1
|
Guyot E. Heparan sulfate chains in hepatocellular carcinoma. Gastroenterol Rep (Oxf) 2025; 13:goaf023. [PMID: 40093586 PMCID: PMC11908768 DOI: 10.1093/gastro/goaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/13/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Hepatocellular carcinoma (HCC) corresponds to the vast majority of liver cancer cases, with one of the highest mortality rates. Major advances have been made in this field both in the characterization of the molecular pathogenesis and in the development of systemic therapies. Despite these achievements, biomarkers and more efficient treatments are still needed to improve its management. Heparan sulfate (HS) chains are polysaccharides that are present at the cell surface or in the extracellular matrix that are able to bind various types of molecules, such as soluble factors, affecting their availability and thus their effects, or to contribute to interactions that position cells in their environments. Enzymes can modify HS chains after their synthesis, thus changing their properties. Numerous studies have shown HS-related proteins to be key actors that are associated with cellular effects, such as tumor growth, invasion, and metastasis, including in the context of liver carcinogenesis. The aim of this review is to provide a comprehensive overview of the biology of HS chains and their potential importance in HCC, from biological considerations to clinical development, and the identification of biomarkers, as well as therapeutic perspectives.
Collapse
Affiliation(s)
- Erwan Guyot
- Biochemistry Unit, Saint-Antoine Hospital, AP-HP Sorbonne University, Paris Cedex, France
| |
Collapse
|
2
|
Dong Y, Bai J, Zhou J. Developing a dormancy-associated ECM signature in TNBC that is linked to immunosuppressive tumor microenvironment and selective sensitivity to MAPK inhibitors. Heliyon 2024; 10:e32106. [PMID: 38868025 PMCID: PMC11168407 DOI: 10.1016/j.heliyon.2024.e32106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Aims Cellular dormancy is a state of quiescence subpopulation of tumor cells, characterized by low differentiation and lack of mitotic activity. They could evade chemotherapy and targeted therapy, leading to drug resistance and disease recurrence. Recent studies have shown a correlation between dormant cancer cells and unique extracellular matrix (ECM) composition, which is critical in regulating cell behavior. However, their interacting roles in TNBC patients remains to be characterized. Main methods Dormant cancer cells in MDA-MB-231 cell line with highest PKH26 dye-retaining were FACS-sorted and gene expression was then analyzed. Dormant associated ECM (DA-ECM) signature was characterized by pathway analysis. Unsupervised hierarchical clustering was used to define distinct ECM features for TNBC patients. ECM-specific tumor biology was defined by integration of bulk RNA-seq with single-cell RNA-seq data, analysis of ligand-receptor interactions and enriched biological pathways, and in silico drug screening. We validated the sensitivity of dormant cancer cells to MAPK inhibitors by flow cytometry in vitro. Key findings We observed that dormant TNBC cells preferentially expressed ∼10 % DA-ECM genes. The DA-ECM High subtype defined by unsupervised hierarchical clustering analysis was associated with immunosuppressive tumor microenvironment. Moreover, ligand-receptor interaction and pathway analysis revealed that the DA-ECM High subtype may likely help maintain tumor cell dormancy through MAPK, Hedgehog and Notch signaling pathways. Finally, in silico drug screening against the DA-ECM signature and in vitro assay showed dormant cancer cells were relatively sensitive to the MAPK pathway inhibitors, which may represent a potential therapeutic strategy for treating TNBC. Significance Collectively, our research revealed that dormancy-associated ECM characterized tumor cells possess significant ECM remodeling capacity, and treatment strategies towards these cells could improve TNBC patient outcome.
Collapse
Affiliation(s)
- Yang Dong
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jin Bai
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| |
Collapse
|
3
|
Støle TP, Lunde M, Gehmlich K, Christensen G, Louch WE, Carlson CR. Exploring Syndecan-4 and MLP and Their Interaction in Primary Cardiomyocytes and H9c2 Cells. Cells 2024; 13:947. [PMID: 38891079 PMCID: PMC11172336 DOI: 10.3390/cells13110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The transmembrane proteoglycan syndecan-4 is known to be involved in the hypertrophic response to pressure overload. Although multiple downstream signaling pathways have been found to be involved in this response in a syndecan-4-dependent manner, there are likely more signaling components involved. As part of a larger syndecan-4 interactome screening, we have previously identified MLP as a binding partner to the cytoplasmic tail of syndecan-4. Interestingly, many human MLP mutations have been found in patients with hypertrophic (HCM) and dilated cardiomyopathy (DCM). To gain deeper insight into the role of the syndecan-4-MLP interaction and its potential involvement in MLP-associated cardiomyopathy, we have here investigated the syndecan-4-MLP interaction in primary adult rat cardiomyocytes and the H9c2 cell line. The binding of syndecan-4 and MLP was analyzed in total lysates and subcellular fractions of primary adult rat cardiomyocytes, and baseline and differentiated H9c2 cells by immunoprecipitation. MLP and syndecan-4 localization were determined by confocal microscopy, and MLP oligomerization was determined by immunoblotting under native conditions. Syndecan-4-MLP binding, as well as MLP self-association, were also analyzed by ELISA and peptide arrays. Our results showed that MLP-WT and syndecan-4 co-localized in many subcellular compartments; however, their binding was only detected in nuclear-enriched fractions of isolated adult cardiomyocytes. In vitro, syndecan-4 bound to MLP at three sites, and this binding was reduced in some HCM-associated MLP mutations. While MLP and syndecan-4 also co-localized in many subcellular fractions of H9c2 cells, these proteins did not bind at baseline or after differentiation into cardiomyocyte-resembling cells. Independently of syndecan-4, mutated MLP proteins had an altered subcellular localization in H9c2 cells, compared to MLP-WT. The DCM- and HCM-associated MLP mutations, W4R, L44P, C58G, R64C, Y66C, K69R, G72R, and Q91L, affected the oligomerization of MLP with an increase in monomeric at the expense of trimeric and tetrameric recombinant MLP protein. Lastly, two crucial sites for MLP self-association were identified, which were reduced in most MLP mutations. Our data indicate that the syndecan-4-MLP interaction was present in nuclear-enriched fractions of isolated adult cardiomyocytes and that this interaction was disrupted by some HCM-associated MLP mutations. MLP mutations were also linked to changes in MLP oligomerization and self-association, which may be essential for its interaction with syndecan-4 and a critical molecular mechanism of MLP-associated cardiomyopathy.
Collapse
Affiliation(s)
- Thea Parsberg Støle
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0313 Oslo, Norway
| | - Katja Gehmlich
- Institute for Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0313 Oslo, Norway
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0313 Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
| |
Collapse
|
4
|
Kaur R, Deb PK, Diwan V, Saini B. Heparanase Inhibitors in Cancer Progression: Recent Advances. Curr Pharm Des 2021; 27:43-68. [PMID: 33185156 DOI: 10.2174/1381612826666201113105250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND An endo-β-glucuronidase enzyme, Heparanase (HPSE), degrades the side chains of polymeric heparan sulfate (HS), a glycosaminoglycan formed by alternate repetitive units of D-glucosamine and D-glucuronic acid/L-iduronic acid. HS is a major component of the extracellular matrix and basement membranes and has been implicated in processes of the tissue's integrity and functional state. The degradation of HS by HPSE enzyme leads to conditions like inflammation, angiogenesis, and metastasis. An elevated HPSE expression with a poor prognosis and its multiple roles in tumor growth and metastasis has attracted significant interest for its inhibition as a potential anti-neoplastic target. METHODS We reviewed the literature from journal publication websites and electronic databases such as Bentham, Science Direct, PubMed, Scopus, USFDA, etc., about HPSE, its structure, functions, and role in cancer. RESULTS The present review is focused on Heparanase inhibitors (HPIns) that have been isolated from natural resources or chemically synthesized as new therapeutics for metastatic tumors and chronic inflammatory diseases in recent years. The recent developments made in the HPSE structure and function are also discussed, which can lead to the future design of HPIns with more potency and specificity for the target. CONCLUSION HPIns can be a better target to be explored against various cancers.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Philadelphia, Jordan
| | - Vishal Diwan
- Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
5
|
Vlodavsky I, Barash U, Nguyen HM, Yang SM, Ilan N. Biology of the Heparanase-Heparan Sulfate Axis and Its Role in Disease Pathogenesis. Semin Thromb Hemost 2021; 47:240-253. [PMID: 33794549 DOI: 10.1055/s-0041-1725066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell surface proteoglycans are important constituents of the glycocalyx and participate in cell-cell and cell-extracellular matrix (ECM) interactions, enzyme activation and inhibition, and multiple signaling routes, thereby regulating cell proliferation, survival, adhesion, migration, and differentiation. Heparanase, the sole mammalian heparan sulfate degrading endoglycosidase, acts as an "activator" of HS proteoglycans, thus regulating tissue hemostasis. Heparanase is a multifaceted enzyme that together with heparan sulfate, primarily syndecan-1, drives signal transduction, immune cell activation, exosome formation, autophagy, and gene transcription via enzymatic and nonenzymatic activities. An important feature is the ability of heparanase to stimulate syndecan-1 shedding, thereby impacting cell behavior both locally and distally from its cell of origin. Heparanase releases a myriad of HS-bound growth factors, cytokines, and chemokines that are sequestered by heparan sulfate in the glycocalyx and ECM. Collectively, the heparan sulfate-heparanase axis plays pivotal roles in creating a permissive environment for cell proliferation, differentiation, and function, often resulting in the pathogenesis of diseases such as cancer, inflammation, endotheliitis, kidney dysfunction, tissue fibrosis, and viral infection.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
