1
|
Yasin JA, Odat RM, Qtaishat FA, Tamimi MAA, Alsufi MI, Younis OM, Alkuttob LA, Saeed A. The Prognostic Significance of NEDD9 Expression in Human Cancers: A Systematic Review, Meta-Analysis, and Omics Exploration. Technol Cancer Res Treat 2024; 23:15330338241297597. [PMID: 39540210 PMCID: PMC11561999 DOI: 10.1177/15330338241297597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is considered an important factor in the progression of cancer, acting as a modulator of cellular migration, adhesion, and metastatic potential. Its significance as a prognostic factor, however, remains unclear, which necessitated a comprehensive review and meta-analysis. METHODS Our study followed the PRISMA guidelines, analyzing studies from major databases including PubMed, Embase, and Cochrane. Our eligibility criteria included studies evaluating NEDD9 expression in relation to cancer prognosis and outcomes such as overall survival (OS), progression-free survival (PFS), disease-free Survival (DFS), recurrence-free survival (RFS), and cancer-specific survival (CSS). We used random-effects and fixed-effect models for meta-analysis, and we validated our findings by comparative analysis using data from external cohorts like The Cancer Genome Atlas (TCGA). RESULTS The analysis of 27 studies with 3915 patients demonstrated a significant relationship between NEDD9 expression and poor OS as indicated by the pooled meta-analysis outcome across all included cancers (HR: 1.81, 95% CI: 1.38-2.37). A significant effect on PFS/DFS/RFS/CSS was also found (HR: 2.14, 95% CI: 1.42-3.23). Variations in survival across different types of cancer were indicated by subgroup analysis. NEDD9 expression was correlated with various immune cells across cancer types according to immune infiltration analysis. Protein-protein interaction (PPI) analysis indicated significant interactions involving NEDD9, suggesting mechanisms which influence tumor behavior and response to treatment. CONCLUSION Our results suggest that NEDD9 is a significant prognostic marker in several human cancers. As a result of its central role in cancer progression and prognosis, it presents a promising target for therapeutic interventions. Our study highlights the importance of further research into the biology of NEDD9 and its therapeutic potential.
Collapse
Affiliation(s)
- Jehad A. Yasin
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Ramez M. Odat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | | | | | - Anwaar Saeed
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA
| |
Collapse
|
2
|
Tikhomirova M, Topchu I, Mazitova A, Barmin V, Ratner E, Sabirov A, Abramova Z, Deneka AY. NEDD9 Restrains dsDNA Damage Response during Non-Small Cell Lung Cancer (NSCLC) Progression. Cancers (Basel) 2022; 14:2517. [PMID: 35626121 PMCID: PMC9139181 DOI: 10.3390/cancers14102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
DNA damaging modalities are the backbone of treatments for non-small cell lung cancer (NSCLC). Alterations in DNA damage response (DDR) in tumor cells commonly contribute to emerging resistance to platinating agents, other targeted therapies, and radiation. The goal of this study is to identify the previously unreported role of NEDD9 scaffolding protein in controlling DDR processes and sensitivity to DNA damaging therapies. Using a siRNA-mediated approach to deplete NEDD9 in a group of human and murine KRAS/TP53-mutant NSCLC cell lines, coupled with a set of cell viability and clonogenic assays, flow cytometry analysis, and Western blotting, we evaluated the effects of NEDD9 silencing on cellular proliferation, DDR and epithelial-to-mesenchymal transition (EMT) signaling, cell cycle, and sensitivity to cisplatin and UV irradiation. Using publicly available NSCLC datasets (TCGA) and an independent cohort of primary NSCLC tumors, subsequent in silico and immunohistochemical (IHC) analyses were performed to assess relevant changes in NEDD9 RNA and protein expression across different stages of NSCLC. The results of our study demonstrate that NEDD9 depletion is associated with the increased tumorigenic capacity of NSCLC cells. These phenotypes were accompanied by significantly upregulated ATM-CHK2 signaling, shifting towards a more mesenchymal phenotype in NEDD9 depleted cells and elevated sensitivity to UV-irradiation. IHC analyses revealed an association between reduced NEDD9 protein expression and a decrease in overall (OS) and progression-free survival (PFS) of the NSCLC patients. These data, for the first time, identified NEDD9 as a negative regulator of ATM kinase activity and related DDR signaling in numerous KRAS/TP53 mutated NSCLC, with its effects on the regulation of DDR-dependent EMT signaling, sensitivity to DNA damaging modalities in tumor cells, and the survival of the patients.
Collapse
Affiliation(s)
- Mariya Tikhomirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
| | - Iuliia Topchu
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60610, USA
| | - Aleksandra Mazitova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
- Department of Medicine and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vitaly Barmin
- Moscow P.A. Gertsen Oncological Research Institute, 125284 Moscow, Russia;
| | - Ekaterina Ratner
- Republican M.Z.Sigal Clinical Oncology Hospital, 420029 Kazan, Russia; (E.R.); (A.S.)
| | - Alexey Sabirov
- Republican M.Z.Sigal Clinical Oncology Hospital, 420029 Kazan, Russia; (E.R.); (A.S.)
| | - Zinaida Abramova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
| | - Alexander Y. Deneka
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (M.T.); (I.T.); (A.M.); (Z.A.)
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
3
|
Zhang C, Wang T, Wu H, Zhang L, Li K, Wang F, Chen Y, Jin J, Hua D. HEF1 regulates differentiation through the Wnt5a/β-catenin signaling pathway in human gastric cancer. Biochem Biophys Res Commun 2019; 509:201-208. [DOI: 10.1016/j.bbrc.2018.12.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
|
4
|
Rainer J, Meraviglia V, Blankenburg H, Piubelli C, Pramstaller PP, Paolin A, Cogliati E, Pompilio G, Sommariva E, Domingues FS, Rossini A. The arrhythmogenic cardiomyopathy-specific coding and non-coding transcriptome in human cardiac stromal cells. BMC Genomics 2018; 19:491. [PMID: 29940860 PMCID: PMC6019788 DOI: 10.1186/s12864-018-4876-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/18/2018] [Indexed: 01/05/2023] Open
Abstract
Background Arrhythmogenic cardiomyopathy (ACM) is a genetic autosomal disease characterized by abnormal cell-cell adhesion, cardiomyocyte death, progressive fibro-adipose replacement of the myocardium, arrhythmias and sudden death. Several different cell types contribute to the pathogenesis of ACM, including, as recently described, cardiac stromal cells (CStCs). In the present study, we aim to identify ACM-specific expression profiles of human CStCs derived from endomyocardial biopsies of ACM patients and healthy individuals employing TaqMan Low Density Arrays for miRNA expression profiling, and high throughput sequencing for gene expression quantification. Results We identified 3 miRNAs and 272 genes as significantly differentially expressed at a 5% false discovery rate. Both the differentially expressed genes as well as the target genes of the ACM-specific miRNAs were found to be enriched in cell adhesion-related biological processes. Functional similarity and protein interaction-based network analyses performed on the identified deregulated genes, miRNA targets and known ACM-causative genes revealed clusters of highly related genes involved in cell adhesion, extracellular matrix organization, lipid transport and ephrin receptor signaling. Conclusions We determined for the first time the coding and non-coding transcriptome characteristic of ACM cardiac stromal cells, finding evidence for a potential contribution of miRNAs, specifically miR-29b-3p, to ACM pathogenesis or phenotype maintenance. Electronic supplementary material The online version of this article (10.1186/s12864-018-4876-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Rainer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy.
| | - Viviana Meraviglia
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy.
