1
|
Liu X, Qin H, Liu Y, Ma J, Li Y, He Y, Zhu H, Mao L. The biological functions and pathological mechanisms of CASK in various diseases. Heliyon 2024; 10:e28863. [PMID: 38638974 PMCID: PMC11024568 DOI: 10.1016/j.heliyon.2024.e28863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Background As a scaffold protein, calcium/calmodulin-dependent serine protein kinase (CASK) has been extensively studied in a variety of tissues throughout the body. The Cask gene is ubiquitous in several tissues, such as the neurons, islets, heart, kidneys and sperm, and is mostly localised in the cytoplasm adjacent to the basement membrane. CASK binds to a variety of proteins through its domains to exerting its biological activity. Scope of review Here, we discuss the role of CASK in multiple tissues throughout the body. The role of different CASK domains in regulating neuronal development, neurotransmitter release and synaptic vesicle secretion was emphasised; the regulatory mechanism of CASK on the function of pancreatic islet β cells was analysed; the role of CASK in cardiac physiology, kidney and sperm development was discussed; and the role of CASK in different tumours was compared. Finally, we clarify the importance of the Cask gene in the body, and how deletion or mutation of the Cask gene can have adverse consequences. Major conclusions CASK is a conserved gene with similar roles in various tissues. The function of the Cask gene in the nervous system is mainly involved in the development of the nervous system and the release of neurotransmitters. In the endocrine system, an involvement of CASK has been reported in the process of insulin vesicle transport. CASK is also involved in cardiomyocyte ion channel regulation, kidney and sperm development, and tumour proliferation. CASK is an indispensable gene for the whole body, and CASK mutations can cause foetal malformations or death at birth. In this review, we summarise the biological functions and pathological mechanisms of CASK in various systems, thereby providing a basis for further in-depth studies of CASK functions.
Collapse
Affiliation(s)
- Xingjing Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Haonan Qin
- Department of Orthopedics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yuanyuan Liu
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Jingjing Ma
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yiming Li
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yu He
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Huimin Zhu
- Department of Electrophysiology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Li Mao
- Department of Endocrinology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| |
Collapse
|
2
|
Moreno-Manuel AI, Macías Á, Cruz FM, Gutiérrez LK, Martínez F, González-Guerra A, Martínez Carrascoso I, Bermúdez-Jimenez FJ, Sánchez-Pérez P, Vera-Pedrosa ML, Ruiz-Robles JM, Bernal JA, Jalife J. The Kir2.1E299V mutation increases atrial fibrillation vulnerability while protecting the ventricles against arrhythmias in a mouse model of short QT syndrome type 3. Cardiovasc Res 2024; 120:490-505. [PMID: 38261726 PMCID: PMC11060485 DOI: 10.1093/cvr/cvae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
AIMS Short QT syndrome type 3 (SQTS3) is a rare arrhythmogenic disease caused by gain-of-function mutations in KCNJ2, the gene coding the inward rectifier potassium channel Kir2.1. We used a multidisciplinary approach and investigated arrhythmogenic mechanisms in an in-vivo model of de-novo mutation Kir2.1E299V identified in a patient presenting an extremely abbreviated QT interval and paroxysmal atrial fibrillation. METHODS AND RESULTS We used intravenous adeno-associated virus-mediated gene transfer to generate mouse models, and confirmed cardiac-specific expression of Kir2.1WT or Kir2.1E299V. On ECG, the Kir2.1E299V mouse recapitulated the QT interval shortening and the atrial-specific arrhythmia of the patient. The PR interval was also significantly shorter in Kir2.1E299V mice. Patch-clamping showed extremely abbreviated action potentials in both atrial and ventricular Kir2.1E299V cardiomyocytes due to a lack of inward-going rectification and increased IK1 at voltages positive to -80 mV. Relative to Kir2.1WT, atrial Kir2.1E299V cardiomyocytes had a significantly reduced slope conductance at voltages negative to -80 mV. After confirming a higher proportion of heterotetrameric Kir2.x channels containing Kir2.2 subunits in the atria, in-silico 3D simulations predicted an atrial-specific impairment of polyamine block and reduced pore diameter in the Kir2.1E299V-Kir2.2WT channel. In ventricular cardiomyocytes, the mutation increased excitability by shifting INa activation and inactivation in the hyperpolarizing direction, which protected the ventricle against arrhythmia. Moreover, Purkinje myocytes from Kir2.1E299V mice manifested substantially higher INa density than Kir2.1WT, explaining the abbreviation in the PR interval. CONCLUSION The first in-vivo mouse model of cardiac-specific SQTS3 recapitulates the electrophysiological phenotype of a patient with the Kir2.1E299V mutation. Kir2.1E299V eliminates rectification in both cardiac chambers but protects against ventricular arrhythmias by increasing excitability in both Purkinje-fiber network and ventricles. Consequently, the predominant arrhythmias are supraventricular likely due to the lack of inward rectification and atrial-specific reduced pore diameter of the Kir2.1E299V-Kir2.2WT heterotetramer.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Action Potentials
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/metabolism
- Atrial Fibrillation/genetics
- Atrial Fibrillation/physiopathology
- Atrial Fibrillation/metabolism
- Disease Models, Animal
- Genetic Predisposition to Disease
- Heart Rate/genetics
- Heart Ventricles/metabolism
- Heart Ventricles/physiopathology
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phenotype
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
Collapse
Affiliation(s)
- Ana I Moreno-Manuel
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Fernando Martínez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andrés González-Guerra
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Isabel Martínez Carrascoso
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Francisco José Bermúdez-Jimenez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Department of Cardiology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Patricia Sánchez-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | - Juan Manuel Ruiz-Robles
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 4810, USA
| |
Collapse
|
3
|
Cruz FM, Macías Á, Moreno-Manuel AI, Gutiérrez LK, Vera-Pedrosa ML, Martínez-Carrascoso I, Pérez PS, Robles JMR, Bermúdez-Jiménez FJ, Díaz-Agustín A, de Benito FM, Arias-Santiago S, Braza-Boils A, Martín-Martínez M, Gutierrez-Rodríguez M, Bernal JA, Zorio E, Jiménez-Jaimez J, Jalife J. Extracellular Kir2.1 C122Y Mutant Upsets Kir2.1-PIP 2 Bonds and Is Arrhythmogenic in Andersen-Tawil Syndrome. Circ Res 2024; 134:e52-e71. [PMID: 38497220 PMCID: PMC11009053 DOI: 10.1161/circresaha.123.323895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Andersen-Tawil syndrome type 1 is a rare heritable disease caused by mutations in the gene coding the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys (cysteine)122-to-Cys154 disulfide bond in the channel structure is crucial for proper folding but has not been associated with correct channel function at the membrane. We evaluated whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing its open state. METHODS We identified a Kir2.1 loss-of-function mutation (c.366 A>T; p.Cys122Tyr) in an ATS1 family. To investigate its pathophysiological implications, we generated an AAV9-mediated cardiac-specific mouse model expressing the Kir2.1C122Y variant. We employed a multidisciplinary approach, integrating patch clamping and intracardiac stimulation, molecular biology techniques, molecular dynamics, and bioluminescence resonance energy transfer experiments. RESULTS Kir2.1C122Y mice recapitulated the ECG features of ATS1 independently of sex, including corrected QT prolongation, conduction defects, and increased arrhythmia susceptibility. Isolated Kir2.1C122Y cardiomyocytes showed significantly reduced inwardly rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking. Molecular dynamics predicted that the C122Y mutation provoked a conformational change over the 2000-ns simulation, characterized by a greater loss of hydrogen bonds between Kir2.1 and phosphatidylinositol 4,5-bisphosphate than wild type (WT). Therefore, the phosphatidylinositol 4,5-bisphosphate-binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch clamping, the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing phosphatidylinositol 4,5-bisphosphate concentrations. In addition, the Kir2.1C122Y mutation resulted in channelosome degradation, demonstrating temporal instability of both Kir2.1 and NaV1.5 proteins. CONCLUSIONS The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential for the channel function. We demonstrate that breaking disulfide bonds in the extracellular domain disrupts phosphatidylinositol 4,5-bisphosphate-dependent regulation, leading to channel dysfunction and defects in Kir2.1 energetic stability. The mutation also alters functional expression of the NaV1.5 channel and ultimately leads to conduction disturbances and life-threatening arrhythmia characteristic of Andersen-Tawil syndrome type 1.
Collapse
Affiliation(s)
- Francisco M. Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | - Lilian K. Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | | | - Francisco J Bermúdez-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - Aitor Díaz-Agustín
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Fernando Martínez de Benito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Salvador Arias-Santiago
- Servicio de Dermatología Hospital Universitario Virgen de las Nieves
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - Aitana Braza-Boils
- Unit of Inherited Cardiomyopathies and Sudden Death (CAFAMUSME), Health Research Institute La Fe, La Fe Hospital, Valencia, Spain
- Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Mercedes Martín-Martínez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Marta Gutierrez-Rodríguez
- Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Juan A. Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Esther Zorio
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Unit of Inherited Cardiomyopathies and Sudden Death (CAFAMUSME), Health Research Institute La Fe, La Fe Hospital, Valencia, Spain
- Cardiology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Juan Jiménez-Jaimez
- Servicio de Cardiología, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada IBS, Granada, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departments of Medicine and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Moreno-Manuel AI, Gutiérrez LK, Vera-Pedrosa ML, Cruz FM, Bermúdez-Jiménez FJ, Martínez-Carrascoso I, Sánchez-Pérez P, Macías Á, Jalife J. Molecular stratification of arrhythmogenic mechanisms in the Andersen Tawil syndrome. Cardiovasc Res 2023; 119:919-932. [PMID: 35892314 PMCID: PMC10153646 DOI: 10.1093/cvr/cvac118] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022] Open
Abstract
Andersen-Tawil syndrome (ATS) is a rare inheritable disease associated with loss-of-function mutations in KCNJ2, the gene coding the strong inward rectifier potassium channel Kir2.1, which forms an essential membrane protein controlling cardiac excitability. ATS is usually marked by a triad of periodic paralysis, life-threatening cardiac arrhythmias and dysmorphic features, but its expression is variable and not all patients with a phenotype linked to ATS have a known genetic alteration. The mechanisms underlying this arrhythmogenic syndrome are poorly understood. Knowing such mechanisms would be essential to distinguish ATS from other channelopathies with overlapping phenotypes and to develop individualized therapies. For example, the recently suggested role of Kir2.1 as a countercurrent to sarcoplasmic calcium reuptake might explain the arrhythmogenic mechanisms of ATS and its overlap with catecholaminergic polymorphic ventricular tachycardia. Here we summarize current knowledge on the mechanisms of arrhythmias leading to sudden cardiac death in ATS. We first provide an overview of the syndrome and its pathophysiology, from the patient's bedside to the protein and discuss the role of essential regulators and interactors that could play a role in cases of ATS. The review highlights novel ideas related to some post-translational channel interactions with partner proteins that might help define the molecular bases of the arrhythmia phenotype. We then propose a new all-embracing classification of the currently known ATS loss-of-function mutations according to their position in the Kir2.1 channel structure and their functional implications. We also discuss specific ATS pathogenic variants, their clinical manifestations, and treatment stratification. The goal is to provide a deeper mechanistic understanding of the syndrome toward the development of novel targets and personalized treatment strategies.
