1
|
Donati M, Goutas D, Pissaloux D, Olivares S, Kervarrec T, Nosek D, Goto K, Lemahieu J, Loontiens S, Van der Meulen J, Mansour B, Perrone G, Macagno N, Gerami P, Kazakov DV, De la Fouchardiere A. Clinical, Morphologic, and Genomic Findings in Spitz Tumors With RET Fusion: A Series of 31 Cases. Mod Pathol 2025; 38:100740. [PMID: 39986469 DOI: 10.1016/j.modpat.2025.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
RET-fused Spitz neoplasms represent a rare and poorly characterized category of Spitz tumors. Here we describe the clinical, histologic, and molecular findings of 31 Spitz neoplasms with RET fusion diagnosed as Spitz nevus (n = 16), atypical Spitz tumors (n = 13), and Spitz melanoma (n = 2). The lesions mainly occurred in children and young adults of both sexes with a predilection for the extremities. Microscopically, they were mainly symmetrical compound melanocytic neoplasms with a dome-shaped/slightly raised silhouette predominantly composed of epithelioid, spindled, and/or smaller nevoid melanocytes arranged in confluent nests. Dyscohesive melanocytes within the nests in the upper part of the lesions, prominent Kamino bodies, giant multinucleated melanocytes, variable pigmentation, and increased vascularity with vascular ectasia were frequent features. RNA sequencing detected 9 different 5' (N-terminus) fusion partners, including KIF5B (n = 8), LMNA (n = 7), CCDC6 (n = 6), OPTN (n = 3), MYO5A (n = 2), and NCOA4, ERC1, MYH9, AGAP3 (n = 1). Of these, OPTN::RET and AGAP3::RET represent novel fusions, and 3 further 5' fusion partners, namely NCOA4, ERC1, and MYH9, have never been reported in Spitz tumors. Although as a whole group, the tumors showed a heterogeneous histopathologic presentation, correlation of the morphologic features and the 5' fusion partners demonstrated certain associations. Nevoid melanocytes were exclusively encountered in cases with KIF5B fusion partner. Neuroid-like appearances with intersecting fascicles of spindled cells typified both MYO5A-fused cases. Epithelioid melanocyte population dominated cases with LMNA and CCDC6 fusion partners. Transepidermal elimination/floating intraepidermal nests of pigmented spindled and epithelioid melanocytes were observed in the OPTN subgroup. The remaining cases with less frequent 5' fusion partners manifested in general more atypical histopathologic features, including nuclear pleomorphism, high mitotic count, atypical mitoses, and sheet-like growth pattern. Melanoma fluorescence in situ hybridization probe kit targeting RREB1, MYC, CDKN2A, and CCND1, was negative for copy number variation in 4 cases tested, including 2 cases with complete p16 nuclear loss on immunohistochemistry. Array comparative genomic hybridization was performed in 3 lesions and detected numerous segmental chromosomal imbalances in 2 of them that were diagnosed as Spitz melanoma. DNA and RNA sequencing detected several further genomic alterations, including POU2F3 overexpression in 3 highly pigmented lesions. Further studies are needed to confirm possible correlations between the microscopic features and a particular fusion partner (or additional genetic events) in RET-fused Spitz neoplasms.
Collapse
Affiliation(s)
- Michele Donati
- Department of Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Department of Pathology, Università Campus Bio-Medico di Roma, Roma, Italy.