Li X, Chen R, Kemper S, Brigstock DR. Structural and Functional Characterization of Fibronectin in Extracellular Vesicles From Hepatocytes. Front Cell Dev Biol 2021; 9:640667. [PMID: 33816490 PMCID: PMC8012540 DOI: 10.3389/fcell.2021.640667] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-limited nanoparticles that are liberated by cells and contain a complex molecular payload comprising proteins, microRNA, RNAs, and lipids. EVs may be taken up by other cells resulting in their phenotypic or functional reprogramming. In the liver, EVs produced by non-injured hepatocytes are involved in the maintenance of hepatic homeostasis or therapeutic outcomes following injury while EVs produced by damaged hepatocytes may drive or exacerbate liver injury. In this study, we examined the contribution of EV fibronectin (FN1) to the biogenesis, release, uptake, and action of hepatocyte-derived EVs. While FN1 is classically viewed as a component of the extracellular matrix that regulates processes such as cell adhesion, differentiation, and wound healing and can exist in cell-associated or soluble plasma forms, we report that FN1 is also a constituent of hepatocyte EVs that functions in EV uptake by target cells such as hepatocytes and hepatic stellate cells (HSC). FN1 co-purified with EVs when EVs were enriched from conditioned medium of human or mouse hepatocytes and a direct association between FN1 and hepatocyte EVs was established by immunoprecipitation and proteinase protection. FN1 ablation in mouse hepatocytes using CRISPR-Cas9 did not alter EV biogenesis but EV uptake by HSC was significantly reduced for FN1 knockout EVs (EVΔFN1) as compared to EVs from wild type hepatocytes (EVWT). The uptake by hepatocytes or HSC of either EVWT or EVΔFN1 required clathrin- and caveolin-mediated endocytosis, cholesterol, lysosomal acidic lipase activity, and low pH, while macropinocytosis was also involved in EVΔFN1 uptake in HSC. Despite their differences in rate and mechanisms of uptake, EVΔFN1 functioned comparably to EVWT in ameliorating CCl4-induced hepatic fibrosis in mice. In conclusion, FN1 is a constituent of hepatocyte EVs that facilitates EV uptake by target cells but is dispensable for EV-mediated anti-fibrotic activity in vivo.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Ruju Chen
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Sherri Kemper
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - David R Brigstock
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
7
|
Jain N, Singh S. Glycans in scaffold design in tissue reconstruction. J BIOACT COMPAT POL 2021. [DOI: 10.1177/0883911521997847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Development of an artificial tissue by tissue engineering is witnessed to be one of the long lasting clarified solutions for the damaged tissue function restoration. To accomplish this, a scaffold is designed as a cell carrier in which the extracellular matrix (ECM) performs a prominent task of controlling the inoculated cell’s destiny. ECM composition, topography and mechanical properties lead to different types of interactions between cells and ECM components that trigger an assortment of cellular reactions via diverse sensing mechanisms and downstream signaling pathways. The polysaccharides in the form of proteoglycans and glycoproteins yield better outcomes when included in the designed matrices. Glycosaminoglycan (GAG) chains present on proteoglycans show a wide range of operations such as sequestering of critical effector morphogens which encourage proficient nutrient contribution toward the growing stem cells for their development and endurance. In this review we discuss how the glycosylation aspects are of considerable importance in everyday housekeeping functions of a cell especially when placed in a controlled environment under ideal growth conditions. Hydrogels made from these GAG chains have been used extensively as a resorbable material that mimics the natural ECM functions for an efficient control over cell attachment, permeability, viability, proliferation, and differentiation processes. Also the incorporation of non-mammalian polysaccharides can elicit specific receptor responses which authorize the creation of numerous vigorous frameworks while prolonging the low cost and immunogenicity of the substance.
Collapse
Affiliation(s)
- Nipun Jain
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Shashi Singh
- CSIR—Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
8
|
Purushothaman A, Sanderson RD. Heparanase: A Dynamic Promoter of Myeloma Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:331-349. [PMID: 32274716 DOI: 10.1007/978-3-030-34521-1_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been speculated for many years that heparanase plays an important role in the progression of cancer due largely to the finding that its expression is weak or absent in normal tissues but generally as tumors become more aggressive heparanase expression increases. However, it is only in the last decade or so that we have begun to understand the molecular mechanism behind the sinister role that heparanase plays in cancer. In this review, we describe the many functions of heparanase in promoting the growth, angiogenesis and metastasis of multiple myeloma, a devastating cancer that localizes predominantly within the bone marrow and spreads throughout the skeletal system devouring bone and ultimately leading to death of almost all patients diagnosed with this disease. We also explore recent discoveries related to how heparanase primes exosome biogenesis and how heparanase enhances myeloma tumor chemoresistance. Discovery of these multiple tumor-promoting pathways that are driven by heparanase identified the enzyme as an ideal target for therapy, an approach recently tested in a Phase I trial in myeloma patients.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Discovery of HSPG2 (Perlecan) as a Therapeutic Target in Triple Negative Breast Cancer. Sci Rep 2019; 9:12492. [PMID: 31462656 PMCID: PMC6713791 DOI: 10.1038/s41598-019-48993-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
In recent years, there have been significant advances in the treatment of breast cancer resulting in remarkably high survival rates. However, treatment options for metastatic triple negative breast cancer (TNBC) are quite limited due to a lack of identifiable, unique markers. Using a phage display-based whole cell biopanning procedure, we developed two human antibodies that bind to tumor cells with a metastatic TNBC phenotype. Our studies further identified domain 1 of HSPG2 (perlecan) protein as the cognate cell surface antigen bound by the antibody. Immunohistochemistry studies utilizing patient tissue samples revealed significant cell surface expression of HSPG2 in both primary tumors and metastatic lesions. Further, higher HSPG2 expression correlated with poor survival in TNBC. The affinity-matured antibody inhibited the growth of triple negative MDA-MB-231 tumors to a greater extent in nude mice than in NSG mice, pointing to the potential role of natural killer cell-mediated antibody-dependent cell cytotoxicity. This mechanism of action was confirmed through in vitro assays using mouse splenocytes and human peripheral blood mononuclear cells (PBMCs). These results suggest that HSPG2 is a promising target in metastatic TNBC and HSPG2-targeted antibodies could represent a potentially novel class of targeted therapeutics for TNBC.
Collapse
|
10
|
Kim JY, Wee YM, Choi MY, Jung HR, Choi JY, Kwon HW, Jung JH, Cho YM, Go H, Han M, Kim YH, Han DJ, Shin S. Urinary transglutaminase 2 as a potent biomarker to predict interstitial fibrosis and tubular atrophy of kidney allograft during early posttransplant period in deceased donor kidney transplantation. Ann Surg Treat Res 2019; 97:27-35. [PMID: 31297350 PMCID: PMC6609414 DOI: 10.4174/astr.2019.97.1.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose Transglutaminase type 2 (TG2) is an extracellular matrix crosslinking enzyme with a pivotal role in kidney fibrosis. We tested whether quantification of urinary TG2 may represent a noninvasive method to estimate the severity of kidney allograft fibrosis. Methods We prospectively collected urine specimens from 18 deceased donor kidney transplant recipients at 1-day, 7-day, 1-month, 3-month, and 6-month posttransplant. In addition, kidney allograft tissue specimens at 0-day and 6-month posttransplant were sampled to analyze the correlation of urinary TG2 and kidney allograft fibrosis. Results Thirteen recipients had increased interstitial fibrosis and tubular atrophy (IFTA) scores at the 6-month protocol biopsy (IFTA group). The mean level of urinary TG2 in the IFTA group was higher compared to that of 5 other recipients without IFTA (no IFTA group). Conversely, the mean level of urinary syndecan-4 in the IFTA group was lower than levels in patients without IFTA. In the IFTA group, double immunofluorescent staining revealed that TG2 intensity was significantly upregulated and colocalizations of TG2/heparin sulfate proteoglycan and nuclear syndecan-4 were prominent, usually around tubular structures. Conclusion Urinary TG2 in early posttransplant periods is a potent biomarker for kidney allograft inflammation or fibrosis.
Collapse
Affiliation(s)
- Jee Yeon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yu-Mee Wee
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Monica Young Choi
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hey Rim Jung
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yoon Choi
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Wook Kwon
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Hee Jung
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Minkyu Han
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, Korea
| | - Young Hoon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Duck Jong Han
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Shin
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Szatmári T, Mundt F, Kumar-Singh A, Möbus L, Ötvös R, Hjerpe A, Dobra K. Molecular targets and signaling pathways regulated by nuclear translocation of syndecan-1. BMC Cell Biol 2017; 18:34. [PMID: 29216821 PMCID: PMC5721467 DOI: 10.1186/s12860-017-0150-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Background The cell-surface heparan sulfate proteoglycan syndecan-1 is important for tumor cell proliferation, migration, and cell cycle regulation in a broad spectrum of malignancies. Syndecan-1, however, also translocates to the cell nucleus, where it might regulate various molecular functions. Results We used a fibrosarcoma model to dissect the functions of syndecan-1 related to the nucleus and separate them from functions related to the cell-surface. Nuclear translocation of syndecan-1 hampered the proliferation of fibrosarcoma cells compared to the mutant lacking nuclear localization signal. The growth inhibitory effect of nuclear syndecan-1 was accompanied by significant accumulation of cells in the G0/G1 phase, which indicated a possible G1/S phase arrest. We implemented multiple, unsupervised global transcriptome and proteome profiling approaches and combined them with functional assays to disclose the molecular mechanisms that governed nuclear translocation and its related functions. We identified genes and pathways related to the nuclear compartment with network enrichment analysis of the transcriptome and proteome. The TGF-β pathway was activated by nuclear syndecan-1, and three genes were significantly altered with the deletion of nuclear localization signal: EGR-1 (early growth response 1), NEK11 (never-in-mitosis gene a-related kinase 11), and DOCK8 (dedicator of cytokinesis 8). These candidate genes were coupled to growth and cell-cycle regulation. Nuclear translocation of syndecan-1 influenced the activity of several other transcription factors, including E2F, NFκβ, and OCT-1. The transcripts and proteins affected by syndecan-1 showed a striking overlap in their corresponding biological processes. These processes were dominated by protein phosphorylation and post-translation modifications, indicative of alterations in intracellular signaling. In addition, we identified molecules involved in the known functions of syndecan-1, including extracellular matrix organization and transmembrane transport. Conclusion Collectively, abrogation of nuclear translocation of syndecan-1 resulted in a set of changes clustering in distinct patterns, which highlighted the functional importance of nuclear syndecan-1 in hampering cell proliferation and the cell cycle. This study emphasizes the importance of the localization of syndecan-1 when considering its effects on tumor cell fate. Electronic supplementary material The online version of this article (10.1186/s12860-017-0150-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden.