Collapse
Affiliation(s)
| | - Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | | | - Francisco Miguel Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - Francisco José Bermúdez-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
- Departamento de Cardiología, Hospital Virgen de las Nieves, GranadaSpain
| | | | - Patricia Sánchez-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
d’Apolito M, Santoro F, Santacroce R, Cordisco G, Ragnatela I, D’Arienzo G, Pellegrino PL, Brunetti ND, Margaglione M. A Novel DLG1 Variant in a Family with Brugada Syndrome: Clinical Characteristics and In Silico Analysis. Genes (Basel) 2023; 14:427. [PMID: 36833354 PMCID: PMC9957379 DOI: 10.3390/genes14020427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Brugada syndrome (BrS) is an inherited primary channelopathy syndrome associated to sudden cardiac death. Overall, variants have been identified in eighteen genes encoding for ion channel subunits and seven genes for regulatory proteins. Recently, a missense variant in DLG1 has been found within a BrS phenotype-positive patient. DLG1 encodes for synapse associated protein 97 (SAP97), a protein characterized by the presence of multiple domains for protein-protein interactions including PDZ domains. In cardiomyocytes, SAP97 interacts with Nav1.5, a PDZ binding motif of SCN5A and others potassium channel subunits. AIM OF THE STUDY To characterize the phenotype of an Italian family with BrS syndrome carrying a DLG1 variant. METHODS Clinical and genetic investigations were performed. Genetic testing was performed with whole-exome sequencing (WES) using the Illumina platform. According to the standard protocol, a variant found by WES was confirmed in all members of the family by bi-directional capillary Sanger resequencing. The effect of the variant was investigated by using in silico prediction of pathogenicity. RESULTS The index case was a 74-year-old man with spontaneous type 1 BrS ECG pattern that experienced syncope and underwent ICD implantation. WES of the index case, performed assuming a dominant mode of inheritance, identified a heterozygous variant, c.1556G>A (p.R519H), in the exon 15 of the DLG1 gene. In the pedigree investigation, 6 out of 12 family members had the variant. Carriers of the gene variant all had BrS ECG type 1 drug induced and showed heterogeneous cardiac phenotypes with two patients experiencing syncope during exercise and fever, respectively. The amino acid residue #519 lies near a PDZ domain and in silico analysis suggested a causal role for the variant. Modelling of the resulting protein structure predicted that the variant disrupts an H-bond and a likelihood of being pathogenic. As a consequence, it is likely that a conformational change affects protein functionality and the modulating role on ion channels. CONCLUSIONS A DLG1 gene variant identified was associated with BrS. The variant could modify the formation of multichannel protein complexes, affecting ion channels to specific compartments in cardiomyocytes.
Collapse
Affiliation(s)
- Maria d’Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Francesco Santoro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Cardiology Unit, Polyclinic Hospital of Foggia, 71122 Foggia, Italy
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giorgia Cordisco
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Ilaria Ragnatela
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | | | | | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Cardiology Unit, Polyclinic Hospital of Foggia, 71122 Foggia, Italy
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
6
|
Bahouth SW, Nooh MM, Mancarella S. Involvement of SAP97 anchored multiprotein complexes in regulating cardiorenal signaling and trafficking networks. Biochem Pharmacol 2023; 208:115406. [PMID: 36596415 DOI: 10.1016/j.bcp.2022.115406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
SAP97 is a member of the MAGUK family of proteins, but unlike other MAGUK proteins that are selectively expressed in the CNS, SAP97 is also expressed in peripheral organs, like the heart and kidneys. SAP97 has several protein binding cassettes, and this review will describe their involvement in creating SAP97-anchored multiprotein networks. SAP97-anchored networks localized at the inner leaflet of the cell membrane play a major role in trafficking and targeting of membrane G protein-coupled receptors (GPCR), channels, and structural proteins. SAP97 plays a major role in compartmentalizing voltage gated sodium and potassium channels to specific cellular compartments of heart cells. SAP97 undergoes extensive alternative splicing. These splice variants give rise to different SAP97 isoforms that alter its cellular localization, networking, signaling and trafficking effects. Regarding GPCR, SAP97 binds to the β1-adrenergic receptor and recruits AKAP5/PKA and PDE4D8 to create a multiprotein complex that regulates trafficking and signaling of cardiac β1-AR. In the kidneys, SAP97 anchored networks played a role in trafficking of aquaporin-2 water channels. Cardiac specific ablation of SAP97 (SAP97-cKO) resulted in cardiac hypertrophy and failure in aging mice. Similarly, instituting transverse aortic constriction (TAC) in young SAP97 c-KO mice exacerbated TAC-induced cardiac remodeling and dysfunction. These findings highlight a critical role for SAP97 in the pathophysiology of a number of cardiac and renal diseases, suggesting that SAP97 is a relevant target for drug discovery.
Collapse
Affiliation(s)
- Suleiman W Bahouth
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee-Health Sciences Center, Memphis, TN, United States.
| | - Mohammed M Nooh
- Department of Biochemistry, Faculty of Pharmacy Cairo University, Cairo, Egypt and Biochemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Salvatore Mancarella
- Department of Physiology, The University of Tennessee-Health Sciences Center, Memphis, TN, United States
| |
Collapse
|
7
|
Rajeev P, Singh N, Kechkar A, Butler C, Ramanan N, Sibarita JB, Jose M, Nair D. Nanoscale regulation of Ca2+ dependent phase transitions and real-time dynamics of SAP97/hDLG. Nat Commun 2022; 13:4236. [PMID: 35869063 PMCID: PMC9307800 DOI: 10.1038/s41467-022-31912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Synapse associated protein-97/Human Disk Large (SAP97/hDLG) is a conserved, alternatively spliced, modular, scaffolding protein critical in regulating the molecular organization of cell-cell junctions in vertebrates. We confirm that the molecular determinants of first order phase transition of SAP97/hDLG is controlled by morpho-functional changes in its nanoscale organization. Furthermore, the nanoscale molecular signatures of these signalling islands and phase transitions are altered in response to changes in cytosolic Ca2+. Additionally, exchange kinetics of alternatively spliced isoforms of the intrinsically disordered region in SAP97/hDLG C-terminus shows differential sensitivities to Ca2+ bound Calmodulin, affirming that the molecular signatures of local phase transitions of SAP97/hDLG depends on their nanoscale heterogeneity and compositionality of isoforms. SAP97/hDLG is a ubiquitous, alternatively spliced, and conserved modular scaffolding protein involved in the organization cell junctions and excitatory synapses. Here, authors confirm that SAP97/hDLG condenses in to nanosized molecular domains in both heterologous cells and hippocampal pyramidal neurons. Authors demonstrate that in vivo and in vitro condensation, molecular signatures of nanoscale condensates and exchange kinetics of SAP97/hDLG is modulated by the local availability of alternatively spliced isoforms. Additionally, SAP97/hDLG isoforms exhibits a differential sensitivity to Ca2+ bound Calmodulin, resulting in altered properties of nanocondensates and their real-time regulation
Collapse
|
8
|
Hager NA, McAtee CK, Lesko MA, O’Donnell AF. Inwardly Rectifying Potassium Channel Kir2.1 and its "Kir-ious" Regulation by Protein Trafficking and Roles in Development and Disease. Front Cell Dev Biol 2022; 9:796136. [PMID: 35223865 PMCID: PMC8864065 DOI: 10.3389/fcell.2021.796136] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Potassium (K+) homeostasis is tightly regulated for optimal cell and organismal health. Failure to control potassium balance results in disease, including cardiac arrythmias and developmental disorders. A family of inwardly rectifying potassium (Kir) channels helps cells maintain K+ levels. Encoded by KCNJ genes, Kir channels are comprised of a tetramer of Kir subunits, each of which contains two-transmembrane domains. The assembled Kir channel generates an ion selectivity filter for K+ at the monomer interface, which allows for K+ transit. Kir channels are found in many cell types and influence K+ homeostasis across the organism, impacting muscle, nerve and immune function. Kir2.1 is one of the best studied family members with well-defined roles in regulating heart rhythm, muscle contraction and bone development. Due to their expansive roles, it is not surprising that Kir mutations lead to disease, including cardiomyopathies, and neurological and metabolic disorders. Kir malfunction is linked to developmental defects, including underdeveloped skeletal systems and cerebellar abnormalities. Mutations in Kir2.1 cause the periodic paralysis, cardiac arrythmia, and developmental deficits associated with Andersen-Tawil Syndrome. Here we review the roles of Kir family member Kir2.1 in maintaining K+ balance with a specific focus on our understanding of Kir2.1 channel trafficking and emerging roles in development and disease. We provide a synopsis of the vital work focused on understanding the trafficking of Kir2.1 and its role in development.
Collapse
Affiliation(s)
| | | | | | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Blandin CE, Gravez BJ, Hatem SN, Balse E. Remodeling of Ion Channel Trafficking and Cardiac Arrhythmias. Cells 2021; 10:cells10092417. [PMID: 34572065 PMCID: PMC8468138 DOI: 10.3390/cells10092417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/08/2023] Open
Abstract
Both inherited and acquired cardiac arrhythmias are often associated with the abnormal functional expression of ion channels at the cellular level. The complex machinery that continuously traffics, anchors, organizes, and recycles ion channels at the plasma membrane of a cardiomyocyte appears to be a major source of channel dysfunction during cardiac arrhythmias. This has been well established with the discovery of mutations in the genes encoding several ion channels and ion channel partners during inherited cardiac arrhythmias. Fibrosis, altered myocyte contacts, and post-transcriptional protein changes are common factors that disorganize normal channel trafficking during acquired cardiac arrhythmias. Channel availability, described notably for hERG and KV1.5 channels, could be another potent arrhythmogenic mechanism. From this molecular knowledge on cardiac arrhythmias will emerge novel antiarrhythmic strategies.
Collapse
Affiliation(s)
- Camille E. Blandin
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Basile J. Gravez
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
| | - Stéphane N. Hatem
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- ICAN—Institute of Cardiometabolism and Nutrition, Institute of Cardiology, Pitié-Salpêtrière Hospital, Sorbonne University, F-75013 Paris, France
| | - Elise Balse
- INSERM, Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition—UNITE 1166, Sorbonne Université, EQUIPE 3, F-75013 Paris, France; (C.E.B.); (B.J.G.); (S.N.H.)
