantly decreased mitochondrial fragmentation, preserving mitochondrial function and cell growth following exogenous oxidative stress. Collectively, our results show that targeting LRP1 to improve mitochondrial function is a potential pharmacotherapeutic strategy against oxidative damage in TBI and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Gopal V. Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Paresh Prajapati
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| | - Samir P. Patel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Alexander G. Rabchevsky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
8
|
Siddiqui SS. Non-canonical roles of Siglecs: Beyond sialic acid-binding and immune cell modulation. Mol Aspects Med 2023; 90:101145. [PMID: 36153172 DOI: 10.1016/j.mam.2022.101145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Siglecs (Sialic acid-binding immunoglobulin-type lectins) are I-type lectins that bind with sialic acid ligands (Sia). Most are expressed on the surface of leukocytes and are involved in immune regulation and possess immune tyrosine-based inhibitory motif (ITIM) in the intracellular domain, thus leading to inhibition of the immune response. This signaling is instrumental in maintaining quiescence under physiological conditions and acts as a brake for inflammatory cascades. By contrast, activating Siglecs carry positively charged residues in the transmembrane domain and interact with immune tyrosine-based activating motif (ITAM)-containing proteins, a DNAX-activating protein of 10-12 kDa (DAP10/12), to activate immune cells. There are various characteristics of Siglecs that do not fit within the classification of Siglec receptors as being either inhibitory or activating in nature. This review focuses on elucidating the non-canonical functions and interactions of Siglec receptors, which include Sia-independent interactions such as protein-protein interactions and interactions with lipids or other sugars. This review also summarizes Siglec expression and function on non-immune cells, and non-classical signaling of the receptor. Thus, this review will be beneficial to researchers interested in the field of Siglecs and sialic acid biology.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, United Kingdom.
| |
Collapse
|
9
|
The LRP1/CD91 ligands, tissue-type plasminogen activator, α 2-macroglobulin, and soluble cellular prion protein have distinct co-receptor requirements for activation of cell-signaling. Sci Rep 2022; 12:17594. [PMID: 36266319 PMCID: PMC9585055 DOI: 10.1038/s41598-022-22498-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
LDL Receptor-related Protein-1 (LRP1/CD91) binds diverse ligands, many of which activate cell-signaling. Herein, we compared three LRP1 ligands that inhibit inflammatory responses triggered by lipopolysaccharide (LPS), including: enzymatically-inactive tissue-type plasminogen activator (EI-tPA); activated α2-macroglobulin (α2M); and S-PrP, a soluble derivative of nonpathogenic cellular prion protein (PrPC). In bone marrow-derived macrophages, the N-methyl-D-aspartate receptor was essential for all three LRP1 ligands to activate cell-signaling and inhibit LPS-induced cytokine expression. Intact lipid rafts also were essential. Only α2M absolutely required LRP1. LRP1 decreased the EI-tPA concentration required to activate cell-signaling and antagonize LPS but was not essential, mimicking its role as a S-PrP co-receptor. Membrane-anchored PrPC also functioned as a co-receptor for EI-tPA and α2M, decreasing the ligand concentration required for cell-signaling and LPS antagonism; however, when the concentration of EI-tPA or α2M was sufficiently increased, cell-signaling and LPS antagonism occurred independently of PrPC. S-PrP is the only LRP1 ligand in this group that activated cell-signaling independently of membrane-anchored PrPC. EI-tPA, α2M, and S-PrP inhibited LPS-induced LRP1 shedding from macrophages, a process that converts LRP1 into a pro-inflammatory product. Differences in the co-receptors required for anti-inflammatory activity may explain why LRP1 ligands vary in ability to target macrophages in different differentiation states.
Collapse
|
10
|
Stewart VD, Cadieux J, Thulasiram MR, Douglas TC, Drewnik DA, Selamat S, Lao Y, Spicer V, Hannila SS. Myelin‐associated glycoprotein alters the neuronal secretome and stimulates the release of
TGFβ
and proteins that affect neural plasticity. FEBS Lett 2022; 596:2952-2973. [DOI: 10.1002/1873-3468.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Vanessa D. Stewart
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Justine Cadieux
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Matsya R. Thulasiram
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Tinsley Claire Douglas
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Dennis A. Drewnik
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Suhaila Selamat
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Ying Lao
- Centre for Proteomics and Systems Biology University of Manitoba Room 799, John Buhler Research Centre, 715 McDermot Avenue R3E 3P4 Winnipeg Manitoba Canada
| | - Victor Spicer
- Centre for Proteomics and Systems Biology University of Manitoba Room 799, John Buhler Research Centre, 715 McDermot Avenue R3E 3P4 Winnipeg Manitoba Canada
| | - Sari S. Hannila
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| |
Collapse
|
11
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
One Raft to Guide Them All, and in Axon Regeneration Inhibit Them. Int J Mol Sci 2021; 22:ijms22095009. [PMID: 34066896 PMCID: PMC8125918 DOI: 10.3390/ijms22095009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Central nervous system damage caused by traumatic injuries, iatrogenicity due to surgical interventions, stroke and neurodegenerative diseases is one of the most prevalent reasons for physical disability worldwide. During development, axons must elongate from the neuronal cell body to contact their precise target cell and establish functional connections. However, the capacity of the adult nervous system to restore its functionality after injury is limited. Given the inefficacy of the nervous system to heal and regenerate after damage, new therapies are under investigation to enhance axonal regeneration. Axon guidance cues and receptors, as well as the molecular machinery activated after nervous system damage, are organized into lipid raft microdomains, a term typically used to describe nanoscale membrane domains enriched in cholesterol and glycosphingolipids that act as signaling platforms for certain transmembrane proteins. Here, we systematically review the most recent findings that link the stability of lipid rafts and their composition with the capacity of axons to regenerate and rebuild functional neural circuits after damage.
Collapse
|
13
|
Kalinski AL, Yoon C, Huffman LD, Duncker PC, Kohen R, Passino R, Hafner H, Johnson C, Kawaguchi R, Carbajal KS, Jara JS, Hollis E, Geschwind DH, Segal BM, Giger RJ. Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. eLife 2020; 9:60223. [PMID: 33263277 PMCID: PMC7735761 DOI: 10.7554/elife.60223] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6Chigh monocytes infiltrate the nerve first and rapidly give way to Ly6Cnegative inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. Macrophages at the nerve crush site are molecularly distinct from macrophages associated with Wallerian degeneration. In the injured nerve, macrophages ‘eat’ apoptotic leukocytes, a process called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-CSF-deficient (Csf2-/-) mice, inflammation resolution is delayed and conditioning-lesion-induced regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation resolution in the nerve is required for conditioning-lesion-induced neurorepair.
Collapse
Affiliation(s)
- Ashley L Kalinski
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Choya Yoon
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Lucas D Huffman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States
| | - Patrick C Duncker
- Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Kevin S Carbajal
- Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
| | | | - Edmund Hollis
- Burke Neurological Institute, White Plains, United States.,The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Benjamin M Segal
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, United States.,The Neurological Institute, The Ohio State University, Columbus, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States.,Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
14
|
Auderset L, Pitman KA, Cullen CL, Pepper RE, Taylor BV, Foa L, Young KM. Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Is a Negative Regulator of Oligodendrocyte Progenitor Cell Differentiation in the Adult Mouse Brain. Front Cell Dev Biol 2020; 8:564351. [PMID: 33282858 PMCID: PMC7691426 DOI: 10.3389/fcell.2020.564351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is a large, endocytic cell surface receptor that is highly expressed by oligodendrocyte progenitor cells (OPCs) and LRP1 expression is rapidly downregulated as OPCs differentiate into oligodendrocytes (OLs). We report that the conditional deletion of Lrp1 from adult mouse OPCs (Pdgfrα-CreER :: Lrp1fl/fl) increases the number of newborn, mature myelinating OLs added to the corpus callosum and motor cortex. As these additional OLs extend a normal number of internodes that are of a normal length, Lrp1-deletion increases adult myelination. OPC proliferation is also elevated following Lrp1 deletion in vivo, however, this may be a secondary, homeostatic response to increased OPC differentiation, as our in vitro experiments show that LRP1 is a direct negative regulator of OPC differentiation, not proliferation. Deleting Lrp1 from adult OPCs also increases the number of newborn mature OLs added to the corpus callosum in response to cuprizone-induced demyelination. These data suggest that the selective blockade of LRP1 function on adult OPCs may enhance myelin repair in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Lisa Foa
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
15
|
Mantuano E, Azmoon P, Banki MA, Lam MS, Sigurdson CJ, Gonias SL. A soluble derivative of PrP C activates cell-signaling and regulates cell physiology through LRP1 and the NMDA receptor. J Biol Chem 2020; 295:14178-14188. [PMID: 32788217 DOI: 10.1074/jbc.ra120.013779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/04/2020] [Indexed: 11/06/2022] Open
Abstract
Cellular prion protein (PrPC) is a widely expressed glycosylphosphatidylinositol-anchored membrane protein. Scrapie prion protein is a misfolded and aggregated form of PrPC responsible for prion-induced neurodegenerative diseases. Understanding the function of the nonpathogenic PrPC monomer is an important objective. PrPC may be shed from the cell surface to generate soluble derivatives. Herein, we studied a recombinant derivative of PrPC (soluble cellular prion protein, S-PrP) that corresponds closely in sequence to a soluble form of PrPC shed from the cell surface by proteases in the A Disintegrin And Metalloprotease (ADAM) family. S-PrP activated cell-signaling in PC12 and N2a cells. TrkA was transactivated by Src family kinases and extracellular signal-regulated kinase 1/2 was activated downstream of Trk receptors. These cell-signaling events were dependent on the N-methyl-d-aspartate receptor (NMDA-R) and low-density lipoprotein receptor-related protein-1 (LRP1), which functioned as a cell-signaling receptor system in lipid rafts. Membrane-anchored PrPC and neural cell adhesion molecule were not required for S-PrP-initiated cell-signaling. S-PrP promoted PC12 cell neurite outgrowth. This response required the NMDA-R, LRP1, Src family kinases, and Trk receptors. In Schwann cells, S-PrP interacted with the LRP1/NMDA-R system to activate extracellular signal-regulated kinase 1/2 and promote cell migration. The effects of S-PrP on PC12 cell neurite outgrowth and Schwann cell migration were similar to those caused by other proteins that engage the LRP1/NMDA-R system, including activated α2-macroglobulin and tissue-type plasminogen activator. Collectively, these results demonstrate that shed forms of PrPC may exhibit important biological activities in the central nervous system and the peripheral nervous system by serving as ligands for the LRP1/NMDA-R system.