| | - Hagen Blankenburg
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy
| | - Chiara Piubelli
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy
| | - Adolfo Paolin
- Treviso Tissue Bank Foundation, Piazzalo Ospedale 1, 31100, Treviso, Italy
| | - Elisa Cogliati
- Treviso Tissue Bank Foundation, Piazzalo Ospedale 1, 31100, Treviso, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138, Milan, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138, Milan, Italy
| | - Francisco S Domingues
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy
| |
Collapse
|
5
|
Su SP, Flashner-Abramson E, Klein S, Gal M, Lee RS, Wu J, Levitzki A, Daly RJ. Impact of the Anticancer Drug NT157 on Tyrosine Kinase Signaling Networks. Mol Cancer Ther 2018; 17:931-942. [DOI: 10.1158/1535-7163.mct-17-0377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/11/2017] [Accepted: 01/17/2018] [Indexed: 11/16/2022]
|
6
|
NEDD9, an independent good prognostic factor in intermediate-risk acute myeloid leukemia patients. Oncotarget 2017; 8:76003-76014. [PMID: 29100287 PMCID: PMC5652681 DOI: 10.18632/oncotarget.18537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/02/2017] [Indexed: 01/08/2023] Open
Abstract
Intermediate-risk acute myeloid leukemia (IR-AML) is the largest subgroup of AML patients and is highly heterogeneous. Whereas adverse and favourable risk patients have well-established treatment protocols, IR-AML patients have not. It is, therefore, crucial to find novel factors that stratify this subgroup to implement risk-adapted strategies. The CAS (Crk-associated substrate) adaptor protein family regulates cell proliferation, survival, migration and adhesion. Despite its association with metastatic dissemination and prognosis of different solid tumors, the role of these proteins in hematological malignancies has been scarcely evaluated. Nevertheless, previous work has established an important role for the CAS family members NEDD9 or BCAR1 in the migratory and dissemination capacities of myeloid cells. On this basis, we hypothesized that NEDD9 or BCAR1 expression levels could associate with survival in IR-AML patients and become new prognostic markers. To that purpose, we assessed BCAR1 and NEDD9 gene expression in a cohort of 73 adult AML patients validating the results in an independent cohort (n = 206). We have identified NEDD9, but not BCAR1, as a new a marker for longer overall and disease-free survival, and for lower cumulative incidence of relapse. In summary, NEDD9 gene expression is an independent prognostic factor for favourable prognosis in IR-AML patients.
Collapse
|
7
|
Bradbury PM, Turner K, Mitchell C, Griffin KR, Middlemiss S, Lau L, Dagg R, Taran E, Cooper-White J, Fabry B, O’Neill GM. The focal adhesion targeting (FAT) domain of p130 Crk associated substrate (p130Cas) confers mechanosensing function. J Cell Sci 2017; 130:1263-1273. [DOI: 10.1242/jcs.192930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/02/2017] [Indexed: 11/20/2022] Open
Abstract
The Cas family of focal adhesion proteins contain a highly conserved C-terminal focal adhesion targeting (FAT) domain. To determine the role of the FAT domain we compared wildtype exogenous NEDD9 with a hybrid construct in which the NEDD9 FAT domain is exchanged for the p130Cas FAT domain. Fluorescence recovery after photobleaching (FRAP) revealed significantly slowed exchange of the fusion protein at focal adhesions and significantly slower 2D migration. No differences were detected in cell stiffness measured with Atomic Force Microscopy (AFM) and cell adhesion forces measured with a magnetic tweezer device. Thus the slowed migration was not due to changes in cell stiffness or adhesion strength. Analysis of cell migration on surfaces of increasing rigidity revealed a striking reduction of cell motility in cells expressing the p130Cas FAT domain. The p130Cas FAT domain induced rigidity-dependent tyrosine phosphorylation of the NEDD9 substrate domain. This in turn reduced post-translational cleavage of NEDD9 which we show inhibits NEDD9-induced migration. Collectively, our data therefore suggest that the p130Cas FAT domain uniquely confers mechanosensing function.
Collapse
Affiliation(s)
- Peta M. Bradbury
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, 2000, New South Wales, Australia
| | - Kylie Turner
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Camilla Mitchell
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Kaitlyn R. Griffin
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Shiloh Middlemiss
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Loretta Lau
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Rebecca Dagg
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
| | - Elena Taran
- Australian National Fabrication Facility- Queensland node, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, Germany
| | - Geraldine M. O’Neill
- Children’s Cancer Research Unit, Kids Research Institute, The Children’s Hospital at Westmead, Westmead, 2145, New South Wales, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, 2000, New South Wales, Australia
| |
Collapse
|
8
|
Knutson DC, Mitzey AM, Talton LE, Clagett-Dame M. Mice null for NEDD9 (HEF1α) display extensive hippocampal dendritic spine loss and cognitive impairment. Brain Res 2015; 1632:141-55. [PMID: 26683084 DOI: 10.1016/j.brainres.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 01/28/2023]
Abstract
NEDD9 (neural precursor cell expressed, developmentally down-regulated 9) is a member of the CAS (Crk-associated substrate) family of scaffolding proteins that regulate cell adhesion and migration. A Nedd9 knock-out/lacZ knock-in mouse (Nedd9(-/)(-)) was developed in order to study Nedd9 expression and function in the nervous system. Herein we show that NEDD9 is expressed in the adult brain and is prominently expressed in the hippocampus. Behavioral testing uncovered functional deficits in Nedd9(-)(/)(-) mice. In the Morris water maze test, Nedd9(-)(/)(-) mice showed deficits in both the ability to learn the task as well as in their ability to recall the platform location. There was no change in the gross morphology of the hippocampus, and stereological analysis of BrdU-labeled newly formed hippocampal cells suggested that this defect is not secondary to altered neurogenesis. However, analysis of the hippocampus revealed extensive loss of dendritic spine density in both the dentate gyrus (DG) and CA1 regions. Spine loss occurred equally across all branch orders and regions of the dendrite. Analysis of spine density in Nedd9(-)(/)(-) mice at 1.5, 6 and 10 months revealed an age-dependent spine loss. This work shows that NEDD9 is required for the maintenance of dendritic spines in the hippocampus, and suggests it could play a role in learning and memory.
Collapse
Affiliation(s)
- D C Knutson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - A M Mitzey
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - L E Talton
- Behavioral Testing Core Facility, University of California, Los Angeles, CA 90095, USA
| | - M Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
9
|
ZHANG SISEN, WU LIHUA. Roles of neural precursor cell expressed, developmentally downregulated 9 in tumor-associated cellular processes (Review). Mol Med Rep 2015; 12:6415-21. [DOI: 10.3892/mmr.2015.4240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/15/2015] [Indexed: 11/05/2022] Open
|
10
|
Abstract
The members of the Cas protein family (p130Cas/BCAR1, Nedd9/HEF1, EFS and CASS4) are scaffold proteins required for the assembly of signal transduction complexes in response to several stimuli, such as growth factors, hormones and extracellular matrix components. Given their ability to integrate and coordinate multiple signalling events, Cas proteins have emerged as crucial players in the control of mammary cell proliferation, survival and differentiation. More importantly, it has been found that alterations of their expression levels result in aberrant signalling cascades, which promote initiation and progression of breast cancer. Based on the increasing data from in vitro, mouse model and clinical studies, in this review we will focus on two Cas proteins, p130Cas/BCAR1 and Nedd9, and their coupled signalling pathways, to examine their role in mammary cell transformation and in the acquirement of invasiveness and drug resistance of breast cancer cells.