- Correspondence:
| |
Collapse
|
10
|
Reilly L, Eckhardt LL. Cardiac potassium inward rectifier Kir2: Review of structure, regulation, pharmacology, and arrhythmogenesis. Heart Rhythm 2021; 18:1423-1434. [PMID: 33857643 PMCID: PMC8328935 DOI: 10.1016/j.hrthm.2021.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Potassium inward rectifier channel Kir2 is an important component of terminal cardiac repolarization and resting membrane stability. This functionality is part of balanced cardiac excitability and is a defining feature of excitable cardiac membranes. “Gain-of-function” or “loss-of-function” mutations in KCNJ2, the gene encoding Kir2.1, cause genetic sudden cardiac death syndromes, and loss of the Kir2 current IK1 is a major contributing factor to arrhythmogenesis in failing human hearts. Here we provide a contemporary review of the functional structure, physiology, and pharmacology of Kir2 channels. Beyond the structure and functional relationships, we will focus on the elements of clinically used drugs that block the channel and the implications for treatment of atrial fibrillation with IK1-blocking agents. We will also review the clinical disease entities associated with KCNJ2 mutations and the growing area of research into associated arrhythmia mechanisms. Lastly, the presence of Kir2 channels has become a tipping point for electrical maturity in induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) and highlights the significance of understanding why Kir2 in iPS-CMs is important to consider for Comprehensive In Vitro Proarrhythmia Assay and drug safety testing.
Collapse
Affiliation(s)
- Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
11
|
Park SS, Ponce-Balbuena D, Kuick R, Guerrero-Serna G, Yoon J, Mellacheruvu D, Conlon KP, Basrur V, Nesvizhskii AI, Jalife J, Rual JF. Kir2.1 Interactome Mapping Uncovers PKP4 as a Modulator of the Kir2.1-Regulated Inward Rectifier Potassium Currents. Mol Cell Proteomics 2020; 19:1436-1449. [PMID: 32541000 PMCID: PMC8143648 DOI: 10.1074/mcp.ra120.002071] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 12/27/2022] Open
Abstract
Kir2.1, a strong inward rectifier potassium channel encoded by the KCNJ2 gene, is a key regulator of the resting membrane potential of the cardiomyocyte and plays an important role in controlling ventricular excitation and action potential duration in the human heart. Mutations in KCNJ2 result in inheritable cardiac diseases in humans, e.g. the type-1 Andersen-Tawil syndrome (ATS1). Understanding the molecular mechanisms that govern the regulation of inward rectifier potassium currents by Kir2.1 in both normal and disease contexts should help uncover novel targets for therapeutic intervention in ATS1 and other Kir2.1-associated channelopathies. The information available to date on protein-protein interactions involving Kir2.1 channels remains limited. Additional efforts are necessary to provide a comprehensive map of the Kir2.1 interactome. Here we describe the generation of a comprehensive map of the Kir2.1 interactome using the proximity-labeling approach BioID. Most of the 218 high-confidence Kir2.1 channel interactions we identified are novel and encompass various molecular mechanisms of Kir2.1 function, ranging from intracellular trafficking to cross-talk with the insulin-like growth factor receptor signaling pathway, as well as lysosomal degradation. Our map also explores the variations in the interactome profiles of Kir2.1WTversus Kir2.1Δ314-315, a trafficking deficient ATS1 mutant, thus uncovering molecular mechanisms whose malfunctions may underlie ATS1 disease. Finally, using patch-clamp analysis, we validate the functional relevance of PKP4, one of our top BioID interactors, to the modulation of Kir2.1-controlled inward rectifier potassium currents. Our results validate the power of our BioID approach in identifying functionally relevant Kir2.1 interactors and underline the value of our Kir2.1 interactome as a repository for numerous novel biological hypotheses on Kir2.1 and Kir2.1-associated diseases.
Collapse
Affiliation(s)
- Sung-Soo Park
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Rork Kuick
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Guadalupe Guerrero-Serna
- Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin Yoon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Kevin P Conlon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - José Jalife
- Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Jean-François Rual
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Verkhratsky A, Parpura V, Vardjan N, Zorec R. Physiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:45-91. [PMID: 31583584 DOI: 10.1007/978-981-13-9913-8_3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Astrocytes are principal cells responsible for maintaining the brain homeostasis. Additionally, these glial cells are also involved in homocellular (astrocyte-astrocyte) and heterocellular (astrocyte-other cell types) signalling and metabolism. These astroglial functions require an expression of the assortment of molecules, be that transporters or pumps, to maintain ion concentration gradients across the plasmalemma and the membrane of the endoplasmic reticulum. Astrocytes sense and balance their neurochemical environment via variety of transmitter receptors and transporters. As they are electrically non-excitable, astrocytes display intracellular calcium and sodium fluctuations, which are not only used for operative signalling but can also affect metabolism. In this chapter we discuss the molecules that achieve ionic gradients and underlie astrocyte signalling.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
13
|
Vaidyanathan R, Van Ert H, Haq KT, Morotti S, Esch S, McCune EC, Grandi E, Eckhardt LL. Inward Rectifier Potassium Channels (Kir2.x) and Caveolin-3 Domain-Specific Interaction: Implications for Purkinje Cell-Dependent Ventricular Arrhythmias. Circ Arrhythm Electrophysiol 2019; 11:e005800. [PMID: 29326130 DOI: 10.1161/circep.117.005800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND In human cardiac ventricle, IK1 is mainly comprised Kir2.1, but Kir2.2 and Kir2.3 heterotetramers occur and modulate IK1. Long-QT syndrome-9-associated CAV3 mutations cause decreased Kir2.1 current density, but Kir2.x heterotetramers have not been studied. Here, we determine the effect of long-QT syndrome-9-CAV3 mutation F97C on Kir2.x homo- and heterotetramers and model-associated arrhythmia mechanisms. METHODS AND RESULTS Super-resolution microscopy, co-immunoprecipitation, cellular electrophysiology, on-cell Western blotting, and simulation of Purkinje and ventricular myocyte mathematical models were used. Kir2.x isoforms have unique subcellular colocalization in human cardiomyocytes and coimmunoprecipitate with Cav3. F97C-Cav3 decreased peak inward Kir2.2 current density by 50% (-120 mV; P=0.019) and peak outward by 75% (-40 mV; P<0.05) but did not affect Kir2.3 current density. FRET (Förster resonance energy transfer) efficiency for Kir2.2 with Cav3 is high, and on-cell Western blotting demonstrates decreased Kir2.2 membrane expression with F97C-Cav3. Cav3-F97C reduced peak inward and outward current density of Kir2.2/Kir2.1 or Kir2.2/Kir2.3 heterotetramers (P<0.05). Only Cav3 scaffolding and membrane domains co-immunoprecipitation with Kir2.1 and Kir2.2 and Kir2.x-N-terminal Cav3 binding motifs are required for interaction. Mathematical Purkinje, but not ventricular, myocyte model incorporating simulated current reductions, predicts spontaneous delayed after-depolarization-mediated triggered activity. CONCLUSIONS Kir2.x isoforms have a unique intracellular pattern of distribution in association with specific Cav3 domains and that critically depends on interaction with N-terminal Kir2.x Cav3-binding motifs. Long-QT syndrome-9-CAV3 mutation differentially regulates current density and cell surface expression of Kir2.x homomeric and heteromeric channels. Mathematical Purkinje cell model incorporating experimental findings suggests delayed after-depolarization-type triggered activity as a possible arrhythmia mechanism.
Collapse
Affiliation(s)
- Ravi Vaidyanathan
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Hanora Van Ert
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Kazi T Haq
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Stefano Morotti
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Samuel Esch
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Elise C McCune
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Eleonora Grandi
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.)
| | - Lee L Eckhardt
- From the Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison (R.V., H.V.E., S.E., E.C.M., L.L.E.); and Department of Pharmacology, University of California Davis (K.T.H., S.M., E.G.).
| |
Collapse
|
14
|
Capera J, Serrano-Novillo C, Navarro-Pérez M, Cassinelli S, Felipe A. The Potassium Channel Odyssey: Mechanisms of Traffic and Membrane Arrangement. Int J Mol Sci 2019; 20:ijms20030734. [PMID: 30744118 PMCID: PMC6386995 DOI: 10.3390/ijms20030734] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/29/2022] Open
Abstract
Ion channels are transmembrane proteins that conduct specific ions across biological membranes. Ion channels are present at the onset of many cellular processes, and their malfunction triggers severe pathologies. Potassium channels (KChs) share a highly conserved signature that is necessary to conduct K⁺ through the pore region. To be functional, KChs require an exquisite regulation of their subcellular location and abundance. A wide repertoire of signatures facilitates the proper targeting of the channel, fine-tuning the balance that determines traffic and location. These signature motifs can be part of the secondary or tertiary structure of the protein and are spread throughout the entire sequence. Furthermore, the association of the pore-forming subunits with different ancillary proteins forms functional complexes. These partners can modulate traffic and activity by adding their own signatures as well as by exposing or masking the existing ones. Post-translational modifications (PTMs) add a further dimension to traffic regulation. Therefore, the fate of a KCh is not fully dependent on a gene sequence but on the balance of many other factors regulating traffic. In this review, we assemble recent evidence contributing to our understanding of the spatial expression of KChs in mammalian cells. We compile specific signatures, PTMs, and associations that govern the destination of a functional channel.
Collapse
Affiliation(s)
- Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Clara Serrano-Novillo
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
15
|
Abstract
Activation of the electrical signal and its transmission as a depolarizing wave in the whole heart requires highly organized myocyte architecture and cell-cell contacts. In addition, complex trafficking and anchoring intracellular machineries regulate the proper surface expression of channels and their targeting to distinct membrane domains. An increasing list of proteins, lipids, and second messengers can contribute to the normal targeting of ion channels in cardiac myocytes. However, their precise roles in the electrophysiology of the heart are far from been extensively understood. Nowadays, much effort in the field focuses on understanding the mechanisms that regulate ion channel targeting to sarcolemma microdomains and their organization into macromolecular complexes. The purpose of the present section is to provide an overview of the characterized partners of the main cardiac sodium channel, NaV1.5, involved in regulating the functional expression of this channel both in terms of trafficking and targeting into microdomains.
Collapse
|
16
|
Abstract
Although the mechanism of sudden cardiac death (SCD) in heart failure is not completely known, genetic variations are known to play key roles in this process. Increasing numbers of mutations and variants are being discovered through genome-wide association studies. The genetic variations involved in the mechanisms of SCD have aroused widespread concern. Comprehensive understanding of the genetic variations involved in SCD may help prevent it. To this end, we briefly reviewed the genetic variations involved in SCD and their associations and interactions, and observed that cardiac ion channels are the core molecules involved in this process. Genetic variations involved in cardiac structure, cardiogenesis and development, cell division and differentiation, and DNA replication and transcription are all speculated to be loci involved in SCD. Additionally, the systems involved in neurohumoral regulation as well as substance and energy metabolism are also potentially responsible for susceptibility to SCD. They form an elaborate network and mutually interact with each other to govern the fate of SCD-susceptible individuals.