Collapse
Affiliation(s)
- Elisabetta Mantuano
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Michael A Banki
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Michael S Lam
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Christina J Sigurdson
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
16
|
Wilson ER, Della-Flora Nunes G, Weaver MR, Frick LR, Feltri ML. Schwann cell interactions during the development of the peripheral nervous system. Dev Neurobiol 2020; 81:464-489. [PMID: 32281247 DOI: 10.1002/dneu.22744] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
Schwann cells play a critical role in the development of the peripheral nervous system (PNS), establishing important relationships both with the extracellular milieu and other cell types, particularly neurons. In this review, we discuss various Schwann cell interactions integral to the proper establishment, spatial arrangement, and function of the PNS. We include signals that cascade onto Schwann cells from axons and from the extracellular matrix, bidirectional signals that help to establish the axo-glial relationship and how Schwann cells in turn support the axon. Further, we speculate on how Schwann cell interactions with other components of the developing PNS ultimately promote the complete construction of the peripheral nerve.
Collapse
Affiliation(s)
- Emma R Wilson
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luciana R Frick
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
17
|
Kurihara Y, Takai T, Takei K. Nogo receptor antagonist LOTUS exerts suppression on axonal growth-inhibiting receptor PIR-B. J Neurochem 2020; 155:285-299. [PMID: 32201946 DOI: 10.1111/jnc.15013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 01/08/2023]
Abstract
Damaged axons in the adult mammalian central nervous system have a restricted regenerative capacity mainly because of Nogo protein, which is a major myelin-associated axonal growth inhibitor with binding to both receptors of Nogo receptor-1 (NgR1) and paired immunoglobulin-like receptor (PIR)-B. Lateral olfactory tract usher substance (LOTUS) exerts complete suppression of NgR1-mediated axonal growth inhibition by antagonizing NgR1. However, the regulation of PIR-B functions in neurons remains unknown. In this study, protein-protein interactions analyses found that LOTUS binds to PIR-B and abolishes Nogo-binding to PIR-B completely. Reverse transcription-polymerase chain reaction and immunocytochemistry revealed that PIR-B is expressed in dorsal root ganglions (DRGs) from wild-type and Ngr1-deficient mice (male and female). In these DRG neurons, Nogo induced growth cone collapse and neurite outgrowth inhibition, but treatment with the soluble form of LOTUS completely suppressed them. Moreover, Nogo-induced growth cone collapse and neurite outgrowth inhibition in Ngr1-deficient DRG neurons were neutralized by PIR-B function-blocking antibodies, indicating that these Nogo-induced phenomena were mediated by PIR-B. Our data show that LOTUS negatively regulates a PIR-B function. LOTUS thus exerts an antagonistic action on both receptors of NgR1 and PIR-B. This may lead to an improvement in the defective regeneration of axons following injury.
Collapse
Affiliation(s)
- Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| |
Collapse
|
18
|
Nikulina E, Gkioka V, Siddiq MM, Mellado W, Hilaire M, Cain CR, Hannila SS, Filbin MT. Myelin-associated glycoprotein inhibits neurite outgrowth through inactivation of the small GTPase Rap1. FEBS Lett 2020; 594:1389-1402. [PMID: 31985825 DOI: 10.1002/1873-3468.13740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/05/2022]
Abstract
Rap1 is a small GTPase that has been implicated in dendritic development and plasticity. In this study, we investigated the role of Rap1 in axonal growth and its activation in response to neurotrophins and myelin-associated inhibitors. We report that Rap1 is activated by brain-derived neurotrophic factor and that this activation can be blocked by myelin-associated glycoprotein (MAG) or central nervous system myelin, which also induced increases in Rap1GAP1 levels. In addition, we demonstrate that adenoviral overexpression of Rap1 enhances neurite outgrowth in the presence of MAG and myelin, while inhibition of Rap1 activity through overexpression of Rap1GAP1 blocks neurite outgrowth. These findings suggest that Rap1GAP1 negatively regulates neurite outgrowth, making it a potential therapeutic target to promote axonal regeneration.
Collapse
Affiliation(s)
- Elena Nikulina
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| | - Vasiliki Gkioka
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| | - Mustafa M Siddiq
- Icahn Medical Institute 12-52, Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Melissa Hilaire
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| | - Christine R Cain
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| | - Sari S Hannila
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marie T Filbin
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| |
Collapse
|
19
|
Au DT, Arai AL, Fondrie WE, Muratoglu SC, Strickland DK. Role of the LDL Receptor-Related Protein 1 in Regulating Protease Activity and Signaling Pathways in the Vasculature. Curr Drug Targets 2019; 19:1276-1288. [PMID: 29749311 DOI: 10.2174/1389450119666180511162048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
Aortic aneurysms represent a significant clinical problem as they largely go undetected until a rupture occurs. Currently, an understanding of mechanisms leading to aneurysm formation is limited. Numerous studies clearly indicate that vascular smooth muscle cells play a major role in the development and response of the vasculature to hemodynamic changes and defects in these responses can lead to aneurysm formation. The LDL receptor-related protein 1 (LRP1) is major smooth muscle cell receptor that has the capacity to mediate the endocytosis of numerous ligands and to initiate and regulate signaling pathways. Genetic evidence in humans and mouse models reveal a critical role for LRP1 in maintaining the integrity of the vasculature. Understanding the mechanisms by which this is accomplished represents an important area of research, and likely involves LRP1's ability to regulate levels of proteases known to degrade the extracellular matrix as well as its ability to modulate signaling events.
Collapse
Affiliation(s)
- Dianaly T Au
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - Allison L Arai
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - William E Fondrie
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States
| | - Selen C Muratoglu
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, Biopark I, R213, 800 W. Baltimore Street, Baltimore, Maryland 21201, MD, United States.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, MD, United States
| |
Collapse
|
20
|
Bres EE, Faissner A. Low Density Receptor-Related Protein 1 Interactions With the Extracellular Matrix: More Than Meets the Eye. Front Cell Dev Biol 2019; 7:31. [PMID: 30931303 PMCID: PMC6428713 DOI: 10.3389/fcell.2019.00031] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—functions shared by low density lipoprotein receptor family members—but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
21
|
Brifault C, Kwon H, Campana WM, Gonias SL. LRP1 deficiency in microglia blocks neuro-inflammation in the spinal dorsal horn and neuropathic pain processing. Glia 2019; 67:1210-1224. [PMID: 30746765 DOI: 10.1002/glia.23599] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 01/29/2023]
Abstract
Following injury to the peripheral nervous system (PNS), microglia in the spinal dorsal horn (SDH) become activated and contribute to the development of local neuro-inflammation, which may regulate neuropathic pain processing. The molecular mechanisms that control microglial activation and its effects on neuropathic pain remain incompletely understood. We deleted the gene encoding the plasma membrane receptor, LDL Receptor-related Protein-1 (LRP1), conditionally in microglia using two distinct promoter-Cre recombinase systems in mice. LRP1 deletion in microglia blocked development of tactile allodynia, a neuropathic pain-related behavior, after partial sciatic nerve ligation (PNL). LRP1 deletion also substantially attenuated microglial activation and pro-inflammatory cytokine expression in the SDH following PNL. Because LRP1 shedding from microglial plasma membranes generates a highly pro-inflammatory soluble product, we demonstrated that factors which activate spinal cord microglia, including lipopolysaccharide (LPS) and colony-stimulating factor-1, promote LRP1 shedding. Proteinases known to mediate LRP1 shedding, including ADAM10 and ADAM17, were expressed at increased levels in the SDH after PNL. Furthermore, LRP1-deficient microglia in cell culture expressed significantly decreased levels of interleukin-1β and interleukin-6 when treated with LPS. We conclude that in the SDH, microglial LRP1 plays an important role in establishing and/or amplifying local neuro-inflammation and neuropathic pain following PNS injury. The responsible mechanism most likely involves proteolytic release of LRP1 from the plasma membrane to generate a soluble product that functions similarly to pro-inflammatory cytokines in mediating crosstalk between cells in the SDH and in regulating neuropathic pain.
