1
|
Brambila A, Prichard BE, DeWitt JT, Kellogg DR. Evidence for novel mechanisms that control cell-cycle entry and cell size. Mol Biol Cell 2024; 35:ar46. [PMID: 38231863 PMCID: PMC11064657 DOI: 10.1091/mbc.e23-05-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
Entry into the cell cycle in late G1 phase occurs only when sufficient growth has occurred. In budding yeast, a cyclin called Cln3 is thought to link cell-cycle entry to cell growth. Cln3 accumulates during growth in early G1 phase and eventually helps trigger expression of late G1 phase cyclins that drive cell-cycle entry. All current models for cell-cycle entry assume that expression of late G1 phase cyclins is initiated at the transcriptional level. Current models also assume that the sole function of Cln3 in cell-cycle entry is to promote transcription of late G1 phase cyclins, and that Cln3 works solely in G1 phase. Here, we show that cell cycle-dependent expression of the late G1 phase cyclin Cln2 does not require any functions of the CLN2 promoter. Moreover, Cln3 can influence accumulation of Cln2 protein via posttranscriptional mechanisms. Finally, we show that Cln3 has functions in mitosis that strongly influence cell size. Together, these discoveries reveal the existence of surprising new mechanisms that challenge current models for control of cell-cycle entry and cell size.
Collapse
Affiliation(s)
- Amanda Brambila
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Beth E. Prichard
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Jerry T. DeWitt
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| | - Douglas R. Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064
| |
Collapse
|
2
|
Faustova I, Örd M, Kiselev V, Fedorenko D, Borovko I, Macs D, Pääbo K, Lõoke M, Loog M. A synthetic biology approach reveals diverse and dynamic CDK response profiles via multisite phosphorylation of NLS-NES modules. SCIENCE ADVANCES 2022; 8:eabp8992. [PMID: 35977012 PMCID: PMC9385143 DOI: 10.1126/sciadv.abp8992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The complexity of multisite phosphorylation mechanisms in regulating nuclear localization signals (NLSs) and nuclear export signals (NESs) is not understood, and its potential has not been used in synthetic biology. The nucleocytoplasmic shuttling of many proteins is regulated by cyclin-dependent kinases (CDKs) that rely on multisite phosphorylation patterns and short linear motifs (SLiMs) to dynamically control proteins in the cell cycle. We studied the role of motif patterns in nucleocytoplasmic shuttling using sensors based on the CDK targets Dna2, Psy4, and Mcm2/3 of Saccharomyces cerevisiae. We designed multisite phosphorylation modules by rearranging phosphorylation sites, cyclin-specific SLiMs, phospho-priming, phosphatase specificity, and NLS/NES phospho-regulation and obtained very different substrate localization dynamics. These included ultrasensitive responses with and without a delay, graded responses, and different homeostatic plateaus. Thus, CDK can do much more than trigger sequential switches during the cell cycle as it can drive complex patterns of protein localization and activity by using multisite phosphorylation networks.
Collapse
|
3
|
Pérez AP, Artés MH, Moreno DF, Clotet J, Aldea M. Mad3 modulates the G 1 Cdk and acts as a timer in the Start network. SCIENCE ADVANCES 2022; 8:eabm4086. [PMID: 35522754 PMCID: PMC9075807 DOI: 10.1126/sciadv.abm4086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Cells maintain their size within limits over successive generations to maximize fitness and survival. Sizer, timer, and adder behaviors have been proposed as possible alternatives to coordinate growth and cell cycle progression. Regarding budding yeast cells, a sizer mechanism is thought to rule cell cycle entry at Start. However, while many proteins controlling the size of these cells have been identified, the mechanistic framework in which they participate to achieve cell size homeostasis is not understood. We show here that intertwined APC and SCF degradation machineries with specific adaptor proteins drive cyclic accumulation of the G1 Cdk in the nucleus, reaching maximal levels at Start. The mechanism incorporates Mad3, a centromeric-signaling protein that subordinates G1 progression to the previous mitosis as a memory factor. This alternating-degradation device displays the properties of a timer and, together with the sizer device, would constitute a key determinant of cell cycle entry.
Collapse
Affiliation(s)
- Alexis P. Pérez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Marta H. Artés
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
| | - David F. Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
| | - Josep Clotet
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| |
Collapse
|
4
|
Litsios A, Huberts DHEW, Terpstra HM, Guerra P, Schmidt A, Buczak K, Papagiannakis A, Rovetta M, Hekelaar J, Hubmann G, Exterkate M, Milias-Argeitis A, Heinemann M. Differential scaling between G1 protein production and cell size dynamics promotes commitment to the cell division cycle in budding yeast. Nat Cell Biol 2019; 21:1382-1392. [PMID: 31685990 DOI: 10.1038/s41556-019-0413-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 09/25/2019] [Indexed: 12/28/2022]
Abstract
In the unicellular eukaryote Saccharomyces cerevisiae, Cln3-cyclin-dependent kinase activity enables Start, the irreversible commitment to the cell division cycle. However, the concentration of Cln3 has been paradoxically considered to remain constant during G1, due to the presumed scaling of its production rate with cell size dynamics. Measuring metabolic and biosynthetic activity during cell cycle progression in single cells, we found that cells exhibit pulses in their protein production rate. Rather than scaling with cell size dynamics, these pulses follow the intrinsic metabolic dynamics, peaking around Start. Using a viral-based bicistronic construct and targeted proteomics to measure Cln3 at the single-cell and population levels, we show that the differential scaling between protein production and cell size leads to a temporal increase in Cln3 concentration, and passage through Start. This differential scaling causes Start in both daughter and mother cells across growth conditions. Thus, uncoupling between two fundamental physiological parameters drives cell cycle commitment.
Collapse
Affiliation(s)
- Athanasios Litsios
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Daphne H E W Huberts
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Hanna M Terpstra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Paolo Guerra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Alexandros Papagiannakis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Mattia Rovetta
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Johan Hekelaar
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Georg Hubmann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- Department of Biology, Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Heverlee, Belgium
- Center for Microbiology, VIB, Heverlee, Belgium
| | - Marten Exterkate
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
5
|
Moreno DF, Jenkins K, Morlot S, Charvin G, Csikasz-Nagy A, Aldea M. Proteostasis collapse, a hallmark of aging, hinders the chaperone-Start network and arrests cells in G1. eLife 2019; 8:48240. [PMID: 31518229 PMCID: PMC6744273 DOI: 10.7554/elife.48240] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022] Open
Abstract
Loss of proteostasis and cellular senescence are key hallmarks of aging, but direct cause-effect relationships are not well understood. We show that most yeast cells arrest in G1 before death with low nuclear levels of Cln3, a key G1 cyclin extremely sensitive to chaperone status. Chaperone availability is seriously compromised in aged cells, and the G1 arrest coincides with massive aggregation of a metastable chaperone-activity reporter. Moreover, G1-cyclin overexpression increases lifespan in a chaperone-dependent manner. As a key prediction of a model integrating autocatalytic protein aggregation and a minimal Start network, enforced protein aggregation causes a severe reduction in lifespan, an effect that is greatly alleviated by increased expression of specific chaperones or cyclin Cln3. Overall, our data show that proteostasis breakdown, by compromising chaperone activity and G1-cyclin function, causes an irreversible arrest in G1, configuring a molecular pathway postulating proteostasis decay as a key contributing effector of cell senescence.
Collapse
Affiliation(s)
- David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Kirsten Jenkins
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Institute of Mathematical and Molecular Biomedicine, King's College London, London, United Kingdom
| | - Sandrine Morlot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Université de Strasbourg, Illkirch, France
| | - Gilles Charvin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Université de Strasbourg, Illkirch, France
| | - Attila Csikasz-Nagy
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Institute of Mathematical and Molecular Biomedicine, King's College London, London, United Kingdom.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain.,Department of Basic Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| |
Collapse
|
6
|
Moreno DF, Parisi E, Yahya G, Vaggi F, Csikász-Nagy A, Aldea M. Competition in the chaperone-client network subordinates cell-cycle entry to growth and stress. Life Sci Alliance 2019; 2:2/2/e201800277. [PMID: 30988162 PMCID: PMC6467244 DOI: 10.26508/lsa.201800277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
The precise coordination of growth and proliferation has a universal prevalence in cell homeostasis. As a prominent property, cell size is modulated by the coordination between these processes in bacterial, yeast, and mammalian cells, but the underlying molecular mechanisms are largely unknown. Here, we show that multifunctional chaperone systems play a concerted and limiting role in cell-cycle entry, specifically driving nuclear accumulation of the G1 Cdk-cyclin complex. Based on these findings, we establish and test a molecular competition model that recapitulates cell-cycle-entry dependence on growth rate. As key predictions at a single-cell level, we show that availability of the Ydj1 chaperone and nuclear accumulation of the G1 cyclin Cln3 are inversely dependent on growth rate and readily respond to changes in protein synthesis and stress conditions that alter protein folding requirements. Thus, chaperone workload would subordinate Start to the biosynthetic machinery and dynamically adjust proliferation to the growth potential of the cell.