Collapse
|
17
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1076] [Impact Index Per Article: 153.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
18
|
Balse E, Boycott HE. Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias? Front Physiol 2017; 8:808. [PMID: 29089904 PMCID: PMC5650974 DOI: 10.3389/fphys.2017.00808] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
The shape of the cardiac action potential (AP) is determined by the contributions of numerous ion channels. Any dysfunction in the proper function or expression of these ion channels can result in a change in effective refractory period (ERP) and lead to arrhythmia. The processes underlying the correct targeting of ion channels to the plasma membrane are complex, and have not been fully characterized in cardiac myocytes. Emerging evidence highlights ion channel trafficking as a potential causative factor in certain acquired and inherited arrhythmias, and therapies which target trafficking as opposed to pore block are starting to receive attention. In this review we present the current evidence for the mechanisms which underlie precise control of cardiac ion channel trafficking and targeting.
Collapse
Affiliation(s)
- Elise Balse
- Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ. Paris VI, Inserm, UMRS 1166, Université Pierre et Marie Curie, Paris, France
| | - Hannah E. Boycott
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Abstract
Unique to striated muscle cells, transverse tubules (t-tubules) are membrane organelles that consist of sarcolemma penetrating into the myocyte interior, forming a highly branched and interconnected network. Mature t-tubule networks are found in mammalian ventricular cardiomyocytes, with the transverse components of t-tubules occurring near sarcomeric z-discs. Cardiac t-tubules contain membrane microdomains enriched with ion channels and signaling molecules. The microdomains serve as key signaling hubs in regulation of cardiomyocyte function. Dyad microdomains formed at the junctional contact between t-tubule membrane and neighboring sarcoplasmic reticulum are critical in calcium signaling and excitation-contraction coupling necessary for beat-to-beat heart contraction. In this review, we provide an overview of the current knowledge in gross morphology and structure, membrane and protein composition, and function of the cardiac t-tubule network. We also review in detail current knowledge on the formation of functional membrane subdomains within t-tubules, with a particular focus on the cardiac dyad microdomain. Lastly, we discuss the dynamic nature of t-tubules including membrane turnover, trafficking of transmembrane proteins, and the life cycles of membrane subdomains such as the cardiac BIN1-microdomain, as well as t-tubule remodeling and alteration in diseased hearts. Understanding cardiac t-tubule biology in normal and failing hearts is providing novel diagnostic and therapeutic opportunities to better treat patients with failing hearts.
Collapse
Affiliation(s)
- TingTing Hong
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; and Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Robin M Shaw
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; and Department of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
20
|
Brasko C, Hawkins V, De La Rocha IC, Butt AM. Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS. Brain Struct Funct 2017; 222:41-59. [PMID: 26879293 PMCID: PMC5225165 DOI: 10.1007/s00429-016-1199-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022]
Abstract
The inwardly rectifying K+ channel subtype Kir5.1 is only functional as a heteromeric channel with Kir4.1. In the CNS, Kir4.1 is localised to astrocytes and is the molecular basis of their strongly negative membrane potential. Oligodendrocytes are the specialised myelinating glia of the CNS and their resting membrane potential provides the driving force for ion and water transport that is essential for myelination. However, little is known about the ion channel profile of mature myelinating oligodendrocytes. Here, we identify for the first time colocalization of Kir5.1 with Kir4.1 in oligodendrocytes in white matter. Immunolocalization with membrane-bound Na+/K+-ATPase and western blot of the plasma membrane fraction of the optic nerve, a typical CNS white matter tract containing axons and the oligodendrocytes that myelinate them, demonstrates that Kir4.1 and Kir5.1 are colocalized on oligodendrocyte cell membranes. Co-immunoprecipitation provides evidence that oligodendrocytes and astrocytes express a combination of homomeric Kir4.1 and heteromeric Kir4.1/Kir5.1 channels. Genetic knock-out and shRNA to ablate Kir4.1 indicates plasmalemmal expression of Kir5.1 in glia is largely dependent on Kir4.1 and the plasmalemmal anchoring protein PSD-95. The results demonstrate that, in addition to astrocytes, oligodendrocytes express both homomeric Kir4.1 and heteromeric Kir4.1/Kir5.1 channels. In astrocytes, these channels are essential to their key functions of K+ uptake and CO2/H+ chemosensation. We propose Kir4.1/Kir5.1 channels have equivalent functions in oligodendrocytes, maintaining myelin integrity in the face of large ionic shifts associated with action potential propagation along myelinated axons.
Collapse
Affiliation(s)
- C Brasko
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - V Hawkins
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - I Chacon De La Rocha
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | - A M Butt
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
21
|
Soo Hoo L, Banna CD, Radeke CM, Sharma N, Albertolle ME, Low SH, Weimbs T, Vandenberg CA. The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons. PLoS One 2016; 11:e0163671. [PMID: 27662481 PMCID: PMC5035089 DOI: 10.1371/journal.pone.0163671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022] Open
Abstract
Cell polarity and precise subcellular protein localization are pivotal to neuronal function. The SNARE machinery underlies intracellular membrane fusion events, but its role in neuronal polarity and selective protein targeting remain unclear. Here we report that syntaxin 3 is involved in orchestrating polarized trafficking in cultured rat hippocampal neurons. We show that syntaxin 3 localizes to the axonal plasma membrane, particularly to axonal tips, whereas syntaxin 4 localizes to the somatodendritic plasma membrane. Disruption of a conserved N-terminal targeting motif, which causes mislocalization of syntaxin 3, results in coincident mistargeting of the axonal cargos neuron-glia cell adhesion molecule (NgCAM) and neurexin, but not transferrin receptor, a somatodendritic cargo. Similarly, RNAi-mediated knockdown of endogenous syntaxin 3 leads to partial mistargeting of NgCAM, demonstrating that syntaxin 3 plays an important role in its targeting. Additionally, overexpression of syntaxin 3 results in increased axonal growth. Our findings suggest an important role for syntaxin 3 in maintaining neuronal polarity and in the critical task of selective trafficking of membrane protein to axons.
Collapse
Affiliation(s)
- Linda Soo Hoo
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Chris D. Banna
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Carolyn M. Radeke
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Nikunj Sharma
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Mary E. Albertolle
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Seng Hui Low
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Carol A. Vandenberg
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
Aquaporins (AQPs) represent a diverse family of membrane proteins found in prokaryotes and eukaryotes. The primary aquaporins expressed in the mammalian brain are AQP1, which is densely packed in choroid plexus cells lining the ventricles, and AQP4, which is abundant in astrocytes and concentrated especially in the end-feet structures that surround capillaries throughout the brain and are present in glia limitans structures, notably in osmosensory areas such the supraoptic nucleus. Water movement in brain tissues is carefully regulated from the micro- to macroscopic levels, with aquaporins serving key roles as multifunctional elements of complex signaling assemblies. Intriguing possibilities suggest links for AQP1 in Alzheimer's disease, AQP4 as a target for therapy in brain edema, and a possible contribution of AQP9 in Parkinson's disease. For all the aquaporins, new contributions to physiological functions are likely to continue to be discovered with ongoing work in this rapidly expanding field of research. NEUROSCIENTIST 13(5):470—485, 2007.
Collapse
Affiliation(s)
- Andrea J Yool
- Department of Physiology, The BIO5 Institute, and the Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, AZ 84724, USA.
| |
Collapse
|
23
|
Matamoros M, Pérez-Hernández M, Guerrero-Serna G, Amorós I, Barana A, Núñez M, Ponce-Balbuena D, Sacristán S, Gómez R, Tamargo J, Caballero R, Jalife J, Delpón E. Nav1.5 N-terminal domain binding to α1-syntrophin increases membrane density of human Kir2.1, Kir2.2 and Nav1.5 channels. Cardiovasc Res 2016; 110:279-90. [PMID: 26786162 DOI: 10.1093/cvr/cvw009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/13/2016] [Indexed: 01/11/2023] Open
Abstract
AIMS Cardiac excitability and refractoriness are largely determined by the function and number of inward rectifier K⁺ channels (Kir2.1-2.3), which are differentially expressed in the atria and ventricles, and Nav1.5 channels. We have focused on how Nav1.5 and Kir2.x function within a macromolecular complex by elucidating the molecular determinants that govern Nav1.5/Kir2.x reciprocal modulation. METHODS AND RESULTS The results demonstrate that there is an unexpected 'internal' PDZ-like binding domain located at the N-terminus of the Nav1.5 channel that mediates its binding to α1-syntrophin. Nav1.5 N-terminal domain, by itself (the 132 aa peptide) (Nter), exerts a 'chaperone-like' effect that increases sodium (I(Na)) and inward rectifier potassium (I(K1)) currents by enhancing the expression of Nav1.5, Kir2.1, and Kir2.2 channels as demonstrated in Chinese hamster ovary (CHO) cells and in rat cardiomyocytes. Site-directed mutagenesis analysis demonstrates that the Nter chaperone-like effect is determined by Serine 20. Nav1.5-Kir2.x reciprocal positive interactions depend on a specific C-terminal PDZ-binding domain sequence (SEI), which is present in Kir2.1 and Kir2.2 channels but not in Kir2.3. Therefore, in human atrial myocytes, the presence of Kir2.3 isoforms precludes reciprocal I(K1)-INa density modulation. Moreover, results in rat and human atrial myocytes demonstrate that binding to α1-syntrophin is necessary for the Nav1.5-Kir2.x-positive reciprocal modulation. CONCLUSIONS The results demonstrate the critical role of the N-terminal domain of Nav1.5 channels in Nav1.5-Kir2.x-reciprocal interactions and suggest that the molecular mechanisms controlling atrial and ventricular cellular excitability may be different.
Collapse
Affiliation(s)
- Marcos Matamoros
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Marta Pérez-Hernández
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Guadalupe Guerrero-Serna
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA Department of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Irene Amorós
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Adriana Barana
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Mercedes Núñez
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA Department of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sandra Sacristán
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Ricardo Gómez
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - José Jalife
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA Department of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| |
Collapse
|
24
|
Abriel H, Rougier JS, Jalife J. Ion channel macromolecular complexes in cardiomyocytes: roles in sudden cardiac death. Circ Res 2015; 116:1971-88. [PMID: 26044251 DOI: 10.1161/circresaha.116.305017] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The movement of ions across specific channels embedded on the membrane of individual cardiomyocytes is crucial for the generation and propagation of the cardiac electric impulse. Emerging evidence over the past 20 years strongly suggests that the normal electric function of the heart is the result of dynamic interactions of membrane ion channels working in an orchestrated fashion as part of complex molecular networks. Such networks work together with exquisite temporal precision to generate each action potential and contraction. Macromolecular complexes play crucial roles in transcription, translation, oligomerization, trafficking, membrane retention, glycosylation, post-translational modification, turnover, function, and degradation of all cardiac ion channels known to date. In addition, the accurate timing of each cardiac beat and contraction demands, a comparable precision on the assembly and organizations of sodium, calcium, and potassium channel complexes within specific subcellular microdomains, where physical proximity allows for prompt and efficient interaction. This review article, part of the Compendium on Sudden Cardiac Death, discusses the major issues related to the role of ion channel macromolecular assemblies in normal cardiac electric function and the mechanisms of arrhythmias leading to sudden cardiac death. It provides an idea of how these issues are being addressed in the laboratory and in the clinic, which important questions remain unanswered, and what future research will be needed to improve knowledge and advance therapy.