Collapse
Affiliation(s)
- Coralie Brifault
- Department of Pathology, University of California San Diego, La Jolla, California.,Department of Anesthesiology, University of California San Diego, La Jolla, California
| | - HyoJun Kwon
- Department of Anesthesiology, University of California San Diego, La Jolla, California
| | - Wendy M Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, California.,Department of Anesthesiology, Veterans Administration San Diego HealthCare System, San Diego, California
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California
| |
Collapse
|
22
|
Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol Rev Camb Philos Soc 2018; 93:1339-1362. [PMID: 29446228 PMCID: PMC6055631 DOI: 10.1111/brv.12398] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Integrins are cell surface receptors that form the link between extracellular matrix molecules of the cell environment and internal cell signalling and the cytoskeleton. They are involved in several processes, e.g. adhesion and migration during development and repair. This review focuses on the role of integrins in axonal regeneration. Integrins participate in spontaneous axonal regeneration in the peripheral nervous system through binding to various ligands that either inhibit or enhance their activation and signalling. Integrin biology is more complex in the central nervous system. Integrins receptors are transported into growing axons during development, but selective polarised transport of integrins limits the regenerative response in adult neurons. Manipulation of integrins and related molecules to control their activation state and localisation within axons is a promising route towards stimulating effective regeneration in the central nervous system.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
| | - Barbara Haenzi
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
| | | | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)1105 BAAmsterdamThe Netherlands
- Centre for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit Amsterdam1081 HVAmsterdamThe Netherlands
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0PYU.K.
- Centre of Reconstructive NeuroscienceInstitute of Experimental Medicine142 20Prague 4Czech Republic
| |
Collapse
|
23
|
Lin JP, Mironova YA, Shrager P, Giger RJ. LRP1 regulates peroxisome biogenesis and cholesterol homeostasis in oligodendrocytes and is required for proper CNS myelin development and repair. eLife 2017; 6:30498. [PMID: 29251594 PMCID: PMC5752207 DOI: 10.7554/elife.30498] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling molecule broadly expressed by neurons and glia. In adult mice, global inducible (Lrp1flox/flox;CAG-CreER) or oligodendrocyte (OL)-lineage specific ablation (Lrp1flox/flox;Pdgfra-CreER) of Lrp1 attenuates repair of damaged white matter. In oligodendrocyte progenitor cells (OPCs), Lrp1 is required for cholesterol homeostasis and differentiation into mature OLs. Lrp1-deficient OPC/OLs show a strong increase in the sterol-regulatory element-binding protein-2 yet are unable to maintain normal cholesterol levels, suggesting more global metabolic deficits. Mechanistic studies revealed a decrease in peroxisomal biogenesis factor-2 and fewer peroxisomes in OL processes. Treatment of Lrp1−/− OPCs with cholesterol or activation of peroxisome proliferator-activated receptor-γ with pioglitazone alone is not sufficient to promote differentiation; however, when combined, cholesterol and pioglitazone enhance OPC differentiation into mature OLs. Collectively, our studies reveal a novel role for Lrp1 in peroxisome biogenesis, lipid homeostasis, and OPC differentiation during white matter development and repair.
Collapse
Affiliation(s)
- Jing-Ping Lin
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Yevgeniya A Mironova
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter Shrager
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, United States.,Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.,Interdepartmental Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Gonias SL, Karimi-Mostowfi N, Murray SS, Mantuano E, Gilder AS. Expression of LDL receptor-related proteins (LRPs) in common solid malignancies correlates with patient survival. PLoS One 2017; 12:e0186649. [PMID: 29088295 PMCID: PMC5663383 DOI: 10.1371/journal.pone.0186649] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
LDL receptor-related proteins (LRPs) are transmembrane receptors involved in endocytosis, cell-signaling, and trafficking of other cellular proteins. Considerable work has focused on LRPs in the fields of vascular biology and neurobiology. How these receptors affect cancer progression in humans remains largely unknown. Herein, we mined provisional databases in The Cancer Genome Atlas (TCGA) to compare expression of thirteen LRPs in ten common solid malignancies in patients. Our first goal was to determine the abundance of LRP mRNAs in each type of cancer. Our second goal was to determine whether expression of LRPs is associated with improved or worsened patient survival. In total, data from 4,629 patients were mined. In nine of ten cancers studied, the most abundantly expressed LRP was LRP1; however, a correlation between LRP1 mRNA expression and patient survival was observed only in bladder urothelial carcinoma. In this malignancy, high levels of LRP1 mRNA were associated with worsened patient survival. High levels of LDL receptor (LDLR) mRNA were associated with decreased patient survival in pancreatic adenocarcinoma. High levels of LRP10 mRNA were associated with decreased patient survival in hepatocellular carcinoma, lung adenocarcinoma, and pancreatic adenocarcinoma. LRP2 was the only LRP for which high levels of mRNA expression correlated with improved patient survival. This correlation was observed in renal clear cell carcinoma. Insights into LRP gene expression in human cancers and their effects on patient survival should guide future research.
Collapse
Affiliation(s)
- Steven L. Gonias
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Nicki Karimi-Mostowfi
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Sarah S. Murray
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Elisabetta Mantuano
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
- The Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrew S. Gilder
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
25
|
Mantuano E, Azmoon P, Brifault C, Banki MA, Gilder AS, Campana WM, Gonias SL. Tissue-type plasminogen activator regulates macrophage activation and innate immunity. Blood 2017; 130:1364-1374. [PMID: 28684538 PMCID: PMC5600142 DOI: 10.1182/blood-2017-04-780205] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/03/2017] [Indexed: 01/29/2023] Open
Abstract
Tissue-type plasminogen activator (tPA) is the major intravascular activator of fibrinolysis and a ligand for receptors involved in cell signaling. In cultured macrophages, tPA inhibits the response to lipopolysaccharide (LPS) by a pathway that apparently requires low-density lipoprotein receptor-related protein-1 (LRP1). Herein, we show that the mechanism by which tPA neutralizes LPS involves rapid reversal of IκBα phosphorylation. tPA independently induced transient IκBα phosphorylation and extracellular signal-regulated kinase 1/2 (ERK1/2) activation in macrophages; however, these events did not trigger inflammatory mediator expression. The tPA signaling response was distinguished from the signature of signaling events elicited by proinflammatory LRP1 ligands, such as receptor-associated protein (RAP), which included sustained IκBα phosphorylation and activation of all 3 MAP kinases (ERK1/2, c-Jun kinase, and p38 MAP kinase). Enzymatically active and inactive tPA demonstrated similar immune modulatory activity. Intravascular administration of enzymatically inactive tPA in mice blocked the toxicity of LPS. In mice not treated with exogenous tPA, the plasma concentration of endogenous tPA increased 3-fold in response to LPS, to 116 ± 15 pM, but remained below the approximate threshold for eliciting anti-inflammatory cell signaling in macrophages (∼2.0 nM). This threshold is readily achieved in patients when tPA is administered therapeutically for stroke. In addition to LRP1, we demonstrate that the N-methyl-D-aspartic acid receptor (NMDA-R) is expressed by macrophages and essential for anti-inflammatory cell signaling and regulation of cytokine expression by tPA. The NMDA-R and Toll-like receptor-4 were not required for proinflammatory RAP signaling. By mediating the tPA response in macrophages, the NMDA-R provides a pathway by which the fibrinolysis system may regulate innate immunity.
Collapse
Affiliation(s)
- Elisabetta Mantuano
- Department of Pathology, University of California, San Diego, La Jolla, CA
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy; and
| | - Pardis Azmoon
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Coralie Brifault
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Michael A Banki
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Andrew S Gilder
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Wendy M Campana
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA
| | - Steven L Gonias
- Department of Pathology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
26
|
Myelin-Associated Glycoprotein Inhibits Schwann Cell Migration and Induces Their Death. J Neurosci 2017; 37:5885-5899. [PMID: 28522736 DOI: 10.1523/jneurosci.1822-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 11/21/2022] Open
Abstract
Remyelination of CNS axons by Schwann cells (SCs) is not efficient, in part due to the poor migration of SCs into the adult CNS. Although it is known that migrating SCs avoid white matter tracts, the molecular mechanisms underlying this exclusion have never been elucidated. We now demonstrate that myelin-associated glycoprotein (MAG), a well known inhibitor of neurite outgrowth, inhibits rat SC migration and induces their death via γ-secretase-dependent regulated intramembrane proteolysis of the p75 neurotrophin receptor (also known as p75 cleavage). Blocking p75 cleavage using inhibitor X (Inh X), a compound that inhibits γ-secretase activity before exposing to MAG or CNS myelin improves SC migration and survival in vitro Furthermore, mouse SCs pretreated with Inh X migrate extensively in the demyelinated mouse spinal cord and remyelinate axons. These results suggest a novel role for MAG/myelin in poor SC-myelin interaction and identify p75 cleavage as a mechanism that can be therapeutically targeted to enhance SC-mediated axon remyelination in the adult CNS.SIGNIFICANCE STATEMENT Numerous studies have used Schwann cells, the myelin-making cells of the peripheral nervous system to remyelinate adult CNS axons. Indeed, these transplanted cells successfully remyelinate axons, but unfortunately they do not migrate far and so remyelinate only a few axons in the vicinity of the transplant site. It is believed that if Schwann cells could be induced to migrate further and survive better, they may represent a valid therapy for remyelination. We show that myelin-associated glycoprotein or CNS myelin, in general, inhibit rodent Schwann cell migration and induce their death via cleavage of the neurotrophin receptor p75. Blockade of p75 cleavage using a specific inhibitor significantly improves migration and survival of the transplanted Schwann cells in vivo.