Collapse
Affiliation(s)
- David F Moreno
- Molecular Biology Institute of Barcelona, CSIC, Catalonia, Spain
| | - Eva Parisi
- Molecular Biology Institute of Barcelona, CSIC, Catalonia, Spain
| | - Galal Yahya
- Molecular Biology Institute of Barcelona, CSIC, Catalonia, Spain.,Department of Microbiology and Immunology, Zagazig University, Zagazig, Egypt
| | - Federico Vaggi
- Department of Informatics, Ecole Normale Supérieure, INRIA, Sierra Team, Paris, France
| | - Attila Csikász-Nagy
- Randall Centre for Cell and Molecular Biophysics and Institute of Mathematical and Molecular Biomedicine, King's College London, London, UK .,Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Martí Aldea
- Molecular Biology Institute of Barcelona, CSIC, Catalonia, Spain .,Department of Basic Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| |
Collapse
|
7
|
Quilis I, Taberner FJ, Martínez-Garay CA, Alepuz P, Igual JC. Karyopherin Msn5 is involved in a novel mechanism controlling the cellular level of cell cycle regulators Cln2 and Swi5. Cell Cycle 2019; 18:580-595. [PMID: 30739521 PMCID: PMC6464581 DOI: 10.1080/15384101.2019.1578148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The yeast β-karyopherin Msn5 controls the SBF cell-cycle transcription factor, responsible for the periodic expression of CLN2 cyclin gene at G1/S, and the nuclear export of Cln2 protein. Here we show that Msn5 regulates Cln2 by an additional mechanism. Inactivation of Msn5 causes a severe reduction in the cellular content of Cln2. This occurs by a post-transcriptional mechanism, since CLN2 mRNA level is not importantly affected in asynchronous cultures. Cln2 stability is not significantly altered in msn5 cells and inactivation of Msn5 causes a reduction in protein level even when Cln2 is stabilized. Therefore, the reduced amount of Cln2 in msn5 cells is mainly due not to a higher rate of protein degradation but to a defect in Cln2 synthesis. In fact, analysis of polysome profiles indicated that Msn5 inactivation causes a shift of CLN2 and SWI5 mRNAs from heavy-polysomal to light-polysomal and non-polysomal fractions, supporting a defect in Cln2 and Swi5 protein synthesis in the msn5 mutant. The analysis of truncated versions of Cln2 and of chimeric cyclins combining distinct domains from Cln2 and the related Cln1 cyclin identified an internal region in Cln2 from 181 to 225 residues that when fused to GFP is able to confer Msn5-dependent regulation of protein cellular content. Finally, we showed that a high level of Cln2 is toxic in the absence of Msn5. In summary, we described that Msn5 is required for the proper protein synthesis of specific proteins, introducing a new level of control of cell cycle regulators.
Collapse
Affiliation(s)
- Inma Quilis
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Francisco J Taberner
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Carlos A Martínez-Garay
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Paula Alepuz
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - J Carlos Igual
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| |
Collapse
|
8
|
Martínez-Láinez JM, Moreno DF, Parisi E, Clotet J, Aldea M. Centromeric signaling proteins boost G1 cyclin degradation and modulate cell size in budding yeast. PLoS Biol 2018; 16:e2005388. [PMID: 30080861 PMCID: PMC6095599 DOI: 10.1371/journal.pbio.2005388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/16/2018] [Accepted: 07/20/2018] [Indexed: 11/18/2022] Open
Abstract
Cell size scales with ploidy in a great range of eukaryotes, but the underlying mechanisms remain unknown. Using various orthogonal single-cell approaches, we show that cell size increases linearly with centromere (CEN) copy number in budding yeast. This effect is due to a G1 delay mediated by increased degradation of Cln3, the most upstream G1 cyclin acting at Start, and specific centromeric signaling proteins, namely Mad3 and Bub3. Mad3 binds both Cln3 and Cdc4, the adaptor component of the Skp1/Cul1/F-box (SCF) complex that targets Cln3 for degradation, these interactions being essential for the CEN-dosage dependent effects on cell size. Our results reveal a pathway that modulates cell size as a function of CEN number, and we speculate that, in cooperation with other CEN-independent mechanisms, it could assist the cell to attain efficient mass/ploidy ratios.
Collapse
Affiliation(s)
- Joan M. Martínez-Láinez
- Institut de Biologia Molecular de Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Spain
| | - David F. Moreno
- Institut de Biologia Molecular de Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
| | - Eva Parisi
- Institut de Biologia Molecular de Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
| | - Josep Clotet
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Martí Aldea
- Institut de Biologia Molecular de Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
9
|
Parisi E, Yahya G, Flores A, Aldea M. Cdc48/p97 segregase is modulated by cyclin-dependent kinase to determine cyclin fate during G1 progression. EMBO J 2018; 37:embj.201798724. [PMID: 29950310 DOI: 10.15252/embj.201798724] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/14/2018] [Accepted: 06/12/2018] [Indexed: 01/26/2023] Open
Abstract
Cells sense myriad signals during G1, and a rapid response to prevent cell cycle entry is of crucial importance for proper development and adaptation. Cln3, the most upstream G1 cyclin in budding yeast, is an extremely short-lived protein subject to ubiquitination and proteasomal degradation. On the other hand, nuclear accumulation of Cln3 depends on chaperones that are also important for its degradation. However, how these processes are intertwined to control G1-cyclin fate is not well understood. Here, we show that Cln3 undergoes a challenging ubiquitination step required for both degradation and full activation. Segregase Cdc48/p97 prevents degradation of ubiquitinated Cln3, and concurrently stimulates its ER release and nuclear accumulation to trigger Start. Cdc48/p97 phosphorylation at conserved Cdk-target sites is important for recruitment of specific cofactors and, in both yeast and mammalian cells, to attain proper G1-cyclin levels and activity. Cdk-dependent modulation of Cdc48 would subjugate G1 cyclins to fast and reversible state switching, thus arresting cells promptly in G1 at developmental or environmental checkpoints, but also resuming G1 progression immediately after proliferative signals reappear.
Collapse
Affiliation(s)
- Eva Parisi
- Molecular Biology Institute of Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
| | - Galal Yahya
- Molecular Biology Institute of Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain.,Department of Microbiology and Immunology, School of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Alba Flores
- Molecular Biology Institute of Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona IBMB-CSIC, Barcelona, Catalonia, Spain .,Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Quilis I, Igual JC. A comparative study of the degradation of yeast cyclins Cln1 and Cln2. FEBS Open Bio 2016; 7:74-87. [PMID: 28097090 PMCID: PMC5221467 DOI: 10.1002/2211-5463.12157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/06/2016] [Accepted: 11/03/2016] [Indexed: 11/09/2022] Open
Abstract
The yeast cyclins Cln1 and Cln2 are very similar in both sequence and function, but some differences in their functionality and localization have been recently described. The control of Cln1 and Cln2 cellular levels is crucial for proper cell cycle initiation. In this work, we analyzed the degradation patterns of Cln1 and Cln2 in order to further investigate the possible differences between them. Both cyclins show the same half-life but, while Cln2 degradation depends on ubiquitin ligases SCFGrr1 and SCFCdc4, Cln1 is affected only by SCFGrr1. Degradation analysis of chimeric cyclins, constructed by combining fragments from Cln1 and Cln2, identifies the N-terminal sequence of the proteins as responsible of the cyclin degradation pattern. In particular, the N-terminal region of Cln2 is required to mediate degradation by SCFCdc4. This region is involved in nuclear import of Cln1 and Cln2, which suggests that differences in degradation may be due to differences in localization. Moreover, a comparison of the cyclins that differ only in the presence of the Cln2 nuclear export signal indicates a greater instability of exported cyclins, thus reinforcing the idea that cyclin stability is influenced by their localization.
Collapse
Affiliation(s)
- Inma Quilis
- Departament de Bioquímica i Biologia Molecular and ERI BiotecMed Universitat de València Burjassot Spain
| | - J Carlos Igual
- Departament de Bioquímica i Biologia Molecular and ERI BiotecMed Universitat de València Burjassot Spain
| |
Collapse
|
11
|
Abstract
The mitotic cell cycle is driven by Cyclin-Dependent Kinases (CDK). CDK activation requires the binding of activatory subunits termed cyclins. Different waves of cyclins are expressed during the cell cycle, enabling CDKs to trigger phase specific events. For instance, S phase cyclins promote the initiation of DNA replication but not chromosome segregation. There are at least 2 explanations for how such regulation is achieved. According to one of the visions, cyclins confer intrinsic substrate specificity to the CDK catalytic subunit. Alternatively a quantitative model has been proposed, according to which ever-increasing CDK activity is required to trigger cell cycle events from G1 to M. If a quantitative control prevails, then an early cyclin should trigger later cycle events if accumulated at high enough levels at the right time and place. We show here that a G1 phase cyclin bears the potential to trigger DNA replication and promote S and G2 phase specific transcription.