Collapse
Affiliation(s)
- Hugues Abriel
- From the Department of Clinical Research, University of Bern, Bern, Switzerland (H.A., J.-S.R.); Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor (J.J.); and Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.J.)
| | - Jean-Sébastien Rougier
- From the Department of Clinical Research, University of Bern, Bern, Switzerland (H.A., J.-S.R.); Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor (J.J.); and Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.J.)
| | - José Jalife
- From the Department of Clinical Research, University of Bern, Bern, Switzerland (H.A., J.-S.R.); Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor (J.J.); and Area of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.J.).
| |
Collapse
|
25
|
Willis BC, Ponce-Balbuena D, Jalife J. Protein assemblies of sodium and inward rectifier potassium channels control cardiac excitability and arrhythmogenesis. Am J Physiol Heart Circ Physiol 2015; 308:H1463-73. [PMID: 25862830 DOI: 10.1152/ajpheart.00176.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/06/2015] [Indexed: 02/07/2023]
Abstract
The understanding of how cardiac ion channels function in the normal and the diseased heart has greatly increased over the last four decades thanks to the advent of patch-clamp technology and, more recently, the emergence of genetics, as well as cellular and molecular cardiology. However, our knowledge of how these membrane-embedded proteins physically interact with each other within macromolecular complexes remains incomplete. This review focuses on how the main cardiac inward sodium channel (NaV1.5) and the strong inward rectifier potassium channel (Kir2.1) function within macromolecular complexes to control cardiac excitability. It has become increasingly clear that these two important ion channel proteins physically interact with multiple other protein partners and with each other from early stages of protein trafficking and targeting through membrane anchoring, recycling, and degradation. Recent findings include compartmentalized regulation of NaV1.5 channel expression and function through a PDZ (postsynaptic density protein, Drosophila disc large tumor suppressor, and zonula occludens-1 protein) domain-binding motif, and interaction of caveolin-3 with Kir2.1 and ankyrin-G as a molecular platform for NaV1.5 signaling. At the cardiomyocyte membrane, NaV1.5 and Kir2.1 interact through at least two distinct PDZ domain-scaffolding proteins (synapse-associated protein-97 and α1-syntrophin), thus modulating reciprocally their cell-surface expression at two different microdomains. Emerging evidence also shows that inheritable mutations in plakophilin-2, ankyrin-G, dystrophin, syntrophin, synapse-associated protein-97, and caveolin-3, among others, modify functional expression and/or localization in the cardiac cell of NaV1.5, Kir2.1 or both to give rise to arrhythmogenic diseases. Unveiling the mechanistic underpinnings of macromolecular interactions should increase our understanding of inherited and acquired arrhythmogenic cardiac diseases and may lead to advances in therapy.
Collapse
Affiliation(s)
- B Cicero Willis
- Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan; and
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan; and
| | - José Jalife
- Department of Internal Medicine and Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan; and Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
26
|
Balycheva M, Faggian G, Glukhov AV, Gorelik J. Microdomain-specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling. Biophys Rev 2015; 7:43-62. [PMID: 28509981 PMCID: PMC5425752 DOI: 10.1007/s12551-014-0159-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/18/2014] [Indexed: 12/26/2022] Open
Abstract
Cardiac excitation involves the generation of action potential by individual cells and the subsequent conduction of the action potential from cell to cell through intercellular gap junctions. Excitation of the cellular membrane results in opening of the voltage-gated L-type calcium ion (Ca2+) channels, thereby allowing a small amount of Ca2+ to enter the cell, which in turn triggers the release of a much greater amount of Ca2+ from the sarcoplasmic reticulum, the intracellular Ca2+ store, and gives rise to the systolic Ca2+ transient and contraction. These processes are highly regulated by the autonomic nervous system, which ensures the acute and reliable contractile function of the heart and the short-term modulation of this function upon changes in heart rate or workload. It has recently become evident that discrete clusters of different ion channels and regulatory receptors are present in the sarcolemma, where they form an interacting network and work together as a part of a macro-molecular signalling complex which in turn allows the specificity, reliability and accuracy of the autonomic modulation of the excitation-contraction processes by a variety of neurohormonal pathways. Disruption in subcellular targeting of ion channels and associated signalling proteins may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure and certain arrhythmias. Recent methodological advances have made it possible to routinely image the topography of live cardiomyocytes, allowing the study of clustering functional ion channels and receptors as well as their coupling within a specific microdomain. In this review we highlight the emerging understanding of the functionality of distinct subcellular microdomains in cardiac myocytes (e.g. T-tubules, lipid rafts/caveolae, costameres and intercalated discs) and their functional role in the accumulation and regulation of different subcellular populations of sodium, Ca2+ and potassium ion channels and their contributions to cellular signalling and cardiac pathology.
Collapse
Affiliation(s)
- Marina Balycheva
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Giuseppe Faggian
- Cardiosurgery Department, University of Verona School of Medicine, Verona, Italy
| | - Alexey V Glukhov
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, 4th Floor National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
27
|
Gillet L, Rougier JS, Shy D, Sonntag S, Mougenot N, Essers M, Shmerling D, Balse E, Hatem SN, Abriel H. Cardiac-specific ablation of synapse-associated protein SAP97 in mice decreases potassium currents but not sodium current. Heart Rhythm 2014; 12:181-92. [PMID: 25447080 DOI: 10.1016/j.hrthm.2014.09.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Membrane-associated guanylate kinase (MAGUK) proteins are important determinants of ion channel organization in the plasma membrane. In the heart, the MAGUK protein SAP97, encoded by the DLG1 gene, interacts with several ion channels via their PDZ domain-binding motif and regulates their function and localization. OBJECTIVE The purpose of this study was to assess in vivo the role of SAP97 in the heart by generating a genetically modified mouse model in which SAP97 is suppressed exclusively in cardiomyocytes. METHODS SAP97(fl/fl) mice were generated by inserting loxP sequences flanking exons 1-3 of the SAP97 gene. SAP97(fl/fl) mice were crossed with αMHC-Cre mice to generate αMHC-Cre/SAP97(fl/fl) mice, thus resulting in a cardiomyocyte-specific deletion of SAP97. Quantitative reverse transcriptase-polymerase chain reaction, western blots, and immunostaining were performed to measure mRNA and protein expression levels, and ion channel localization. The patch-clamp technique was used to record ion currents and action potentials. Echocardiography and surface ECGs were performed on anesthetized mice. RESULTS Action potential duration was greatly prolonged in αMHC-Cre/SAP97(fl/fl) cardiomyocytes compared to SAP97(fl/fl) controls, but maximal upstroke velocity was unchanged. This was consistent with the decreases observed in IK1, Ito, and IKur potassium currents and the absence of effect on the sodium current INa. Surface ECG revealed an increased corrected QT interval in αMHC-Cre/SAP97(fl/fl) mice. CONCLUSION These data suggest that ablation of SAP97 in the mouse heart mainly alters potassium channel function. Based on the important role of SAP97 in regulating the QT interval, DLG1 may be a susceptibility gene to be investigated in patients with congenital long QT syndrome.
Collapse
Affiliation(s)
- Ludovic Gillet
- Department of Clinical Research, University of Bern, Bern, Switzerland.
| | | | - Diana Shy
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Nathalie Mougenot
- Plateau d'Expérimentation Coeur, Muscle, Vaisseaux, Université Pierre et Marie Curie, Paris, France
| | - Maria Essers
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Elise Balse
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S1166, Institut de Recherche Sur Les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S1166, Paris, France; Institute of Cardiometabolism & Nutrition, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Stéphane N Hatem
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S1166, Institut de Recherche Sur Les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S1166, Paris, France; Institute of Cardiometabolism & Nutrition, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Hugues Abriel
- Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
28
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
29
|
Vaidyanathan R, Vega AL, Song C, Zhou Q, Tan BH, Tan B, Berger S, Makielski JC, Eckhardt LL. The interaction of caveolin 3 protein with the potassium inward rectifier channel Kir2.1: physiology and pathology related to long qt syndrome 9 (LQT9). J Biol Chem 2013; 288:17472-80. [PMID: 23640888 DOI: 10.1074/jbc.m112.435370] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in CAV3 cause LQT syndrome 9 (LQT9). A previously reported LQT9 patient had prominent U waves on ECG, a feature that has been correlated with Kir2.1 loss of function. Our objective was to determine whether caveolin 3 (Cav3) associates with Kir2.1 and whether LQT9-associated CAV3 mutations affect the biophysical properties of Kir2.1. Kir2.1 current (IK1) density was measured using the whole-cell voltage clamp technique. WT-Cav3 did not affect IK1. However, F97C-Cav3 and T78M-Cav3 decreased IK1 density significantly by ∼60%, and P104L-Cav3 decreased IK1 density significantly by ∼30% at -60 mV. Immunostained rat heart cryosections and HEK293 cells cotransfected with Kir2.1 and WT-Cav3 both demonstrated colocalization of Kir2.1 and WT-Cav3 by confocal imaging. Cav3 coimmunoprecipitated with Kir2.1 in human ventricular myocytes and in heterologous expression systems. Additionally, FRET efficiency was highly specific, with a molecular distance of 5.6 ± 0.4 nm, indicating close protein location. Colocalization experiments found that Cav3 and Kir2.1 accumulated in the Golgi compartment. On-cell Western blot analysis showed decreased Kir2.1 cell surface expression by 60% when expressed with F97C-Cav3 and by 20% when expressed with P104L-Cav3 compared with WT-Cav3. This is the first report of an association between Cav3 and Kir2.1. The Cav3 mutations F97C-Cav3, P104L-Cav3, and T78M-Cav3 decreased IK1 density significantly. This effect was related to a reduced cell surface expression of Kir2.1. Kir2.1 loss of function is additive to the increase described previously in late INa, prolonging repolarization and leading to arrhythmia generation in Cav3-mediated LQT9.