Collapse
|
27
|
Hannila S, Mellado W. Editorial: Myelin-Mediated Inhibition of Axonal Regeneration: Past, Present, and Future. Front Mol Neurosci 2017; 10:113. [PMID: 28503131 PMCID: PMC5408083 DOI: 10.3389/fnmol.2017.00113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/05/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sari Hannila
- Department of Human Anatomy and Cell Science, College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Wilfredo Mellado
- Laboratory for Axonal and RNA Biology, Burke-Cornell Medical Research InstituteWhite Plains, NY, USA
| |
Collapse
|
28
|
LRP1 influences trafficking of N-type calcium channels via interaction with the auxiliary α 2δ-1 subunit. Sci Rep 2017; 7:43802. [PMID: 28256585 PMCID: PMC5335561 DOI: 10.1038/srep43802] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 01/18/2023] Open
Abstract
Voltage-gated Ca2+ (CaV) channels consist of a pore-forming α1 subunit, which determines the main functional and pharmacological attributes of the channel. The CaV1 and CaV2 channels are associated with auxiliary β- and α2δ-subunits. The molecular mechanisms involved in α2δ subunit trafficking, and the effect of α2δ subunits on trafficking calcium channel complexes remain poorly understood. Here we show that α2δ-1 is a ligand for the Low Density Lipoprotein (LDL) Receptor-related Protein-1 (LRP1), a multifunctional receptor which mediates trafficking of cargoes. This interaction with LRP1 is direct, and is modulated by the LRP chaperone, Receptor-Associated Protein (RAP). LRP1 regulates α2δ binding to gabapentin, and influences calcium channel trafficking and function. Whereas LRP1 alone reduces α2δ-1 trafficking to the cell-surface, the LRP1/RAP combination enhances mature glycosylation, proteolytic processing and cell-surface expression of α2δ-1, and also increase plasma-membrane expression and function of CaV2.2 when co-expressed with α2δ-1. Furthermore RAP alone produced a small increase in cell-surface expression of CaV2.2, α2δ-1 and the associated calcium currents. It is likely to be interacting with an endogenous member of the LDL receptor family to have these effects. Our findings now provide a key insight and new tools to investigate the trafficking of calcium channel α2δ subunits.
Collapse
|
29
|
Calkins DJ, Pekny M, Cooper ML, Benowitz L. The challenge of regenerative therapies for the optic nerve in glaucoma. Exp Eye Res 2017; 157:28-33. [PMID: 28153739 DOI: 10.1016/j.exer.2017.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/12/2017] [Accepted: 01/26/2017] [Indexed: 11/15/2022]
Abstract
This review arose from a discussion of regenerative therapies to treat optic nerve degeneration in glaucoma at the 2015 Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration. In addition to the authors, participants included Jonathan Crowston, Andrew Huberman, Elaine Johnson, Richard Lu, Hemai Phatnami, Rebecca Sappington, and Don Zack. Glaucoma is a neurodegenerative disease of the optic nerve, and is the leading cause of irreversible blindness worldwide. The disease progresses as sensitivity to intraocular pressure (IOP) is conveyed through the optic nerve head to distal retinal ganglion cell (RGC) projections. Because the nerve and retina are components of the central nervous system (CNS), their intrinsic regenerative capacity is limited. However, recent research in regenerative therapies has resulted in multiple breakthroughs that may unlock the optic nerve's regenerative potential. Increasing levels of Schwann-cell derived trophic factors and reducing potent cell-intrinsic suppressors of regeneration have resulted in axonal regeneration even beyond the optic chiasm. Despite this success, many challenges remain. RGC axons must be able to form new connections with their appropriate targets in central brain regions and these connections must be retinotopically correct. Furthermore, for new axons penetrating the optic projection, oligodendrocyte glia must provide myelination. Additionally, reactive gliosis and inflammation that increase the regenerative capacity must be outweigh pro-apoptotic processes to create an environment within which maximal regeneration can occur.
Collapse
Affiliation(s)
- David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37205, USA.
| | - Milos Pekny
- Department of Clinical Neuroscience, Sahlgrenska Academy at University of Gothenburg, 41345, Göteborg, Sweden
| | - Melissa L Cooper
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37205, USA
| | - Larry Benowitz
- Departments of Neurosurgery and Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
30
|
Naito-Matsui Y, Davies LRL, Takematsu H, Chou HH, Tangvoranuntakul P, Carlin AF, Verhagen A, Heyser CJ, Yoo SW, Choudhury B, Paton JC, Paton AW, Varki NM, Schnaar RL, Varki A. Physiological Exploration of the Long Term Evolutionary Selection against Expression of N-Glycolylneuraminic Acid in the Brain. J Biol Chem 2017; 292:2557-2570. [PMID: 28049733 DOI: 10.1074/jbc.m116.768531] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/26/2016] [Indexed: 12/18/2022] Open
Abstract
All vertebrate cell surfaces display a dense glycan layer often terminated with sialic acids, which have multiple functions due to their location and diverse modifications. The major sialic acids in most mammalian tissues are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter being derived from Neu5Ac via addition of one oxygen atom at the sugar nucleotide level by CMP-Neu5Ac hydroxylase (Cmah). Contrasting with other organs that express various ratios of Neu5Ac and Neu5Gc depending on the variable expression of Cmah, Neu5Gc expression in the brain is extremely low in all vertebrates studied to date, suggesting that neural expression is detrimental to animals. However, physiological exploration of the reasons for this long term evolutionary selection has been lacking. To explore the consequences of forced expression of Neu5Gc in the brain, we have established brain-specific Cmah transgenic mice. Such Neu5Gc overexpression in the brain resulted in abnormal locomotor activity, impaired object recognition memory, and abnormal axon myelination. Brain-specific Cmah transgenic mice were also lethally sensitive to a Neu5Gc-preferring bacterial toxin, even though Neu5Gc was overexpressed only in the brain and other organs maintained endogenous Neu5Gc expression, as in wild-type mice. Therefore, the unusually strict evolutionary suppression of Neu5Gc expression in the vertebrate brain may be explained by evasion of negative effects on neural functions and by selection against pathogens.
Collapse
Affiliation(s)
- Yuko Naito-Matsui
- From the Departments of Medicine and Cellular and Molecular Medicine
| | - Leela R L Davies
- From the Departments of Medicine and Cellular and Molecular Medicine
| | - Hiromu Takematsu
- From the Departments of Medicine and Cellular and Molecular Medicine.,the Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Hsun-Hua Chou
- From the Departments of Medicine and Cellular and Molecular Medicine
| | | | - Aaron F Carlin
- From the Departments of Medicine and Cellular and Molecular Medicine
| | - Andrea Verhagen
- From the Departments of Medicine and Cellular and Molecular Medicine
| | | | | | | | - James C Paton
- the Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide SA 5005, Australia
| | - Adrienne W Paton
- the Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide SA 5005, Australia
| | - Nissi M Varki
- Department of Pathology, University of California San Diego, La Jolla, California 92093-0687
| | - Ronald L Schnaar
- Pharmacology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Ajit Varki
- From the Departments of Medicine and Cellular and Molecular Medicine, .,Glycobiology Research and Training Center, and
| |
Collapse
|
31
|
Qian JY, Chopp M, Liu Z. Mesenchymal Stromal Cells Promote Axonal Outgrowth Alone and Synergistically with Astrocytes via tPA. PLoS One 2016; 11:e0168345. [PMID: 27959956 PMCID: PMC5154605 DOI: 10.1371/journal.pone.0168345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/29/2016] [Indexed: 01/21/2023] Open
Abstract
We reported that mesenchymal stromal cells (MSCs) enhance neurological recovery from experimental stroke and increase tissue plasminogen activator (tPA) expression in astrocytes. Here, we investigate mechanisms by which tPA mediates MSC enhanced axonal outgrowth. Primary murine neurons and astrocytes were isolated from wild-type (WT) and tPA-knockout (KO) cortices of embryos. Mouse MSCs (WT) were purchased from Cognate Inc. Neurons (WT or KO) were seeded in soma side of Xona microfluidic chambers, and astrocytes (WT or KO) and/or MSCs in axon side. The chambers were cultured as usual (normoxia) or subjected to oxygen deprivation. Primary neurons (seeded in plates) were co-cultured with astrocytes and/or MSCs (in inserts) for Western blot. In chambers, WT axons grew significantly longer than KO axons and exogenous tPA enhanced axonal outgrowth. MSCs increased WT axonal outgrowth alone and synergistically with WT astrocytes at both normoxia and oxygen deprivation conditions. The synergistic effect was inhibited by U0126, an ERK inhibitor, and receptor associated protein (RAP), a low density lipoprotein receptor related protein 1 (LRP1) ligand antagonist. However, MSCs exerted neither individual nor synergistic effects on KO axonal outgrowth. Western blot showed that MSCs promoted astrocytic tPA expression and increased neuronal tPA alone and synergistically with astrocytes. Also, MSCs activated neuronal ERK alone and synergistically with astrocytes, which was inhibited by RAP. We conclude: (1) MSCs promote axonal outgrowth via neuronal tPA and synergistically with astrocytic tPA; (2) neuronal tPA is critical to observe the synergistic effect of MSC and astrocytes on axonal outgrowth; and (3) tPA mediates MSC treatment-induced axonal outgrowth through the LRP1 receptor and ERK.