| | - Filip Mundt
- Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| | - Ashish Kumar-Singh
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Lena Möbus
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Rita Ötvös
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Anders Hjerpe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden.,Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden.,Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| |
Collapse
|
12
|
Zheng S, Kummarapurugu AB, Afosah DK, Sankaranarayanan NV, Boothello RS, Desai UR, Kennedy T, Voynow JA. 2-O, 3-O Desulfated Heparin Blocks High Mobility Group Box 1 Release by Inhibition of p300 Acetyltransferase Activity. Am J Respir Cell Mol Biol 2017; 56:90-98. [PMID: 27585400 DOI: 10.1165/rcmb.2016-0069oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
High mobility group box 1 (HMGB1) is an alarmin released from macrophages after infection or inflammation and is a biomarker of lung disease progression in patients with cystic fibrosis. We reported that 2-O, 3-O desulfated heparin (ODSH) inhibits the release of HMGB1 from murine macrophages triggered by neutrophil elastase both in vivo and in vitro. HMGB1 shuttles between the nucleus and the cytoplasm. When acetylated at lysine residues in the nuclear localization signal domains, HMGB1 is sequestered in the cytoplasm and is fated for secretion. In this study, we investigated the mechanism by which ODSH blocks HMGB1 secretion. We tested whether ODSH inhibits the activity of p300, a histone acetyltransferase that has been linked to HMGB1 acetylation and release. ODSH inhibited both neutrophil elastase and LPS-triggered HMGB1 release from the murine macrophage cell line RAW264.7 in a concentration-dependent manner. Fluorescein-labeled ODSH was taken up by RAW264.7 cells into the cytoplasm as well as the nucleus, suggesting an intracellular site of action of ODSH for blocking HMGB1 release. ODSH inhibited RAW264.7 cell nuclear extract, human macrophage nuclear extract, and recombinant p300 HAT activity in vitro, resulting in the failure to acetylate HMGB1. In silico molecular modeling predicted that of the numerous possible ODSH sequences, a small number preferentially recognizes a specific binding site on p300. Fluorescence binding studies showed that ODSH bound p300 tightly (dissociation constant ∼1 nM) in a highly cooperative manner. These results suggest that ODSH inhibited HMGB1 release, at least in part, by direct molecular inhibition of p300 HAT activity.
Collapse
Affiliation(s)
| | | | - Daniel K Afosah
- 2 Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia; and
| | - Nehru Viji Sankaranarayanan
- 2 Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia; and
| | - Rio S Boothello
- 2 Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia; and
| | - Umesh R Desai
- 2 Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia; and
| | | | | |
Collapse
|
13
|
Ricard-Blum S, Gondelaud F. [Shuttling from the extracellular matrix to the nucleus]. Biol Aujourdhui 2016; 210:37-44. [PMID: 27286579 DOI: 10.1051/jbio/2016007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Indexed: 01/03/2023]
Abstract
Several enzymes secreted in the extracellular space, such as matrix metalloproteinases and lysyl oxidase, are internalized and translocated to the nucleus, where they may act as proteases and transcription factors to regulate gene expression and enhance apoptosis. Membrane proteoglycan syndecans, glycosaminoglycans and an anti-angiogenic matricryptin of collagen XVIII have also been identified in the nucleus. The nuclear entry of most extracellular proteins is likely mediated by nuclear localizing sequences. The molecular mechanisms of nuclear import, the physiopathological contexts, which induce it, and the biological roles played in vivo by extracellular proteins and proteoglycans are still underexplored.
Collapse
|
14
|
Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem 2016; 8:647-80. [PMID: 27057774 DOI: 10.4155/fmc-2016-0012] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, heparanase has attracted considerable attention as a promising target for innovative pharmacological applications. Heparanase is a multifaceted protein endowed with enzymatic activity, as an endo-β-D-glucuronidase, and nonenzymatic functions. It is responsible for the cleavage of heparan sulfate side chains of proteoglycans, resulting in structural alterations of the extracellular matrix. Heparanase appears to be involved in major human diseases, from the most studied tumors to chronic inflammation, diabetic nephropathy, bone osteolysis, thrombosis and atherosclerosis, in addition to more recent investigation in various rare diseases. The present review provides an overview on heparanase, its biological role, inhibitors and possible clinical applications, covering the latest findings in these areas.
Collapse
|
15
|
Akl MR, Nagpal P, Ayoub NM, Prabhu SA, Gliksman M, Tai B, Hatipoglu A, Goy A, Suh KS. Molecular and clinical profiles of syndecan-1 in solid and hematological cancer for prognosis and precision medicine. Oncotarget 2015; 6:28693-715. [PMID: 26293675 PMCID: PMC4745686 DOI: 10.18632/oncotarget.4981] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/11/2015] [Indexed: 12/18/2022] Open
Abstract
Syndecan-1 (SDC1, CD138) is a key cell surface adhesion molecule essential for maintaining cell morphology and interaction with the surrounding microenvironment. Deregulation of SDC1 contributes to cancer progression by promoting cell proliferation, metastasis, invasion and angiogenesis, and is associated with relapse through chemoresistance. SDC1 expression level is also associated with responses to chemotherapy and with prognosis in multiple solid and hematological cancers, including multiple myeloma and Hodgkin lymphoma. At the tissue level, the expression levels of SDC1 and the released extracellular domain of SDC1 correlate with tumor malignancy, phenotype, and metastatic potential for both solid and hematological tumors in a tissue-specific manner. The SDC1 expression profile varies among cancer types, but the differential expression signatures between normal and cancer cells in epithelial and stromal compartments are directly associated with aggressiveness of tumors and patient's clinical outcome and survival. Therefore, relevant biomarkers of SDC signaling may be useful for selecting patients that would most likely respond to a particular therapy at the time of diagnosis or perhaps for predicting relapse. In addition, the reciprocal expression signature of SDC between tumor epithelial and stromal compartments may have synergistic value for patient selection and the prediction of clinical outcome.
Collapse
Affiliation(s)
- Mohamed R. Akl
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Poonam Nagpal
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sathyen A. Prabhu
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Matthew Gliksman
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Betty Tai
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Ahmet Hatipoglu
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andre Goy
- Lymphoma Division, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - K. Stephen Suh
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
16
|
Gunes A, Iscan E, Topel H, Avci ST, Gumustekin M, Erdal E, Atabey N. Heparin treatment increases thioredoxin interacting protein expression in hepatocellular carcinoma cells. Int J Biochem Cell Biol 2015; 65:169-81. [DOI: 10.1016/j.biocel.2015.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/30/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
|
17
|
Rønning SB, Carlson CR, Stang E, Kolset SO, Hollung K, Pedersen ME. Syndecan-4 Regulates Muscle Differentiation and Is Internalized from the Plasma Membrane during Myogenesis. PLoS One 2015; 10:e0129288. [PMID: 26068620 PMCID: PMC4467083 DOI: 10.1371/journal.pone.0129288] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/06/2015] [Indexed: 12/31/2022] Open
Abstract
The cell surface proteoglycan syndecan-4 has been reported to be crucial for muscle differentiation, but the molecular mechanisms still remain to be fully understood. During in vitro differentiation of bovine muscle cells immunocytochemical analyses showed strong labelling of syndecan-4 intracellularly, in close proximity with Golgi structures, in membranes of intracellular vesicles and finally, in the nuclear area including the nuclear envelope. Chase experiments showed that syndecan-4 was internalized from the plasma membrane during this process. Furthermore, when syndecan-4 was knocked down by siRNA more myotubes were formed, and the expression of myogenic transcription factors, β1-integrin and actin was influenced. However, when bovine muscle cells were treated with a cell-penetrating peptide containing the cytoplasmic region of syndecan-4, myoblast fusion and thus myotube formation was blocked, both in normal cells and in syndecan-4 knock down cells. Altogether this suggests that the cytoplasmic domain of syndecan-4 is important in regulation of myogenesis. The internalization of syndecan-4 from the plasma membrane during muscle differentiation and the nuclear localization of syndecan-4 in differentiated muscle cells may be part of this regulation, and is a novel aspect of syndecan biology which merits further studies.
Collapse
Affiliation(s)
| | - Cathrine R. Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Espen Stang
- Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | - Svein O. Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
18
|
Rowlands D, Sugahara K, Kwok JCF. Glycosaminoglycans and glycomimetics in the central nervous system. Molecules 2015; 20:3527-48. [PMID: 25706756 PMCID: PMC6272379 DOI: 10.3390/molecules20033527] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 01/05/2023] Open
Abstract
With recent advances in the construction of synthetic glycans, selective targeting of the extracellular matrix (ECM) as a potential treatment for a wide range of diseases has become increasingly popular. The use of compounds that mimic the structure or bioactive function of carbohydrate structures has been termed glycomimetics. These compounds are mostly synthetic glycans or glycan-binding constructs which manipulate cellular interactions. Glycosaminoglycans (GAGs) are major components of the ECM and exist as a diverse array of differentially sulphated disaccharide units. In the central nervous system (CNS), they are expressed by both neurons and glia and are crucial for brain development and brain homeostasis. The inherent diversity of GAGs make them an essential biological tool for regulating a complex range of cellular processes such as plasticity, cell interactions and inflammation. They are also involved in the pathologies of various neurological disorders, such as glial scar formation and psychiatric illnesses. It is this diversity of functions and potential for selective interventions which makes GAGs a tempting target. In this review, we shall describe the molecular make-up of GAGs and their incorporation into the ECM of the CNS. We shall highlight the different glycomimetic strategies that are currently being used in the nervous system. Finally, we shall discuss some possible targets in neurological disorders that may be addressed using glycomimetics.