Collapse
Affiliation(s)
- Roger Palou
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Asrar Malik
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Gloria Palou
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Fanli Zeng
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Ping Ren
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - David G Quintana
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| |
Collapse
|
12
|
Orderly progression through S-phase requires dynamic ubiquitylation and deubiquitylation of PCNA. Sci Rep 2016; 6:25513. [PMID: 27151298 PMCID: PMC4858703 DOI: 10.1038/srep25513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Proliferating-cell nuclear antigen (PCNA) is a DNA sliding clamp with an essential function in DNA replication and a key role in tolerance to DNA damage by ensuring the bypass of lesions. In eukaryotes, DNA damage tolerance is regulated by ubiquitylation of lysine 164 of PCNA through a well-known control mechanism; however, the regulation of PCNA deubiquitylation remains poorly understood. Our work is a systematic and functional study on PCNA deubiquitylating enzymes (DUBs) in Schizosaccharomyces pombe. Our study reveals that the deubiquitylation of PCNA in fission yeast cells is a complex process that requires several ubiquitin proteases dedicated to the deubiquitylation of a specific subnuclear fraction of mono- and di-ubiquitylated PCNA or a particular type of poly-ubiquitylated PCNA and that there is little redundancy among these enzymes. To understand how DUB activity regulates the oscillatory pattern of ubiquitylated PCNA in fission yeast, we assembled multiple DUB mutants and found that a quadruple mutation of ubp2+, ubp12+, ubp15+, and ubp16+ leads to the stable accumulation of mono-, di-, and poly-ubiquitylated forms of PCNA, increases S-phase duration, and sensitizes cells to DNA damage. Our data suggest that the dynamic ubiquitylation and deubiquitylation of PCNA occurs during S-phase to ensure processive DNA replication.
Collapse
|
13
|
Bhaduri S, Valk E, Winters MJ, Gruessner B, Loog M, Pryciak PM. A docking interface in the cyclin Cln2 promotes multi-site phosphorylation of substrates and timely cell-cycle entry. Curr Biol 2015; 25:316-325. [PMID: 25619768 DOI: 10.1016/j.cub.2014.11.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Eukaryotic cell division is driven by cyclin-dependent kinases (CDKs). Distinct cyclin-CDK complexes are specialized to drive different cell-cycle events, though the molecular foundations for these specializations are only partly understood. In budding yeast, the decision to begin a new cell cycle is regulated by three G1 cyclins (Cln1-Cln3). Recent studies revealed that some CDK substrates contain a novel docking motif that is specifically recognized by Cln1 and Cln2, and not by Cln3 or later S- or M-phase cyclins, but the responsible cyclin interface was unknown. RESULTS Here, to explore the role of this new docking mechanism in the cell cycle, we first show that it is conserved in a distinct cyclin subtype (Ccn1). Then, we exploit phylogenetic variation to identify cyclin mutations that disrupt docking. These mutations disrupt binding to multiple substrates as well as the ability to use docking sites to promote efficient, multi-site phosphorylation of substrates in vitro. In cells where the Cln2 docking function is blocked, we observed reductions in the polarized morphogenesis of daughter buds and reduced ability to fully phosphorylate the G1/S transcriptional repressor Whi5. Furthermore, disruption of Cln2 docking perturbs the coordination between cell size and division, such that the G1/S transition is delayed. CONCLUSIONS The findings point to a novel substrate interaction interface on cyclins, with patterns of conservation and divergence that relate to functional distinctions among cyclin subtypes. Furthermore, this docking function helps ensure full phosphorylation of substrates with multiple phosphorylation sites, and this contributes to punctual cell-cycle entry.
Collapse
Affiliation(s)
- Samyabrata Bhaduri
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ervin Valk
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Matthew J Winters
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Brian Gruessner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Peter M Pryciak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
14
|
Abstract
Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls.
Collapse
|
15
|
Yahya G, Parisi E, Flores A, Gallego C, Aldea M. A Whi7-anchored loop controls the G1 Cdk-cyclin complex at start. Mol Cell 2013; 53:115-26. [PMID: 24374311 DOI: 10.1016/j.molcel.2013.11.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/30/2013] [Accepted: 11/21/2013] [Indexed: 01/12/2023]
Abstract
Cells commit to a new cell cycle at Start by activation of the G1 Cdk-cyclin complex which, in turn, triggers a genome-wide transcriptional wave that executes the G1/S transition. In budding yeast, the Cdc28-Cln3 complex is regulated by an ER-retention mechanism that is important for proper cell size control. We have isolated small-cell-size CDC28 mutants showing impaired retention at the ER and premature accumulation of the Cln3 cyclin in the nucleus. The differential interactome of a quintuple Cdc28(wee) mutant pinpointed Whi7, a Whi5 paralog targeted by Cdc28 that associates to the ER in a phosphorylation-dependent manner. Our results demonstrate that the Cln3 cyclin and Whi7 act in a positive feedback loop to release the G1 Cdk-cyclin complex and trigger Start once a critical size has been reached, thus uncovering a key nonlinear mechanism at the earliest known events of cell-cycle entry.
Collapse
Affiliation(s)
- Galal Yahya
- Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Catalonia, Spain
| | - Eva Parisi
- Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Catalonia, Spain
| | - Alba Flores
- Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Catalonia, Spain
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB-CSIC), 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
16
|
Liu Y, Hu H, Li Z. The cooperative roles of PHO80-like cyclins in regulating the G1/S transition and posterior cytoskeletal morphogenesis in Trypanosoma brucei. Mol Microbiol 2013; 90:130-46. [PMID: 23909752 DOI: 10.1111/mmi.12352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2013] [Indexed: 12/23/2022]
Abstract
Cyclins and cyclin-dependent kinases (CDKs) represent the fundamental, crucial regulators of the cell division cycle in eukaryotes. Trypanosoma brucei expresses a large number of cyclins and Cdc2-related kinases (CRKs). However, how these cyclins and CRKs cooperate to regulate cell cycle progression remains poorly understood. Here, we carry out directional yeast two-hybrid assays to identify the interactions between the 10 cyclins and the 11 CRKs and detect a total of 26 cyclin-CRK pairs, among which 20 pairs are new. Our current efforts are focused on four PHO80-like cyclins, CYC2, CYC4, CYC5 and CYC7, and their physical and functional interactions with CRK1. Silencing of the four cyclins and CRK1 leads to the increase of G1 cells and defective DNA replication, suggesting their important roles in promoting the G1/S transition. Additionally, CYC2-, CYC7- and CRK1-deficient cells possess an elongated posterior that is filled with newly assembled microtubules. Further, we show that the four cyclins display distinct subcellular localizations and half-lives, suggesting that they likely undergo distinct regulation. Altogether, our results demonstrate the involvement of four CRK1-associated cyclins, CYC2, CYC4, CYC5 and CYC7, in promoting the G1/S transition and the requirement of CYC2 and CYC7 in maintaining posterior cytoskeletal morphogenesis during the G1/S transition.
Collapse
Affiliation(s)
- Yi Liu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | | | | |
Collapse
|
17
|
McCourt P, Gallo-Ebert C, Gonghong Y, Jiang Y, Nickels JT. PP2A(Cdc55) regulates G1 cyclin stability. Cell Cycle 2013; 12:1201-10. [PMID: 23518505 PMCID: PMC3674085 DOI: 10.4161/cc.24231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Maintaining accurate progression through the cell cycle requires the proper temporal expression and regulation of cyclins. The mammalian D-type cyclins promote G1-S transition. D1 cyclin protein stability is regulated through its ubiquitylation and resulting proteolysis catalyzed by the SCF E3 ubiquitin ligase complex containing the F-box protein, Fbx4. SCF E3-ligase-dependent ubiquitylation of D1 is trigged by an increase in the phosphorylation status of the cyclin. As inhibition of ubiquitin-dependent D1 degradation is seen in many human cancers, we set out to uncover how D-type cyclin phosphorylation is regulated. Here we show that in S. cerevisiae, a heterotrimeric protein phosphatase 2A (PP2A(Cdc55)) containing the mammalian PPP2R2/PR55 B subunit ortholog Cdc55 regulates the stability of the G1 cyclin Cln2 by directly regulating its phosphorylation state. Cells lacking Cdc55 contain drastically reduced Cln2 levels caused by degradation due to cdk-dependent hyperphosphorylation, as a Cln2 mutant unable to be phosphorylated by the yeast cdk Cdc28 is highly stable in cdc55-null cells. Moreover, cdc55-null cells become inviable when the SCF(Grr1) activity known to regulate Cln2 levels is eliminated or when Cln2 is overexpressed, indicating a critical relationship between SCF and PP2A functions in regulating cell cycle progression through modulation of G1-S cyclin degradation/stability. In sum, our results indicate that PP2A is absolutely required to maintain G1-S cyclin levels through modulating their phosphorylation status, an event necessary to properly transit through the cell cycle.