Collapse
Affiliation(s)
- Ravi Vaidyanathan
- Department of Medicine, Division of Cardiovascular Medicine and the Cellular and Molecular Arrhythmia Research Program,University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fourie C, Li D, Montgomery JM. The anchoring protein SAP97 influences the trafficking and localisation of multiple membrane channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:589-94. [PMID: 23535319 DOI: 10.1016/j.bbamem.2013.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 02/26/2013] [Accepted: 03/15/2013] [Indexed: 12/23/2022]
Abstract
SAP97 is a member of the MAGUK family of proteins that play a major role in the trafficking and targeting of membrane ion channels and cytosolic structural proteins in multiple cell types. Within neurons, SAP97 is localised throughout the secretory trafficking pathway and at the postsynaptic density (PSD). SAP97 differs from other MAGUK family members largely in its long N-terminus and in the sequences between the SH3 and GUK domains, where SAP97 undergoes significant alternative splicing to produce multiple SAP97 isoforms. These splice insertions endow SAP97 with differential cellular localisation patterns and functional roles within neurons. With regard to membrane ion channels, SAP97 forms multi-protein complexes with AMPA and NMDA-type glutamate receptors, and Kv1.4, Kv4.2, and Kir2.2 potassium channels, playing a major role in trafficking and anchoring ion channel surface expression. This highlights SAP97 not only as a regulator of neuronal excitability, synaptic function and plasticity in the brain, but also as a target for the pathophysiology of a number of neurological disorders. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Chantelle Fourie
- Department of Physiology, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand
| | - Dong Li
- Department of Physiology, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand.
| |
Collapse
|
31
|
Szuts V, Ménesi D, Varga-Orvos Z, Zvara Á, Houshmand N, Bitay M, Bogáts G, Virág L, Baczkó I, Szalontai B, Geramipoor A, Cotella D, Wettwer E, Ravens U, Deák F, Puskás LG, Papp JG, Kiss I, Varró A, Jost N. Altered expression of genes for Kir ion channels in dilated cardiomyopathy. Can J Physiol Pharmacol 2013; 91:648-56. [PMID: 23889090 DOI: 10.1139/cjpp-2012-0413] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dilated cardiomyopathy (DCM) is a multifactorial disease characterized by left ventricular dilation that is associated with systolic dysfunction and increased action potential duration. The Kir2.x K⁺ channels (encoded by KCNJ genes) regulate the inward rectifier current (IK1) contributing to the final repolarization in cardiac muscle. Here, we describe the transitions in the gene expression profiles of 4 KCNJ genes from healthy or dilated cardiomyopathic human hearts. In the healthy adult ventricles, KCNJ2, KCNJ12, and KCNJ4 (Kir2.1-2.3, respectively) genes were expressed at high levels, while expression of the KCNJ14 (Kir2.4) gene was low. In DCM ventricles, the levels of Kir2.1 and Kir2.3 were upregulated, but those of Kir2.2 channels were downregulated. Additionally, the expression of the DLG1 gene coding for the synapse-associated protein 97 (SAP97) anchoring molecule exhibited a 2-fold decline with increasing age in normal hearts, and it was robustly downregulated in young DCM patients. These adaptations could offer a new aspect for the explanation of the generally observed physiological and molecular alterations found in DCM.
Collapse
Affiliation(s)
- Viktoria Szuts
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dolmatova E, Spagnol G, Boassa D, Baum JR, Keith K, Ambrosi C, Kontaridis MI, Sorgen PL, Sosinsky GE, Duffy HS. Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation. Am J Physiol Heart Circ Physiol 2012; 303:H1208-18. [PMID: 22982782 PMCID: PMC3517637 DOI: 10.1152/ajpheart.00251.2012] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/10/2012] [Indexed: 11/22/2022]
Abstract
Fibrosis following myocardial infarction is associated with increases in arrhythmias and sudden cardiac death. Initial steps in the development of fibrosis are not clear; however, it is likely that cardiac fibroblasts play an important role. In immune cells, ATP release from pannexin 1 (Panx1) channels acts as a paracrine signal initiating activation of innate immunity. ATP has been shown in noncardiac systems to initiate fibroblast activation. Therefore, we propose that ATP release through Panx1 channels and subsequent fibroblast activation in the heart drives the development of fibrosis in the heart following myocardial infarction. We identified for the first time that Panx1 is localized within sarcolemmal membranes of canine cardiac myocytes where it directly interacts with the postsynaptic density 95/Drosophila disk large/zonula occludens-1-containing scaffolding protein synapse-associated protein 97 via its carboxyl terminal domain (amino acids 300-357). Induced ischemia rapidly increased glycosylation of Panx1, resulting in increased trafficking to the plasma membrane as well as increased interaction with synapse-associated protein 97. Cellular stress enhanced ATP release from myocyte Panx1 channels, which, in turn, causes fibroblast transformation to the activated myofibroblast phenotype via activation of the MAPK and p53 pathways, both of which are involved in the development of cardiac fibrosis. ATP release through Panx1 channels in cardiac myocytes during ischemia may be an early paracrine event leading to profibrotic responses to ischemic cardiac injury.
Collapse
Affiliation(s)
- Elena Dolmatova
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Grolla AA, Fakhfouri G, Balzaretti G, Marcello E, Gardoni F, Canonico PL, DiLuca M, Genazzani AA, Lim D. Aβ leads to Ca²⁺ signaling alterations and transcriptional changes in glial cells. Neurobiol Aging 2012; 34:511-22. [PMID: 22673114 DOI: 10.1016/j.neurobiolaging.2012.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 01/26/2023]
Abstract
The pathogenesis of Alzheimer's disease includes accumulation of toxic amyloid beta (Aβ) peptides. A recently developed cell-permeable peptide, termed Tat-Pro, disrupts the complex between synapse-associated protein 97 (SAP97) and the α-secretase a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), thereby leading to an alteration of the trafficking of the enzyme, which is important for nonamyloidogenic processing of amyloid precursor protein (APP). We report that Tat-Pro treatment, as well as the treatment with exogenous Aβ, deregulates Ca(2+) homeostasis specifically in astrocytes through increased expression of key components of Ca(2+) signaling, metabotropic glutamate receptor-5 and inositol 1,4,5-trisphosphate receptor-1. This is accompanied by potentiation of (S)-3,5-dihydroxyphenylglycine-induced Ca(2+) transients. Calcineurin inhibition reverts all these effects. Furthermore, our data demonstrate that astrocytes express all the components for the amyloidogenic and nonamyloidogenic processing of APP including APP itself, beta-site APP-cleaving enzyme 1 (BACE1), ADAM10, γ-secretase, and SAP97. Indeed, treatment with Tat-Pro for 48 hours significantly increased the amount of Aβ(1-42) in the medium of cultured astrocytes. Taken together, our results suggest that astroglia might be active players in Aβ production and indicate that the calcium hypothesis of Alzheimer's disease may recognize glial cells as important intermediates.
Collapse
Affiliation(s)
- Ambra A Grolla
- DiSCAFF, Università degli Studi del Piemonte Orientale Amedeo Avogadro, Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia. Proc Natl Acad Sci U S A 2012; 109:E2134-43. [PMID: 22509027 DOI: 10.1073/pnas.1109370109] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cardiac electrical impulse depends on an orchestrated interplay of transmembrane ionic currents in myocardial cells. Two critical ionic current mechanisms are the inwardly rectifying potassium current (I(K1)), which is important for maintenance of the cell resting membrane potential, and the sodium current (I(Na)), which provides a rapid depolarizing current during the upstroke of the action potential. By controlling the resting membrane potential, I(K1) modifies sodium channel availability and therefore, cell excitability, action potential duration, and velocity of impulse propagation. Additionally, I(K1)-I(Na) interactions are key determinants of electrical rotor frequency responsible for abnormal, often lethal, cardiac reentrant activity. Here, we have used a multidisciplinary approach based on molecular and biochemical techniques, acute gene transfer or silencing, and electrophysiology to show that I(K1)-I(Na) interactions involve a reciprocal modulation of expression of their respective channel proteins (Kir2.1 and Na(V)1.5) within a macromolecular complex. Thus, an increase in functional expression of one channel reciprocally modulates the other to enhance cardiac excitability. The modulation is model-independent; it is demonstrable in myocytes isolated from mouse and rat hearts and with transgenic and adenoviral-mediated overexpression/silencing. We also show that the post synaptic density, discs large, and zonula occludens-1 (PDZ) domain protein SAP97 is a component of this macromolecular complex. We show that the interplay between Na(v)1.5 and Kir2.1 has electrophysiological consequences on the myocardium and that SAP97 may affect the integrity of this complex or the nature of Na(v)1.5-Kir2.1 interactions. The reciprocal modulation between Na(v)1.5 and Kir2.1 and the respective ionic currents should be important in the ability of the heart to undergo self-sustaining cardiac rhythm disturbances.
Collapse
|
36
|
Tully MD, Grossmann JG, Phelan M, Pandelaneni S, Leyland M, Lian LY. Conformational Characterization of Synapse-Associated Protein 97 by Nuclear Magnetic Resonance and Small-Angle X-ray Scattering Shows Compact and Elongated Forms. Biochemistry 2012; 51:899-908. [DOI: 10.1021/bi201178v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark D. Tully
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - J. Günter Grossmann
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Marie Phelan
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Sravan Pandelaneni
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Mark Leyland
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, U.K
| | - Lu-Yun Lian
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
37
|
Abstract
Voltage-gated ion channels are transmembrane proteins that control nerve impulses and cell homeostasis. Signaling molecules that regulate ion channel activity and density at the plasma membrane must be specifically and efficiently coupled to these channels in order to control critical physiological functions such as action potential propagation. Although their regulation by G-protein receptor activation has been extensively explored, the assembly of ion channels into signaling complexes of GPCRs plays a fundamental role, engaging specific downstream -signaling pathways that trigger precise downstream effectors. Recent work has confirmed that GPCRs can intimately interact with ion channels and serve as -chaperone proteins that finely control their gating and trafficking in subcellular microdomains. This chapter aims to describe examples of GPCR-ion channel co-assembly, focusing mainly on signaling complexes between GPCRs and voltage-gated calcium channels.
Collapse
|
38
|
Maïga O, Philippe M, Kotelevets L, Chastre E, Benadda S, Pidard D, Vranckx R, Walch L. Identification of mitogen-activated protein/extracellular signal-responsive kinase kinase 2 as a novel partner of the scaffolding protein human homolog of disc-large. FEBS J 2011; 278:2655-65. [PMID: 21615688 DOI: 10.1111/j.1742-4658.2011.08192.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human disc-large homolog (hDlg), also known as synapse-associated protein 97, is a scaffold protein, a member of the membrane-associated guanylate kinase family, implicated in neuronal synapses and epithelial-epithelial cell junctions whose expression and function remains poorly characterized in most tissues, particularly in the vasculature. In human vascular tissues, hDlg is highly expressed in smooth muscle cells (VSMCs). Using the yeast two-hybrid system to screen a human aorta cDNA library, we identified mitogen-activated protein/extracellular signal-responsive kinase (ERK) kinase (MEK)2, a member of the ERK cascade, as an hDlg binding partner. Site-directed mutagenesis showed a major involvement of the PSD-95, disc-large, ZO-1 domain-2 of hDlg and the C-terminal sequence RTAV of MEK2 in this interaction. Coimmunoprecipitation assays in both human VSMCs and human embryonic kidney 293 cells, demonstrated that endogenous hDlg physically interacts with MEK2 but not with MEK1. Confocal microscopy suggested a colocalization of the two proteins at the inner layer of the plasma membrane of confluent human embryonic kidney 293 cells, and in a perinuclear area in human VSMCs. Additionally, hDlg also associates with the endoplasmic reticulum and microtubules in these latter cells. Taken together, these findings allow us to hypothesize that hDlg acts as a MEK2-specific scaffold protein for the ERK signaling pathway, and may improve our understanding of how scaffold proteins, such as hDlg, differentially tune MEK1/MEK2 signaling and cell responses.