Collapse
Affiliation(s)
- Dáire Rowlands
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK.
| | - Kazuyuki Sugahara
- Proteoglycan Signaling and Therapeutics Research Group, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan.
| | - Jessica C F Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK.
| |
Collapse
|
19
|
Kovalszky I, Hjerpe A, Dobra K. Nuclear translocation of heparan sulfate proteoglycans and their functional significance. Biochim Biophys Acta Gen Subj 2014; 1840:2491-7. [PMID: 24780644 DOI: 10.1016/j.bbagen.2014.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Heparan sulfate proteoglycans (HSPGs) are important constituents of the cell membrane and they act as co-receptors for cellular signaling. Syndecan-1, glypican and perlecan also translocate to the nucleus in a regulated manner. Similar nuclear transport of growth factors and heparanase indicate a possible co-regulation and functional significance. SCOPE OF REVIEW In this review we dissect the structural requirement for the nuclear translocation of HSPGs and their functional implications.s MAJOR CONCLUSIONS The functions of the nuclear HSPGs are still incompletely understood. Evidence point to possible functions in hampering cell proliferation, inhibition of DNA topoisomerase I activity and inhibition of gene transcription. GENERAL SIGNIFICANCE HSPGs influence the behavior of malignant tumors in many different ways. Modulating their functions may offer powerful tools to control fundamental biological processes and provide the basis for subsequent targeted therapies in cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Ilona Kovalszky
- First Department of Pathology & Experimental Cancer Research Semmelweis University, Üllői street 26, Budapest 1085, Hungary
| | - Anders Hjerpe
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital F46, SE-141 86 Stockholm Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital F46, SE-141 86 Stockholm Sweden.
| |
Collapse
|
20
|
Abstract
Numerous proteins, including cytokines and chemokines, enzymes and enzyme inhibitors, extracellular matrix proteins, and membrane receptors, bind heparin. Although they are traditionally classified as heparin-binding proteins, under normal physiological conditions these proteins actually interact with the heparan sulfate chains of one or more membrane or extracellular proteoglycans. Thus, they are more appropriately classified as heparan sulfate-binding proteins (HSBPs). This review provides an overview of the various modes of interaction between heparan sulfate and HSBPs, emphasizing biochemical and structural insights that improve our understanding of the many biological functions of heparan sulfate.
Collapse
Affiliation(s)
- Ding Xu
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093; ,
| | | |
Collapse
|
21
|
Stewart MD, Sanderson RD. Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biol 2013; 35:56-9. [PMID: 24309018 DOI: 10.1016/j.matbio.2013.10.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 12/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPG) are present on the cell surface, within the extracellular matrix, and as soluble molecules in tissues and blood. HSPGs are known to regulate a wide range of cellular functions predominantly by serving as co-receptors for growth factors, chemokines, and other regulatory proteins that control inflammation, wound healing and tumorigenesis. Several studies have demonstrated the presence of heparan sulfate (HS) or HSPGs in the cell nucleus, but little attention has been focused on their role there. However, evidence is mounting that nuclear HS and HSPGs have important regulatory functions that impact the cell cycle, proliferation, transcription and transport of cargo to the nucleus. The discovery of proteoglycans in the nucleus extends the list of "non-traditional nuclear proteins" that includes, for example, cytoskeletal proteins such as actin and tubulin, and growth factors and their receptors. In this review we discuss the discovery and fascinating roles of HS and HSPGs in the nucleus and propose a number of key questions that remain to be addressed.
Collapse
Affiliation(s)
- Mark D Stewart
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
22
|
Ramani VC, Purushothaman A, Stewart MD, Thompson CA, Vlodavsky I, Au JLS, Sanderson RD. The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. FEBS J 2013; 280:2294-306. [PMID: 23374281 DOI: 10.1111/febs.12168] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/21/2022]
Abstract
Heparanase is an endoglucuronidase that cleaves heparan sulfate chains of proteoglycans. In many malignancies, high heparanase expression and activity correlate with an aggressive tumour phenotype. A major consequence of heparanase action in cancer is a robust up-regulation of growth factor expression and increased shedding of syndecan-1 (a transmembrane heparan sulfate proteoglycan). Substantial evidence indicates that heparanase and syndecan-1 work together to drive growth factor signalling and regulate cell behaviours that enhance tumour growth, dissemination, angiogenesis and osteolysis. Preclinical and clinical studies have demonstrated that therapies targeting the heparanase/syndecan-1 axis hold promise for blocking the aggressive behaviour of cancer.
Collapse
Affiliation(s)
- Vishnu C Ramani
- Department of Pathology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Raman K, Mencio C, Desai UR, Kuberan B. Sulfation patterns determine cellular internalization of heparin-like polysaccharides. Mol Pharm 2013; 10:1442-9. [PMID: 23398560 DOI: 10.1021/mp300679a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heparin is a highly sulfated polysaccharide that serves biologically relevant roles as an anticoagulant and anticancer agent. While it is well-known that modification of heparin's sulfation pattern can drastically influence its ability to bind growth factors and other extracellular molecules, very little is known about the cellular uptake of heparin and the role sulfation patterns serve in affecting its internalization. In this study, we chemically synthesized several fluorescently labeled heparins consisting of a variety of sulfation patterns. These polysaccharides were thoroughly characterized using anion exchange chromatography and size exclusion chromatography. Subsequently, we utilized flow cytometry and confocal imaging to show that sulfation patterns differentially affect the amount of heparin uptake in multiple cell types. This study provides the first comprehensive analysis of the effect of sulfation pattern on the cellular internalization of heparin or heparan sulfate like polysaccharides. The results of this study expand current knowledge regarding heparin internalization and provide insights into developing more effective heparin-based drug conjugates for applications in intracellular drug delivery.
Collapse
Affiliation(s)
- Karthik Raman
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
24
|
Couchman JR, Pataki CA. An introduction to proteoglycans and their localization. J Histochem Cytochem 2012; 60:885-97. [PMID: 23019015 DOI: 10.1369/0022155412464638] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteoglycans comprise a core protein to which one or more glycosaminoglycan chains are covalently attached. Although a small number of proteins have the capacity to be glycanated and become proteoglycans, it is now realized that these macromolecules have a range of functions, dependent on type and in vivo location, and have important roles in invertebrate and vertebrate development, maintenance, and tissue repair. Many biologically potent small proteins can bind glycosaminoglycan chains as a key part of their function in the extracellular matrix, at the cell surface, and also in some intracellular locations. Therefore, the participation of proteoglycans in disease is receiving increased attention. In this short review, proteoglycan structure, function, and localizations are summarized, with reference to accompanying reviews in this issue as well as other recent literature. Included are some remarks on proteoglycan and glycosaminoglycan localization techniques, with reference to the special physicochemical properties of these complex molecules.
Collapse
Affiliation(s)
- John R Couchman
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark.
| | | |
Collapse
|
25
|
Nasimuzzaman M, Persons DA. Cell Membrane-associated heparan sulfate is a receptor for prototype foamy virus in human, monkey, and rodent cells. Mol Ther 2012; 20:1158-66. [PMID: 22434139 PMCID: PMC3369305 DOI: 10.1038/mt.2012.41] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/10/2012] [Indexed: 12/21/2022] Open
Abstract
Foamy viruses (FVs) (spumaretroviruses) are good alternative to retroviruses as gene therapy vector. Despite four decades since the discovery of FV, its receptor molecule is still unknown. FV vector transduction of human CD34(+) cells was inhibited by culture with fibronectin. Because fibronectin contains heparin-binding domain, the interactions of fibronectin with heparan sulfate (HS) on cells might be inhibitory to FV transduction. These observations led us to investigate whether HS is a receptor for FV. Two mutant CHO cell lines (but not parental wild type) lacking cell surface HS but not chondroitin sulfate (CS) were largely resistant to FV attachment and transduction. Inhibition of HS expression using enzymes or chemicals greatly reduced FV transduction in human, monkey, and rodent cells. Raji cells, which lack HS and were largely resistant to FV, were rendered more permissive through ectopic expression of syndecan-1, which contains HS. In contrast, mutant syndecan-1-expressing cells were largely resistant to FV. Our findings indicate that cellular HS is a receptor for FV. Identifying FV receptor will enable better understanding of its entry process and optimal use as gene therapy vector to treat inherited and pathogenic diseases.
Collapse
Affiliation(s)
- Md Nasimuzzaman
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Derek A Persons
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
26
|
Gibson NJ, Tolbert LP, Oland LA. Activation of glial FGFRs is essential in glial migration, proliferation, and survival and in glia-neuron signaling during olfactory system development. PLoS One 2012; 7:e33828. [PMID: 22493675 PMCID: PMC3320908 DOI: 10.1371/journal.pone.0033828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 02/22/2012] [Indexed: 11/18/2022] Open
Abstract
Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells.
Collapse
Affiliation(s)
- Nicholas J Gibson
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America.
| | | | | |
Collapse
|
27
|
Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD. Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem 2011; 286:30377-30383. [PMID: 21757697 DOI: 10.1074/jbc.m111.254789] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparanase acts as a master regulator of the aggressive tumor phenotype in part by enhancing expression of proteins known to drive tumor progression (e.g. VEGF, MMP-9, hepatocyte growth factor (HGF), and RANKL). However, the mechanism whereby this enzyme regulates gene expression remains unknown. We previously reported that elevation of heparanase levels in myeloma cells causes a dramatic reduction in the amount of syndecan-1 in the nucleus. Because syndecan-1 has heparan sulfate chains and because exogenous heparan sulfate has been shown to inhibit the activity of histone acetyltransferase (HAT) enzymes in vitro, we hypothesized that the reduction in nuclear syndecan-1 in cells expressing high levels of heparanase would result in increased HAT activity leading to stimulation of protein transcription. We found that myeloma cells or tumors expressing high levels of heparanase and low levels of nuclear syndecan-1 had significantly higher levels of HAT activity when compared with cells or tumors expressing low levels of heparanase. High levels of HAT activity in heparanase-high cells were blocked by SST0001, an inhibitor of heparanase. Restoration of high syndecan-1 levels in heparanase-high cells diminished nuclear HAT activity, establishing syndecan-1 as a potent inhibitor of HAT. Exposure of heparanase-high cells to anacardic acid, an inhibitor of HAT activity, significantly suppressed their expression of VEGF and MMP-9, two genes known to be up-regulated following elevation of heparanase. These results reveal a novel mechanistic pathway driven by heparanase expression, which leads to decreased nuclear syndecan-1, increased HAT activity, and up-regulation of transcription of multiple genes that drive an aggressive tumor phenotype.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Pathology, Center for Metabolic Bone Disease, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Douglas R Hurst
- Department of Pathology, Center for Metabolic Bone Disease, University of Alabama at Birmingham, Birmingham, Alabama 35294; University of Alabama at Birmingham Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Claudio Pisano
- sigma-tau Industrie Farmaceutiche Riunite S.p.A., Pomezia 00040, Italy
| | - Shuji Mizumoto
- Laboratory of Proteoglycan Signaling and Therapeutics, Hokkaido University Graduate School of Life Science, Frontier Research Center for Post-genomic Science and Technology, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Hokkaido University Graduate School of Life Science, Frontier Research Center for Post-genomic Science and Technology, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Ralph D Sanderson
- Department of Pathology, Center for Metabolic Bone Disease, University of Alabama at Birmingham, Birmingham, Alabama 35294; University of Alabama at Birmingham Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294.