| | - Dimitrios Goutas
- First Department of Pathology, The National and Kapodistrian University of Athens, Greece
| | - Daniel Pissaloux
- Department of Biopathology, Centre Leon Berard, Lyon, France; Department of Research, University of Lyon, Universite Claude Bernard Lyon 1, Cancer Research Centre of Lyon, Lyon, France
| | - Shantel Olivares
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Thibault Kervarrec
- Department of Pathology, University Hospital of Tours, Tours, France; 'Biologie des infections à polyomavirus' Team, UMR1282 INRAE, University of Tours, Tours, France
| | - Daniel Nosek
- Department of Pathology, Umeå University, Umeå, Sweden
| | - Keisuke Goto
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome Hospital, Tokyo, Japan; Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan; Department of Dermato-Oncology/Dermatology, National Hospital Organization Kagoshima, Medical Center, Kagoshima, Japan
| | | | - Siebe Loontiens
- Molecular Diagnostics, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
| | - Joni Van der Meulen
- Molecular Diagnostics, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
| | - Boulos Mansour
- Department of Pathology, Ospedale Israelitico, Rome, Italy
| | - Giuseppe Perrone
- Department of Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Department of Pathology, Università Campus Bio-Medico di Roma, Roma, Italy
| | - Nicolas Macagno
- Marseille Medical Genetics, Institut MarMaRa, Aix-Marseille University, INSERM, Marseille, France
| | - Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dmitry V Kazakov
- IDP Institut für Dermatohistopathologie, Pathologie Institut Enge, Zürich, Switzerland
| | - Arnaud De la Fouchardiere
- Department of Biopathology, Centre Leon Berard, Lyon, France; Department of Research, University of Lyon, Universite Claude Bernard Lyon 1, Cancer Research Centre of Lyon, Lyon, France
| |
Collapse
|
2
|
Kaczorowski M, Ylaya K, Chłopek M, Lasota J, Miettinen M. Expression of POU2F3 Transcription Factor and POU2AF2, POU2F3 Coactivator, in Tuft Cell-like Carcinoma and Other Tumors. Am J Surg Pathol 2025; 49:62-72. [PMID: 39319626 DOI: 10.1097/pas.0000000000002313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Epithelial chemosensory cells in hollow organs, also known as tuft cells, were implicated in tumorigenesis, including a tuft cell-like small cell lung carcinoma. Expression of the POU2F3 transcription factor is a marker of tuft cell lineage. However, tuft cell development, differentiation, and proliferation are controlled by the expression of the complex formed by POU2F3 and POU2AF2 or POU2AF3 transcriptional coactivators. A cohort of epithelial (n=6064) and mesenchymal/neuroectodermal (n=2730) tumors was screened for POU2F3 expression by immunohistochemistry. Variable immunoreactivity ranging from diffuse to scattered positive cells was found in ∼12.4% of epithelial and 4.6% of mesenchymal/neuroectodermal tumors. Cases with predominantly diffuse or patchy POU2F3 positivity representing various types of malignant tumors (n=43) were selected for further study, including POU2AF2 immunohistochemistry. Thirteen of 15 tumors with neuroendocrine differentiation originating from the lung, colon, head and neck, skin, and bladder revealed diffuse POU2F3 positivity. Most of those tumors (n=9) co-expressed POU2AF2, usually extensively. Seven squamous and basal cell carcinomas from the oral cavity, skin, lung, and thymus with diffuse POU2F3 immunostaining except one, lacked POU2AF2 expression. Other variably POU2F3-positive carcinomas (n=13) from the colon, pancreas, liver, kidney, testis, endometrium, ovary, and breast lacked POU2AF2 immunoreactivity. All POU2F3-positive mesenchymal and neuroectodermal tumors (n=8), including synovial sarcoma, solitary fibrous tumor, glioblastoma, Wilms tumor, and melanoma were POU2AF2-negative. POU2F3 expression is a highly sensitive but nonspecific indicator of tuft cell differentiation. Co-expression of POU2F3 and POU2AF2 appears to be a more specific marker, although it may not pinpoint tumors driven by the POU2F3-POU2AF3 complex.
Collapse
Affiliation(s)
- Maciej Kaczorowski
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wrocław, Poland
| | - Kris Ylaya
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | | | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
3
|
Lynch AW, Theodoris CV, Long HW, Brown M, Liu XS, Meyer CA. MIRA: joint regulatory modeling of multimodal expression and chromatin accessibility in single cells. Nat Methods 2022; 19:1097-1108. [PMID: 36068320 PMCID: PMC9517733 DOI: 10.1038/s41592-022-01595-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Rigorously comparing gene expression and chromatin accessibility in the same single cells could illuminate the logic of how coupling or decoupling of these mechanisms regulates fate commitment. Here we present MIRA, probabilistic multimodal models for integrated regulatory analysis, a comprehensive methodology that systematically contrasts transcription and accessibility to infer the regulatory circuitry driving cells along cell state trajectories. MIRA leverages topic modeling of cell states and regulatory potential modeling of individual gene loci. MIRA thereby represents cell states in an efficient and interpretable latent space, infers high-fidelity cell state trees, determines key regulators of fate decisions at branch points and exposes the variable influence of local accessibility on transcription at distinct loci. Applied to epidermal differentiation and embryonic brain development from two different multimodal platforms, MIRA revealed that early developmental genes were tightly regulated by local chromatin landscape whereas terminal fate genes were titrated without requiring extensive chromatin remodeling.