Collapse
Affiliation(s)
- Giusy Tornillo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy; European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | | | | |
Collapse
|
11
|
Ibrahim R, Lemoine A, Bertoglio J, Raingeaud J. Human enhancer of filamentation 1-induced colorectal cancer cell migration: Role of serine phosphorylation and interaction with the breast cancer anti-estrogen resistance 3 protein. Int J Biochem Cell Biol 2015; 64:45-57. [DOI: 10.1016/j.biocel.2015.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/11/2015] [Accepted: 03/18/2015] [Indexed: 02/02/2023]
|
12
|
Deneka A, Korobeynikov V, Golemis EA. Embryonal Fyn-associated substrate (EFS) and CASS4: The lesser-known CAS protein family members. Gene 2015; 570:25-35. [PMID: 26119091 DOI: 10.1016/j.gene.2015.06.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 01/15/2023]
Abstract
The CAS (Crk-associated substrate) adaptor protein family consists of four members: CASS1/BCAR1/p130Cas, CASS2/NEDD9/HEF1/Cas-L, CASS3/EFS/Sin and CASS4/HEPL. While CAS proteins lack enzymatic activity, they contain specific recognition and binding sites for assembly of larger signaling complexes that are essential for cell proliferation, survival, migration, and other processes. All family members are intermediates in integrin-dependent signaling pathways mediated at focal adhesions, and associate with FAK and SRC family kinases to activate downstream effectors regulating the actin cytoskeleton. Most studies of CAS proteins to date have been focused on the first two members, BCAR1 and NEDD9, with altered expression of these proteins now appreciated as influencing disease development and prognosis for cancer and other serious pathological conditions. For these family members, additional mechanisms of action have been defined in receptor tyrosine kinase (RTK) signaling, estrogen receptor signaling or cell cycle progression, involving discrete partner proteins such as SHC, NSP proteins, or AURKA. By contrast, EFS and CASS4 have been less studied, although structure-function analyses indicate they conserve many elements with the better-known family members. Intriguingly, a number of recent studies have implicated these proteins in immune system function, and the pathogenesis of developmental disorders, autoimmune disorders including Crohn's disease, Alzheimer's disease, cancer and other diseases. In this review, we summarize the current understanding of EFS and CASS4 protein function in the context of the larger CAS family group.
Collapse
Affiliation(s)
- Alexander Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Kazan Federal University, 420000, Kazan, Russian Federation
| | - Vladislav Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Novosibirsk State University, Medical Department, 630090, Novosibirsk, Russian Federation
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States.
| |
Collapse
|
13
|
Shagisultanova E, Gaponova AV, Gabbasov R, Nicolas E, Golemis EA. Preclinical and clinical studies of the NEDD9 scaffold protein in cancer and other diseases. Gene 2015; 567:1-11. [PMID: 25967390 DOI: 10.1016/j.gene.2015.04.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Abstract
Cancer progression requires a significant reprogramming of cellular signaling to support the essential tumor-specific processes that include hyperproliferation, invasion (for solid tumors) and survival of metastatic colonies. NEDD9 (also known as CasL and HEF1) encodes a multi-domain scaffolding protein that assembles signaling complexes regulating multiple cellular processes relevant to cancer. These include responsiveness to signals emanating from the T and B cell receptors, integrins, chemokine receptors, and receptor tyrosine kinases, as well as cytoplasmic oncogenes such as BCR-ABL and FAK- and SRC-family kinases. Downstream, NEDD9 regulation of partners including CRKL, WAVE, PI3K/AKT, ERK, E-cadherin, Aurora-A (AURKA), HDAC6, and others allow NEDD9 to influence functions as pleiotropic as migration, invasion, survival, ciliary resorption, and mitosis. In this review, we summarize a growing body of preclinical and clinical data that indicate that while NEDD9 is itself non-oncogenic, changes in expression of NEDD9 (most commonly elevation of expression) are common features of tumors, and directly impact tumor aggressiveness, metastasis, and response to at least some targeted agents inhibiting NEDD9-interacting proteins. These data strongly support the relevance of further development of NEDD9 as a biomarker for therapeutic resistance. Finally, we briefly discuss emerging evidence supporting involvement of NEDD9 in additional pathological conditions, including stroke and polycystic kidney disease.
Collapse
Affiliation(s)
- Elena Shagisultanova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Anna V Gaponova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rashid Gabbasov
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Genetics, Kazan Federal University (Volga Region), Kazan, Tatarstan, Russia
| | - Emmanuelle Nicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
14
|
Esmatabadi MJD, Farhangi B, Safari Z, Kazerooni H, Shirzad H, Zolghadr F, Sadeghizadeh M. Dendrosomal Curcumin Inhibits Metastatic Potential of Human SW480 Colon Cancer Cells through Down-regulation of Claudin1, Zeb1 and Hef1-1 Gene Expression. Asian Pac J Cancer Prev 2015; 16:2473-81. [DOI: 10.7314/apjcp.2015.16.6.2473] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Beck TN, Chikwem AJ, Solanki NR, Golemis EA. Bioinformatic approaches to augment study of epithelial-to-mesenchymal transition in lung cancer. Physiol Genomics 2014; 46:699-724. [PMID: 25096367 PMCID: PMC4187119 DOI: 10.1152/physiolgenomics.00062.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/04/2014] [Indexed: 12/22/2022] Open
Abstract
Bioinformatic approaches are intended to provide systems level insight into the complex biological processes that underlie serious diseases such as cancer. In this review we describe current bioinformatic resources, and illustrate how they have been used to study a clinically important example: epithelial-to-mesenchymal transition (EMT) in lung cancer. Lung cancer is the leading cause of cancer-related deaths and is often diagnosed at advanced stages, leading to limited therapeutic success. While EMT is essential during development and wound healing, pathological reactivation of this program by cancer cells contributes to metastasis and drug resistance, both major causes of death from lung cancer. Challenges of studying EMT include its transient nature, its molecular and phenotypic heterogeneity, and the complicated networks of rewired signaling cascades. Given the biology of lung cancer and the role of EMT, it is critical to better align the two in order to advance the impact of precision oncology. This task relies heavily on the application of bioinformatic resources. Besides summarizing recent work in this area, we use four EMT-associated genes, TGF-β (TGFB1), NEDD9/HEF1, β-catenin (CTNNB1) and E-cadherin (CDH1), as exemplars to demonstrate the current capacities and limitations of probing bioinformatic resources to inform hypothesis-driven studies with therapeutic goals.
Collapse
Affiliation(s)
- Tim N Beck
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| | - Adaeze J Chikwem
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Nehal R Solanki
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Program in Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Temple University School of Medicine, Philadelphia, Pennsylvania; and Program in Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|
16
|
Abstract
Mutations inactivating the cilia-localized Pkd1 protein result in autosomal dominant polycystic kidney disease (ADPKD), a serious inherited syndrome affecting ∼ 1 in 500 people, in which accumulation of renal cysts eventually destroys kidney function. Severity of ADPKD varies throughout the population, for reasons thought to involve differences both in intragenic Pkd1 mutations and in modifier alleles. The scaffolding protein NEDD9, commonly dysregulated during cancer progression, interacts with Aurora-A (AURKA) kinase to control ciliary resorption, and with Src and other partners to influence proliferative signaling pathways often activated in ADPKD. We here demonstrate Nedd9 expression is deregulated in human ADPKD and a mouse ADPKD model. Although genetic ablation of Nedd9 does not independently influence cystogenesis, constitutive absence of Nedd9 strongly promotes cyst formation in the tamoxifen-inducible Pkd1fl/fl;Cre/Esr1(+) mouse model of ADPKD. This cystogenic effect is associated with striking morphological defects in the cilia of Pkd1(-/-);Nedd9(-/-) mice, associated with specific loss of ciliary localization of adenylase cyclase III in the doubly mutant genotype. Ciliary phenotypes imply a failure of Aurora-A activation: Compatible with this idea, Pkd1(-/-);Nedd9(-/-) mice had ciliary resorption defects, and treatment of Pkd1(-/-) mice with a clinical Aurora-A kinase inhibitor exacerbated cystogenesis. In addition, activation of the ADPKD-associated signaling effectors Src, Erk, and the mTOR effector S6 was enhanced, and Ca(2+) response to external stimuli was reduced, in Pkd1(-/-);Nedd9(-/-) versus Pkd1(-/-) mice. Together, these results indicated an important modifier action of Nedd9 on ADPKD pathogenesis involving failure to activate Aurora-A.