| |
Collapse
|
28
|
Leiser Y, Abu-El-Naaj I, Sabo E, Akrish S, Ilan N, Ben-Izhak O, Peled M, Vlodavsky I. Prognostic value of heparanase expression and cellular localization in oral cancer. Head Neck 2011; 33:871-7. [PMID: 20859999 PMCID: PMC3010289 DOI: 10.1002/hed.21545] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Metastases formation depends on the ability of tumor cells to invade basement membranes in a process involving enzymes capable of degrading extracellular matrix components. METHODS We examined the expression of heparanase in oral carcinomas and correlated its staining extent, intensity, and cellular localization with patients' outcome. RESULTS Quantitative real-time polymerase chain reaction (PCR) revealed over 4-fold increase in heparanase levels in oral carcinomas compared to adjacent normal tissue. Normal oral epithelium was found negative for heparanase, while all oral carcinomas stained positively for heparanase. Heparanase staining was associated with Ki67 staining, a measure of cell proliferation. Notably, whereas cytoplasmic localization of heparanase was associated with high-grade carcinomas, nuclear localization of the enzyme was found primarily in low-grade, well-differentiated tumors, and in all oral verrucous carcinomas. CONCLUSION Expression level and cellular localization of heparanase could serve as an important diagnostic marker in patients with oral cancer.
Collapse
Affiliation(s)
- Yoav Leiser
- Department of Oral and Maxillofacial Surgery, Rambam Medical Center, P.O.B 9602, Haifa, Israel
| | - Imad Abu-El-Naaj
- Department of Oral and Maxillofacial Surgery, Rambam Medical Center, P.O.B 9602, Haifa, Israel
| | - Edmond Sabo
- Department of Pathology, Rambam Medical Center, P.O.B 9602, Haifa, Israel
| | - Sharon Akrish
- Department of Oral and Maxillofacial Surgery, Rambam Medical Center, P.O.B 9602, Haifa, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - O Ben-Izhak
- Department of Pathology, Rambam Medical Center, P.O.B 9602, Haifa, Israel
| | - Micha Peled
- Department of Oral and Maxillofacial Surgery, Rambam Medical Center, P.O.B 9602, Haifa, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| |
Collapse
|
29
|
Hudalla GA, Murphy WL. Biomaterials that regulate growth factor activity via bioinspired interactions. ADVANCED FUNCTIONAL MATERIALS 2011; 21:1754-1768. [PMID: 21921999 PMCID: PMC3171147 DOI: 10.1002/adfm.201002468] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Growth factor activity is localized within the natural extracellular matrix (ECM) by specific non-covalent interactions with core ECM biomolecules, such as proteins and proteoglycans. Recently, these interactions have inspired us and others to develop synthetic biomaterials that can non-covalently regulate growth factor activity for tissue engineering applications. For example, biomaterials covalently or non-covalently modified with heparin glycosaminoglycans can augment growth factor release strategies. In addition, recent studies demonstrate that biomaterials modified with heparin-binding peptides can sequester cell-secreted heparin proteoglycans and, in turn, sequester growth factors and regulate stem cell behavior. Another set of studies show that modular versions of growth factor molecules can be designed to interact with specific components of natural and synthetic ECMs, including collagen and hydroxyapatite. In addition, layer-by-layer assemblies of GAGs and other natural polyelectrolytes retain growth factors at a cell-material interface via specific non-covalent interactions. This review will detail the various bioinspired strategies being used to non-covalently localize growth factor activity within biomaterials, and will highlight in vivo examples of the efficacy of these materials to promote tissue regeneration.
Collapse
Affiliation(s)
- Gregory A. Hudalla
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave. Madison, WI 53705 (USA)
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave. Madison, WI 53705 (USA)
- Department of Pharmacology, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave. Madison, WI 53705 (USA)
- Department of Orthopedics and Rehabilitation, University of Wisconsin, 5009 Wisconsin Institutes of Medical Research, 1111 Highland Ave. Madison, WI 53705 (USA)
| |
Collapse
|
30
|
Zong F, Fthenou E, Wolmer N, Hollósi P, Kovalszky I, Szilák L, Mogler C, Nilsonne G, Tzanakakis G, Dobra K. Syndecan-1 and FGF-2, but not FGF receptor-1, share a common transport route and co-localize with heparanase in the nuclei of mesenchymal tumor cells. PLoS One 2009; 4:e7346. [PMID: 19802384 PMCID: PMC2750749 DOI: 10.1371/journal.pone.0007346] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 09/07/2009] [Indexed: 11/18/2022] Open
Abstract
Syndecan-1 forms complexes with growth factors and their cognate receptors in the cell membrane. We have previously reported a tubulin-mediated translocation of syndecan-1 to the nucleus. The transport route and functional significance of nuclear syndecan-1 is still incompletely understood. Here we investigate the sub-cellular distribution of syndecan-1, FGF-2, FGFR-1 and heparanase in malignant mesenchymal tumor cells, and explore the possibility of their coordinated translocation to the nucleus. To elucidate a structural requirement for this nuclear transport, we have transfected cells with a syndecan-1/EGFP construct or with a short truncated version containing only the tubulin binding RMKKK sequence. The sub-cellular distribution of the EGFP fusion proteins was monitored by fluorescence microscopy. Our data indicate that syndecan-1, FGF-2 and heparanase co-localize in the nucleus, whereas FGFR-1 is enriched mainly in the perinuclear area. Overexpression of syndecan-1 results in increased nuclear accumulation of FGF-2, demonstrating the functional importance of syndecan-1 for this nuclear transport. Interestingly, exogenously added FGF-2 does not follow the route taken by endogenous FGF-2. Furthermore, we prove that the RMKKK sequence of syndecan-1 is necessary and sufficient for nuclear translocation, acting as a nuclear localization signal, and the Arginine residue is vital for this localization. We conclude that syndecan-1 and FGF-2, but not FGFR-1 share a common transport route and co-localize with heparanase in the nucleus, and this transport is mediated by the RMKKK motif in syndecan-1. Our study opens a new perspective in the proteoglycan field and provides more evidence of nuclear interactions of syndecan-1.
Collapse
Affiliation(s)
- Fang Zong
- Department of Laboratory Medicine, Division of Pathology, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Eleni Fthenou
- Department of Histology, Division of Morphology, School of Medicine, University of Crete, Heraklion, Greece
| | - Nina Wolmer
- Department of Laboratory Medicine, Division of Pathology, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Péter Hollósi
- 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University Budapest, Hungary
| | - Ilona Kovalszky
- 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University Budapest, Hungary
| | - László Szilák
- 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University Budapest, Hungary
| | - Carolin Mogler
- Department of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Gustav Nilsonne
- Department of Laboratory Medicine, Division of Pathology, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Georgios Tzanakakis
- Department of Histology, Division of Morphology, School of Medicine, University of Crete, Heraklion, Greece
| | - Katalin Dobra
- Department of Laboratory Medicine, Division of Pathology, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Chovanec M, Smetana K, Purkrábková T, Holíková Z, Dvoránková B, André S, Pytlík R, Hozák P, Plzák J, Sedo A, Vacík J, Gabius H. Detection of cell type and marker specificity of nuclear binding sites for anionic carbohydrate ligands. Biotech Histochem 2009; 79:139-50. [PMID: 15621886 DOI: 10.1080/10520290400011554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The emerging functionality of glycosaminoglycan chains engenders interest in localizing specific binding sites using cytochemical tools. We investigated nuclear binding of labeled heparin, heparan sulfate, a sulfated fucan, chondroitin sulfate, and hyaluronic acid in epidermal keratinocytes, bone marrow stromal cells, 3T3 fibroblasts and glioma cells using chemically prepared biotinylated probes. Binding of the markers was cell-type specific and influenced by extraction of histones, but was not markedly affected by degree of proliferation, differentiation or malignancy. Cell uptake of labeled heparin and other selected probes and their transport into the nucleus also was monitored. Differences between keratinocytes and bone marrow stromal cells were found. Preincubation of permeabilized bone marrow stromal cells with label-free heparin reduced the binding of carrier-immobilized hydrocortisone to its nuclear receptors. Thus, these tools enabled binding sites for glycosaminoglycans to be monitored in routine assays.
Collapse
Affiliation(s)
- M Chovanec
- Institute of Anatomy, Charles University, 1st Faculty of Medicine, U nemocnice 3, 128 000 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen L, Sanderson RD. Heparanase regulates levels of syndecan-1 in the nucleus. PLoS One 2009; 4:e4947. [PMID: 19305494 PMCID: PMC2654539 DOI: 10.1371/journal.pone.0004947] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/26/2009] [Indexed: 11/24/2022] Open
Abstract
Syndecan-1 is a transmembrane heparan sulfate-bearing proteoglycan known to regulate multiple biological functions at the cell surface and within the extracellular matrix. Its functional activity can be modulated by heparanase, an enzyme that cleaves heparan sulfate chains and whose expression has been associated with an aggressive phenotype in many cancers. In addition to remodeling syndecan-1 by cleaving its heparan sulfate chains, heparanase influences syndecan-1 location by upregulating expression of enzymes that accelerate its shedding from the cell surface. In the present study we discovered that heparanase also alters the level of nuclear syndecan-1. Upon upregulation of heparanase expression or following addition of recombinant heparanase to myeloma cells, the nuclear localization of syndecan-1 drops dramatically as revealed by confocal microscopy, western blotting and quantification by ELISA. This effect requires enzymatically active heparanase because cells expressing high levels of mutated, enzymatically inactive heparanase, failed to diminish syndecan-1 levels in the nucleus. Although heparan sulfate function within the nucleus is not well understood, there is emerging evidence that it may act to repress transcriptional activity. The resulting changes in gene expression facilitated by the loss of nuclear syndecan-1 could explain how heparanase enhances expression of MMP-9, VEGF, tissue factor and perhaps other effectors that condition the tumor microenvironment to promote an aggressive cancer phenotype.