Collapse
|
39
|
Dassau L, Conti LR, Radeke CM, Ptáček LJ, Vandenberg CA. Kir2.6 regulates the surface expression of Kir2.x inward rectifier potassium channels. J Biol Chem 2011; 286:9526-41. [PMID: 21209095 DOI: 10.1074/jbc.m110.170597] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Precise trafficking, localization, and activity of inward rectifier potassium Kir2 channels are important for shaping the electrical response of skeletal muscle. However, how coordinated trafficking occurs to target sites remains unclear. Kir2 channels are tetrameric assemblies of Kir2.x subunits. By immunocytochemistry we show that endogenous Kir2.1 and Kir2.2 are localized at the plasma membrane and T-tubules in rodent skeletal muscle. Recently, a new subunit, Kir2.6, present in human skeletal muscle, was identified as a gene in which mutations confer susceptibility to thyrotoxic hypokalemic periodic paralysis. Here we characterize the trafficking and interaction of wild type Kir2.6 with other Kir2.x in COS-1 cells and skeletal muscle in vivo. Immunocytochemical and electrophysiological data demonstrate that Kir2.6 is largely retained in the endoplasmic reticulum, despite high sequence identity with Kir2.2 and conserved endoplasmic reticulum and Golgi trafficking motifs shared with Kir2.1 and Kir2.2. We identify amino acids responsible for the trafficking differences of Kir2.6. Significantly, we show that Kir2.6 subunits can coassemble with Kir2.1 and Kir2.2 in vitro and in vivo. Notably, this interaction limits the surface expression of both Kir2.1 and Kir2.2. We provide evidence that Kir2.6 functions as a dominant negative, in which incorporation of Kir2.6 as a subunit in a Kir2 channel heterotetramer reduces the abundance of Kir2 channels on the plasma membrane.
Collapse
Affiliation(s)
- Lior Dassau
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
40
|
Vaidyanathan R, Taffet SM, Vikstrom KL, Anumonwo JMB. Regulation of cardiac inward rectifier potassium current (I(K1)) by synapse-associated protein-97. J Biol Chem 2010; 285:28000-9. [PMID: 20530486 DOI: 10.1074/jbc.m110.110858] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synapse-associated protein-97 (SAP97) is a membrane-associated guanylate kinase scaffolding protein expressed in cardiomyocytes. SAP97 has been shown to associate and modulate voltage-gated potassium (Kv) channel function. In contrast to Kv channels, little information is available on interactions involving SAP97 and inward rectifier potassium (Kir2.x) channels that underlie the classical inward rectifier current, I(K1). To investigate the functional effects of silencing SAP97 on I(K1) in adult rat ventricular myocytes, SAP97 was silenced using an adenoviral short hairpin RNA vector. Western blot analysis showed that SAP97 was silenced by approximately 85% on day 3 post-infection. Immunostaining showed that Kir2.1 and Kir2.2 co-localize with SAP97. Co-immunoprecipitation (co-IP) results demonstrated that Kir2.x channels associate with SAP97. Voltage clamp experiments showed that silencing SAP97 reduced I(K1) whole cell density by approximately 55%. I(K1) density at -100 mV was -1.45 +/- 0.15 pA/picofarads (n = 6) in SAP97-silenced cells as compared with -3.03 +/- 0.37 pA/picofarads (n = 5) in control cells. Unitary conductance properties of I(K1) were unaffected by SAP97 silencing. The major mechanism for the reduction of I(K1) density appears to be a decrease in Kir2.x channel abundance. Furthermore, SAP97 silencing impaired I(K1) regulation by beta(1)-adrenergic receptor (beta1-AR) stimulation. In control, isoproterenol reduced I(K1) amplitude by approximately 75%, an effect that was blunted following SAP97 silencing. Our co-IP data show that beta1-AR associates with SAP97 and Kir2.1 and also that Kir2.1 co-IPs with protein kinase A and beta1-AR. SAP97 immunolocalizes with protein kinase A and beta1-AR in the cardiac myocytes. Our results suggest that in cardiac myocytes SAP97 regulates surface expression of channels underlying I(K1), as well as assembles a signaling complex involved in beta1-AR regulation of I(K1).
Collapse
Affiliation(s)
- Ravi Vaidyanathan
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
41
|
Chu AY, Coresh J, Arking DE, Pankow JS, Tomaselli GF, Chakravarti A, Post WS, Spooner PH, Boerwinkle E, Kao WHL. NOS1AP variant associated with incidence of type 2 diabetes in calcium channel blocker users in the Atherosclerosis Risk in Communities (ARIC) study. Diabetologia 2010; 53:510-6. [PMID: 19943157 PMCID: PMC3039128 DOI: 10.1007/s00125-009-1608-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 10/26/2009] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS To validate the reported association between rs10494366 in NOS1AP (the gene encoding nitric oxide synthase-1 adaptor protein) and the incidence of type 2 diabetes in calcium channel blocker (CCB) users and to identify additional NOS1AP variants associated with type 2 diabetes risk. METHODS Data from 9 years of follow-up in 9,221 middle-aged white and 2,724 African-American adults free of diabetes at baseline from the Atherosclerosis Risk in Communities study were analysed. Nineteen NOS1AP variants were examined for associations with incident diabetes and fasting glucose levels stratified by baseline CCB use. RESULTS Prevalence of CCB use at baseline was 2.7% (n = 247) in whites and 2.3% (n = 72) in African-Americans. Among white CCB users, the G allele of rs10494366 was associated with lower diabetes incidence (HR 0.57, 95% CI 0.35-0.92, p = 0.016). The association was marginally significant after adjusting for age, sex, obesity, smoking, alcohol use, physical activity, hypertension, heart rate and electrocardiographic QT interval (HR 0.63, 95% CI 0.38-1.04, p = 0.052). rs10494366 was associated with lower average fasting glucose during follow-up (p = 0.037). No other variants were associated with diabetes risk in CCB users after multiple-testing correction. No associations were observed between any NOS1AP variant and diabetes development in non-CCB users. NOS1AP variants were not associated with diabetes risk in either African-American CCB users or non-CCB users. CONCLUSIONS/INTERPRETATION We have independently replicated the association between rs10494366 in NOS1AP and incident diabetes among white CCB users. Further exploration of NOS1AP variants and type 2 diabetes and functional studies of NOS1AP in type 2 diabetes pathology is warranted.
Collapse
Affiliation(s)
- A Y Chu
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kline CF, Mohler PJ. From Fifth Business to Protagonist: the complex roles of ion channel anchors in cardiac arrhythmia. DRUG DISCOVERY TODAY. DISEASE MODELS 2009; 6:63-69. [PMID: 20689672 PMCID: PMC2913888 DOI: 10.1016/j.ddmod.2009.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Proper regulation of cardiac ion channel activity is critical for cellular ion homeostasis and myocyte electrical activity. Recent work has demonstrated that cardiac ion channels are not isolated pores in plasmid membranes, but rather exist within macromolecular signaling complexes. Moreover, within these macro-complexes resides the machinery to finely tune ion channel expression, activity, and signaling. While it is widely-accepted that mutations in ion channel pore-forming genes underlie a number of cardiac arrhythmias, current research is now focusing on the roles of auxiliary subunits in the development of arrhythmia syndromes.
Collapse
Affiliation(s)
- Crystal F Kline
- Department of Medicine and Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
43
|
Anumonwo JMB, Lopatin AN. Cardiac strong inward rectifier potassium channels. J Mol Cell Cardiol 2009; 48:45-54. [PMID: 19703462 DOI: 10.1016/j.yjmcc.2009.08.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/13/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
Cardiac I(K1) and I(KACh) are the major potassium currents displaying classical strong inward rectification, a unique property that is critical for their roles in cardiac excitability. In the last 15 years, research on I(K1) and I(KACh) has been propelled by the cloning of the underlying inwardly rectifying potassium (Kir) channels, the discovery of the molecular mechanism of strong rectification and the linking of a number of disorders of cardiac excitability to defects in genes encoding Kir channels. Disease-causing mutations in Kir genes have been shown experimentally to affect one or more of the following channel properties: structure, assembly, trafficking, and regulation, with the ultimate effect of a gain- or a loss-of-function of the channel. It is now established that I(K1) and I(KACh) channels are heterotetramers of Kir2 and Kir3 subunits, respectively. Each homomeric Kir channel has distinct biophysical and regulatory properties, and individual Kir subunits often display different patterns of regional, cellular, and membrane distribution. These differences are thought to underlie important variations in the physiological properties of I(K1) and I(KACh). It has become increasingly clear that the contribution of I(K1) and I(KACh) channels to cardiac electrical activity goes beyond their long recognized role in the stabilization of resting membrane potential and shaping the late phase of action potential repolarization in individual myocytes but extends to being critical elements determining the overall electrical stability of the heart.
Collapse
Affiliation(s)
- Justus M B Anumonwo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | | |
Collapse
|
44
|
Vikstrom KL, Vaidyanathan R, Levinsohn S, O'Connell RP, Qian Y, Crye M, Mills JH, Anumonwo JMB. SAP97 regulates Kir2.3 channels by multiple mechanisms. Am J Physiol Heart Circ Physiol 2009; 297:H1387-97. [PMID: 19633205 DOI: 10.1152/ajpheart.00638.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We examined the impact of coexpressing the inwardly rectifying potassium channel, Kir2.3, with the scaffolding protein, synapse-associated protein (SAP) 97, and determined that coexpression of these proteins caused an approximately twofold increase in current density. A combination of techniques was used to determine if the SAP97-induced increase in Kir2.3 whole cell currents resulted from changes in the number of channels in the cell membrane, unitary channel conductance, or channel open probability. In the absence of SAP97, Kir2.3 was found predominantly in a cytoplasmic, vesicular compartment with relatively little Kir2.3 localized to the plasma membrane. The introduction of SAP97 caused a redistribution of Kir2.3, leading to prominent colocalization of Kir2.3 and SAP97 and a modest increase in cell surface Kir2.3. The median Kir2.3 single channel conductance in the absence of SAP97 was approximately 13 pS, whereas coexpression of SAP97 led to a wide distribution of channel events with three distinct peaks centered at 16, 29, and 42 pS. These changes occurred without altering channel open probability, current rectification properties, or pH sensitivity. Thus association of Kir2.3 with SAP97 in HEK293 cells increased channel cell surface expression and unitary channel conductance. However, changes in single channel conductance play the major role in determining whole cell currents in this model system. We further suggest that the SAP97 effect results from SAP97 binding to the Kir2.3 COOH-terminal domain and altering channel conformation.