Collapse
Affiliation(s)
- Paula McCourt
- Venenum Biodesign, Genesis Biotechnology Group, Hamilton, NJ, USA
| | | | | | | | | |
Collapse
|
18
|
Goel A, Wilkins MR. Dynamic hubs show competitive and static hubs non-competitive regulation of their interaction partners. PLoS One 2012; 7:e48209. [PMID: 23118954 PMCID: PMC3485199 DOI: 10.1371/journal.pone.0048209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/26/2012] [Indexed: 11/18/2022] Open
Abstract
Date hub proteins have 1 or 2 interaction interfaces but many interaction partners. This raises the question of whether all partner proteins compete for the interaction interface of the hub or if the cell carefully regulates aspects of this process? Here, we have used real-time rendering of protein interaction networks to analyse the interactions of all the 1 or 2 interface hubs of Saccharomyces cerevisiae during the cell cycle. By integrating previously determined structural and gene expression data, and visually hiding the nodes (proteins) and their edges (interactions) during their troughs of expression, we predict when interactions of hubs and their partners are likely to exist. This revealed that 20 out of all 36 one- or two- interface hubs in the yeast interactome fell within two main groups. The first was dynamic hubs with static partners, which can be considered as ‘competitive hubs’. Their interaction partners will compete for the interaction interface of the hub and the success of any interaction will be dictated by the kinetics of interaction (abundance and affinity) and subcellular localisation. The second was static hubs with dynamic partners, which we term ‘non-competitive hubs’. Regulatory mechanisms are finely tuned to lessen the presence and/or effects of competition between the interaction partners of the hub. It is possible that these regulatory processes may also be used by the cell for the regulation of other, non-cell cycle processes.
Collapse
Affiliation(s)
- Apurv Goel
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Marc R. Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
19
|
Quilis I, Igual JC. Molecular basis of the functional distinction between Cln1 and Cln2 cyclins. Cell Cycle 2012; 11:3117-31. [PMID: 22889732 DOI: 10.4161/cc.21505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cln1 and Cln2 are very similar but not identical cyclins. In this work, we tried to describe the molecular basis of the functional distinction between Cln1 and Cln2. We constructed chimeric cyclins containing different fragments of Cln1 and Cln2 and performed several functional analysis that make it possible to distinguish between Cln1 or Cln2. We identified that region between amino acids 225 and 299 of Cln2 is not only necessary but also sufficient to confer Cln2 specific functionality compared with Cln1. We also studied Cln1 and Cln2 subcellular localization identifying additional differences between them. Both cyclins are distributed between the nucleus and the cytoplasm, but Cln1 shows stronger nuclear accumulation. Nuclear import of both cyclins is mediated by the classical nuclear import pathway and by sequences in the N-terminal end of the proteins. For Cln2, but not for Cln1, a nuclear export mechanism mediated by karyopherin Msn5 has been identified. Strikingly, Cln2 export depends on a Msn5-dependent NES between amino acids 225 and 299. In fact, the introduction of this region confers to Cln1 an export mechanism dependent on Msn5; importantly, this causes the gain of Cln2-specific cytosolic functions and the impairment of nuclear function. In short, a region from Cln2 controlling an Msn5-dependent nuclear export mechanism confers a specific functionality to Cln2 compared with Cln1.
Collapse
Affiliation(s)
- Inma Quilis
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | | |
Collapse
|
20
|
Landry BD, Doyle JP, Toczyski DP, Benanti JA. F-box protein specificity for g1 cyclins is dictated by subcellular localization. PLoS Genet 2012; 8:e1002851. [PMID: 22844257 PMCID: PMC3405998 DOI: 10.1371/journal.pgen.1002851] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/06/2012] [Indexed: 01/16/2023] Open
Abstract
Levels of G1 cyclins fluctuate in response to environmental cues and couple mitotic signaling to cell cycle entry. The G1 cyclin Cln3 is a key regulator of cell size and cell cycle entry in budding yeast. Cln3 degradation is essential for proper cell cycle control; however, the mechanisms that control Cln3 degradation are largely unknown. Here we show that two SCF ubiquitin ligases, SCF(Cdc4) and SCF(Grr1), redundantly target Cln3 for degradation. While the F-box proteins (FBPs) Cdc4 and Grr1 were previously thought to target non-overlapping sets of substrates, we find that Cdc4 and Grr1 each bind to all 3 G1 cyclins in cell extracts, yet only Cln3 is redundantly targeted in vivo, due in part to its nuclear localization. The related cyclin Cln2 is cytoplasmic and exclusively targeted by Grr1. However, Cdc4 can interact with Cdk-phosphorylated Cln2 and target it for degradation when cytoplasmic Cdc4 localization is forced in vivo. These findings suggest that Cdc4 and Grr1 may share additional redundant targets and, consistent with this possibility, grr1Δ cdc4-1 cells demonstrate a CLN3-independent synergistic growth defect. Our findings demonstrate that structurally distinct FBPs are capable of interacting with some of the same substrates; however, in vivo specificity is achieved in part by subcellular localization. Additionally, the FBPs Cdc4 and Grr1 are partially redundant for proliferation and viability, likely sharing additional redundant substrates whose degradation is important for cell cycle progression.
Collapse
Affiliation(s)
- Benjamin D. Landry
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - John P. Doyle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - David P. Toczyski
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Jennifer A. Benanti
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Abstract
Cell size is an important adaptive trait that influences nearly all aspects of cellular physiology. Despite extensive characterization of the cell-cycle regulatory network, the molecular mechanisms coupling cell growth to division, and thereby controlling cell size, have remained elusive. Recent work in yeast has reinvigorated the size control field and suggested provocative mechanisms for the distinct functions of setting and sensing cell size. Further examination of size-sensing models based on spatial gradients and molecular titration, coupled with elucidation of the pathways responsible for nutrient-modulated target size, may reveal the fundamental principles of eukaryotic cell size control.
Collapse
|
22
|
Antagonistic gene transcripts regulate adaptation to new growth environments. Proc Natl Acad Sci U S A 2011; 108:21087-92. [PMID: 22160690 DOI: 10.1073/pnas.1111408109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells have evolved complex regulatory networks that reorganize gene expression patterns in response to changing environmental conditions. These changes often involve redundant mechanisms that affect various levels of gene expression. Here, we examine the consequences of enhanced mRNA degradation in the galactose utilization network of Saccharomyces cerevisiae. We observe that glucose-induced degradation of GAL1 transcripts provides a transient growth advantage to cells upon addition of glucose. We show that the advantage arises from relief of translational competition between GAL1 transcripts and those of cyclin CLN3, a translationally regulated initiator of cell division. This competition creates a translational bottleneck that balances the production of Gal1p and Cln3p and represents a posttranscriptional control mechanism that enhances the cell's ability to adapt to changes in carbon source. We present evidence that the spatial regulation of GAL1 and CLN3 transcripts is what allows growth to be maintained during fluctuations of glucose availability. Our results provide unique insights into how cells optimize energy use during growth in a dynamic environment.
Collapse
|
23
|
Bhaduri S, Pryciak PM. Cyclin-specific docking motifs promote phosphorylation of yeast signaling proteins by G1/S Cdk complexes. Curr Biol 2011; 21:1615-23. [PMID: 21945277 DOI: 10.1016/j.cub.2011.08.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/29/2011] [Accepted: 08/15/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND The eukaryotic cell cycle begins with a burst of cyclin-dependent kinase (Cdk) phosphorylation. In budding yeast, several Cdk substrates are preferentially phosphorylated at the G1/S transition rather than later in the cell cycle when Cdk activity levels are high. These early Cdk substrates include signaling proteins in the pheromone response pathway. Two such proteins, Ste5 and Ste20, are phosphorylated only when Cdk is associated with the G1/S cyclins Cln1 and Cln2 and not G1, S, or M cyclins. The basis of this cyclin specificity is unknown. RESULTS Here we show that Ste5 and Ste20 have recognition sequences, or "docking" sites, for the G1/S cyclins. These docking sites, which are distinct from Clb5/cyclin A-binding "RXL" motifs, bind preferentially to Cln2. They strongly enhance Cln2-driven phosphorylation of each substrate in vivo and function largely independent of position and distance to the Cdk sites. We exploited this functional independence to rewire a Cdk regulatory circuit in a way that changes the target of Cdk inhibition in the pheromone response pathway. Furthermore, we uncover functionally active Cln2 docking motifs in several other Cdk substrates. The docking motifs drive cyclin-specific phosphorylation, and the cyclin preference can be switched by using a distinct motif. CONCLUSIONS Our findings indicate that some Cdk substrates are intrinsically capable of being phosphorylated by several different cyclin-Cdk forms, but they are inefficiently phosphorylated in vivo without a cyclin-specific docking site. Docking interactions may play a prevalent but previously unappreciated role in driving phosphorylation of select Cdk substrates preferentially at the G1/S transition.
Collapse
Affiliation(s)
- Samyabrata Bhaduri
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
24
|
Yan H, Marquardt K, Indorf M, Jutt D, Kircher S, Neuhaus G, Rodríguez-Franco M. Nuclear localization and interaction with COP1 are required for STO/BBX24 function during photomorphogenesis. PLANT PHYSIOLOGY 2011; 156:1772-82. [PMID: 21685177 PMCID: PMC3149933 DOI: 10.1104/pp.111.180208] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) SALT TOLERANCE/B-BOX ZINC FINGER PROTEIN24 (STO/BBX24) is a negative regulator of the light signal transduction that localizes to the nucleus of plant cells and interacts with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in the yeast (Saccharomyces cerevisiae) two-hybrid system. The protein contains two B-box zinc-finger motives at the N terminus and a conserved motif at the C-terminal part required for the interaction with COP1. BBX24 accumulates during deetiolation of young seedlings in the first hours of exposure to light. However, this accumulation is transient and decreases after prolonged light irradiation. Here, we identified the amino acidic residues necessary for the nuclear import of the protein. In addition, we created mutated forms of the protein, and analyzed them by overexpression in the bbx24-1 mutant background. Our results indicate that the degradation of BBX24 occurs, or at least is initiated in the nucleus, and this nuclear localization is a prerequisite to fulfill its function in light signaling. Moreover, mutations in the region responsible for the interaction with COP1 revealed that a physical interaction of the proteins is also required for degradation of BBX24 in the light and for normal photomorphogenesis.