Collapse
Affiliation(s)
- Allen W Lynch
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christina V Theodoris
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School Genetics Training Program, Boston, MA, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Clifford A Meyer
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
4
|
Determining Whether YAP1 and POU2F3 Are Antineuroendocrine Factors. J Thorac Oncol 2022; 17:1070-1073. [PMID: 36031286 DOI: 10.1016/j.jtho.2022.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
|
5
|
Zhang X, Zhang M, Hou Y, Xu L, Li W, Zou Z, Liu C, Xu A, Wu S. Single-cell analyses of transcriptional heterogeneity in squamous cell carcinoma of urinary bladder. Oncotarget 2016; 7:66069-66076. [PMID: 27602771 PMCID: PMC5323215 DOI: 10.18632/oncotarget.11803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022] Open
Abstract
Cell-to-cell expression heterogeneity within a single tumor is a common phenotype among various cancer types including squamous cell carcinoma. To further study the fundamentals and importance of heterogeneity of cell functions and its potential mechanisms, we performed single-cell RNA-seq (scRNA-seq) on human squamous cell carcinoma of the bladder (SCCB) and its corresponding physiologically normal epithelia. Extensive differentially expressed genes were uncovered by comparing cancer and normal single cells, which were preferentially enriched in cancer-correlated pathways, such as p53 signaling and bladder cancer pathway. Furthermore, the most diversely expressed genes were particularly enriched in MAPK signaling pathway, such as CACNG4, CACNA1E and CACNA1H, which involve in cancer evolution and heterogeneity formation. Co-expression network and hub-gene analyses revealed several remarkable "hub genes" of each regulatory module. Some of them are cancer related, such as POU2F3, NKD1 and CYP2C8, while LINC00189, GCC2 and OR9Q1 genes are rarely reported in human diseases. The genes within an interesting module are highly correlated with others, which could be treated as potential targets for SCCB patients. Our findings have fundamental implications for SCCB biology and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Urological Surgery, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, China
- Shenzhen Gene Detection Public Service Platform of Clinical Application, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - Meng Zhang
- Department of Urological Surgery, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, China
- Shenzhen Gene Detection Public Service Platform of Clinical Application, Shenzhen Luohu Hospital Group, Shenzhen, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | | | - Weidong Li
- Department of Urological Surgery, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Zhihui Zou
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Song Wu
- Department of Urological Surgery, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
- Shenzhen Following Precision Medical Institute, Shenzhen Luohu Hospital Group, Shenzhen, China
- Shenzhen Gene Detection Public Service Platform of Clinical Application, Shenzhen Luohu Hospital Group, Shenzhen, China
| |
Collapse
|
6
|
Regulatory roles of Oct proteins in the mammary gland. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:812-9. [PMID: 27044595 DOI: 10.1016/j.bbagrm.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 11/21/2022]
Abstract
The expression of Oct-1 and -2 and their binding to the octamer motif in the mammary gland are developmentally and hormonally regulated, consistent with the expression of milk proteins. Both of these transcription factors constitutively bind to the proximal promoter of the milk protein gene β-casein and might be involved in the inhibition or activation of promoter activity via interactions with other transcription factors or cofactors at different developmental stages. In particular, the lactogenic hormone prolactin and glucocorticoids induce Oct-1 and Oct-2 binding and interaction with both the signal transducer and activator of transcription 5 (STAT5) and the glucocorticoid receptor on the β-casein promoter to activate β-casein expression. In addition, increasing evidence has shown the involvement of another Oct factor, Oct-3/4, in mammary tumorigenesis, making Oct-3/4 an emerging prognostic marker of breast cancer and a molecular target for the gene-directed therapeutic intervention, prevention and treatment of breast cancer. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
|
7
|
Neumann C, Bigliardi-Qi M, Widmann C, Bigliardi PL. The δ-opioid receptor affects epidermal homeostasis via ERK-dependent inhibition of transcription factor POU2F3. J Invest Dermatol 2014; 135:471-480. [PMID: 25178105 PMCID: PMC4291683 DOI: 10.1038/jid.2014.370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/02/2022]
Abstract
Neuropeptides and their receptors are present in human skin, and their importance for cutaneous homeostasis and during wound healing is increasingly appreciated. However, there is currently a lack of understanding of the molecular mechanisms by which their signaling modulates keratinocyte function. Here, we show that δ-opioid receptor (DOPr) activation inhibits proliferation of human keratinocytes, resulting in decreased epidermal thickness in an organotypic skin model. DOPr signaling markedly delayed induction of keratin intermediate filament (KRT10) during in vitro differentiation and abolished its induction in the organotypic skin model. This was accompanied by deregulation of involucrin (IVL), loricrin, and filaggrin. Analysis of the transcription factor POU2F3, which is involved in regulation of KRT10, IVL, and profilaggrin expression, revealed a DOPr-mediated extracellular signal-regulated kinase (ERK)-dependent downregulation of this factor. We propose that DOPr signaling specifically activates the ERK 1/2 mitogen-activated protein kinase pathway to regulate keratinocyte functions. Complementing our earlier studies in DOPr-deficient mice, these data suggest that DOPr activation in human keratinocytes profoundly influences epidermal morphogenesis and homeostasis.