Collapse
Affiliation(s)
- Karen L Vikstrom
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ridgway LD, Kim EY, Dryer SE. MAGI-1 interacts with Slo1 channel proteins and suppresses Slo1 expression on the cell surface. Am J Physiol Cell Physiol 2009; 297:C55-65. [PMID: 19403801 PMCID: PMC3774261 DOI: 10.1152/ajpcell.00073.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 04/23/2009] [Indexed: 11/22/2022]
Abstract
Large conductance Ca(2+)-activated K(+) (BK(Ca)) channels encoded by the Slo1 gene (also known as KCNMA1) are physiologically important in a wide range of cell types and form complexes with a number of other proteins that affect their function. We performed a yeast two-hybrid screen to identify proteins that interact with BK(Ca) channels using a bait construct derived from domains in the extreme COOH-terminus of Slo1. A protein known as membrane-associated guanylate kinase with inverted orientation protein-1 (MAGI-1) was identified in this screen. MAGI-1 is a scaffolding protein that allows formation of complexes between certain transmembrane proteins, actin-binding proteins, and other regulatory proteins. MAGI-1 is expressed in a number of tissues, including podocytes and the brain. The interaction between MAGI-1 and BK(Ca) channels was confirmed by coimmunoprecipitation and glutathione S-transferase pull-down assays in differentiated cells of a podocyte cell line and in human embryonic kidneys (HEK)293T cells transiently coexpressing MAGI-1a and three different COOH-terminal Slo1 variants. Coexpression of MAGI-1 with Slo1 channels in HEK-293T cells results in a significant reduction in the surface expression of Slo1, as assessed by cell-surface biotinylation assays, confocal microscopy, and whole cell recordings. Partial knockdown of endogenous MAGI-1 expression by small interfering RNA (siRNA) in differentiated podocytes increased the surface expression of endogenous Slo1 as assessed by electrophysiology and cell-surface biotinylation assays, whereas overexpression of MAGI-1a reduced steady-state voltage-evoked outward current through podocyte BK(Ca) channels. These data suggest that MAGI-1 plays a role in regulation of surface expression of BK(Ca) channels in the kidney and possibly in other tissues.
Collapse
Affiliation(s)
- Lon D Ridgway
- Dept. of Biology and Biochemistry, Univ. of Houston, Houston, TX 77204-5001, USA
| | | | | |
Collapse
|
46
|
Mays TA, Sanford JL, Hanada T, Chishti AH, Rafael-Fortney JA. Glutamate receptors localize postsynaptically at neuromuscular junctions in mice. Muscle Nerve 2009; 39:343-9. [PMID: 19208409 DOI: 10.1002/mus.21099] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dlg (Discs Large) is a multidomain protein that interacts with glutamate receptors and potassium channels at Drosophila neuromuscular junctions (NMJs) and at mammalian central nervous system synapses. Dlg also localizes postsynaptically at cholinergic mammalian NMJs. We show here that alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptor subunits, together with glutamate, are present at the mammalian NMJ. Both AMPA and NMDA (N-methyl-D-aspartate) glutamate receptor subunits display overlapping postsynaptic localization patterns with Dlg at all NMJs examined in normal mice. Kir2 potassium channels also localize with Dlg and glutamate receptors at this synapse. Localization of the components of a glutamatergic system suggests novel mechanisms at mammalian neuromuscular synapses.
Collapse
Affiliation(s)
- Tessily A Mays
- Department of Molecular and Cellular Biochemistry, 410 Hamilton Hall, College of Medicine, Ohio State University, 1645 Neil Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
47
|
El-Haou S, Balse E, Neyroud N, Dilanian G, Gavillet B, Abriel H, Coulombe A, Jeromin A, Hatem SN. Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes. Circ Res 2009; 104:758-69. [PMID: 19213956 DOI: 10.1161/circresaha.108.191007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membrane-associated guanylate kinase (MAGUK) proteins are major determinants of the organization of ion channels in the plasma membrane in various cell types. Here, we investigated the interaction between the MAGUK protein SAP97 and cardiac Kv4.2/3 channels, which account for a large part of the outward potassium current, I(to), in heart. We found that the Kv4.2 and Kv4.3 channels C termini interacted with SAP97 via a SAL amino acid sequence. SAP97 and Kv4.3 channels were colocalized in the sarcolemma of cardiomyocytes. In CHO cells, SAP97 clustered Kv4.3 channels in the plasma membrane and increased the current independently of the presence of KChIP and dipeptidyl peptidase-like protein-6. Suppression of SAP97 by using short hairpin RNA inhibited I(to) in cardiac myocytes, whereas its overexpression by using an adenovirus increased I(to). Kv4.3 channels without the SAL sequence were no longer regulated by Ca2+/calmodulin kinase (CaMK)II inhibitors. In cardiac myocytes, pull-down and coimmunoprecipitation assays showed that the Kv4 channel C terminus, SAP97, and CaMKII interact together, an interaction suppressed by SAP97 silencing and enhanced by SAP97 overexpression. In HEK293 cells, SAP97 silencing reproduced the effects of CaMKII inhibition on current kinetics and suppressed Kv4/CaMKII interactions. In conclusion, SAP97 is a major partner for surface expression and CaMKII-dependent regulation of cardiac Kv4 channels.
Collapse
Affiliation(s)
- Saïd El-Haou
- UMRS-956, Faculté de Médecine Pierre-Marie Curie, 91 Boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Peters CJ, Chow SS, Angoli D, Nazzari H, Cayabyab FS, Morshedian A, Accili EA. In situ co-distribution and functional interactions of SAP97 with sinoatrial isoforms of HCN channels. J Mol Cell Cardiol 2009; 46:636-43. [PMID: 19336273 DOI: 10.1016/j.yjmcc.2009.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 01/15/2009] [Accepted: 01/15/2009] [Indexed: 11/29/2022]
Abstract
The sinoatrial node is a region of specialized cardiomyocytes that is responsible for the repetitive activity of the adult heart. The sinoatrial node is heavily innervated compared to the other regions of the heart, and the specialized cardiomyocytes of this region receive neural and hormonal input from the autonomic nervous system, which leads to changes in heart rate. A key regulator of sinoatrial beating frequency in response to autonomic input is the hyperpolarization-activated cyclic nucleotide gated (HCN) channel, a mixed cationic channel whose activity is increased by the binding of cAMP to its cytoplasmic side. HCN channels localize to distinct regions or "hot spots" on the cell surface of sinoatrial myocytes, but how these regions are formed, whether they correspond to specific signaling domains and the specific HCN isoforms and other proteins therein are not known. In this paper, we show that both HCN2 and HCN4 isoforms co-distribute with the adapter protein SAP97, an important component of distinct punctae in the sinoatrial node of the rabbit heart. HCN4, but not HCN2, also co-distributes with the post-synaptic marker beta-catenin, thus identifying diverse organized domains within this tissue. Furthermore, we show, using heterologous expression systems, whole-cell patch clamp electrophysiology and imaging, that SAP97 interacts functionally with HCN in a manner that depends upon the PDZ compatible binding motif of the C-terminus, but that its effects on I(f) behaviour are HCN isoform and context dependent. Together, the data suggest that SAP97 contributes to isoform specific organization of HCN channels within specific domains in the sinoatrial node of the rabbit.
Collapse
Affiliation(s)
- Christian J Peters
- Department of Cellular and Physiological Sciences, University of British Columbia, #2320-2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Coombs ID, Cull-Candy SG. Transmembrane AMPA receptor regulatory proteins and AMPA receptor function in the cerebellum. Neuroscience 2009; 162:656-65. [PMID: 19185052 PMCID: PMC3217091 DOI: 10.1016/j.neuroscience.2009.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 01/05/2009] [Indexed: 11/16/2022]
Abstract
Heterogeneity among AMPA receptor (AMPAR) subtypes is thought to be one of the key postsynaptic factors giving rise to diversity in excitatory synaptic signaling in the CNS. Recently, compelling evidence has emerged that ancillary AMPAR subunits—the so-called transmembrane AMPA receptor regulatory proteins (TARPs)—also play a vital role in influencing the variety of postsynaptic signaling. This TARP family of molecules controls both trafficking and functional properties of AMPARs at most, if not all, excitatory central synapses. Furthermore, individual TARPs differ in their effects on the biophysical and pharmacological properties of AMPARs. The critical importance of TARPs in synaptic transmission was first revealed in experiments on cerebellar granule cells from stargazer mice. These lack the prototypic TARP stargazin, present in granule cells from wild-type animals, and consequently lack synaptic transmission at the mossy fibre-to-granule cell synapse. Subsequent work has identified many other members of the stargazin family which act as functional TARPs. It has also provided valuable information about specific TARPs present in many central neurons. Because much of the initial work on TARPs was carried out on stargazer granule cells, the important functional properties of TARPs present throughout the cerebellum have received particular attention. Here we discuss some of these recent findings in relation to the main TARPs and the AMPAR subunits identified in cerebellar neurons and glia.
Collapse
Affiliation(s)
- I D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
50
|
Shin M, Brager D, Jaramillo TC, Johnston D, Chetkovich DM. Mislocalization of h channel subunits underlies h channelopathy in temporal lobe epilepsy. Neurobiol Dis 2008; 32:26-36. [PMID: 18657617 PMCID: PMC2626192 DOI: 10.1016/j.nbd.2008.06.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/11/2008] [Accepted: 06/13/2008] [Indexed: 12/17/2022] Open
Abstract
Many animal models of temporal lobe epilepsy (TLE) begin with status epilepticus (SE) followed by a latency period. Increased hippocampal pyramidal neuron excitability may contribute to seizures in TLE. I(h), mediated by h channels, regulates intrinsic membrane excitability by modulating synaptic integration and dampening dendritic calcium signaling. In a rat model of TLE, we found bidirectional changes in h channel function in CA1 pyramidal neurons. 1-2 d after SE, before onset of spontaneous seizures, physiological parameters dependent upon h channels were augmented and h channel subunit surface expression was increased. 28-30 d following SE, after onset of spontaneous seizures, h channel function in dendrites was reduced, coupled with diminished h channel subunit surface expression and relocalization of subunits from distal dendrites to soma. These results implicate h channel localization as a molecular mechanism influencing CA1 excitability in TLE.
Collapse
Affiliation(s)
- Minyoung Shin
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Darrin Brager
- Center for Learning and Memory, Section of Neurobiology, University of Texas at Austin, Austin, Texas 78712
| | - Thomas C. Jaramillo
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| | - Daniel Johnston
- Center for Learning and Memory, Section of Neurobiology, University of Texas at Austin, Austin, Texas 78712
| | - Dane M. Chetkovich
- Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
- Department of Physiology, Feinberg School of Medicine, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|