Collapse
|
25
|
Liu X, Lee YJ, Liou LC, Ren Q, Zhang Z, Wang S, Witt SN. Alpha-synuclein functions in the nucleus to protect against hydroxyurea-induced replication stress in yeast. Hum Mol Genet 2011; 20:3401-14. [PMID: 21642386 DOI: 10.1093/hmg/ddr246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hydroxyurea (HU) inhibits ribonucleotide reductase (RNR), which catalyzes the rate-limiting synthesis of deoxyribonucleotides for DNA replication. HU is used to treat HIV, sickle-cell anemia and some cancers. We found that, compared with vector control cells, low levels of alpha-synuclein (α-syn) protect S. cerevisiae cells from the growth inhibition and reactive oxygen species (ROS) accumulation induced by HU. Analysis of this effect using different α-syn mutants revealed that the α-syn protein functions in the nucleus and not the cytoplasm to modulate S-phase checkpoint responses: α-syn up-regulates histone acetylation and RNR levels, maintains helicase minichromosome maintenance protein complexes (Mcm2-7) on chromatin and inhibits HU-induced ROS accumulation. Strikingly, when residues 2-10 or 96-140 are deleted, this protective function of α-syn in the nucleus is abolished. Understanding the mechanism by which α-syn protects against HU could expand our knowledge of the normal function of this neuronal protein.
Collapse
Affiliation(s)
- Xianpeng Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Early recruitment of AU-rich element-containing mRNAs determines their cytosolic fate during iron deficiency. Mol Cell Biol 2010; 31:417-29. [PMID: 21135132 DOI: 10.1128/mcb.00754-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The yeast Cth2 protein is a CX(8)CX(5)CX(3)H tandem zinc finger protein that binds AU-rich element (ARE)-containing transcripts to enhance their decay in response to iron (Fe) deficiency. Mammalian members of this family of proteins are known to undergo nucleocytoplasmic shuttling, but little is known about the role of shuttling in the mechanism of ARE-dependent mRNA decay. Here we demonstrate that, like its mammalian homologues, Cth2 is a nucleocytoplasmic shuttling protein whose nuclear export depends on mRNA transport to the cytosol. The nuclear import information of Cth2 is contained within its tandem zinc finger domain, but it is independent of mRNA-binding function. Moreover, we also demonstrate that nucleocytoplasmic shuttling of Cth2 requires active transcription and that disruption of shuttling leads to defects in Cth2 function in mRNA decay under Fe deficiency. Taken together, our data suggest that under conditions of Fe deficiency Cth2 travels into the nucleus to recruit target mRNAs, perhaps cotranscriptionally, that are destined for cytosolic degradation as part of the mechanism of adaptation to growth under Fe limitation. These data also suggest an important role for nucleocytoplasmic shuttling in this conserved family of proteins in the mechanism of ARE-mediated mRNA decay.
Collapse
|
27
|
Taberner FJ, Igual JC. Yeast karyopherin Kap95 is required for cell cycle progression at Start. BMC Cell Biol 2010; 11:47. [PMID: 20587033 PMCID: PMC2904269 DOI: 10.1186/1471-2121-11-47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 06/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background The control of the subcellular localization of cell cycle regulators has emerged as a crucial mechanism in cell division regulation. The active transport of proteins between the nucleus and the cytoplasm is mediated by the transport receptors of the β-karyopherin family. In this work we characterized the terminal phenotype of a mutant strain in β-karyopherin Kap95, a component of the classical nuclear import pathway. Results When KAP95 was inactivated, most cells arrested at the G2/M phase of the cell cycle, which is in agreement with the results observed in mutants in the other components of this pathway. However, a number of cells accumulate at G1, suggesting a novel role of Kap95 and the classical import pathway at Start. We investigated the localization of Start transcription factors. It is known that Swi6 contains a classical NLS that interacts with importin α. Here we show that the in vivo nuclear import of Swi6 depends on Kap95. For Swi4, we identified a functional NLS between amino acids 371 and 376 that is sufficient and necessary for Swi4 to enter the nucleus. The nuclear import driven by this NLS is mediated by karyopherins Kap95 and Srp1. Inactivation of Kap95 also produces a dramatic change in the localization of Mbp1 since the protein is mainly detected in the cytoplasm. Two functionally redundant Kap95- and Srp1-dependent NLSs were identified in Mbp1 between amino acids 27-30 and 166-181. Nuclear accumulation was not completely abolished in a kap95 mutant or in the Mbp1 mutated in the two NLSs, suggesting that alternative pathways might contribute to the Mbp1 nuclear import to a lesser extent. Conclusions Kap95 plays an essential role at the initiation of the cell cycle by driving the nuclear import of Swi4, Swi6 and Mbp1, the three transcription factors responsible for the gene expression at Start. This transport depends on the specific nuclear localization signals present in cargo proteins.
Collapse
Affiliation(s)
- Francisco José Taberner
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Dr. Moliner 50, 46100 Burjassot (Valencia), Spain
| | | |
Collapse
|
28
|
Tapia H, Morano KA. Hsp90 nuclear accumulation in quiescence is linked to chaperone function and spore development in yeast. Mol Biol Cell 2009; 21:63-72. [PMID: 19889838 PMCID: PMC2801720 DOI: 10.1091/mbc.e09-05-0376] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The protein chaperone Hsp90 and its co-chaperone Sba1/p23 are found to accumulate in the nucleus of haploid yeast cells as glucose is exhausted and in sporulating diploids. Novel and existing Hsp90 mutants exhibit defects in nuclear translocation and spore development, linking these two phenomena. The 90-kDa heat-shock protein (Hsp90) operates in the context of a multichaperone complex to promote maturation of nuclear and cytoplasmic clients. We have discovered that Hsp90 and the cochaperone Sba1/p23 accumulate in the nucleus of quiescent Saccharomyces cerevisiae cells. Hsp90 nuclear accumulation was unaffected in sba1Δ cells, demonstrating that Hsp82 translocates independently of Sba1. Translocation of both chaperones was dependent on the α/β importin SRP1/KAP95. Hsp90 nuclear retention was coincident with glucose exhaustion and seems to be a starvation-specific response, as heat shock or 10% ethanol stress failed to elicit translocation. We generated nuclear accumulation-defective HSP82 mutants to probe the nature of this targeting event and identified a mutant with a single amino acid substitution (I578F) sufficient to retain Hsp90 in the cytoplasm in quiescent cells. Diploid hsp82-I578F cells exhibited pronounced defects in spore wall construction and maturation, resulting in catastrophic sporulation. The mislocalization and sporulation phenotypes were shared by another previously identified HSP82 mutant allele. Pharmacological inhibition of Hsp90 with macbecin in sporulating diploid cells also blocked spore formation, underscoring the importance of this chaperone in this developmental program.
Collapse
Affiliation(s)
- Hugo Tapia
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
29
|
Alberghina L, Coccetti P, Orlandi I. Systems biology of the cell cycle of Saccharomyces cerevisiae: From network mining to system-level properties. Biotechnol Adv 2009; 27:960-978. [PMID: 19465107 DOI: 10.1016/j.biotechadv.2009.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following a brief description of the operational procedures of systems biology (SB), the cell cycle of budding yeast is discussed as a successful example of a top-down SB analysis. After the reconstruction of the steps that have led to the identification of a sizer plus timer network in the G1 to S transition, it is shown that basic functions of the cell cycle (the setting of the critical cell size and the accuracy of DNA replication) are system-level properties, detected only by integrating molecular analysis with modelling and simulation of their underlying networks. A detailed network structure of a second relevant regulatory step of the cell cycle, the exit from mitosis, derived from extensive data mining, is constructed and discussed. To reach a quantitative understanding of how nutrients control, through signalling, metabolism and transcription, cell growth and cycle is a very relevant aim of SB. Since we know that about 900 gene products are required for cell cycle execution and control in budding yeast, it is quite clear that a purely systematic approach would require too much time. Therefore lines for a modular SB approach, which prioritises molecular and computational investigations for faster cell cycle understanding, are proposed. The relevance of the insight coming from the cell cycle SB studies in developing a new framework for tackling very complex biological processes, such as cancer and aging, is discussed.
Collapse
Affiliation(s)
- Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy.