Collapse
Affiliation(s)
- Christine Neumann
- Experimental Dermatology Laboratory, Institute of Medical Biology, A*STAR, Singapore; Doctoral School Faculty of Biology and Medicine, University of Lausanne, Dorigny, Switzerland; These authors contributed equally to this work
| | - Mei Bigliardi-Qi
- Experimental Dermatology Laboratory, Institute of Medical Biology, A*STAR, Singapore.
| | - Christian Widmann
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Paul L Bigliardi
- Experimental Dermatology Laboratory, Institute of Medical Biology, A*STAR, Singapore; Division of Rheumatology, University Medicine Cluster, National University Hospital, Singapore.
| |
Collapse
|
8
|
Kushwaha R, Thodima V, Tomishima MJ, Bosl GJ, Chaganti RSK. miR-18b and miR-518b Target FOXN1 during epithelial lineage differentiation in pluripotent cells. Stem Cells Dev 2014; 23:1149-56. [PMID: 24383669 DOI: 10.1089/scd.2013.0262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNAs) regulate myriad biological processes; however, their role in cell fate choice is relatively unexplored. Pluripotent NT2/D1 embryonal carcinoma cells differentiate into an epithelial/smooth muscle phenotype when treated with bone morphogenetic protein-2 (BMP-2). To identify miRNAs involved in epithelial cell development, we performed miRNA profiling of NT2/D1 cells treated with BMP-2 at 6, 12, and 24 h, and on days 6 and 10. Integration of the miRNA profiling data with previously obtained gene expression profiling (GEP) data of NT2/D1 cells treated with BMP-2 at the same time points identified miR-18b and miR-518b as the top two miRNAs with the highest number of up-regulated predicted targets with known functions in epithelial lineage development. Silencing of miR-18b and miR-518b in NT2/D1 cells revealed several up-regulated TFs with functions in epithelial lineage development; among these, target prediction programs identified FOXN1 as the only direct target of both miRNAs. FOXN1 has previously been shown to play an important role in keratinocyte differentiation and epithelial cell proliferation. NT2/D1 and H9 human embryonic stem cells with silenced miR-18b and miR-518b showed up-regulation of FOXN1 and the epithelial markers CDH1, EPCAM, KRT19, and KRT7. A 3'UTR luciferase assay confirmed FOXN1 to be a target of the two miRNAs, and up-regulation of FOXN1 in NT2/D1 cells led to the expression of epithelial markers. Overexpression of the two miRNAs in BMP-2-treated NT2/D1 cells led to down-regulation of FOXN1 and epithelial lineage markers. These results show that miR-18b and miR-518b are upstream controllers of FOXN1-directed epithelial lineage development.
Collapse
Affiliation(s)
- Ritu Kushwaha
- 1 Cell Biology Program, Memorial Sloan-Kettering Cancer Center , New York, New York
| | | | | | | | | |
Collapse
|
9
|
Kawachi Y, Ishitsuka Y, Maruyama H, Fujisawa Y, Furuta J, Nakamura Y, Ishii Y, Ichikawa E, Otsuka F. The POU domain transcription factors Oct-6 and Oct-11 negatively regulate loricrin gene expression in keratinocytes: association with AP-1 and Sp1/Sp3. Arch Dermatol Res 2013; 305:371-8. [PMID: 23341029 DOI: 10.1007/s00403-013-1317-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 11/30/2022]
Abstract
Loricrin is a major component of the epidermal cornified cell envelope, and is expressed only in terminally differentiated keratinocytes. This cell differentiation-specific expression pattern suggests specific regulatory mechanisms for activation and suppression of loricrin gene transcription in differentiated keratinocytes. Here, we identified a regulatory element in the proximal promoter region of the loricrin gene involved in suppression of its expression in keratinocytes. A database search indicated that this sequence contained a POU transcription factor binding motif. Electrophoretic mobility shift assay revealed that Oct-1, Oct-6, and Oct-11 actually bind to the motif. Constructs with point mutations in the POU-binding motif showed increased reporter activity, indicating that the POU factors negatively regulate loricrin gene transcription. Cotransfection experiments suggested that Oct-6 and Oct-11 suppress loricrin gene transcription in a cooperative manner with AP-1 and Sp1. Furthermore, in vitro experiments indicated that the Oct-6 and Oct-11 can physically associate with both AP-1 factors and Sp1/Sp3. These findings indicate that Oct-6 and Oct-11 contribute to the regulation of loricrin gene transcription via interaction with AP-1 factors and Sp1/Sp3.