Collapse
|
17
|
Chang JX, Gao F, Zhao GQ, Zhang GJ. Effects of lentivirus-mediated RNAi knockdown of NEDD9 on human lung adenocarcinoma cells in vitro and in vivo. Oncol Rep 2014; 32:1543-9. [PMID: 25051398 DOI: 10.3892/or.2014.3347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/28/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the biological behavior of lung adenocarcinoma A549 cells following transfection with NEDD9-specific lentiviral particles in vitro and in vivo. NEDD9-specific lentiviral particles were chemically synthesized and transfected into the human lung adenocarcinoma A549 cell line. NEDD9 mRNA and protein levels were determined by fluorescence quantitative RT-PCR and western blotting. Cell proliferation was evaluated using soft agar colony formation assays and flow cytometric analysis. Migration and invasion were evaluated by wound-healing and transwell assays and xenograft animal models. Transfection was successful, and expression levels of NEDD9 mRNA and protein in the lentivirus-NEDD9-siRNA group were downregulated. As indicated by soft agar colony formation assays, the number of clones in the siRNA group were significantly lower than the number of colonies in the blank and negative control groups (P<0.01). In addition, the percentage of cells in the S phase in the siRNA group was significantly lower than the percentages in the blank and negative control groups (P<0.05). Furthermore, as detected by cell migration and invasion assays, values of wound healing were increased and the number of invading cells were decreased in the siRNA group (both P<0.05). We also showed that lentivirus-mediated NEDD9-siRNA decreased the growth potential of subcutaneous A549 xenografts in vivo. These data imply that knockdown of the NEDD9 gene results in suppression of tumor cell proliferation, migration, invasion and cell growth in vitro and in vivo. Lentivirus-mediated NEDD9-siRNA may have potential therapeutic utility for human lung adenocarcinoma.
Collapse
Affiliation(s)
- Jing-Xia Chang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feng Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guo-Qiang Zhao
- Department of Microorganisms and Immunization, Preclinical Medicine of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guo-Jun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
18
|
Nikonova AS, Gaponova AV, Kudinov AE, Golemis EA. CAS proteins in health and disease: an update. IUBMB Life 2014; 66:387-95. [PMID: 24962474 DOI: 10.1002/iub.1282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/07/2014] [Indexed: 12/30/2022]
Abstract
The CAS family of scaffolding proteins has increasingly attracted scrutiny as important for regulation of cancer-associated signaling. BCAR1 (also known as p130Cas), NEDD9 (HEF1, Cas-L), EFS (Sin), and CASS4 (HEPL) are regulated by and mediate cell attachment, growth factor, and chemokine signaling. Altered expression and activity of CAS proteins are now known to promote metastasis and drug resistance in cancer, influence normal development, and contribute to the pathogenesis of heart and pulmonary disease. In this article, we provide an update on recently published studies describing signals regulating and regulated by CAS proteins, and evidence for biological activity of CAS proteins in normal development, cancer, and other pathological conditions.
Collapse
Affiliation(s)
- Anna S Nikonova
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
19
|
Morimoto K, Tanaka T, Nitta Y, Ohnishi K, Kawashima H, Nakatani T. NEDD9 crucially regulates TGF-β-triggered epithelial-mesenchymal transition and cell invasion in prostate cancer cells: involvement in cancer progressiveness. Prostate 2014; 74:901-10. [PMID: 24728978 DOI: 10.1002/pros.22809] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/20/2014] [Indexed: 11/11/2022]
Abstract
BACKGROUND NEDD9 is one of the Crk-associated substrate (Cas) family proteins that mediate downstream signaling processes including cytoskeletal organization, cell-cycle and tumorigenesis. While NEDD9 plays a crucial role in epithelial-mesenchymal transition (EMT), the functional mechanism underlying NEDD9-mediated EMT in prostate cancer (PCa) remains uncertain. METHODS The expression levels of NEDD9 and its downstream molecules in PC-3, LNCaP, and VCaP cells exposed to transforming growth factor-β (TGF-β) were determined by western blotting. The invasion of these cells with ectopic overexpression of NEDD9 or silencing of NEDD9 expression was measured by transwell invasion assay. Human tissue samples comprising 45 PCa specimens and ten specimens of normal prostatic tissue were used for immunohistochemical (IHC) analysis of NEDD9 expression. RESULTS Both NEDD9 and its downstream signaling molecules associated with EMT were strongly induced by TGF-β in PCa cells. PC-3 cells with stable overexpression of NEDD9 had a mesenchymal phenotype and significantly enhanced cell invasion, despite their decreased cell proliferation. Knockdown of endogenous NEDD9 expression completely diminished TGF-β-triggered tumor invasion in several PCa cell lines. The IHC data revealed a significant positive correlation between the NEDD9 staining score and tumor aggressiveness (e.g., Gleason grade, serum PSA level). The NEDD9 staining score in primary PCa with bone metastasis was significantly higher than that in PCa without metastasis. CONCLUSIONS NEDD9 may be a key mediator involved in TGF-β-mediated EMT and cell motility in PCa cells and a novel target in the treatment of metastatic PCa and prevention of spread of localized PCa cells to other organs.
Collapse
Affiliation(s)
- Kazuya Morimoto
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Štajduhar E, Sedić M, Leniček T, Radulović P, Kerenji A, Krušlin B, Pavelić K, Kraljević Pavelić S. Expression of growth hormone receptor, plakoglobin and NEDD9 protein in association with tumour progression and metastasis in human breast cancer. Tumour Biol 2014; 35:6425-34. [PMID: 24676793 DOI: 10.1007/s13277-014-1827-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/05/2014] [Indexed: 11/24/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths among female population worldwide. Metastases are the common cause of morbidity and mortality in breast cancer and can remain latent for several years after surgical removal of the primary tumour. Thus, the identification and functional characterisation of molecular factors that promote oncogenic signalling in mammary tumour development and progression could provide new entry points for designing targeted therapeutic strategies for metastatic breast cancer. In the present study, we investigated the expression of proteins involved in cell signalling (growth hormone receptor (GHR) and NEDD9) and cell-cell adhesion (plakoglobin) in epithelial and stromal compartments of primary ductal invasive breast carcinomas and their axillary lymph node metastases versus non-metastatic tumours. Obtained data revealed remarkable increase in the expression levels of GHR and NEDD9 proteins in both epithelial and stromal components of axillary lymph node metastases in comparison with those of non-metastatic tumours, suggesting that the expression of these two proteins may provide biomarkers for tumour aggressiveness.
Collapse
Affiliation(s)
- Emil Štajduhar
- Sestre Milosrdnice Clinical Hospital Center, Vinogradska 29, 10000, Zagreb, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kozyreva VK, McLaughlin SL, Livengood RH, Calkins RA, Kelley LC, Rajulapati A, Ice RJ, Smolkin MB, Weed SA, Pugacheva EN. NEDD9 regulates actin dynamics through cortactin deacetylation in an AURKA/HDAC6-dependent manner. Mol Cancer Res 2014; 12:681-93. [PMID: 24574519 DOI: 10.1158/1541-7786.mcr-13-0654] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The prometastatic protein NEDD9 (neural precursor cell expressed, developmentally downregulated 9) is highly expressed in many cancers and is required for mesenchymal individual cell migration and progression to the invasive stage. Nevertheless, the molecular mechanisms of NEDD9-driven migration and the downstream targets effecting metastasis are not well defined. In the current study, knockdown of NEDD9 in highly metastatic tumor cells drastically reduces their migratory capacity due to disruption of actin dynamics at the leading edge. Specifically, NEDD9 deficiency leads to a decrease in the persistence and stability of lamellipodial protrusions similar to knockdown of cortactin (CTTN). Mechanistically, it was shown that NEDD9 binds to and regulates acetylation of CTTN in an Aurora A kinase (AURKA)/HDAC6-dependent manner. The knockdown of NEDD9 or AURKA results in an increase in the amount of acetylated CTTN and a decrease in the binding of CTTN to F-actin. Overexpression of the deacetylation mimicking (9KR) mutant of CTTN is sufficient to restore actin dynamics at the leading edge and migration proficiency of the tumor cells. Inhibition of AURKA and HDAC6 activity by alisertib and Tubastatin A in xenograft models of breast cancer leads to a decrease in the number of pulmonary metastases. Collectively, these findings identify CTTN as the key downstream component of NEDD9-driven migration and metastatic phenotypes. IMPLICATIONS This study provides a mechanistic platform for therapeutic interventions based on AURKA and HDAC6 inhibition for patients with metastatic breast cancer to prevent and/or eradicate metastases.