Collapse
Affiliation(s)
- Jian-Yong Qian
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
32
|
Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function. Stem Cells Int 2016; 2016:2108495. [PMID: 26949399 PMCID: PMC4754494 DOI: 10.1155/2016/2108495] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/24/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions.
Collapse
|
33
|
LDL receptor-related protein-1 regulates NFκB and microRNA-155 in macrophages to control the inflammatory response. Proc Natl Acad Sci U S A 2016; 113:1369-74. [PMID: 26787872 DOI: 10.1073/pnas.1515480113] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
LDL receptor-related protein-1 (LRP1) is an endocytic and cell-signaling receptor. In mice in which LRP1 is deleted in myeloid cells, the response to lipopolysaccharide (LPS) was greatly exacerbated. LRP1 deletion in macrophages in vitro, under the control of tamoxifen-activated Cre-ER(T) fusion protein, robustly increased expression of proinflammatory cytokines and chemokines. In LRP1-expressing macrophages, proinflammatory mediator expression was regulated by LRP1 ligands in a ligand-specific manner. The LRP1 agonists, α2-macroglobulin and tissue-type plasminogen activator, attenuated expression of inflammatory mediators, even in the presence of LPS. The antagonists, receptor-associated protein (RAP) and lactoferrin (LF), and LRP1-specific antibody had the entirely opposite effect, promoting inflammatory mediator expression and mimicking LRP1 deletion. NFκB was rapidly activated in response to RAP and LF and responsible for the initial increase in expression of proinflammatory mediators. RAP and LF also significantly increased expression of microRNA-155 (miR-155) after a lag phase of about 4 h. miR-155 expression reflected, at least in part, activation of secondary cell-signaling pathways downstream of TNFα. Although miR-155 was not involved in the initial induction of cytokine expression in response to LRP1 antagonists, miR-155 was essential for sustaining the proinflammatory response. We conclude that LRP1, NFκB, and miR-155 function as members of a previously unidentified system that has the potential to inhibit or sustain inflammation, depending on the continuum of LRP1 ligands present in the macrophage microenvironment.
Collapse
|
34
|
Landowski LM, Pavez M, Brown LS, Gasperini R, Taylor BV, West AK, Foa L. Low-density Lipoprotein Receptor-related Proteins in a Novel Mechanism of Axon Guidance and Peripheral Nerve Regeneration. J Biol Chem 2015; 291:1092-102. [PMID: 26598525 PMCID: PMC4714193 DOI: 10.1074/jbc.m115.668996] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Indexed: 11/06/2022] Open
Abstract
The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential. Using embryonic sensory neurons (rat dorsal root ganglia) in a growth cone turning assay, we tested a range of LRP1 and LRP2 ligands for the ability to guide growth cone navigation. Three ligands were chemorepulsive: α-2-macroglobulin, tissue plasminogen activator, and metallothionein III. Conversely, only one LRP ligand, metallothionein II, was found to be chemoattractive. Chemoattraction toward a gradient of metallothionein II was calcium-dependent, required the expression of both LRP1 and LRP2, and likely involves further co-receptors such as the tropomyosin-related kinase A (TrkA) receptor. The potential for LRP-mediated chemoattraction to mediate axonal regeneration was examined in vivo in a model of chemical denervation in adult rats. In these in vivo studies, metallothionein II was shown to enhance epidermal nerve fiber regeneration so that it was complete within 7 days compared with 14 days in saline-treated animals. Our data demonstrate that both LRP1 and LRP2 are necessary for metallothionein II-mediated chemotactic signal transduction and that they may form part of a signaling complex. Furthermore, the data suggest that LRP-mediated chemoattraction represents a novel, non-classical signaling system that has therapeutic potential as a disease-modifying agent for the injured peripheral nervous system.
Collapse
Affiliation(s)
- Lila M Landowski
- From the School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | - Robert Gasperini
- From the School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | |
Collapse
|
35
|
Palandri A, Salvador VR, Wojnacki J, Vivinetto AL, Schnaar RL, Lopez PHH. Myelin-associated glycoprotein modulates apoptosis of motoneurons during early postnatal development via NgR/p75(NTR) receptor-mediated activation of RhoA signaling pathways. Cell Death Dis 2015; 6:e1876. [PMID: 26335717 PMCID: PMC4650434 DOI: 10.1038/cddis.2015.228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/11/2015] [Accepted: 07/02/2015] [Indexed: 01/02/2023]
Abstract
Myelin-associated glycoprotein (MAG) is a minor constituent of nervous system myelin, selectively expressed on the periaxonal myelin wrap. By engaging multiple axonal receptors, including Nogo-receptors (NgRs), MAG exerts a nurturing and protective effect the axons it ensheaths. Pharmacological activation of NgRs has a modulatory role on p75NTR-dependent postnatal apoptosis of motoneurons (MNs). However, it is not clear whether this reflects a physiological role of NgRs in MN development. NgRs are part of a multimeric receptor complex, which includes p75NTR, Lingo-1 and gangliosides. Upon ligand binding, this multimeric complex activates RhoA/ROCK signaling in a p75NTR-dependent manner. The aim of this study was to analyze a possible modulatory role of MAG on MN apoptosis during postnatal development. A time course study showed that Mag-null mice suffer a loss of MNs during the first postnatal week. Also, these mice exhibited increased susceptibility in an animal model of p75NTR-dependent MN apoptosis induced by nerve-crush injury, which was prevented by treatment with a soluble form of MAG (MAG-Fc). The protective role of MAG was confirmed in in vitro models of p75NTR-dependent MN apoptosis using the MN1 cell line and primary cultures. Lentiviral expression of shRNA sequences targeting NgRs on these cells abolished protection by MAG-Fc. Analysis of RhoA activity using a FRET-based RhoA biosensor showed that MAG-Fc activates RhoA. Pharmacological inhibition of p75NTR/RhoA/ROCK pathway, or overexpression of a p75NTR mutant unable to activate RhoA, completely blocked MAG-Fc protection against apoptosis. The role of RhoA/ROCK signaling was further confirmed in the nerve-crush model, where pretreatment with ROCK inhibitor Y-27632 blocked the pro-survival effect of MAG-Fc. These findings identify a new protective role of MAG as a modulator of apoptosis of MNs during postnatal development by a mechanism involving the p75NTR/RhoA/ROCK signaling pathway. Also, our results highlight the relevance of the nurture/protective effects of myelin on neurons.
Collapse
Affiliation(s)
- A Palandri
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - V R Salvador
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - J Wojnacki
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - A L Vivinetto
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - R L Schnaar
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P H H Lopez
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
36
|
Mantuano E, Lam MS, Shibayama M, Campana WM, Gonias SL. The NMDA receptor functions independently and as an LRP1 co-receptor to promote Schwann cell survival and migration. J Cell Sci 2015; 128:3478-88. [PMID: 26272917 DOI: 10.1242/jcs.173765] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/06/2015] [Indexed: 02/01/2023] Open
Abstract
NMDA receptors (NMDA-Rs) are ionotropic glutamate receptors, which associate with LDL-receptor-related protein-1 (LRP1) to trigger cell signaling in response to protein ligands in neurons. Here, we demonstrate for the first time that the NMDA-R is expressed by rat Schwann cells and functions independently and with LRP1 to regulate Schwann cell physiology. The NR1 (encoded by GRIN1) and NR2b (encoded by GRIN2B) NMDA-R subunits were expressed by cultured Schwann cells and upregulated in sciatic nerves following crush injury. The ability of LRP1 ligands to activate ERK1/2 (also known as MAPK3 and MAPK1, respectively) and promote Schwann cell migration required the NMDA-R. NR1 gene silencing compromised Schwann cell survival. Injection of the LRP1 ligands tissue-type plasminogen activator (tPA, also known as PLAT) or MMP9-PEX into crush-injured sciatic nerves activated ERK1/2 in Schwann cells in vivo, and the response was blocked by systemic treatment with the NMDA-R inhibitor MK801. tPA was unique among the LRP1 ligands examined because tPA activated cell signaling and promoted Schwann cell migration by interacting with the NMDA-R independently of LRP1, albeit with delayed kinetics. These results define the NMDA-R as a Schwann cell signaling receptor for protein ligands and a major regulator of Schwann cell physiology, which may be particularly important in peripheral nervous system (PNS) injury.