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy
| | - Ivan Orlandi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
30
|
Nuclear export of Ho endonuclease of yeast via Msn5. Curr Genet 2008; 54:271-81. [PMID: 18807043 DOI: 10.1007/s00294-008-0216-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/04/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
Abstract
Exportin-5, an evolutionarily conserved nuclear export factor of the beta-karyopherin family, exports phosphorylated proteins and small noncoding RNAs. Msn5, the yeast ortholog, exports primarily phosphorylated cargoes including Ho endonuclease and a number of transcription factors and regulatory proteins. The Msn5-mediated nuclear export of Ho is dependent on phosphorylation of Thr225 by kinases of the DNA damage response pathway. Although Msn5 has been the object of many studies, no NES sequence capable of binding the exportin and/or of leading to Msn5-dependent export of a heterologous protein has been identified. Here we report identification of a 13-residue Ho sequence that interacts with Msn5 in vitro and directs Msn5-dependent nuclear export of GFP in vivo. A single point mutation in this 13-mer Ho NES abrogates both interaction with Msn5 and nuclear export of Ho and of GFP. However, this mutation, or of T225A, both of which abrogate nuclear export of Ho, does not interfere with its interaction with Msn5 implying that the exportin makes multiple contacts with its cargo. This can explain the lack of a conserved NES in Msn5 cargoes. Our results identify essential criteria for Msn5-mediated nuclear export of Ho: phosphorylation on HoT225, and interaction with the 13-mer Ho NES sequence.
Collapse
|
31
|
Geda P, Patury S, Ma J, Bharucha N, Dobry CJ, Lawson SK, Gestwicki JE, Kumar A. A small molecule-directed approach to control protein localization and function. Yeast 2008; 25:577-94. [DOI: 10.1002/yea.1610] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
32
|
Skotheim JM, Di Talia S, Siggia ED, Cross FR. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 2008; 454:291-6. [PMID: 18633409 PMCID: PMC2606905 DOI: 10.1038/nature07118] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/29/2008] [Indexed: 11/09/2022]
Abstract
In budding yeast, Saccharomyces cerevisiae, the Start checkpoint integrates multiple internal and external signals into an all-or-none decision to enter the cell cycle. Here we show that Start behaves like a switch due to systems-level feedback in the regulatory network. In contrast to current models proposing a linear cascade of Start activation, transcriptional positive feedback of the G1 cyclins Cln1 and Cln2 induces the near-simultaneous expression of the approximately 200-gene G1/S regulon. Nuclear Cln2 drives coherent regulon expression, whereas cytoplasmic Cln2 drives efficient budding. Cells with the CLN1 and CLN2 genes deleted frequently arrest as unbudded cells, incurring a large fluctuation-induced fitness penalty due to both the lack of cytoplasmic Cln2 and insufficient G1/S regulon expression. Thus, positive-feedback-amplified expression of Cln1 and Cln2 simultaneously drives robust budding and rapid, coherent regulon expression. A similar G1/S regulatory network in mammalian cells, comprised of non-orthologous genes, suggests either conservation of regulatory architecture or convergent evolution.
Collapse
Affiliation(s)
- Jan M Skotheim
- Center for Studies in Physics and Biology, The Rockefeller University, New York 10065, USA.
| | | | | | | |
Collapse
|
33
|
Bharucha N, Ma J, Dobry CJ, Lawson SK, Yang Z, Kumar A. Analysis of the yeast kinome reveals a network of regulated protein localization during filamentous growth. Mol Biol Cell 2008; 19:2708-17. [PMID: 18417610 PMCID: PMC2441683 DOI: 10.1091/mbc.e07-11-1199] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 03/10/2008] [Accepted: 04/09/2008] [Indexed: 11/11/2022] Open
Abstract
The subcellular distribution of kinases and other signaling proteins is regulated in response to cellular cues; however, the extent of this regulation has not been investigated for any gene set in any organism. Here, we present a systematic analysis of protein kinases in the budding yeast, screening for differential localization during filamentous growth. Filamentous growth is an important stress response involving mitogen-activated protein kinase and cAMP-dependent protein kinase signaling modules, wherein yeast cells form interconnected and elongated chains. Because standard strains of yeast are nonfilamentous, we constructed a unique set of 125 kinase-yellow fluorescent protein chimeras in the filamentous Sigma1278b strain for this study. In total, we identified six cytoplasmic kinases (Bcy1p, Fus3p, Ksp1p, Kss1p, Sks1p, and Tpk2p) that localize predominantly to the nucleus during filamentous growth. These kinases form part of an interdependent, localization-based regulatory network: deletion of each individual kinase, or loss of kinase activity, disrupts the nuclear translocation of at least two other kinases. In particular, this study highlights a previously unknown function for the kinase Ksp1p, indicating the essentiality of its nuclear translocation during yeast filamentous growth. Thus, the localization of Ksp1p and the other kinases identified here is tightly controlled during filamentous growth, representing an overlooked regulatory component of this stress response.
Collapse
Affiliation(s)
- Nikë Bharucha
- Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Jun Ma
- Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Craig J. Dobry
- Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Sarah K. Lawson
- Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Zhifen Yang
- Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216
| |
Collapse
|
34
|
Keaton MA, Szkotnicki L, Marquitz AR, Harrison J, Zyla TR, Lew DJ. Nucleocytoplasmic trafficking of G2/M regulators in yeast. Mol Biol Cell 2008; 19:4006-18. [PMID: 18562688 DOI: 10.1091/mbc.e08-03-0286] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nucleocytoplasmic shuttling is prevalent among many cell cycle regulators controlling the G2/M transition. Shuttling of cyclin/cyclin-dependent kinase (CDK) complexes is thought to provide access to substrates stably located in either compartment. Because cyclin/CDK shuttles between cellular compartments, an upstream regulator that is fixed in one compartment could in principle affect the entire cyclin/CDK pool. Alternatively, the regulators themselves may need to shuttle to effectively regulate their moving target. Here, we identify localization motifs in the budding yeast Swe1p (Wee1) and Mih1p (Cdc25) cell cycle regulators. Replacement of endogenous Swe1p or Mih1p with mutants impaired in nuclear import or export revealed that the nuclear pools of Swe1p and Mih1p were more effective in CDK regulation than were the cytoplasmic pools. Nevertheless, shuttling of cyclin/CDK complexes was sufficiently rapid to coordinate nuclear and cytoplasmic events even when Swe1p or Mih1p were restricted to one compartment. Additionally, we found that Swe1p nuclear export was important for its degradation. Because Swe1p degradation is regulated by cytoskeletal stress, shuttling of Swe1p between nucleus and cytoplasm serves to couple cytoplasmic stress to nuclear cyclin/CDK inhibition.
Collapse
Affiliation(s)
- Mignon A Keaton
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
35
|
Simmons Kovacs LA, Nelson CL, Haase SB. Intrinsic and cyclin-dependent kinase-dependent control of spindle pole body duplication in budding yeast. Mol Biol Cell 2008; 19:3243-53. [PMID: 18480404 DOI: 10.1091/mbc.e08-02-0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Centrosome duplication must be tightly controlled so that duplication occurs only once each cell cycle. Accumulation of multiple centrosomes can result in the assembly of a multipolar spindle and lead to chromosome mis-segregation and genomic instability. In metazoans, a centrosome-intrinsic mechanism prevents reduplication until centriole disengagement. Mitotic cyclin/cyclin-dependent kinases (CDKs) prevent reduplication of the budding yeast centrosome, called a spindle pole body (SPB), in late S-phase and G2/M, but the mechanism remains unclear. How SPB reduplication is prevented early in the cell cycle is also not understood. Here we show that, similar to metazoans, an SPB-intrinsic mechanism prevents reduplication early in the cell cycle. We also show that mitotic cyclins can inhibit SPB duplication when expressed before satellite assembly in early G1, but not later in G1, after the satellite had assembled. Moreover, electron microscopy revealed that SPBs do not assemble a satellite in cells expressing Clb2 in early G1. Finally, we demonstrate that Clb2 must localize to the cytoplasm in order to inhibit SPB duplication, suggesting the possibility for direct CDK inhibition of satellite components. These two mechanisms, intrinsic and extrinsic control by CDK, evoke two-step system that prevents SPB reduplication throughout the cell cycle.
Collapse
|
36
|
Jorgensen P, Edgington NP, Schneider BL, Rupeš I, Tyers M, Futcher B. The size of the nucleus increases as yeast cells grow. Mol Biol Cell 2007; 18:3523-32. [PMID: 17596521 PMCID: PMC1951755 DOI: 10.1091/mbc.e06-10-0973] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 06/08/2007] [Accepted: 06/19/2007] [Indexed: 11/11/2022] Open
Abstract
It is not known how the volume of the cell nucleus is set, nor how the ratio of nuclear volume to cell volume (N/C) is determined. Here, we have measured the size of the nucleus in growing cells of the budding yeast Saccharomyces cerevisiae. Analysis of mutant yeast strains spanning a range of cell sizes revealed that the ratio of average nuclear volume to average cell volume was quite consistent, with nuclear volume being approximately 7% that of cell volume. At the single cell level, nuclear and cell size were strongly correlated in growing wild-type cells, as determined by three different microscopic approaches. Even in G1-phase, nuclear volume grew, although it did not grow quite as fast as overall cell volume. DNA content did not appear to have any immediate, direct influence on nuclear size, in that nuclear size did not increase sharply during S-phase. The maintenance of nuclear size did not require continuous growth or ribosome biogenesis, as starvation and rapamycin treatment had little immediate impact on nuclear size. Blocking the nuclear export of new ribosomal subunits, among other proteins and RNAs, with leptomycin B also had no obvious effect on nuclear size. Nuclear expansion must now be factored into conceptual and mathematical models of budding yeast growth and division. These results raise questions as to the unknown force(s) that expand the nucleus as yeast cells grow.