Collapse
Affiliation(s)
- Ligong Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Metabolic Bone Disease and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
33
|
Buczek-Thomas JA, Hsia E, Rich CB, Foster JA, Nugent MA. Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 2008; 105:108-20. [PMID: 18459114 PMCID: PMC2596351 DOI: 10.1002/jcb.21803] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone acetyltransferases (HATs) are a class of enzymes that participate in modulating chromatin structure and gene expression. Altered HAT activity has been implicated in a number of diseases, yet little is known about the regulation of HATs. In this study, we report that glycosaminoglycans (GAGs) are potent inhibitors of p300 and pCAF HAT activities in vitro, with heparin and heparan sulfate proteoglycans (HSPGs) being the most potent inhibitors. The mechanism of inhibition by heparin was investigated. The ability of heparin to inhibit HAT activity was in part dependent upon its size and structure, as small heparin-derived oligosaccharides (>8 sugars) and N-desulfated or O-desulfated heparin showed reduced inhibitory activity. Heparin was shown to bind to pCAF; and enzyme assays indicated that heparin shows the characteristics of a competitive-like inhibitor causing an approximately 50-fold increase in the apparent Km of pCAF for histone H4. HSPGs isolated from corneal and pulmonary fibroblasts inhibited HAT activity with similar effectiveness as heparin. As evidence that endogenous GAGs might be involved in modulating histone acetylation, the direct addition of heparin to pulmonary fibroblasts resulted in an approximately 50% reduction of histone H3 acetylation after 6 h of treatment. In addition, Chinese hamster ovary cells deficient in GAG synthesis showed increased levels of acetylated histone H3 compared to wild-type parent cells. GAGs represent a new class of HAT inhibitors that might participate in modulating cell function by regulating histone acetylation.
Collapse
Affiliation(s)
- Jo Ann Buczek-Thomas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Edward Hsia
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Celeste B. Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Judith A. Foster
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Matthew A. Nugent
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118
- Department of Biomedical Engineering, Boston University, Boston, MA 02118
| |
Collapse
|
34
|
Cohen E, Doweck I, Naroditsky I, Ben-Izhak O, Kremer R, Best LA, Vlodavsky I, Ilan N. Heparanase is overexpressed in lung cancer and correlates inversely with patient survival. Cancer 2008; 113:1004-11. [PMID: 18618498 PMCID: PMC2625296 DOI: 10.1002/cncr.23680] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Heparanase is an endo-beta-D-glucuronidase that is capable of cleaving heparan sulfate (HS) side chains at a limited number of sites, yielding HS fragments of still appreciable size (approximately 5-7 kDa). Heparanase activity has been detected frequently in several cell types and tissues. Heparanase activity correlates with the metastatic potential of tumor-derived cells, a correlation that has been attributed to enhanced cell dissemination as a consequence of HS cleavage and remodeling of the extracellular matrix barrier. METHODS In this study, the authors examined heparanase expression in 114 patients with lung cancer by means of immunohistochemistry and correlated clinical-pathologic data with heparanase immunostaining and cellular localization. RESULTS Heparanase was overexpressed in 75% of the study patients. Heparanase expression was correlated with lung cancer lymph node status and metastasis classification (P = .04 and P = .01, respectively) and was correlated inversely with patient survival (P = .007). It is noteworthy that this adverse effect depended largely on the cellular localization of heparanase. Thus, whereas cytoplasmic staining of heparanase is associated with a poor prognosis, nuclear heparanase predicts a favorable outcome for patients with lung cancer. CONCLUSIONS The current findings suggest that heparanase expression and cellular localization are decisive for lung cancer patients' prognosis, most likely because of heparanase-mediated tumor cell dissemination by blood and lymph vessels.
Collapse
Affiliation(s)
- Esti Cohen
- Cancer and Vascular Biology Research Center, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sabbieti MG, Agas D, Materazzi S, Capacchietti M, Materazzi G, Hurley MM, Menghi G, Marchetti L. Prostaglandin F2alpha involves heparan sulphate sugar chains and FGFRs to modulate osteoblast growth and differentiation. J Cell Physiol 2008; 217:48-59. [PMID: 18459126 DOI: 10.1002/jcp.21471] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present investigation extends our previous studies on PGF2alpha-mediated signalling in osteoblast metabolism. In particular, the role of PGF2alpha as modulator of heparan sulphate proteoglycans (HSPGs), fibroblast growth factor 2 (FGF-2) and fibroblast growth factor receptors (FGFRs) was evaluated. We hereby reported the novel observation that PGF2alpha was able to promote the formation of HSPGs/FGF-2/FGFRs complexes. Moreover, our data suggested that PGF2alpha could induce new synthesis of heparan sulphate (HS) chains on osteoblasts by a mechanism involving a modulation of MAPK signalling and that HS is required for the regulation of FGF-2 induced by PGF2alpha. Indeed, a proteolytic cleavage of HSPGs with heparinase III (Hep III) prior to PGF2alpha administration down-regulated the basal expression of phospho-p44/42, likely inhibiting FGFRs tyrosine kinase activity. Interestingly, MAPK signalling influenced syntheses and subcellular localization of FGF-2, its specific receptor and HS. In addition, the proteolytic cleavage by Hep III and the MAPK kinase inhibition by PD-98059 also revealed that PGF2alpha induced cell proliferation is dependent on HSPGs and FGF-2 specific receptor, respectively. Of further relevance of this study, we demonstrated, by using a specific siRNA for FGFR1, that PGF2alpha modulates Runx2 expression by FGFR1 and HS.
Collapse
Affiliation(s)
- Maria Giovanna Sabbieti
- Department of Comparative Morphology and Biochemistry, University of Camerino, Camerino (MC), Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N, Vlodavsky I. Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia 2007; 8:1055-61. [PMID: 17217623 PMCID: PMC1783722 DOI: 10.1593/neo.06577] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heparanase is an endoglycosidase that specifically cleaves heparan sulfate (HS) side chains of HS proteoglycans, the major proteoglycans in the extracellular matrix and cell surfaces. Traditionally, heparanase activity was implicated in cellular invasion associated with angiogenesis, inflammation, and cancer metastasis. More recently, heparanase upregulation was documented in an increasing number of primary human tumors, correlating with reduced postoperative survival rate and enhanced tumor angiogenesis. In the present study, we examined the expression of heparanase in squamous cell carcinoma of the head and neck by means of immunostaining, and we correlated expression levels with patient outcome. The intensity and extent of heparanase staining correlated with tumor stage (P = .049 and P = .027, respectively), and the extent of staining further correlated with tumor grade (P = .047). Moreover, heparanase expression inversely correlated with patient status at the end of the study (P = .012). Notably, heparanase localization was found to be an important parameter for patient status. Thus, 63% of patients with nuclear staining, compared to 19% of patients with cytoplasmic staining (P = .0043), were alive, indicating that nuclear localization of the enzyme predicts a favorable outcome.
Collapse
Affiliation(s)
- Ilana Doweck
- Department of Otolaryngology, Head and Neck Surgery, Carmel Medical Center, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
37
|
Monis GF, Schultz C, Ren R, Eberhard J, Costello C, Connors L, Skinner M, Trinkaus-Randall V. Role of endocytic inhibitory drugs on internalization of amyloidogenic light chains by cardiac fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1939-52. [PMID: 17148659 PMCID: PMC1762491 DOI: 10.2353/ajpath.2006.060183] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/28/2006] [Indexed: 12/17/2022]
Abstract
Amyloidosis is a disease of protein misfolding that ultimately impairs organ function. Previously, we demonstrated that amyloidogenic light chains (kappa1, lambda6, and lambda3 subtypes), internalized by cardiac fibroblasts, enhanced sulfation of secreted glycosaminoglycans. In this study, we investigated the internalization and cellular trafficking of urinary immunoglobulin light chains into cardiac fibroblasts. We demonstrate that these light chains have the ability to form annular rings in solution. Internalization was assessed by incubating cells in the presence of light chain conjugated to Oregon Green 488 followed by monitoring with live cell confocal imaging. The rate of light chain internalization was reduced by treatment with methyl-beta-cyclodextrin but not filipin. Amyloid light chain did co-localize with dextran-Texas Red. Once internalized, the light chains were detected in lysosomes and then secreted into the extracellular medium. The light chain detected in the cell lysate and medium possessed a lower hydrophobic species. Nocodazole, a microtubule inhibitor, did not disperse aggregates. In addition, internalization and retention of the light chain proteins was altered in the presence of the proteasomal inhibitor MG132. These results indicate that the cell internalizes light chain by a fluid phase endocytosis, which is then modified and ultimately compromises the cell.
Collapse
Affiliation(s)
- Grace Fortes Monis
- Department of Pathology, Gerry Amyloid Research Laboratory, Boston University School of Medicine, 80 E. Concord St. L904, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kobayashi M, Naomoto Y, Nobuhisa T, Okawa T, Takaoka M, Shirakawa Y, Yamatsuji T, Matsuoka J, Mizushima T, Matsuura H, Nakajima M, Nakagawa H, Rustgi A, Tanaka N. Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differentiation 2006; 74:235-43. [PMID: 16759289 DOI: 10.1111/j.1432-0436.2006.00072.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Heparanase is an endo-beta-glucuronidase that specifically cleaves heparan sulfate (HS) chains. Heparanase is involved in the process of metastasis and angiogenesis through the degradation of HS chains of the extracellular matrix and cell surface. Recently, we demonstrated that heparanase was localized in the cell nucleus of normal esophageal epithelium and esophageal cancer, and that its expression was correlated with cell differentiation. However, the nuclear function of heparanase remains unknown. To elucidate the role of heparanase in esophageal epithelial differentiation, primary human esophageal cells were grown in monolayer as well as organotypic cultures, and cell differentiation was induced. Expression of heparanase, HS, involucrin, and p27 was determined by immunostaining and Western blotting. SF4, a novel pharmacological inhibitor, was used to specifically inhibit heparanase activity. Upon esophageal cell differentiation, heparanase was translocated from the cytoplasm to the nucleus. Such translocation of heparanase appeared to be associated with the degradation of HS chains in the nucleus and changes in the expression of keratinocyte differentiation markers such as p27 and involucrin, whose induction was inhibited by SF4. Furthermore, these in vitro observations agreed with the expression pattern of heparanase, HS, involucrin, cytokeratin 13, and p27 in normal esophageal epithelium. Nuclear translocation of heparanase and its catalytic cleavage of HS may play a critical role in the differentiation of esophageal epithelial cells. Our study provides a novel insight into the role of heparanase in an essential differentiation process.