Collapse
Affiliation(s)
- Elisabetta Mantuano
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Michael S Lam
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Masataka Shibayama
- Department of Anesthesiology, University of California San Diego, La Jolla, CA 92093, USA
| | - W Marie Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, CA 92093, USA The Program in Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
37
|
Reginensi D, Carulla P, Nocentini S, Seira O, Serra-Picamal X, Torres-Espín A, Matamoros-Angles A, Gavín R, Moreno-Flores MT, Wandosell F, Samitier J, Trepat X, Navarro X, del Río JA. Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord. Cell Mol Life Sci 2015; 72:2719-37. [PMID: 25708702 PMCID: PMC11113838 DOI: 10.1007/s00018-015-1869-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 11/29/2022]
Abstract
Olfactory ensheathing cell (OEC) transplantation emerged some years ago as a promising therapeutic strategy to repair injured spinal cord. However, inhibitory molecules are present for long periods of time in lesioned spinal cord, inhibiting both OEC migration and axonal regrowth. Two families of these molecules, chondroitin sulphate proteoglycans (CSPG) and myelin-derived inhibitors (MAIs), are able to trigger inhibitory responses in lesioned axons. Mounting evidence suggests that OEC migration is inhibited by myelin. Here we demonstrate that OEC migration is largely inhibited by CSPGs and that inhibition can be overcome by the bacterial enzyme Chondroitinase ABC. In parallel, we have generated a stable OEC cell line overexpressing the Nogo receptor (NgR) ectodomain to reduce MAI-associated inhibition in vitro and in vivo. Results indicate that engineered cells migrate longer distances than unmodified OECs over myelin or oligodendrocyte-myelin glycoprotein (OMgp)-coated substrates. In addition, they also show improved migration in lesioned spinal cord. Our results provide new insights toward the improvement of the mechanisms of action and optimization of OEC-based cell therapy for spinal cord lesion.
Collapse
Affiliation(s)
- Diego Reginensi
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Patricia Carulla
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Sara Nocentini
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Oscar Seira
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Blusson Spinal Cord Centre and Department of Zoology, Faculty of Science, International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Xavier Serra-Picamal
- Integrative cell and tissue dynamics, Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Abel Torres-Espín
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Edif. M, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
- Grupo de Neurobiología, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Biosanitarias, Universidad Francisco de Vitoria, Pozuelo de Alarcón 28223, Madrid, Spain
| | - Andreu Matamoros-Angles
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Francisco Wandosell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), CBM-UAM, Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Laboratory, . Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
- Department of Electronics, University of Barcelona, Centro de Investigaciòn Médica en Red, Biomecánica, Biomateriales y Nanotecnologìa (CIBERBBN), Barcelona, Spain
| | - Xavier Trepat
- University of Barcelona, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Edif. M, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
- Grupo de Neurobiología, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Biosanitarias, Universidad Francisco de Vitoria, Pozuelo de Alarcón 28223, Madrid, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
38
|
Thiede-Stan NK, Schwab ME. Attractive and repulsive factors act through multi-subunit receptor complexes to regulate nerve fiber growth. J Cell Sci 2015; 128:2403-14. [PMID: 26116576 DOI: 10.1242/jcs.165555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the nervous system, attractive and repulsive factors guide neuronal growth, pathfinding and target innervation during development, learning and regeneration after injury. Repulsive and growth-inhibitory factors, such as some ephrins, semaphorins, netrins and myelin-associated growth inhibitors, restrict nerve fiber growth, whereas neurotrophins, and other ephrins, semaphorins and netrins attract fibers and promote neurite growth. Several of these guidance molecules also play crucial roles in vasculogenesis, and regulate cell migration and tissue formation in different organs. Precise and highly specific signal transduction in space and time is required in all these cases, which primarily depends on the presence and function of specific receptors. Interestingly, many of these ligands act through multi-subunit receptor complexes. In this Commentary, we review the current knowledge of how complexes of the receptors for attractive and repulsive neurite growth regulatory factors are reorganized in a spatial and temporal manner, and reveal the implications that such dynamics have on the signaling events that coordinate neurite fiber growth.
Collapse
Affiliation(s)
- Nina K Thiede-Stan
- Brain Research Institute, University of Zurich, Department of Health Sciences & Technology, ETH Zurich, Zurich 8057, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Department of Health Sciences & Technology, ETH Zurich, Zurich 8057, Switzerland
| |
Collapse
|
39
|
Baldwin KT, Giger RJ. Insights into the physiological role of CNS regeneration inhibitors. Front Mol Neurosci 2015; 8:23. [PMID: 26113809 PMCID: PMC4462676 DOI: 10.3389/fnmol.2015.00023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022] Open
Abstract
The growth inhibitory nature of injured adult mammalian central nervous system (CNS) tissue constitutes a major barrier to robust axonal outgrowth and functional recovery following trauma or disease. Prototypic CNS regeneration inhibitors are broadly expressed in the healthy and injured brain and spinal cord and include myelin-associated glycoprotein (MAG), the reticulon family member NogoA, oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate proteoglycans (CSPGs). These structurally diverse molecules strongly inhibit neurite outgrowth in vitro, and have been most extensively studied in the context of nervous system injury in vivo. The physiological role of CNS regeneration inhibitors in the naïve, or uninjured, CNS remains less well understood, but has received growing attention in recent years and is the focus of this review. CNS regeneration inhibitors regulate myelin development and axon stability, consolidate neuronal structure shaped by experience, and limit activity-dependent modification of synaptic strength. Altered function of CNS regeneration inhibitors is associated with neuropsychiatric disorders, suggesting crucial roles in brain development and health.
Collapse
Affiliation(s)
- Katherine T Baldwin
- Department of Cell and Developmental Biology, University of Michigan School of Medicine Ann Arbor, MI, USA ; Cellular and Molecular Biology Graduate Program, University of Michigan School of Medicine Ann Arbor, MI, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine Ann Arbor, MI, USA ; Department of Neurology, University of Michigan School of Medicine Ann Arbor, MI, USA
| |
Collapse
|
40
|
Ueda K, Ishikawa N, Tatsuguchi A, Saichi N, Fujii R, Nakagawa H. Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes. Sci Rep 2014; 4:6232. [PMID: 25167841 PMCID: PMC4148700 DOI: 10.1038/srep06232] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/11/2014] [Indexed: 01/19/2023] Open
Abstract
Exosome-mediated signal transportation plays a variety of critical roles in cancer progression and metastasis. From the aspect of cancer diagnosis, circulating exosomes are ideal resources of biomarkers because molecular features of tumor cells are transcribed on them. However, isolating pure exosomes from body fluids is time-consuming and still major challenge to be addressed for comprehensive profiling of exosomal proteins and miRNAs. Here we constructed anti-CD9 antibody-coupled highly porous monolithic silica microtips which allowed automated rapid and reproducible exosome extraction from multiple clinical samples. We applied these tips to explore lung cancer biomarker proteins on exosomes by analyzing 46 serum samples. The mass spectrometric quantification of 1,369 exosomal proteins identified CD91 as a lung adenocarcinoma specific antigen on exosomes, which was further validated with CD9-CD91 exosome sandwich ELISA measuring 212 samples. Our simple device can promote not only biomarker discovery studies but also wide range of omics researches about exosomes.
Collapse
Affiliation(s)
- Koji Ueda
- 1] Division of Biosciences, Functional Proteomics Center, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan [2] Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| | - Nobuhisa Ishikawa
- Department of Molecular and Internal Medicine, Hiroshima University, Hiroshima, Japan
| | - Ayako Tatsuguchi
- Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| | - Naomi Saichi
- 1] Division of Biosciences, Functional Proteomics Center, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan [2] Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| | - Risa Fujii
- 1] Division of Biosciences, Functional Proteomics Center, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan [2] Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| | - Hidewaki Nakagawa
- Laboratory for Genome Sequencing Analysis, Center for Integrated Medical Sciences, RIKEN, Tokyo, Japan
| |
Collapse
|
41
|
Thevenard J, Verzeaux L, Devy J, Etique N, Jeanne A, Schneider C, Hachet C, Ferracci G, David M, Martiny L, Charpentier E, Khrestchatisky M, Rivera S, Dedieu S, Emonard H. Low-density lipoprotein receptor-related protein-1 mediates endocytic clearance of tissue inhibitor of metalloproteinases-1 and promotes its cytokine-like activities. PLoS One 2014; 9:e103839. [PMID: 25075518 PMCID: PMC4116228 DOI: 10.1371/journal.pone.0103839] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) regulates the extracellular matrix turnover by inhibiting the proteolytic activity of matrix metalloproteinases (MMPs). TIMP-1 also displays MMP-independent activities that influence the behavior of various cell types including neuronal plasticity, but the underlying molecular mechanisms remain mostly unknown. The trans-membrane receptor low-density lipoprotein receptor-related protein-1 (LRP-1) consists of a large extracellular chain with distinct ligand-binding domains that interact with numerous ligands including TIMP-2 and TIMP-3 and a short transmembrane chain with intracellular motifs that allow endocytosis and confer signaling properties to LRP-1. We addressed TIMP-1 interaction with recombinant ligand-binding domains of LRP-1 expressed by CHO cells for endocytosis study, or linked onto sensor chips for surface plasmon resonance analysis. Primary cortical neurons bound and internalized endogenous TIMP-1 through a mechanism mediated by LRP-1. This resulted in inhibition of neurite outgrowth and increased growth cone volume. Using a mutated inactive TIMP-1 variant we showed that TIMP-1 effect on neurone morphology was independent of its MMP inhibitory activity. We conclude that TIMP-1 is a new ligand of LRP-1 and we highlight a new example of its MMP-independent, cytokine-like functions.