Collapse
Affiliation(s)
- Paul Jorgensen
- *Department of Medical Genetics and Microbiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Samuel Lunenfeld Research Institute, Toronto, ON M5G 1X5, Canada
| | | | - Brandt L. Schneider
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430; and
| | - Ivan Rupeš
- Samuel Lunenfeld Research Institute, Toronto, ON M5G 1X5, Canada
| | - Mike Tyers
- *Department of Medical Genetics and Microbiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Samuel Lunenfeld Research Institute, Toronto, ON M5G 1X5, Canada
| | - Bruce Futcher
- Department of Molecular Genetics and Microbiology, SUNY at Stony Brook, Stony Brook, NY 11794
| |
Collapse
|
37
|
Vergés E, Colomina N, Garí E, Gallego C, Aldea M. Cyclin Cln3 is retained at the ER and released by the J chaperone Ydj1 in late G1 to trigger cell cycle entry. Mol Cell 2007; 26:649-62. [PMID: 17560371 DOI: 10.1016/j.molcel.2007.04.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/03/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
G1 cyclin Cln3 plays a key role in linking cell growth and proliferation in budding yeast. It is generally assumed that Cln3, which is present throughout G1, accumulates passively in the nucleus until a threshold is reached to trigger cell cycle entry. We show here that Cln3 is retained bound to the ER in early G1 cells. ER retention requires binding of Cln3 to the cyclin-dependent kinase Cdc28, a fraction of which also associates to the ER. Cln3 contains a chaperone-regulatory Ji domain that counteracts Ydj1, a J chaperone essential for ER release and nuclear accumulation of Cln3 in late G1. Finally, Ydj1 is limiting for release of Cln3 and timely entry into the cell cycle. As protein synthesis and ribosome assembly rates compromise chaperone availability, we hypothesize that Ydj1 transmits growth capacity information to the cell cycle for setting efficient size/ploidy ratios.
Collapse
Affiliation(s)
- Emili Vergés
- Departament de Ciències Mèdiques Bàsiques, IRBLLEIDA, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Catalonia, Spain
| | | | | | | | | |
Collapse
|
38
|
Abstract
Cyclins regulate the cell cycle by binding to and activating cyclin-dependent kinases (Cdks). Phosphorylation of specific targets by cyclin-Cdk complexes sets in motion different processes that drive the cell cycle in a timely manner. In budding yeast, a single Cdk is activated by multiple cyclins. The ability of these cyclins to target specific proteins and to initiate different cell-cycle events might, in some cases, reflect the timing of the expression of the cyclins; in others, it might reflect intrinsic properties of the cyclins that render them better suited to target particular proteins.
Collapse
Affiliation(s)
- Joanna Bloom
- Laboratory of Yeast Molecular Genetics, Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
39
|
Honey S, Futcher B. Roles of the CDK phosphorylation sites of yeast Cdc6 in chromatin binding and rereplication. Mol Biol Cell 2007; 18:1324-36. [PMID: 17267692 PMCID: PMC1838967 DOI: 10.1091/mbc.e06-06-0544] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae Cdc6 protein is crucial for DNA replication. In the absence of cyclin-dependent kinase (CDK) activity, Cdc6 binds to replication origins, and loads Mcm proteins. In the presence of CDK activity, Cdc6 does not bind to origins, and this helps prevent rereplication. CDK activity affects Cdc6 function by multiple mechanisms: CDK activity affects transcription of CDC6, degradation of Cdc6, nuclear import of Cdc6, and binding of Cdc6 to Clb2. Here we examine some of these mechanisms individually. We find that when Cdc6 is forced into the nucleus during late G1 or S, it will not substantially reload onto chromatin no matter whether its CDK sites are present or not. In contrast, at a G2/M nocodazole arrest, Cdc6 will reload onto chromatin if and only if its CDK sites have been removed. Trace amounts of nonphosphorylatable Cdc6 are dominant lethal in strains bearing nonphosphorylatable Orc2 and Orc6, apparently because of rereplication. This synthetic dominant lethality occurs even in strains with wild-type MCM genes. Nonphosphorylatable Cdc6, or Orc2 and Orc6, sensitize cells to rereplication caused by overexpression of various replication initiation proteins such as Dpb11 and Sld2.
Collapse
Affiliation(s)
- Sangeet Honey
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222
| | - Bruce Futcher
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222
| |
Collapse
|
40
|
Eluère R, Offner N, Varlet I, Motteux O, Signon L, Picard A, Bailly E, Simon MN. Compartmentalization of the functions and regulation of the mitotic cyclin Clb2 in S. cerevisiae. J Cell Sci 2007; 120:702-11. [PMID: 17264146 DOI: 10.1242/jcs.03380] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Orderly progression through the eukaryotic cell cycle is a complex process involving both regulation of cyclin dependent kinase activity and control of specific substrate-Cdk interactions. In Saccharomyces cerevisiae, the mitotic cyclin Clb2 has a central role in regulating the onset of anaphase and in maintaining the cellular shape of the bud by inhibiting growth polarization induced in G1. However, how Clb2 and the partially redundant cyclin Clb1 confer specificity to Cdk1 in these processes still remains unclear. Here, we show that Clb2 mutants impaired in nuclear import or export are differentially affected for subsets of Clb2 functions while remaining fully functional for others. Our data support a direct role of the cytoplasmic pool of Clb1,2-Cdk1 in terminating cytoskeleton and growth polarization, independently of G1 cyclin transcriptional regulation. By contrast, the nuclear form of the cyclin is required for timely initiation of anaphase. Clb2 localization influences its stage-specific degradation as well. We report that Clb2 trapped in the cytoplasm is stabilized during anaphase but not at the time of mitotic exit. Altogether, our results demonstrate that the subcellular localization of the mitotic cyclin Clb2 is one of the key determinants of its biological function.
Collapse
Affiliation(s)
- Raïssa Eluère
- Genome Instability and Carcinogenesis, CNRS FRE 2931, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hungerbuehler AK, Philippsen P, Gladfelter AS. Limited functional redundancy and oscillation of cyclins in multinucleated Ashbya gossypii fungal cells. EUKARYOTIC CELL 2006; 6:473-86. [PMID: 17122387 PMCID: PMC1828934 DOI: 10.1128/ec.00273-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclin protein behavior has not been systematically investigated in multinucleated cells with asynchronous mitoses. Cyclins are canonical oscillating cell cycle proteins, but it is unclear how fluctuating protein gradients can be established in multinucleated cells where nuclei in different stages of the division cycle share the cytoplasm. Previous work in A. gossypii, a filamentous fungus in which nuclei divide asynchronously in a common cytoplasm, demonstrated that one G1 and one B-type cyclin do not fluctuate in abundance across the division cycle. We have undertaken a comprehensive analysis of all G1 and B-type cyclins in A. gossypii to determine whether any of the cyclins show periodic abundance across the cell cycle and to examine whether cyclins exhibit functional redundancy in such a cellular environment. We localized all G1 and B-type cyclins and notably found that only AgClb5/6p varies in subcellular localization during the division cycle. AgClb5/6p is lost from nuclei at the meta-anaphase transition in a D-box-dependent manner. These data demonstrate that efficient nuclear autonomous protein degradation can occur within multinucleated cells residing in a common cytoplasm. We have shown that three of the five cyclins in A. gossypii are essential genes, indicating that there is minimal functional redundancy in this multinucleated system. In addition, we have identified a cyclin, AgClb3/4p, that is essential only for sporulation. We propose that the cohabitation of different cyclins in nuclei has led to enhanced substrate specificity and limited functional redundancy within classes of cyclins in multinucleated cells.
Collapse
Affiliation(s)
- A Katrin Hungerbuehler
- Department of Molecular Microbiology, Biozentrum University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
42
|
De Clercq A, Inzé D. Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol 2006; 41:293-313. [PMID: 16911957 DOI: 10.1080/10409230600856685] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell cycle is remarkably conserved in yeast, animals, and plants and is controlled by cyclin-dependent kinases (CDKs). CDK activity can be inhibited by binding of CDK inhibitory proteins, designated CKIs. Numerous studies show that CKIs are essential in orchestrating eukaryotic cell proliferation and differentiation. In yeast, animals, and plants, CKIs act as regulators of the G1 checkpoint in response to environmental and developmental cues and assist during mitotic cell cycles by inhibiting CDK activity required to arrest mitosis. Furthermore, CKIs play an important role in regulating cell cycle exit that precedes differentiation and in promoting differentiation in cooperation with transcription factors. Moreover, CKIs are essential to control CDK activity in endocycling cells. So, in yeast, animals, and plants, CKIs share many functional similarities, but their functions are adapted toward the specific needs of the eukaryote.