Collapse
Affiliation(s)
- Yasuhiro Kawachi
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Papillomavirus is a pathogenic virus that induces benign tumor at the infected lesion, and its association with malignant tumor was first identified by R. Shope using animal model. A variety of cancers have been reported to be associated with the infection of human papillomavirus since the report by H. zur Hausen that describes a connection between the HPV infection and cervical cancer. The HPV infection is broadly distributed as a sexually transmitted disease (STD) and recently the initial age diagnosed as the cervical cancer is getting lowered. Because of its clinical importance, the study on HPV has been focused on the oncogenic properties, and the results of which had great impacts on the researches of the tumor suppressors, such as p53 and pRb, and "ubiquiitn-proteasome" pathway. On the other hand, the biological properties of HPV remain mostly disclosed. The lifecycle of HPV is tightly linked to the differentiation program of the target epithelial cell, and this unique property has hampered the study on the HPV replication mechanism. Here we summarized the findings on the HPV lifecycle, including the virus gene functions, the regulation of viral gene expression and replication.
Collapse
|
11
|
Sen GL, Webster DE, Barragan DI, Chang HY, Khavari PA. Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3. Genes Dev 2008; 22:1865-70. [PMID: 18628393 DOI: 10.1101/gad.1673508] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The recent discovery of H3K27me3 demethylases suggests that H3K27me3 may dynamically regulate gene expression, but this potential role in mammalian tissue homeostasis remains uncharacterized. In the epidermis, a tissue that balances stem cell self-renewal with differentiation, H3K27me3, occupies the promoters of many differentiation genes. During calcium-induced differentiation, H3K27me3 was erased at these promoters in concert with loss of PcG protein occupancy and increased binding by the H3K27me3 demethylase, JMJD3. Within epidermal tissue, JMJD3 depletion blocked differentiation, while active JMJD3 dominantly induced it. These results indicate that epigenetic derepression by JMJD3 controls mammalian epidermal differentiation.
Collapse
Affiliation(s)
- George L Sen
- VA Palo Alto Health Care System, Palo Alto, California 94305, USA
| | | | | | | | | |
Collapse
|
12
|
Kukimoto I, Mori S, Sato H, Takeuchi T, Kanda T. Transcription factor human Skn-1a enhances replication of human papillomavirus DNA through the direct binding to two sites near the viral replication origin. FEBS J 2008; 275:3123-35. [PMID: 18479461 DOI: 10.1111/j.1742-4658.2008.06468.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human papillomavirus type 16 (HPV16) DNA replication, which requires two viral proteins E1 and E2, occurs only in the differentiating epithelium. Besides the general factors necessary for cellular DNA synthesis, other unidentified cellular factors are assumed to be involved in the regulation of HPV DNA replication. In the present study, we found that the POU-domain transcription factor human Skn-1a, which induces the terminal differentiation of keratinocytes and activates the HPV16 late promoter, enhanced the transient replication of a plasmid containing the HPV16 replication origin in HEK293 cells when co-transfected with a plasmid expressing E1 and E2. An electrophoretic mobility shift assay with a bacterially expressed human Skn-1a or an extract of HeLa cells over-expressing human Skn-1a revealed the presence of two human Skn-1a binding sites that are distinct from the known three sites, near the replication origin. A chromatin immunoprecipitation analysis showed that human Skn-1a bound to these sites in cells. Nucleotide substitutions in the sites abolished the binding of human Skn-1a and the human Skn-1a-mediated replication enhancement. The data strongly suggest that, through the binding to the two sites, human Skn-1a enhances HPV DNA replication.
Collapse
Affiliation(s)
- Iwao Kukimoto
- Center for Pathogen Genomics, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
13
|
Kanda T, Kukimoto I. [Human papillomavirus and cervical cancer]. Uirusu 2007; 56:219-30. [PMID: 17446671 DOI: 10.2222/jsv.56.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human papillomavirus (HPV) is a small non-enveloped icosahedral virus with a circular double-stranded DNA genome of 8 kilo base pairs. HPV particles reach and infect the basal cells of the stratified epithelia through small epithelial lesions. In the basal cells the viral DNA is maintained as episomes, which start to replicate when the host cells initiate terminal differentiation. In these differentiating cells the degradation of p53 by the E6 protein and the abrogation of the pRb functions by the E7 protein lead to the reactivation of the DNA synthesis machinery. After virus propagation the host cells usually die. On the other hand, in some of the infected cells, the E6 and E7 genes are integrated on rare occasion into cell DNA. The cell continuously expressing the E6 and E7 proteins from the integrated genes is immortalized and sometimes acquires malignant phenotype induced by the accumulated damages to DNA. Of more than 100 HPV genotypes recorded to date, 13 including types 16 and 18 are associated with cervical cancer. Expression of HPV major capsid protein L1 in some cultured cells results in production of virus-like particles (VLPs). The VLPs of types 6, 11, 16, and 18 were used as a prophylactic vaccine in recent clinical trials and shown to successfully induce type-specific neutralizing antibodies in the recipients.