Collapse
Affiliation(s)
- Jessica Thevenard
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Laurie Verzeaux
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Jerôme Devy
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Nicolas Etique
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Albin Jeanne
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Christophe Schneider
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Cathy Hachet
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Géraldine Ferracci
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR 7286, Plate-Forme de Recherche en Neurosciences (PFRN), Marseille, France
| | - Marion David
- VECT-HORUS SAS, Faculté de Médecine Secteur Nord, Marseille, France
| | - Laurent Martiny
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Emmanuelle Charpentier
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Michel Khrestchatisky
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, Aix-Marseille Université, Marseille, France
- NICN, CNRS UMR 7259, Marseille, France
| | - Santiago Rivera
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, Aix-Marseille Université, Marseille, France
- NICN, CNRS UMR 7259, Marseille, France
| | - Stéphane Dedieu
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
| | - Hervé Emonard
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims-Champagne-Ardenne, Unité de Formation et de Recherche (UFR) Sciences Exactes et Naturelles, Reims, France
- * E-mail:
| |
Collapse
|
42
|
Kurihara Y, Iketani M, Ito H, Nishiyama K, Sakakibara Y, Goshima Y, Takei K. LOTUS suppresses axon growth inhibition by blocking interaction between Nogo receptor-1 and all four types of its ligand. Mol Cell Neurosci 2014; 61:211-8. [PMID: 25034269 DOI: 10.1016/j.mcn.2014.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022] Open
Abstract
Axon growth inhibitors such as Nogo proteins, myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp), and B lymphocyte stimulator (BLyS) commonly bind to Nogo receptor-1 (NgR1), leading to enormous restriction of functional recovery after damage to the adult central nervous system. Recently, we found that lateral olfactory tract usher substance (LOTUS) antagonizes NgR1-mediated Nogo signaling. However, whether LOTUS exerts antagonism of NgR1 when bound by the other three ligands has not been determined. Overexpression of LOTUS together with NgR1 in COS7 cells blocked the binding of MAG, OMgp, and BLyS to NgR1. In cultured dorsal root ganglion neurons in which endogenous LOTUS is only weakly expressed, overexpression of LOTUS suppressed growth cone collapse and neurite outgrowth inhibition induced by these three NgR1 ligands. LOTUS suppressed NgR1 ligand-induced growth cone collapse in cultured olfactory bulb neurons, which endogenously express LOTUS. Growth cone collapse was induced by NgR1 ligands in lotus-deficient mice. These data suggest that LOTUS functions as a potent endogenous antagonist for NgR1 when bound by all four known NgR1 ligands, raising the possibility that LOTUS may protect neurons from NgR1-mediated axonal growth inhibition and thereby may be useful for promoting neuronal regeneration as a potent inhibitor of NgR1.
Collapse
Affiliation(s)
- Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Suehiro-cho 1-7-29, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Masumi Iketani
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Suehiro-cho 1-7-29, Tsurumi-ward, Yokohama 230-0045, Japan
| | - Hiromu Ito
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan
| | - Kuniyuki Nishiyama
- Division of Medical Life Science, Yokohama City University School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan; Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan
| | - Yusuke Sakakibara
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Suehiro-cho 1-7-29, Tsurumi-ward, Yokohama 230-0045, Japan; Division of Medical Life Science, Yokohama City University School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ward, Yokohama 236-0004, Japan.
| |
Collapse
|
43
|
Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins. Neuroscience 2014; 275:113-24. [PMID: 24924144 DOI: 10.1016/j.neuroscience.2014.05.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 11/22/2022]
Abstract
Sialic acid binding immunoglobulin-like lectins (Siglecs) are cell surface receptors of microglia and oligodendrocytes that recognize the sialic acid cap of healthy neurons and neighboring glial cells. Upon ligand binding, Siglecs typically signal through an immunoreceptor tyrosine-based inhibition motif (ITIM) to keep the cell in a homeostatic status and support healthy neighboring cells. Siglecs can be divided into two groups; the first, being conserved among different species. The conserved Siglec-4/myelin-associated glycoprotein is expressed on oligodendrocytes and Schwann cells. Siglec-4 protects neurons from acute toxicity via interaction with sialic acids bound to neuronal gangliosides. The second group of Siglecs, named CD33-related Siglecs, is almost exclusively expressed on immune cells and is highly variable among different species. Microglial expression of Siglec-11 is human lineage-specific and prevents neurotoxicity via interaction with α2.8-linked sialic acid oligomers exposed on the neuronal glycocalyx. Microglial Siglec-E is a mouse CD33-related Siglec member that prevents microglial phagocytosis and the associated oxidative burst. Mouse Siglec-E of microglia binds to α2.8- and α2.3-linked sialic acid residues of the healthy glycocalyx of neuronal and glial cells. Recently, polymorphisms of the human Siglec-3/CD33 were linked to late onset Alzheimer's disease by genome-wide association studies. Human Siglec-3 is expressed on microglia and produces inhibitory signaling that decreases uptake of particular molecules such as amyloid-β aggregates. Thus, glial ITIM-signaling Siglecs recognize the intact glycocalyx of neurons and are involved in the modulation of neuron-glia interaction in healthy and diseased brain.
Collapse
|
44
|
Nogo limits neural plasticity and recovery from injury. Curr Opin Neurobiol 2014; 27:53-60. [PMID: 24632308 DOI: 10.1016/j.conb.2014.02.011] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/17/2014] [Accepted: 02/10/2014] [Indexed: 12/20/2022]
Abstract
The expression of Nogo-A and the receptor NgR1 limits the recovery of adult mammals from central nervous system injury. Multiple studies have demonstrated efficacy from targeting this pathway for functional recovery and neural repair after spinal cord trauma, ischemic stroke, optic nerve injury and models of multiple sclerosis. Recent molecular studies have added S1PR2 as a receptor for the amino terminal domain of Nogo-A, and have demonstrated shared components for Nogo-A and CSPG signaling as well as novel Nogo antagonists. It has been recognized that neural repair involves plasticity, sprouting and regeneration. A physiologic role for Nogo-A and NgR1 has been documented in the restriction of experience-dependent plasticity with maturity, and the stability of synaptic, dendritic and axonal anatomy.
Collapse
|
45
|
Strickland DK, Au DT, Cunfer P, Muratoglu SC. Low-density lipoprotein receptor-related protein-1: role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol 2014; 34:487-98. [PMID: 24504736 DOI: 10.1161/atvbaha.113.301924] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling receptor that is widely expressed. In the liver, LRP1 plays an important role in regulating the plasma levels of blood coagulation factor VIII (fVIII) by mediating its uptake and subsequent degradation. fVIII is a key plasma protein that is deficient in hemophilia A and circulates in complex with von Willebrand factor. Because von Willebrand factor blocks binding of fVIII to LRP1, questions remain on the molecular mechanisms by which LRP1 removes fVIII from the circulation. LRP1 also regulates cell surface levels of tissue factor, a component of the extrinsic blood coagulation pathway. This occurs when tissue factor pathway inhibitor bridges the fVII/tissue factor complex to LRP1, resulting in rapid LRP1-mediated internalization and downregulation of coagulant activity. In the vasculature LRP1 also plays protective role from the development of aneurysms. Mice in which the lrp1 gene is selectively deleted in vascular smooth muscle cells develop a phenotype similar to the progression of aneurysm formation in human patient, revealing that these mice are ideal for investigating molecular mechanisms associated with aneurysm formation. Studies suggest that LRP1 protects against elastin fiber fragmentation by reducing excess protease activity in the vessel wall. These proteases include high-temperature requirement factor A1, matrix metalloproteinase 2, matrix metalloproteinase-9, and membrane associated type 1-matrix metalloproteinase. In addition, LRP1 regulates matrix deposition, in part, by modulating levels of connective tissue growth factor. Defining pathways modulated by LRP1 that lead to aneurysm formation and defining its role in thrombosis may allow for more effective intervention in patients.