Collapse
Affiliation(s)
- Varvara K Kozyreva
- Authors' Affiliations: Mary Babb Randolph Cancer Center; Departments of 2Biochemistry, 3Pathology, and 4Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, West Virginia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shi R, Wang L, Wang T, Xu J, Wang F, Xu M. NEDD9 overexpression correlates with the progression and prognosis in gastric carcinoma. Med Oncol 2014; 31:852. [PMID: 24469954 DOI: 10.1007/s12032-014-0852-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/17/2014] [Indexed: 12/29/2022]
Abstract
The aim of this study was to investigate neural precursor cell expressed developmentally down-regulated 9 (NEDD9) expression in human gastric carcinoma (GC) and to explore its clinic significance. NEDD9 expression was detected by immunohistochemistry in GC, their corresponding paracancerous histological normal tissues (PCHNTs), and gastric normal tissues. And this result was further confirmed at the protein and mRNA level by Western blotting and quantitative real-time PCR, respectively. The Kaplan-Meier method and log-rank test were employed to compare the overall survival between NEDD9 low-level expression group and NEDD9 high-level expression group. We ascertained frequently NEDD9 up-regulation in both protein and mRNA levels in GC tissues as compared to PCHNTs and normal controls. Immunohistochemical staining indicated that NEDD9 is higher expressed in GC tissues (102 out of 125, 81.8%) than that in PCHNTs (eight out of 42, 19.05%) and gastric normal tissues (one out of eight, 12.50%). NEDD9 expression levels were closely associated with poor differentiation (P=0.002), venous invasion (P=0.012), invasive depth (P<0.001), preset lymph node metastasis (P=0.023), distant metastasis (P=0.017), and high clinical stage (P=0.005). NEDD9 expression was positively correlated with clinical tumor node metastasis (TNM) stage that implied the more advanced clinical TNM stage corresponding to the higher expression level of NEDD9 (rs=0.467, P<0.001). And we also detected frequently NEDD9 up-regulation in both protein and mRNA levels in GC tissues as compared to PCHNTs. Kaplan-Meier survival analysis showed that high NEDD9 expression exhibited a significant correlation with poor prognosis for gastric cancer patients. Our data suggested that NEDD9 could be used as prognostic molecular marker to be applied in the clinical setting to diagnosis, evaluating patient's outcome (prognosis and recurrence) for GC patients.
Collapse
Affiliation(s)
- Rongfeng Shi
- Department of General Surgery, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
NEDD9 Regulates 3D Migratory Activity Independent of the Rac1 Morphology Switch in Glioma and Neuroblastoma. Mol Cancer Res 2013; 12:264-73. [DOI: 10.1158/1541-7786.mcr-13-0513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
McLaughlin SL, Ice RJ, Rajulapati A, Kozyulina PY, Livengood RH, Kozyreva VK, Loskutov YV, Culp MV, Weed SA, Ivanov AV, Pugacheva EN. NEDD9 depletion leads to MMP14 inactivation by TIMP2 and prevents invasion and metastasis. Mol Cancer Res 2013; 12:69-81. [PMID: 24202705 DOI: 10.1158/1541-7786.mcr-13-0300] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The scaffolding protein NEDD9 is an established prometastatic marker in several cancers. Nevertheless, the molecular mechanisms of NEDD9-driven metastasis in cancers remain ill-defined. Here, using a comprehensive breast cancer tissue microarray, it was shown that increased levels of NEDD9 protein significantly correlated with the transition from carcinoma in situ to invasive carcinoma. Similarly, it was shown that NEDD9 overexpression is a hallmark of highly invasive breast cancer cells. Moreover, NEDD9 expression is crucial for the protease-dependent mesenchymal invasion of cancer cells at the primary site but not at the metastatic site. Depletion of NEDD9 is sufficient to suppress invasion of tumor cells in vitro and in vivo, leading to decreased circulating tumor cells and lung metastases in xenograft models. Mechanistically, NEDD9 localized to invasive pseudopods and was required for local matrix degradation. Depletion of NEDD9 impaired invasion of cancer cells through inactivation of membrane-bound matrix metalloproteinase MMP14 by excess TIMP2 on the cell surface. Inactivation of MMP14 is accompanied by reduced collagenolytic activity of soluble metalloproteinases MMP2 and MMP9. Reexpression of NEDD9 is sufficient to restore the activity of MMP14 and the invasive properties of breast cancer cells in vitro and in vivo. Collectively, these findings uncover critical steps in NEDD9-dependent invasion of breast cancer cells. IMPLICATIONS This study provides a mechanistic basis for potential therapeutic interventions to prevent metastasis.
Collapse
Affiliation(s)
- Sarah L McLaughlin
- Department of Biochemistry and Mary Babb Randolph Cancer Center, PO Box 9142, 1 Medical Center Drive, West Virginia University School of Medicine, Morgantown, WV 26506.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang H, Mu X, Zhou S, Zhang J, Dai J, Tang L, Xiao L, Duan Z, Jia L, Chen S. NEDD9 overexpression is associated with the progression of and an unfavorable prognosis in epithelial ovarian cancer. Hum Pathol 2013; 45:401-8. [PMID: 24439227 DOI: 10.1016/j.humpath.2013.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 11/16/2022]
Abstract
Neural precursor cell-expressed, developmentally down-regulated 9 (NEDD9), a scaffolding protein, has been identified as a prometastatic and poor prognostic gene in multiple malignant tumors. However, the potential role of the NEDD9 protein in epithelial ovarian cancer (EOC) remains unclear. In the present study, we investigated the expression of NEDD9 and the correlation between NEDD9 expression and prognosis in EOC. NEDD9 expression was detected in 129 archived EOC specimens by immunohistochemical staining and in 28 freshly frozen EOC specimens by Western blotting. The expression of NEDD9 was evaluated in ovarian cancer cell lines by Western blotting and immunofluorescence. The association between the expression of NEDD9 and prognosis was determined by survival analysis. Results suggested that NEDD9 was overexpressed in EOC specimens compared with noninvasive epithelial ovarian tumors and normal ovarian specimens. A high level of NEDD9 expression significantly correlated with advanced-stage tumors (International Federation of Gynecology and Obstetrics classes III-IV, P < .001), high-grade carcinoma (grades 2-3, P < .001), and suboptimal primary cytoreductive surgery (residual disease <1cm, P = .021). The expression level of NEDD9 varied in ovarian cancer cell lines. Multivariate analysis indicated that NEDD9 overexpression (P = .033), advanced stage (P < .001), and high-grade carcinoma (P = .01) were independent predictors of poor survival. In conclusion, NEDD9 is overexpressed and associated with an unfavorable prognosis in EOC. NEDD9 overexpression is an independent factor of poor prognosis and may serve as a potential biomarker in EOC.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Xiaoling Mu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Suiyang Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jiemin Dai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Liangdan Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Lin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Zhaoning Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Li Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Luzhou Medical College, Luzhou 626000, People's Republic of China.
| | - Shu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
26
|
Nikonova AS, Astsaturov I, Serebriiskii IG, Dunbrack RL, Golemis EA. Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci 2013; 70:661-87. [PMID: 22864622 PMCID: PMC3607959 DOI: 10.1007/s00018-012-1073-7] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/05/2012] [Accepted: 06/21/2012] [Indexed: 12/20/2022]
Abstract
Temporally and spatially controlled activation of the Aurora A kinase (AURKA) regulates centrosome maturation, entry into mitosis, formation and function of the bipolar spindle, and cytokinesis. Genetic amplification and mRNA and protein overexpression of Aurora A are common in many types of solid tumor, and associated with aneuploidy, supernumerary centrosomes, defective mitotic spindles, and resistance to apoptosis. These properties have led Aurora A to be considered a high-value target for development of cancer therapeutics, with multiple agents currently in early-phase clinical trials. More recently, identification of additional, non-mitotic functions and means of activation of Aurora A during interphase neurite elongation and ciliary resorption have significantly expanded our understanding of its function, and may offer insights into the clinical performance of Aurora A inhibitors. Here we review the mitotic and non-mitotic functions of Aurora A, discuss Aurora A regulation in the context of protein structural information, and evaluate progress in understanding and inhibiting Aurora A in cancer.