Collapse
Affiliation(s)
- Tadahito Kanda
- Center for Pathogen Genomics, National Institute of Infectious Diseases.
| | | |
Collapse
|
14
|
Beck IM, Müller M, Mentlein R, Sadowski T, Mueller MS, Paus R, Sedlacek R. Matrix metalloproteinase-19 expression in keratinocytes is repressed by transcription factors Tst-1 and Skn-1a: implications for keratinocyte differentiation. J Invest Dermatol 2006; 127:1107-14. [PMID: 17195013 DOI: 10.1038/sj.jid.5700674] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Matrix metalloproteinase-19 (MMP-19), unlike other members of the MMP family, is expressed in basal keratinocytes of intact epidermis whereas keratinocytes in suprabasal and higher epidermal layers express this enzyme only during cutaneous disorders. As the activity of MMP-19 effects proliferation, migration, and adhesion of keratinocytes we examined whether transcription factors involved in keratinocyte differentiation repress the expression of MMP-19. Using luciferase reporter assays, POU transcription factors Tst-1 (Oct-6) and Skn-1a (Oct-11) markedly downregulated the activity of MMP-19 promoter in COS-7 cells and HaCaT keratinocytes. Tst-1 alone was able to inhibit 85% of the promoter activity. Skn-1a exhibited a weak inhibitory effect although it synergistically increased effects of Tst-1. HaCaT cells stably transfected with Tst-1 showed a strong decrease of activity of MMP-19 promoter that correlated with suppression of MMP-19, cytokeratin 14 and 5, decreased cell proliferation, and altered expression of involucrin and loricrin. The expression of MMP-9 was also significantly reduced in Tst-1 expressing keratinocytes. MMP-2 was substantially affected during its activation whereas the expression of MMP-28 was unchanged. Our results suggest that Tst-1 and Skn-1a regulate expression of MMPs in keratinocytes and effect both the expression and activation of these proteolytic enzymes.
Collapse
Affiliation(s)
- Inken M Beck
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Cupit PM, Lennard ML, Hikima JI, Warr GW, Cunningham C. Characterization of two POU transcription factor family members from the urochordate Oikopleura dioica. Gene 2006; 383:1-11. [PMID: 16989962 DOI: 10.1016/j.gene.2006.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 05/05/2006] [Accepted: 05/13/2006] [Indexed: 11/21/2022]
Abstract
Three POU domain containing transcription factors have been cloned from the urochordate Oikopleura dioica. Phylogenetic analysis showed that two of these (OctA1 and OctA2) are closely related members of the class II POU domain family, and one (OctB) is a member of the class III POU domain family. All three transcription factors contained a highly conserved bipartite DNA-binding POU domain with POU specific and POU homeodomains, separated by a linker region. All three proteins were shown to bind specifically to the canonical octamer motif, ATGCAAAT. The ability of these factors to drive transcription from an octamer-containing reporter construct was assessed in vertebrate B lymphocyte cell lines. Both OctA1 and OctA2 drove transcription in murine and catfish B cell lines, however, OctB did not increase the level of transcription above background levels. It is concluded that Oct transcription factors capable of functioning in a similar fashion to vertebrate Oct1/2 were present at the phylogenetic level of the urochordates.