Collapse
Affiliation(s)
- Masahiko Kobayashi
- Department of Gastroenterological Surgery Transplant, and Surgical Oncology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cartier R, Reszka R. Biological and Cellular Barriers Limiting the Clinical Application of Nonviral Gene Delivery Systems**This paper was first published in Gene Therapy, 2002 February, 9(3), 157–167. Gene Ther 2006. [DOI: 10.1016/b978-044452806-3/50006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Abstract
Structural remodeling plays a major role in the progression of various heart diseases to congestive heart failure (CHF). Major contributors to this remodeling process in the heart include alterations in myocyte shape, myocyte number, and extracellular matrix. However, it is unclear as to which of these changes is most critical in the development of CHF, and this may vary by etiology. Myocyte shape alterations largely underlie the increase in chamber diameter/wall thickness characteristic of CHF. This review mainly focuses on the role of myocyte shape in ventricular remodeling. Several signaling molecules have been implicated in this process. As we learn more about the components of myocardial remodeling, new strategies to combat the progression of heart disease should arise.
Collapse
Affiliation(s)
- Faqian Li
- University of South Dakota, 1400 W. 22nd Street, Sioux Falls, SD 57105, USA
| | | | | | | |
Collapse
|
41
|
Trinkaus-Randall V, Walsh MT, Steeves S, Monis G, Connors LH, Skinner M. Cellular response of cardiac fibroblasts to amyloidogenic light chains. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:197-208. [PMID: 15632012 PMCID: PMC1602293 DOI: 10.1016/s0002-9440(10)62244-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Amyloidoses are a group of disorders characterized by abnormal folding of proteins that impair organ function. We investigated the cellular response of primary cardiac fibroblasts to amyloidogenic light chains and determined the corresponding change in proteoglycan expression and localization. The cellular response to 11 urinary immunoglobulin light chains of kappa1, lambda6, and lambda 3 subtypes was evaluated. The localization of the light chains was monitored by conjugating them to Oregon Green 488 and performing live cell confocal microscopy. Sulfation of the proteoglycans was determined after elution over Q1-columns with a single-step salt gradient (1.5 mol/L NaCl) via dimethylmethylene blue. Light chains were detected inside cells within 4 hours and demonstrated perinuclear localization. Over 80% of the cells showed intracellular localization of the amyloid light chains. The light chains induced sulfation of the secreted glycosaminoglycans, but the cell fraction possessed only minimal sulfation. Furthermore, the light chains caused a translocation of heparan sulfate proteoglycan to the nucleus. The conformation and thermal stability of light chains was altered when they were incubated in the presence of heparan sulfate and destabilization of the amyloid light chains was detected. These studies indicate that internalization of the light chains mediates the expression and localization of heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, L904, 80 E. Concord Street, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Ohkawa T, Naomoto Y, Takaoka M, Nobuhisa T, Noma K, Motoki T, Murata T, Uetsuka H, Kobayashi M, Shirakawa Y, Yamatsuji T, Matsubara N, Matsuoka J, Haisa M, Gunduz M, Tsujigiwa H, Nagatsuka H, Hosokawa M, Nakajima M, Tanaka N. Localization of heparanase in esophageal cancer cells: respective roles in prognosis and differentiation. J Transl Med 2004; 84:1289-304. [PMID: 15286661 DOI: 10.1038/labinvest.3700159] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In this study, we examined the distribution of heparanase protein in 75 esophageal squamous cell carcinomas by immunohistochemistry and analyzed the relationship between heparanase expression and clinicopathological characteristics. In situ hybridization showed that the mRNA expression pattern of heparanase was similar to that of the protein, suggesting that increased expression of the heparanase protein at the invasive front was caused by an increase of heparanase mRNA in tumor cells. Heparanase expression correlated significantly with depth of tumor invasion, lymph node metastasis, tumor node metastasis (TNM) stage and lymphatic invasion. Overexpression of heparanase in esophageal cancers was also associated with poor survival. In addition to its localization in the cytoplasm and cell membrane, heparanase was also identified in the nuclei of normal epithelial and tumor cells by immunohistochemistry. Furthermore, nuclear heparanase was detected in nuclear extract of cancer cell lines by Western blot and immunohistochemistry. Examination of the role of nuclear heparanase in cell proliferation and differentiation by double immunostaining for proliferating cell nuclear antigen (PCNA) and cytokeratin 10 (CK10) showed significant relationship between nuclear heparanase expression and differentiation (heparanase vs CK10), but not for proliferative state of esophageal cancer cells (heparanase vs PCNA). Our results suggest that cytoplasmic heparanase appears to be a useful prognostic marker in patients with esophageal cancer and that nuclear heparanase protein may play a role in differentiation. Inhibition of heparanase activity may be effective in the control of esophageal tumor invasion and metastasis.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/secondary
- Cell Differentiation
- Cell Division
- Cell Line, Tumor/enzymology
- Cell Line, Tumor/pathology
- Cell Transformation, Neoplastic
- Esophageal Neoplasms/enzymology
- Esophageal Neoplasms/mortality
- Esophageal Neoplasms/pathology
- Female
- Fluorescent Antibody Technique, Indirect
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Humans
- Immunoenzyme Techniques
- In Situ Hybridization
- Keratins/metabolism
- Male
- Middle Aged
- Prognosis
- Proliferating Cell Nuclear Antigen/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Survival Rate
Collapse
Affiliation(s)
- Takaomi Ohkawa
- Department of Gastroenterological Surgery, Transplant, and Surgical Oncology, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xu Q, Li S, Zhao Y, Maures TJ, Yin P, Duan C. Evidence That IGF Binding Protein-5 Functions as a Ligand-Independent Transcriptional Regulator in Vascular Smooth Muscle Cells. Circ Res 2004; 94:E46-54. [PMID: 15001525 DOI: 10.1161/01.res.0000124761.62846.df] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor binding protein (IGFBP)-5 is a conserved protein synthesized and secreted by vascular smooth muscle cells (VSMCs). IGFBP-5 binds to extracellular IGFs and modulates IGF actions in regulating VSMC proliferation, migration, and survival. IGFBP-5 also stimulates VSMC migration through an IGF-independent mechanism, but the molecular basis underlying this ligand-independent action is unknown. In this study, we show that endogenous IGFBP-5 or transiently expressed IGFBP-5-EGFP, but not IGFBP-4-EGFP, is localized in the nuclei of VSMCs. Using a series of IGFBP-4/5 chimeras and IGFBP-5 points mutants, we demonstrated that the IGFBP-5 C-domain is necessary and sufficient for its nuclear localization, and residues K206, K208, K217, and K218 are particularly critical. Intriguingly, inhibition of protein secretion abolishes IGFBP-5 nuclear localization, suggesting the nuclear IGFBP-5 is derived from the secreted protein. When added exogenously,
125
I- or Cy3-labeled IGFBP-5 is capable of cellular entry and nuclear translocation. To identify potential transcriptional factor(s) that interact with IGFBP-5, a human aorta cDNA library was screened by a yeast two-hybrid screening strategy. Although this screen identified many extracellular and cytosolic proteins that are known to interact with IGFBP-5, no known transcription factors were found. Further motif analysis revealed that the IGFBP-5 N-domain contains a putative transactivation domain. When fused to GAL-4 DNA dinging domain and tested, the IGFBP-5 N-domain has strong transactivation activity. Mutation of the IGF binding domain or treatment of cells with IGF-I has little effect on transactivation activity. These results suggest that IGFBP-5 is localized in VSMC nucleus and possesses transcription-regulatory activity that is IGF independent. The full text of this article is available online at http://circres.ahajournals.org.
Collapse
Affiliation(s)
- Qijin Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | | | | | | | | | |
Collapse
|
44
|
Goerges AL, Nugent MA. pH Regulates Vascular Endothelial Growth Factor Binding to Fibronectin. J Biol Chem 2004; 279:2307-15. [PMID: 14570917 DOI: 10.1074/jbc.m308482200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia is one of the major signals that induces angiogenesis. Hypoxic conditions lead to reduced extracellular pH. Vascular endothelial growth factor (VEGF) binding to endothelial cells and the extracellular matrix (ECM) increases at acidic pH (7.0-5.5). These interactions are dependent on heparan sulfate proteoglycans, but do not depend on the presence of VEGF receptors. Here we report that VEGF(165) and VEGF(121) binding to fibronectin also increased at acidic pH, and that these interactions are further enhanced by the addition of heparin. These results reveal that the accepted non-heparin-binding isoform of VEGF (VEGF(121)) is converted into a heparin-binding growth factor under acidic conditions. Interestingly, we did not observe increased binding of VEGF to collagen type I at acidic pH in the presence or absence of heparin, indicating that this effect is not a general property of all heparin-binding ECM proteins. The high level of VEGF binding at acidic pH was also rapidly reversed as demonstrated by increased rates of VEGF dissociation from fibronectin and fibronectin-heparin matrices as the pH was raised. The VEGF released from fibronectin retained its ability to stimulate the activation of extracellular-regulated kinase 1/2 in endothelial cells. These results suggest that VEGF may be stored in the extracellular matrix via interactions with fibronectin and heparan sulfate in tissues that are in need of vascularization so that it can aid in directing the dynamic process of growth and migration of new blood vessels.