Collapse
Affiliation(s)
- Anna S. Nikonova
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Igor Astsaturov
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Ilya G. Serebriiskii
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Roland L. Dunbrack
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Erica A. Golemis
- Program in Developmental Therapeutics, Fox Chase Cancer Center, W406, 333 Cottman Ave., Philadelphia, PA 19111 USA
| |
Collapse
|
27
|
A requirement for Nedd9 in luminal progenitor cells prior to mammary tumorigenesis in MMTV-HER2/ErbB2 mice. Oncogene 2013; 33:411-20. [PMID: 23318423 DOI: 10.1038/onc.2012.607] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 10/22/2012] [Accepted: 11/12/2012] [Indexed: 02/08/2023]
Abstract
Overexpression of the NEDD9/HEF1/Cas-L scaffolding protein is frequent, and drives invasion and metastasis in breast, head and neck, colorectal, melanoma, lung and other types of cancer. We have examined the consequences of genetic ablation of Nedd9 in the MMTV-HER2/ERBB2/neu mouse mammary tumor model. Unexpectedly, we found that only a limited effect on metastasis in MMTV-neu;Nedd9(-/-) mice compared with MMTV-neu;Nedd9(+/+) mice, but instead a dramatic reduction in tumor incidence (18 versus 80%), and a significantly increased latency until tumor appearance. Orthotopic reinjection and tail-vein injection of cells arising from tumors, coupled with in vivo analysis, indicated tumors arising in MMTV-neu;Nedd9(-/-) mice had undergone mutational selection that overcame the initial requirement for Nedd9. To better understand the defects in early tumor growth, we compared mammary progenitor cell pools from MMTV-neu;Nedd9(-/-) versus MMTV-neu;Nedd9(+/+) mice. The MMTV-neu;Nedd9(-/-) genotype selectively reduced both the number and colony-forming potential of mammary luminal epithelial progenitor cells, while not affecting basal epithelial progenitors. MMTV-neu;Nedd9(-/-) mammospheres had striking defects in morphology and cell polarity. All of these defects were seen predominantly in the context of the HER2/neu oncogene, and were not associated with randomization of the plane of mitotic division, but rather with depressed expression the cell attachment protein FAK, accompanied by increased sensitivity to small molecule inhibitors of FAK and SRC. Surprisingly, in spite of these significant differences, only minimal changes were observed in the gene expression profile of Nedd9(-/-) mice, indicating critical Nedd9-dependent differences in cell growth properties were mediated via post-transcriptional regulation of cell signaling. Coupled with emerging data indicating a role for NEDD9 in progenitor cell populations during the morphogenesis of other tissues, these results indicate a functional requirement for NEDD9 in the growth of mammary cancer progenitor cells.
Collapse
|
28
|
Overexpression of NEDD9 is Associated with Altered Expression of E-Cadherin, β-Catenin and N-Cadherin and Predictive of Poor Prognosis in non-Small Cell Lung Cancer. Pathol Oncol Res 2012; 19:281-6. [PMID: 23086683 DOI: 10.1007/s12253-012-9580-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 10/09/2012] [Indexed: 01/25/2023]
|
29
|
Chang JX, Gao F, Zhao GQ, Zhang GJ. Role of NEDD9 in invasion and metastasis of lung adenocarcinoma. Exp Ther Med 2012; 4:795-800. [PMID: 23226728 PMCID: PMC3493698 DOI: 10.3892/etm.2012.693] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/26/2012] [Indexed: 11/08/2022] Open
Abstract
Treatment failure for lung adenocarcinoma is frequently due to lymph node metastasis and invasion to neighboring organs. The aim of the present study was to investigate the invasion- and metastasis-related gene, neural precursor cell expressed, developmentally downregulated 9 (NEDD9), in lung adenocarcinoma tissues and cell lines. The expression of NEDD9 was analyzed by the SP method of immunohistochemistry for 60 formalin-fixed and paraffin-embedded (FFPE) lung adenocarcinoma tissues in which 32 cases were metastastic and 28 were without metastases. NEDD9 mRNA expression and protein levels were quantified by fluorescence quantitative reverse transcription-polymerase chain reaction (FQ-PCR) and western blotting in the highly invasive lung adenocarcinoma cell lines A549 and 95D as well as in SPC-A-1 cells with low invasive potential. The immunostaining scores revealed a statistically significant difference between metastatic and non-metastatic lung adenocarcinomas (p<0.001). FQ-PCR and western blotting demonstrated that NEDD9 expression was higher in A549 and 95D compared to SPC-A-1 cells (P=0.003). Our results provide evidence that NEDD9 is upregulated in metastatic lung adenocarcinoma and in highly invasive lung adenocarcinoma cell lines, suggesting its potential involvement in regulating cell migration and invasion.
Collapse
Affiliation(s)
- Jing-Xia Chang
- Department of Respiratory Medicine, First Affiliated Hospital of Zhengzhou University
| | | | | | | |
Collapse
|
30
|
Seeger-Nukpezah T, Golemis EA. The extracellular matrix and ciliary signaling. Curr Opin Cell Biol 2012; 24:652-61. [PMID: 22819513 DOI: 10.1016/j.ceb.2012.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/29/2012] [Accepted: 06/11/2012] [Indexed: 12/24/2022]
Abstract
The primary cilium protrudes like an antenna from the cell surface, sensing mechanical and chemical cues provided in the cellular environment. In some tissue types, ciliary orientation to lumens allows response to fluid flow; in others, such as bone, ciliary protrusion into the extracellular matrix allows response to compression forces. The ciliary membrane contains receptors for Hedgehog, Wnt, Notch, and other potent growth factors, and in some instances also harbors integrin and cadherin family members, allowing receipt of a robust range of signals. A growing list of ciliopathies, arising from deficient formation or function of cilia, includes both developmental defects and chronic, progressive disorders such as polycystic kidney disease (PKD); changes in ciliary function have been proposed to support cancer progression. Recent findings have revealed extensive signaling dialog between cilia and extracellular matrix (ECM), with defects in cilia associated with fibrosis in multiple contexts. Further, a growing number of proteins have been determined to possess multiple roles in control of cilia and focal adhesion interactions with the ECM, further coordinating functionality. We summarize and discuss these recent findings.
Collapse
Affiliation(s)
- Tamina Seeger-Nukpezah
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | |
Collapse
|
31
|
Plotnikova OV, Nikonova AS, Loskutov YV, Kozyulina PY, Pugacheva EN, Golemis EA. Calmodulin activation of Aurora-A kinase (AURKA) is required during ciliary disassembly and in mitosis. Mol Biol Cell 2012; 23:2658-70. [PMID: 22621899 PMCID: PMC3395655 DOI: 10.1091/mbc.e11-12-1056] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study demonstrates for the first time that binding of calcium-activated calmodulin to a minimal interaction site within the disordered N-terminal domain is required for the essential Aurora-A activity in mitosis and in regulation of ciliary disassembly. The centrosomal Aurora-A kinase (AURKA) regulates mitotic progression, and overexpression and hyperactivation of AURKA commonly promotes genomic instability in many tumors. Although most studies of AURKA focus on its role in mitosis, some recent work identified unexpected nonmitotic activities of AURKA. Among these, a role for basal body–localized AURKA in regulating ciliary disassembly in interphase cells has highlighted a role in regulating cellular responsiveness to growth factors and mechanical cues. The mechanism of AURKA activation involves interactions with multiple partner proteins and is not well understood, particularly in interphase cells. We show here that AURKA activation at the basal body in ciliary disassembly requires interactions with Ca2+ and calmodulin (CaM) and that Ca2+/CaM are important mediators of the ciliary disassembly process. We also show that Ca2+/CaM binding is required for AURKA activation in mitosis and that inhibition of CaM activity reduces interaction between AURKA and its activator, NEDD9. Finally, mutated derivatives of AURKA impaired for CaM binding and/or CaM-dependent activation cause defects in mitotic progression, cytokinesis, and ciliary resorption. These results define Ca2+/CaM as important regulators of AURKA activation in mitotic and nonmitotic signaling.