Collapse
Affiliation(s)
- Pauline M Cupit
- Sars International Centre for Marine Molecular Biology, Bergen, Norway
| | | | | | | | | |
Collapse
|
16
|
Zhang Z, Huettner PC, Nguyen L, Bidder M, Funk MC, Li J, Rader JS. Aberrant promoter methylation and silencing of the POU2F3 gene in cervical cancer. Oncogene 2006; 25:5436-45. [PMID: 16607278 DOI: 10.1038/sj.onc.1209530] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
POU2F3 (OCT11, Skn-1a) is a keratinocyte-specific POU transcription factor whose expression is tied to squamous epithelial stratification. It is also a candidate tumor suppressor gene in cervical cancer (CC) because it lies in a critical loss of heterozygosity region on 11q23.3 in that cancer, and its expression is lost in more than 50% of CC tumors and cell lines. We now report that the loss of POU2F3 expression is tied to the hypermethylation of CpG islands in the POU2F3 promoter. Bisulfite sequencing analysis revealed that methylation of specific CpG sites (-287 to -70 bp) correlated with POU2F3 expression, which could be reactivated with a demethylating agent. Combined bisulfite restriction analysis revealed aberrant methylation of the POU2F3 promoter in 18 of 46 (39%) cervical tumors but never in normal epithelium. POU2F3 expression was downregulated and inversely correlated with promoter hypermethylation in 10 out of 11 CC cell lines. Immunohistochemical analysis on a cervical tissue microarray detected POU2F3 protein in the epithelium above the basal layer. As the disease progressed, expression also decreased, especially in invasive squamous cell cancer (70% loss). Thus, aberrant DNA methylation of the CpG island in POU2F3 promoter appears to play a key role in silencing this gene expression in human CC. The results suggested that POU2F3 might be one of the CC-related tumor suppressor genes, which are disrupted by both epigenetic and genetic mechanisms.
Collapse
Affiliation(s)
- Z Zhang
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Jiménez-Mateo O, Rodríguez-Torres A, Avila S, Castrillo JL. The Transcription Factor PLA-1/SKN-1A is Expressed in Human Placenta and Regulates the Placental Lactogen-3 Gene Expression. Placenta 2006; 27:357-66. [PMID: 16005513 DOI: 10.1016/j.placenta.2005.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 03/21/2005] [Accepted: 03/21/2005] [Indexed: 11/24/2022]
Abstract
Here we report the selective expression of two POU transcription factor genes, PLA-1 and OCT-1, in human placenta and choriocarcinoma cell lines JAR, JEG-3 and BeWo. Pla-1 protein binds to a POU-consensus DNA sequence in the human placental lactogen-3 (PL-3) promoter and it is capable of trans-activating its transcription up to 18-fold. Other tissue-specific or ubiquitous POU transcription factors such as Pit-1/GHF-1 or Oct-1 showed none or low levels of trans-activation of the PL-3 promoter. In addition, we identified an unique and highly charged region in the N-terminal portion of Pla-1 protein required for full trans-activation of the PL-3 promoter.
Collapse
Affiliation(s)
- O Jiménez-Mateo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Nielsen JA, Berndt JA, Hudson LD, Armstrong RC. Myelin transcription factor 1 (Myt1) modulates the proliferation and differentiation of oligodendrocyte lineage cells. Mol Cell Neurosci 2004; 25:111-23. [PMID: 14962745 DOI: 10.1016/j.mcn.2003.10.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 09/12/2003] [Accepted: 10/03/2003] [Indexed: 11/30/2022] Open
Abstract
Myelin transcription factor 1 (Myt1) is a zinc finger DNA-binding protein that is expressed in neural progenitors and oligodendrocyte lineage cells. This study examines the role of Myt1 in oligodendrocyte lineage cells by overexpressing putative functional domains, a four-zinc finger DNA-binding region (4FMyt1) or a central protein-protein interaction domain (CDMyt1), without the predicted transcriptional activation domain. In the presence of mitogens, overexpression of 4FMyt1 inhibited proliferation of oligodendrocyte progenitors, but not cell types (astrocytes and NIH3T3 cells) lacking endogenous Myt1. Expression of 4FMyt1 inhibited the differentiation of oligodendrocyte progenitors into oligodendrocytes as assessed by morphology, immunostaining, and myelin gene expression. Progenitor differentiation was similarly inhibited by expression of CDMyt1 but only partially suppressed by overexpression of the intact Myt1. These data indicate that Myt1 may regulate a critical transition point in oligodendrocyte lineage development by modulating oligodendrocyte progenitor proliferation relative to terminal differentiation and up-regulation of myelin gene transcription.
Collapse
Affiliation(s)
- Joseph A Nielsen
- Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
19
|
Enomoto Y, Enomoto K, Kitamura T, Kanda T. Keratinocyte-specific POU transcription factor hSkn-1a represses the growth of cervical cancer cell lines. Oncogene 2004; 23:5014-22. [PMID: 15077167 DOI: 10.1038/sj.onc.1207653] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The POU transcription factor human Skn-1a (hSkn-1a) specifically promotes the proliferation of keratinocytes and enhances their differentiation. We examined the effects of hSkn-1a on cervical cancer cell lines of epithelial origin, in which the differentiation program is interrupted. From HeLa/Tet-On, a clone that can be induced to make hSkn-1a by doxycycline (HeLa/hSkn-1a) was prepared and characterized. Shortly after the induction, the cells expressed cytokeratin 10 (K10), a major marker protein in differentiating keratinocytes. While maintained for several days in the presence of doxycycline, the HeLa/hSkn-1a cells showed a slightly prolonged time of population doubling, the occasional appearance of flat cells with lowered DNA synthesis, and a low level of apoptotic DNA fragmentation. In SiHa and HeLa S3 cultures, K10 mRNA and apoptotic DNA fragmentation were detected at 48 h after infection with an adenoviral vector capable of expressing hSkn-1a. A colony inhibition assay showed that the growth of HeLa S3, SiHa, CaSki, and C-33A cells was repressed, as seen from the decreased number and average size of the drug-resistant colonies at 2 or 3 weeks after transfection with a plasmid that can express hSkn-1a and neomycin resistance gene. These results suggest that the expression of hSkn-1a represses the growth of the cervical cancer cells through the partial resumption of the differentiation pathway followed by slow suppression of cell replication and apoptosis.