Collapse
Affiliation(s)
- Annelies De Clercq
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Ghent, Belgium
| | | |
Collapse
|
43
|
Gladfelter AS, Hungerbuehler AK, Philippsen P. Asynchronous nuclear division cycles in multinucleated cells. ACTA ACUST UNITED AC 2006; 172:347-62. [PMID: 16449188 PMCID: PMC2063645 DOI: 10.1083/jcb.200507003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synchronous mitosis is common in multinucleated cells. We analyzed a unique asynchronous nuclear division cycle in a multinucleated filamentous fungus, Ashbya gossypii. Nuclear pedigree analysis and observation of GFP-labeled spindle pole bodies demonstrated that neighboring nuclei in A. gossypii cells are in different cell cycle stages despite close physical proximity. Neighboring nuclei did not differ significantly in their patterns of cyclin protein localization such that both G1 and mitotic cyclins were present regardless of cell cycle stage, suggesting that the complete destruction of cyclins is not occurring in this system. Indeed, the expression of mitotic cyclin lacking NH2-terminal destruction box sequences did not block cell cycle progression. Cells lacking AgSic1p, a predicted cyclin-dependent kinase (CDK) inhibitor, however, showed aberrant multipolar spindles and fragmented nuclei that are indicative of flawed mitoses. We hypothesize that the continuous cytoplasm in these cells promoted the evolution of a nuclear division cycle in which CDK inhibitors primarily control CDK activity rather than oscillating mitotic cyclin proteins.
Collapse
Affiliation(s)
- Amy S Gladfelter
- Department of Molecular Microbiology, Biozentrum University of Basel, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
44
|
Glickstein SB, Alexander S, Ross ME. Differences in cyclin D2 and D1 protein expression distinguish forebrain progenitor subsets. ACTA ACUST UNITED AC 2006; 17:632-42. [PMID: 16627858 DOI: 10.1093/cercor/bhk008] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulation of neural proliferation is an essential component of brain formation and is driven by both intrinsic cell cycle and extrinsic growth and trophic molecules. Among the cell cycle proteins, understanding of the relative roles of the G1-phase active cyclins D2 and D1 (cD2 and cD1) has been hampered by lack of data regarding their expression patterns. In this study, cD2 immunoreactivity was examined in the neocortex, ganglionic eminences/striatum, and hippocampal formation from embryonic day 12.5 until postnatal day 60 to more precisely characterize the expression of this protein during forebrain development. The localization of cD1 was also immunohistologically mapped for comparison. Throughout forebrain development, both overlapping and nonoverlapping protein expression of these cyclins suggests the presence of shared and unique cell cycle requirements for neurogenesis that distinguishes progenitor pools.
Collapse
Affiliation(s)
- Sara B Glickstein
- Laboratory of Neurogenetics and Development, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
45
|
Flick K, Wittenberg C. Multiple pathways for suppression of mutants affecting G1-specific transcription in Saccharomyces cerevisiae. Genetics 2005; 169:37-49. [PMID: 15677747 PMCID: PMC1448864 DOI: 10.1534/genetics.104.032169] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the budding yeast, Saccharomyces cerevisiae, control of cell proliferation is exerted primarily during G(1) phase. The G(1)-specific transcription of several hundred genes, many with roles in early cell cycle events, requires the transcription factors SBF and MBF, each composed of Swi6 and a DNA-binding protein, Swi4 or Mbp1, respectively. Binding of these factors to promoters is essential but insufficient for robust transcription. Timely transcriptional activation requires Cln3/CDK activity. To identify potential targets for Cln3/CDK, we identified multicopy suppressors of the temperature sensitivity of new conditional alleles of SWI6. A bck2Delta background was used to render SWI6 essential. Seven multicopy suppressors of bck2Delta swi6-ts mutants were identified. Three genes, SWI4, RME1, and CLN2, were identified previously in related screens and shown to activate G(1)-specific expression of genes independent of CLN3 and SWI6. The other four genes, FBA1, RPL40a/UBI1, GIN4, and PAB1, act via apparently unrelated pathways downstream of SBF and MBF. Each depends upon CLN2, but not CLN1, for its suppressing activity. Together with additional characterization these findings indicate that multiple independent pathways are sufficient for proliferation in the absence of G(1)-specific transcriptional activators.
Collapse
Affiliation(s)
- Karin Flick
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
46
|
Wittenberg C, Reed SI. Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 2005; 24:2746-55. [PMID: 15838511 DOI: 10.1038/sj.onc.1208606] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the budding yeast, Saccharomyces cerevisiae, a significant fraction of genes (>10%) are transcribed with cell cycle periodicity. These genes encode critical cell cycle regulators as well as proteins with no direct connection to cell cycle functions. Cell cycle-regulated genes can be organized into 'clusters' exhibiting similar patterns of regulation. In most cases periodic transcription is achieved via both repressive and activating mechanisms. Fine-tuning appears to have evolved by the juxtaposition of regulatory motifs characteristic of more than one cluster within the same promoter. Recent reports have provided significant new insight into the role of the cyclin-dependent kinase Cdk1 (Cdc28) in coordination of transcription with cell cycle events. In early G1, the transcription factor complex known as SBF is maintained in a repressed state by association of the Whi5 protein. Phosphorylation of Whi5 by Cdk1 in late G1 leads to dissociation from SBF and transcriptional derepression. G2/M-specific transcription is achieved by converting the repressor Fkh2 into an activator. Fkh2 serves as a repressor during most of the cell cycle. However, phosphorylation of a cofactor, Ndd1, by Cdk1 late in the cell cycle promotes binding to Fkh2 and conversion into a transcriptional activator. Such insights derived from analysis of specific genes when combined with genome-wide analysis provide a more detailed and integrated view of cell cycle-dependent transcription.
Collapse
Affiliation(s)
- Curt Wittenberg
- Department of Molecular Biology, MB-3, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
47
|
Queralt E, Igual JC. Functional distinction between Cln1p and Cln2p cyclins in the control of the Saccharomyces cerevisiae mitotic cycle. Genetics 2005; 168:129-40. [PMID: 15454532 PMCID: PMC1448118 DOI: 10.1534/genetics.104.029587] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cln1p and Cln2p are considered as equivalent cyclins on the basis of sequence homology, regulation, and functional studies. Here we describe a functional distinction between the Cln1p and Cln2p cyclins in the control of the G1/S transition. Inactivation of CLN2, but not of CLN1, leads to a larger-than-normal cell size, whereas overexpression of CLN2, but not of CLN1, results in smaller-than-normal cells. Furthermore, mild ectopic expression of CLN2, but not of CLN1, suppresses the lethality of swi4swi6 and cdc28 mutant strains. In the absence of Cln1p, the kinetics of budding, initiation of DNA replication, and activation of the Start-transcription program are not affected; by contrast, loss of Cln2p causes a delay in bud emergence. A primary role for Cln2p but not for Cln1p in budding is reinforced by the observation that only the cln2 mutation is synthetic lethal with a cdc42 mutation, and only the cln2 mutant strain is hypersensitive to latrunculin B. In addition, we found that Cln1p showed a more prominent nuclear staining than Cln2p. Finally, chimeric proteins composed of Cln1p and Cln2p revealed that Cln2p integrity is required for its functional specificity.
Collapse
Affiliation(s)
- Ethel Queralt
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain
| | | |
Collapse
|
48
|
Abstract
Size is a fundamental attribute impacting cellular design, fitness, and function. Size homeostasis requires a doubling of cell mass with each division. In yeast, division is delayed until a critical size has been achieved. In metazoans, cell cycles can be actively coupled to growth, but in certain cell types extracellular signals may independently induce growth and division. Despite a long history of study, the fascinating mechanisms that control cell size have resisted molecular genetic insight. Recently, genetic screens in Drosophila and functional genomics approaches in yeast have macheted into the thicket of cell size control.
Collapse
Affiliation(s)
- Paul Jorgensen
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto ON, Canada M5S 1A8.
| | | |
Collapse
|
49
|
|
50
|
Alberghina L, Rossi RL, Querin L, Wanke V, Vanoni M. A cell sizer network involving Cln3 and Far1 controls entrance into S phase in the mitotic cycle of budding yeast. ACTA ACUST UNITED AC 2004; 167:433-43. [PMID: 15520229 PMCID: PMC2172493 DOI: 10.1083/jcb.200405102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Saccharomyces cerevisiae must reach a carbon source-modulated critical cell size, protein content per cell at the onset of DNA replication (Ps), in order to enter S phase. Cells grown in glucose are larger than cells grown in ethanol. Here, we show that an increased level of the cyclin-dependent inhibitor Far1 increases cell size, whereas far1Δ cells start bud emergence and DNA replication at a smaller size than wild type. Cln3Δ, far1Δ, and strains overexpressing Far1 do not delay budding during an ethanol glucose shift-up as wild type does. Together, these findings indicate that Cln3 has to overcome Far1 to trigger Cln–Cdc28 activation, which then turns on SBF- and MBF-dependent transcription. We show that a second threshold is required together with the Cln3/Far1 threshold for carbon source modulation of Ps. A new molecular network accounting for the setting of Ps is proposed.
Collapse
Affiliation(s)
- Lilia Alberghina
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy.
| | | | | | | | | |
Collapse
|