Collapse
Affiliation(s)
- Olga V Plotnikova
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
32
|
Chang JX, Gao F, Zhao GQ, Zhang GJ. Expression and clinical significance of NEDD9 in lung tissues. Med Oncol 2012; 29:2654-60. [PMID: 22447485 DOI: 10.1007/s12032-012-0213-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/07/2012] [Indexed: 01/20/2023]
Abstract
Neural precursor cell expressed, developmentally downregulated 9 (NEDD9) acts as a scaffold protein and belongs to a family of CAS (Crk-associated substrate) that regulates protein complexes controlling invasion and differentiation. Preclinical research for this gene was predominantly reported in melanomas, glioblastoma, and lymphoma. So we investigated the expression and significance of NEDD9 mRNA and protein in lung tissues. Specifically, we immunohistochemically compared NEDD9 expression and localization in 24 formalin-fixed and paraffin-embedded lung adenocarcinoma tissues with that of surrounding nonneoplastic tissue and five microscopically normal lungs. NEDD9 mRNA levels were quantitatively analyzed by fluorescent quantitative reverse transcription-polymerase chain reaction (FQ-PCR) in frozen tissue specimens of all tumors and 24 matched nonneoplastic lung parenchymas, and protein expression in 16 homogenates of matched neoplastic/nonneoplastic specimens was evaluated by Western blotting. The three techniques showed that NEDD9 is weakly expressed in nonneoplastic lung parenchyma and upregulated in lung adenocarcinoma. Moreover, FQ-PCR indicated a statistically significant correlation between NEDD9 upregulation and higher disease stages (I+II versus III+IV, p=0.001; high and middle versus low differentiation, p<0.001). Our results provide evidence that NEDD9 is upregulated in lung adenocarcinoma, and overexpression of NEDD9 protein has been strongly correlated with staging and differentiation grade and tumor size in lung adenocarcinoma, which demonstrated a poor prognosis.
Collapse
Affiliation(s)
- Jing-Xia Chang
- Department of Respiratory Medicine, First Affiliated Hospital of Zhengzhou University, No. 1. Jianshe East Road, Zhongyuan District, Zhengzhou, 450052, Henan, People's Republic of China
| | | | | | | |
Collapse
|
33
|
Bradbury P, Mahmassani M, Zhong J, Turner K, Paul A, Verrills NM, O'Neill GM. PP2A phosphatase suppresses function of the mesenchymal invasion regulator NEDD9. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:290-7. [PMID: 22061964 DOI: 10.1016/j.bbamcr.2011.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 12/26/2022]
Abstract
The mesenchymal mode of cancer cell invasion characterized by active adhesion turnover and a polarized actin cytoskeleton, is critically regulated by the adaptor protein NEDD9/HEF1/Cas-L. While it is known that NEDD9 is subject to extensive phosphorylation modification, the molecules that determine NEDD9 phosphorylation to stimulate adhesion turnover and mesenchymal cell morphologies are currently unknown. Earlier studies have suggested that the serine/threonine phosphatase PP2A regulates interconversion between a low molecular mass NEDD9 phosphoform and higher molecular mass phosphoforms. However, previous studies have used chemical inhibitors to block PP2A activity. In the present study we therefore aimed to specifically inhibit PP2A activity via siRNA and dominant negative approaches to investigate the effect of PP2A on interconversion between 115 kDa and 105 kDa NEDD9 and determine the functional consequence of PP2A activity for NEDD9 function. Strikingly, we find that while the phosphatase inhibitor Calyculin A indeed abrogates detachment-induced dephosphorylation of the 115 kDa NEDD9 phosphoform, PP2A depletion does not inhibit 115 kDa to 105 kDa interconversion. Our data suggest instead that PP2A targets discrete NEDD9 phosphorylation modifications separate to the events that mediate interconversion between the two forms. Functionally, PP2A depletion increases NEDD9 mediated cell spreading and mutation of S369 in the serine-rich region of NEDD9 to aspartate mimics this effect. Importantly, mutation of S369 to alanine abrogates the ability of dominant negative PP2A to increase NEDD9-mediated cell spreading. Collectively, our data reveal that the tumour suppressor PP2A may act via S369 to regulated NEDD9-mediated cell spreading.
Collapse
Affiliation(s)
- Peta Bradbury
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, NSW, 2145 Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Kong C, Wang C, Wang L, Ma M, Niu C, Sun X, Du J, Dong Z, Zhu S, Lu J, Huang B. NEDD9 is a positive regulator of epithelial-mesenchymal transition and promotes invasion in aggressive breast cancer. PLoS One 2011; 6:e22666. [PMID: 21829474 PMCID: PMC3145662 DOI: 10.1371/journal.pone.0022666] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) plays an important role in many biological processes. The latest studies revealed that aggressive breast cancer, especially the triple-negative breast cancer (TNBC) subtype was frequently associated with apparent EMT, but the mechanisms are still unclear. NEDD9/HEF1/Cas-L is a member of the Cas protein family and was identified as a metastasis marker in multiple cancer types. In this study, we wished to discern the role of NEDD9 in breast cancer progression and to investigate the molecular mechanism by which NEDD9 regulates EMT and promotes invasion in triple-negative breast cancer. We showed that expression of NEDD9 was frequently upregulated in TNBC cell lines, and in aggressive breast tumors, especially in TNBC subtype. Knockdown of endogenous NEDD9 reduced the migration, invasion and proliferation of TNBC cells. Moreover, ectopic overexpression of NEDD9 in mammary epithelial cells led to a string of events including the trigger of EMT, activation of ERK signaling, increase of several EMT-inducing transcription factors and promotion of their interactions with the E-cadherin promoter. Data presented in this report contribute to the understanding of the mechanisms by which NEDD9 promotes EMT, and provide useful clues to the evaluation of the potential of NEDD9 as a responsive molecular target for TNBC chemotherapy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Blotting, Western
- Breast/metabolism
- Breast/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cadherins/genetics
- Cadherins/metabolism
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Chromatin Immunoprecipitation
- Colony-Forming Units Assay
- Epithelial-Mesenchymal Transition
- Female
- Humans
- Luciferases/metabolism
- MAP Kinase Signaling System
- Neoplasm Invasiveness
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Snail Family Transcription Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
- Wound Healing
Collapse
Affiliation(s)
- Chenfei Kong
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Changqing Wang
- The Breast Surgery, The Tumor Hospital of Jilin Province, Changchun, People's Republic of China
| | - Liping Wang
- The Pathology Department, The Bethune Hospital of Jilin University, Changchun, People's Republic of China
| | - Musong Ma
- The Breast Surgery, The Tumor Hospital of Jilin Province, Changchun, People's Republic of China
| | - Chunbo Niu
- The Pathology Department, The Bethune Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoqian Sun
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, People's Republic of China
| | - Juan Du
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Zhixiong Dong
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Shan Zhu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Jun Lu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, People's Republic of China
- * E-mail: (BH); (JL)
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
- * E-mail: (BH); (JL)
| |
Collapse
|
35
|
NEDD9 and BCAR1 negatively regulate E-cadherin membrane localization, and promote E-cadherin degradation. PLoS One 2011; 6:e22102. [PMID: 21765937 PMCID: PMC3134485 DOI: 10.1371/journal.pone.0022102] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023] Open
Abstract
The Cas scaffolding proteins (NEDD9/HEF1/CAS-L, BCAR1/p130Cas, EFSSIN, and HEPL/CASS4) regulate cell migration, division and survival, and are often deregulated in cancer. High BCAR1 expression is linked to poor prognosis in breast cancer patients, while upregulation of NEDD9 contributes to the metastatic behavior of melanoma and glioblastoma cells. Our recent work knocking out the single Drosophila Cas protein, Dcas, identified a genetic interaction with E-cadherin. As E-cadherin is often downregulated during epithelial-mesenchymal transition (EMT) prior to metastasis, if such an activity was conserved in mammals it might partially explain how Cas proteins promote aggressive tumor behavior. We here establish that Cas proteins negatively regulate E-cadherin expression in human mammary cells. Cas proteins do not affect E-cadherin transcription, but rather, BCAR1 and NEDD9 signal through SRC to promote E-cadherin removal from the cell membrane and lysosomal degradation. We also find mammary tumors arising in MMTV-polyoma virus T-antigen mice have enhanced junctional E-cadherin in a Nedd9−/− background. Cumulatively, these results suggest a new role for Cas proteins in cell-cell adhesion signaling in cancer.