Collapse
Affiliation(s)
- Dudley K Strickland
- From the Center for Vascular and Inflammatory Disease (D.K.S., D.T.A., P.C., S.C.M.), Departments of Surgery (D.K.S.), and Physiology (S.C.M.), University of Maryland School of Medicine, Baltimore
| | | | | | | |
Collapse
|
46
|
Mantuano E, Lam MS, Gonias SL. LRP1 assembles unique co-receptor systems to initiate cell signaling in response to tissue-type plasminogen activator and myelin-associated glycoprotein. J Biol Chem 2013; 288:34009-34018. [PMID: 24129569 PMCID: PMC3837140 DOI: 10.1074/jbc.m113.509133] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/24/2013] [Indexed: 12/16/2022] Open
Abstract
In addition to functioning as an activator of fibrinolysis, tissue-type plasminogen activator (tPA) interacts with neurons and regulates multiple aspects of neuronal cell physiology. In this study, we examined the mechanism by which tPA initiates cell signaling in PC12 and N2a neuron-like cells. We demonstrate that enzymatically active and inactive tPA (EI-tPA) activate ERK1/2 in a biphasic manner. Rapid ERK1/2 activation is dependent on LDL receptor-related protein-1 (LRP1). In the second phase, ERK1/2 is activated by tPA independently of LRP1. The length of the LRP1-dependent phase varied inversely with the tPA concentration. Rapid ERK1/2 activation in response to EI-tPA and activated α2-macroglobulin (α2M*) required the NMDA receptor and Trk receptors, which assemble with LRP1 into a single pathway. Assembly of this signaling system may have been facilitated by the bifunctional adapter protein, PSD-95, which associated with LRP1 selectively in cells treated with EI-tPA or α2M*. Myelin-associated glycoprotein binds to LRP1 with high affinity but failed to induce phosphorylation of TrkA or ERK1/2. Instead, myelin-associated glycoprotein recruited p75 neurotrophin receptor (p75NTR) into a complex with LRP1 and activated RhoA. p75NTR was not recruited by other LRP1 ligands, including EI-tPA and α2M*. Lactoferrin functioned as an LRP1 signaling antagonist, inhibiting Trk receptor phosphorylation and ERK1/2 activation in response to EI-tPA. These results demonstrate that LRP1-initiated cell signaling is ligand-dependent. Proteins that activate cell signaling by binding to LRP1 assemble different co-receptor systems. Ligand-specific co-receptor recruitment provides a mechanism by which one receptor, LRP1, may trigger different signaling responses.
Collapse
Affiliation(s)
- Elisabetta Mantuano
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California 92093
| | - Michael S Lam
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California 92093
| | - Steven L Gonias
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California 92093.
| |
Collapse
|
47
|
Gonias SL, Campana WM. LDL receptor-related protein-1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:18-27. [PMID: 24128688 DOI: 10.1016/j.ajpath.2013.08.029] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 12/19/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic receptor for numerous proteins that are both structurally and functionally diverse. In some cell types, LRP1-mediated endocytosis is coupled to activation of cell signaling. LRP1 also regulates the composition of the plasma membrane and may, thereby, indirectly regulate the activity of other cell-signaling receptors. Given the scope of LRP1 ligands and its multifunctional nature, it is not surprising that numerous biological activities have been attributed to this receptor. LRP1 gene deletion is embryonic-lethal in mice. However, elegant studies using Cre-LoxP recombination have helped elucidate the function of LRP1 in mature normal and pathological tissues. One major theme that has emerged is the role of LRP1 as a regulator of inflammation. In this review, we will describe evidence for LRP1 as a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, University of California School of Medicine, La Jolla, California.
| | - W Marie Campana
- Department of Anesthesiology, University of California School of Medicine, La Jolla, California; Program in Neuroscience, University of California School of Medicine, La Jolla, California
| |
Collapse
|
48
|
Cheung HNM, Dunbar C, Mórotz GM, Cheng WH, Chan HYE, Miller CCJ, Lau KF. FE65 interacts with ADP-ribosylation factor 6 to promote neurite outgrowth. FASEB J 2013; 28:337-49. [PMID: 24056087 DOI: 10.1096/fj.13-232694] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
FE65 is an adaptor protein that binds to the amyloid precursor protein (APP). As such, FE65 has been implicated in the pathogenesis of Alzheimer's disease. In addition, evidence suggests that FE65 is involved in brain development. It is generally believed that FE65 participates in these processes by recruiting various interacting partners to form functional complexes. Here, we show that via its first phosphotyrosine binding (PTB) domain, FE65 binds to the small GTPase ADP-ribosylation factor 6 (ARF6). FE65 preferentially binds to ARF6-GDP, and they colocalize in neuronal growth cones. Interestingly, FE65 stimulates the activation of both ARF6 and its downstream GTPase Rac1, a regulator of actin dynamics, and functions in growth cones to stimulate neurite outgrowth. We show that transfection of FE65 and/or ARF6 promotes whereas small interfering RNA knockdown of FE65 or ARF6 inhibits neurite outgrowth in cultured neurons as compared to the mock-transfected control cells. Moreover, knockdown of ARF6 attenuates FE65 stimulation of neurite outgrowth and defective neurite outgrowth seen in FE65-deficient neurons is partially corrected by ARF6 overexpression. Notably, the stimulatory effect of FE65 and ARF6 on neurite outgrowth is abrogated either by dominant-negative Rac1 or knockdown of Rac1. Thus, we identify FE65 as a novel regulator of neurite outgrowth via controlling ARF6-Rac1 signaling.
Collapse
Affiliation(s)
- Hei Nga Maggie Cheung
- 1School of Life Sciences, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Mironova YA, Giger RJ. Where no synapses go: gatekeepers of circuit remodeling and synaptic strength. Trends Neurosci 2013; 36:363-73. [PMID: 23642707 DOI: 10.1016/j.tins.2013.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 02/07/2023]
Abstract
Growth inhibitory molecules in the adult mammalian central nervous system (CNS) have been implicated in the blocking of axonal sprouting and regeneration following injury. Prominent CNS regeneration inhibitors include Nogo-A, oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate proteoglycans (CSPGs), and a key question concerns their physiological role in the naïve CNS. Emerging evidence suggests novel functions in dendrites and at synapses of glutamatergic neurons. CNS regeneration inhibitors target the neuronal actin cytoskeleton to regulate dendritic spine maturation, long-term synapse stability, and Hebbian forms of synaptic plasticity. This is accomplished in part by antagonizing plasticity-promoting signaling pathways activated by neurotrophic factors. Altered function of CNS regeneration inhibitors is associated with mental illness and loss of long-lasting memory, suggesting unexpected and novel physiological roles for these molecules in brain health.
Collapse
Affiliation(s)
- Yevgeniya A Mironova
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, 3065 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
50
|
Fernandez-Castaneda A, Arandjelovic S, Stiles TL, Schlobach RK, Mowen KA, Gonias SL, Gaultier A. Identification of the low density lipoprotein (LDL) receptor-related protein-1 interactome in central nervous system myelin suggests a role in the clearance of necrotic cell debris. J Biol Chem 2013; 288:4538-48. [PMID: 23264627 PMCID: PMC3576060 DOI: 10.1074/jbc.m112.384693] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Indexed: 12/14/2022] Open
Abstract
In the central nervous system (CNS), fast neuronal signals are facilitated by the oligodendrocyte-produced myelin sheath. Oligodendrocyte turnover or injury generates myelin debris that is usually promptly cleared by phagocytic cells. Failure to remove dying oligodendrocytes leads to accumulation of degraded myelin, which, if recognized by the immune system, may contribute to the development of autoimmunity in diseases such as multiple sclerosis. We recently identified low density lipoprotein receptor-related protein-1 (LRP1) as a novel phagocytic receptor for myelin debris. Here, we report characterization of the LRP1 interactome in CNS myelin. Fusion proteins were designed corresponding to the extracellular ligand-binding domains of LRP1. LRP1 partners were isolated by affinity purification and characterized by mass spectrometry. We report that LRP1 binds intracellular proteins via its extracellular domain and functions as a receptor for necrotic cells. Peptidyl arginine deiminase-2 and cyclic nucleotide phosphodiesterase are novel LRP1 ligands identified in our screen, which interact with full-length LRP1. Furthermore, the extracellular domain of LRP1 is a target of peptidyl arginine deiminase-2-mediated deimination in vitro. We propose that LRP1 functions as a receptor for endocytosis of intracellular components released during cellular damage and necrosis.
Collapse
Affiliation(s)
- Anthony Fernandez-Castaneda
- From the Department of Neuroscience and Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia 22908
| | - Sanja Arandjelovic
- the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, and
| | - Travis L. Stiles
- the Department of Pathology, University of California at San Diego, La Jolla, California 92093
| | - Ryan K. Schlobach
- From the Department of Neuroscience and Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia 22908
| | - Kerri A. Mowen
- the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, and
| | - Steven L. Gonias
- the Department of Pathology, University of California at San Diego, La Jolla, California 92093
| | - Alban Gaultier
- From the Department of Neuroscience and Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|