Collapse
Affiliation(s)
- Adrienne L Goerges
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
45
|
Yi XP, Wang X, Gerdes AM, Li F. Subcellular redistribution of focal adhesion kinase and its related nonkinase in hypertrophic myocardium. Hypertension 2003; 41:1317-23. [PMID: 12732587 DOI: 10.1161/01.hyp.0000072772.74183.5f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focal adhesion kinase (FAK) and focal adhesion kinase-related nonkinase (FRNK) are likely involved in mechanical signaling during hypertension. We investigated expression, subcellular distribution, and phosphorylation of FAK, as well as FRNK in left ventricles of spontaneously hypertensive heart failure rats. Compared with normotensive controls, FAK and FRNK increased in left ventricles of hypertensive rats. Increased FAK and FRNK were mainly present in membrane cytoskeleton and nuclear fractions. Confocal microscopy demonstrated that FAK and FRNK translocated to nuclei and intercalated disks in cardiac myocytes from hypertensive rats. Serine and tyrosine phosphorylation of FAK increased dramatically in hypertensive rats. FAK phosphorylated at tyrosine 397 was present in membranes and intercalated disks, but not in nuclei. FAK was also phosphorylated on serine 722 but not on serine 910. In contrast, FRNK was phosphorylated on serine 217, the equivalent site of FAK serine 910, but not serine on 30, the homologous site of FAK serine 722. Serine phosphorylated FAK and FRNK accumulated in membranes and nuclei but not in intercalated disks. Nuclear translocation of FAK and FRNK may play important roles in regulating mechanical signal transduction in cardiac myocytes.
Collapse
Affiliation(s)
- Xian Ping Yi
- South Dakota Health Research Foundation-Cardiovascular Research Institute, 1400 W 22nd St, Sioux Falls, SD 57105, USA
| | | | | | | |
Collapse
|
46
|
Hsia E, Richardson TP, Nugent MA. Nuclear localization of basic fibroblast growth factor is mediated by heparan sulfate proteoglycans through protein kinase C signaling. J Cell Biochem 2003; 88:1214-25. [PMID: 12647303 DOI: 10.1002/jcb.10470] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Understanding the process of wound healing will provide valuable insight for the development of new strategies to treat diseases associated with improper regeneration, such as blindness induced by corneal scarring. Heparan sulfate proteoglycans (HSPG) are not normally expressed in the corneal stroma, but their presence at sites of injury suggests their involvement in the wound healing response. Primary cultured corneal stromal fibroblasts constitutively express HSPG and represent an injured phenotype. Recently, nuclear localization of HSPG was shown to increase in corneal stromal fibroblasts plated on fibronectin (FN), an extracellular matrix protein whose appearance in the corneal stroma correlates with injury. One possible role for the nuclear localization of HSPG is to function as a shuttle for the nuclear transport of heparin-binding growth factors, such as basic fibroblast growth factor (FGF-2). Once in the nucleus, these growth factors might directly modulate cellular activities. To investigate this hypothesis, cells were treated with (125)I-labelled FGF-2 under various conditions and fractionated. Our results show that nuclear localization of FGF-2 was increased in cells plated on FN compared to those on collagen type I (CO). Interestingly, FGF-2-stimulated proliferation was increased in cells plated on FN compared to CO and this effect was absent in the presence of heparinase III. Furthermore, pre-treatment with heparinase III decreased nuclear FGF-2, and CHO cells defective in the ability to properly synthesize heparan sulfate chains showed reduced nuclear FGF-2 indicating that the heparan sulfate chains of HSPG are critical for this process. HSPG signaling, particularly through the cytoplasmic tails of syndecans, was investigated as a potential mechanism for the nuclear localization of FGF-2. Treatment with phorbol 12-myristate-13-acetate (PMA), under conditions that caused downregulation of protein kinase Calpha (PKCalpha), decreased nuclear FGF-2. Using pharmacological inhibitors of specific PKC isozymes, we elucidated a potential mode of regulation whereby PKCalpha mediates the nuclear localization of FGF-2 and PKCdelta inhibits it. Our studies suggest a novel mechanism in which FGF-2 translocates to the nucleus in response to injury.
Collapse
Affiliation(s)
- Edward Hsia
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
47
|
Ookawara T, Eguchi H, Nishimura M, Kizaki T, Saitoh D, Ohno H, Suzuki K. Effects of oxidative stress on the nuclear translocation of extracellular superoxide dismutase. Biochem Biophys Res Commun 2003; 303:914-9. [PMID: 12670498 DOI: 10.1016/s0006-291x(03)00441-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of oxidative stress on the cellular uptake and nuclear translocation of extracellular superoxide dismutase (EC-SOD) was investigated. EC-SOD was incorporated from conditioned medium of stable EC-SOD expressing CHO-EK cells into 3T3-L1 cells within 15 min. The uptake was clearly inhibited by the addition of heparin at a concentration of 0.4 microg/ml. Treatment of the 3T3-L1 cells with H(2)O(2) (5 mM for 5 min), followed by incubation with CHO-EK medium downregulated the uptake of EC-SOD. Nuclear translocation of the incorporated EC-SOD was clearly enhanced by H(2)O(2) treatment following incubation with the CHO-EK medium. EC-SOD is the only anti-oxidant enzyme which is known at this time to be actively transported into nuclei. The results obtained here suggest that the upregulation of the nuclear translocation of EC-SOD by oxidative stress might play a role in the mechanism by which the nucleus is protected against oxidative damage of genomic DNA.
Collapse
Affiliation(s)
- Tomomi Ookawara
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Cheng F, Mani K, van den Born J, Ding K, Belting M, Fransson LA. Nitric oxide-dependent processing of heparan sulfate in recycling S-nitrosylated glypican-1 takes place in caveolin-1-containing endosomes. J Biol Chem 2002; 277:44431-9. [PMID: 12226079 DOI: 10.1074/jbc.m205241200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated intracellular degradation of the heparan sulfate side chains in recycling glypican-1 by heparanase and by deaminative cleavage at N-unsubstituted glucosamine with nitric oxide derived from intrinsic nitrosothiols (see Ding, K., Mani, K., Cheng, F., Belting, M. and Fransson, L.-A. (2002) J. Biol. Chem. 277, 33353-33360). To determine where and in what order events take place, we have visualized, by using confocal laser-scanning immunofluorescence microscopy, glypican-1 variants in unperturbed cells or arrested at various stages of processing. In unperturbed proliferating cells, glypican-1 was partly S-nitrosylated. Intracellular glypican-1 was enriched in endosomes, colocalized significantly with GM-1 ganglioside, caveolin-1, and Rab9-positive endosomes, and carried side chains rich in N-unsubstituted glucosamine residues. However, such residues were scarce in cell surface glypican-1. Brefeldin A-arrested glypican-1, which was non-S-nitrosylated and carried side chains rich in N-unsubstituted glucosamines, colocalized extensively with caveolin-1 but not with Rab9. Suramin, which inhibits heparanase, induced the appearance of S-nitrosylated glypican-1 in caveolin-1-rich compartments. Inhibition of deaminative cleavage did not prevent heparanase from generating heparan sulfate oligosaccharides that colocalized strongly with caveolin-1. Growth-quiescent cells displayed extensive NO-dependent deaminative cleavage of heparan sulfate-generating anhydromannose-terminating fragments that were partly associated with acidic vesicles. Proliferating cells generated such fragments during polyamine uptake. We conclude that recycling glypican-1 that is associated with caveolin-1-containing endosomes undergoes sequential N-desulfation/N-deacetylation, heparanase cleavage, S-nitrosylation, NO release, and deaminative cleavage of its side chains in conjunction with polyamine uptake.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Cell and Molecular Biology, Lund University, BMC C13, SE-221 84, Lund, Sweden and the Department of Cell Biology, Free University of Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Buczek-Thomas JA, Chu CL, Rich CB, Stone PJ, Foster JA, Nugent MA. Heparan sulfate depletion within pulmonary fibroblasts: implications for elastogenesis and repair. J Cell Physiol 2002; 192:294-303. [PMID: 12124775 DOI: 10.1002/jcp.10135] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigated the role of sulfated proteoglycans in regulating extracellular matrix (ECM) deposition in pulmonary fibroblast cultures. Fibroblast cultures were subject to pharmacologic and enzymatic interventions to modify sulfated proteoglycan levels. Native and proteoglycan-depleted fibroblasts were treated with porcine pancreatic elastase at 2-4-day intervals and the elastase-mediated release of fibroblast growth factor 2 (FGF-2) and glycosaminoglycans was determined. Elastase treatment released significantly less FGF-2 and glycosaminoglycans (GAG) from PG-depleted fibroblasts with respect to native cells. Equilibrium ligand binding studies indicated that 125I FGF-2 binding at both cell surface receptor and heparan sulfate proteoglycan sites was reduced to different extents based on the method of proteoglycan depletion. Quantitation of elastin protein and message levels indicated that biological sulfation is required for the proper incorporation of tropoelastin into the extracellular matrix. These results suggest that sulfated proteoglycans play a central role in modulating pulmonary fibroblast extracellular matrix composition and are important mediators of elastolytic injury.
Collapse
Affiliation(s)
- Jo Ann Buczek-Thomas
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
50
|
Cartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther 2002; 9:157-67. [PMID: 11859418 DOI: 10.1038/sj.gt.3301635] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of nonviral gene delivery systems to overcome extracellular and intracellular barriers is a critical issue for future clinical applications. In recent years, several efforts were focused on the elucidation of the gene transfer mechanisms and on the development of multicomponent systems in order to improve both targeted gene delivery and transfection efficiency. The transport of the therapeutic DNA from the cytoplasm into the nucleus is an inefficient process and is considered as the major limiting step in nondividing cells. One of the strategies to improve nuclear uptake of DNA is taking advantage of the cellular nuclear import machinery. Synthetic peptides containing a nuclear localization signal (NLS) are bound to the DNA so that the resulting DNA-NLS complex can be recognized as a nuclear import substrate by specific intracellular receptor proteins. In this review, we critically summarize recent studies applying this approach with a particular focus on NLS-sequence specificity. Implications of the observed results are also discussed in regards to future developments of this technology.
Collapse
Affiliation(s)
- R Cartier
- Max-Delbrück Center for Molecular Medicine, Drug Targeting, Berlin, Germany
| | | |
Collapse
|