Collapse
Affiliation(s)
- Yutaka Enomoto
- 1Division of Molecular Genetics, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | |
Collapse
|
20
|
Cabral A, Fischer DF, Vermeij WP, Backendorf C. Distinct functional interactions of human Skn-1 isoforms with Ese-1 during keratinocyte terminal differentiation. J Biol Chem 2003; 278:17792-9. [PMID: 12624109 DOI: 10.1074/jbc.m300508200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Among the three major POU proteins expressed in human skin, Oct-1, Tst-1/Oct-6, and Skn-1/Oct-11, only the latter induced SPRR2A, a marker of keratinocyte terminal differentiation. In this study, we have identified three Skn-1 isoforms, which encode proteins with various N termini, generated by alternative promoter usage. These isotypes showed distinct expression patterns in various skin samples, internal squamous epithelia, and cultured human keratinocytes. Skn-1a and Skn-1d1 bound the SPRR2A octamer site with comparable affinity and functioned as transcriptional activators. Skn-1d2 did not affect SPRR2A expression. Skn-1a, the largest protein, functionally cooperated with Ese-1/Elf-3, an epithelial-specific transcription factor, previously implicated in SPRR2A induction. This cooperativity, which depended on an N-terminal pointed-like domain in Skn-1a, was not found for Skn-1d1. Actually, Skn-1d1 counteracted the cooperativity between Skn-1a and Ese-1. Apparently, the human Skn-1 locus encodes multifunctional protein isotypes, subjected to biochemical cross-talk, which are likely to play a major role in the fine-tuning of keratinocyte terminal differentiation.
Collapse
Affiliation(s)
- Adriana Cabral
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
21
|
Enomoto K, Enomoto Y, Ishii Y, Araie M, Kanda T. Genes up- or down-regulated by expression of keratinocyte-specific POU transcription factor hSkn-1a. Biochem Biophys Res Commun 2003; 303:580-5. [PMID: 12659859 DOI: 10.1016/s0006-291x(03)00395-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The keratinocyte-specific POU transcription factor hSkn-1a is believed to trigger and regulate the differentiation of keratinocytes. To find genes regulated by hSkn-1a, we compared mRNAs in a HeLa clone (HeLa/hSkn-1a) that contains an inducible hSkn-1a gene between before and after the induction. RNA was screened for binding to DNA microarrays and candidate RNAs were further examined by two PCR methods. Quantitative RT-PCR showed that hSkn-1a up-regulated Cx43 and ARHH genes, besides the two genes of differentiation markers K10 and TG1, and down-regulated Mx2 and RALGDS genes in the HeLa cells. To know whether this finding is applicable to keratinocyte differentiation, we examined in human primary keratinocyte cultures the mRNAs for those six genes, along with the hSkn-1a gene, before and after the cells achieved confluence. Quantitative RT-PCR showed that in the differentiating confluent cells mRNAs increased for hSkn-1a, K10, TG1, Cx43, ARHH, and RALGDS, but decreased for Mx2. Thus, it appears that in keratinocyte differentiation Cx43, ARHH, and RALGDS genes were newly identified as up-regulated by hSkn-1a and Mx2 gene, as down-regulated. To study how hSkn-1a regulates those genes we cloned and sequenced putative transcriptional control regions for Cx43, ARHH, and Mx2 genes, in which several hSkn-1a-binding sequences were located. Expression of the luciferase gene from the isolated ARHH promoter was enhanced by the induction of hSkn-1a in HeLa/hSkn-1a and deletion or substitution mutation of the hSkn-1a-binding sequences reduced the expression, suggesting that hSkn-1a activates ARHH gene by binding to its promoter.
Collapse
Affiliation(s)
- Kikuko Enomoto
- Division of Molecular Genetics, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | |
Collapse
|