Collapse
|
36
|
Loudig O, Brandwein-Gensler M, Kim RS, Lin J, Isayeva T, Liu C, Segall JE, Kenny PA, Prystowsky MB. Illumina whole-genome complementary DNA-mediated annealing, selection, extension and ligation platform: assessing its performance in formalin-fixed, paraffin-embedded samples and identifying invasion pattern-related genes in oral squamous cell carcinoma. Hum Pathol 2011; 42:1911-22. [PMID: 21683979 DOI: 10.1016/j.humpath.2011.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/19/2011] [Accepted: 02/23/2011] [Indexed: 11/29/2022]
Abstract
High-throughput gene expression profiling from formalin-fixed, paraffin-embedded tissues has become a reality, and several methods are now commercially available. The Illumina whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay (Illumina, Inc) is a full-transcriptome version of the original 512-gene complementary DNA-mediated annealing, selection, extension and ligation assay, allowing high-throughput profiling of 24,526 annotated genes from degraded and formalin-fixed, paraffin-embedded RNA. This assay has the potential to allow identification of novel gene signatures associated with clinical outcome using banked archival pathology specimen resources. We tested the reproducibility of the whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay and its sensitivity for detecting differentially expressed genes in RNA extracted from matched fresh and formalin-fixed, paraffin-embedded cells, after 1 and 13 months of storage, using the human breast cell lines MCF7 and MCF10A. Then, using tumor worst pattern of invasion as a classifier, 1 component of the "risk model," we selected 12 formalin-fixed, paraffin-embedded oral squamous cell carcinomas for whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay analysis. We profiled 5 tumors with nonaggressive, nondispersed pattern of invasion, and 7 tumors with aggressive dispersed pattern of invasion and satellites scattered at least 1 mm apart. To minimize variability, the formalin-fixed, paraffin-embedded specimens were prepared from snap-frozen tissues, and RNA was obtained within 24 hours of fixation. One hundred four down-regulated genes and 72 up-regulated genes in tumors with aggressive dispersed pattern of invasion were identified. We performed quantitative reverse transcriptase polymerase chain reaction validation of 4 genes using Taqman assays and in situ protein detection of 1 gene by immunohistochemistry. Functional cluster analysis of genes up-regulated in tumors with aggressive pattern of invasion suggests presence of genes involved in cellular cytoarchitecture, some of which already associated with tumor invasion. Identification of these genes provides biologic rationale for our histologic classification, with regard to tumor invasion, and demonstrates that the whole-genome complementary DNA-mediated annealing, selection, extension and ligation assay is a powerful assay for profiling degraded RNA from archived specimens when combined with quantitative reverse transcriptase polymerase chain reaction validation.
Collapse
Affiliation(s)
- Olivier Loudig
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li Y, Bavarva JH, Wang Z, Guo J, Qian C, Thibodeau SN, Golemis EA, Liu W. HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression. Oncogene 2011; 30:2633-43. [PMID: 21317929 PMCID: PMC3164309 DOI: 10.1038/onc.2010.632] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/08/2010] [Accepted: 12/20/2010] [Indexed: 12/28/2022]
Abstract
Misregulation of the canonical Wnt/β-catenin pathway and aberrant activation of Wnt signaling target genes are common in colorectal cancer (CRC) and contribute to cancer progression. Altered expression of human enhancer of filamentation 1 (HEF1; also known as NEDD9 or Cas-L) has been implicated in progression of melanoma, breast, and CRC. However, the regulation of HEF1 and the role of HEF1 in CRC tumorigenesis are not fully understood. We here identify HEF1 as a novel Wnt signaling target. The expression of HEF1 was upregulated by Wnt-3a, β-catenin, and Dvl2 in a dose-dependent manner, and was suppressed following β-catenin downregulation by shRNA. In addition, elevated HEF1 mRNA and protein levels were observed in CRC cell lines and primary tumor tissues, as well as in the colon and adenoma polyps of Apc(Min/+) mice. Moreover, HEF1 levels in human colorectal tumor tissues increased with the tumor grade. Chromatin immunoprecipitation (ChIP) assays and promoter analyses revealed three functional T-cell factor (TCF)-binding sites in the promoter of HEF1 responsible for HEF1 induction by Wnt signaling. Ectopic expression of HEF1 increased cell proliferation and colony formation, while downregulation of HEF1 in SW480 cells by shRNA had the opposite effects and inhibited the xenograft tumor growth. Furthermore, overexpression of HEF1 in SW480 cells promoted cell migration and invasion. Together, our results determined a novel role of HEF1 as a mediator of the canonical Wnt/β-catenin signaling pathway for cell proliferation, migration, and tumorigenesis, as well as an important player in colorectal tumorigenesis and progression. HEF1 may represent an attractive candidate for drug targeting in CRC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Blotting, Western
- Caco-2 Cells
- Cell Line
- Cell Line, Tumor
- Cell Movement
- Colon/cytology
- Colon/metabolism
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Disease Progression
- Gene Expression Regulation, Neoplastic
- HT29 Cells
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Nude
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- TCF Transcription Factors/metabolism
- Transplantation, Heterologous
- Wnt Proteins/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Yingchun Li
- Department of Genetics, Louisiana State University Health Sciences Center/Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Jasmin H. Bavarva
- Department of Genetics, Louisiana State University Health Sciences Center/Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Zemin Wang
- Department of Genetics, Louisiana State University Health Sciences Center/Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Jianhui Guo
- Department of Genetics, Louisiana State University Health Sciences Center/Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Chiping Qian
- Department of Genetics, Louisiana State University Health Sciences Center/Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic/Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Stephen N. Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic/Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | - Wanguo Liu
- Department of Genetics, Louisiana State University Health Sciences Center/Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic/Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
38
|
Estradiol stabilizes the 105-kDa phospho-form of the adhesion docking protein NEDD9 and suppresses NEDD9-dependent cell spreading in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:340-5. [DOI: 10.1016/j.bbamcr.2010.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 11/24/2010] [Accepted: 11/29/2010] [Indexed: 11/21/2022]
|
39
|
Singh MK, Izumchenko E, Klein-Szanto AJ, Egleston BL, Wolfson M, Golemis EA. Enhanced genetic instability and dasatinib sensitivity in mammary tumor cells lacking NEDD9. Cancer Res 2010; 70:8907-16. [PMID: 20940402 DOI: 10.1158/0008-5472.can-10-0353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Elevated expression of the NEDD9/HEF1/Cas-L scaffolding protein promotes tumor cell invasion and metastasis in multiple cancer cell types. Conversely, generation of mammary tumors in the mouse mammary tumor virus (MMTV)-polyoma virus middle T (PyVT) genetic model is delayed by a Nedd9(-/-) genotype. These activities arise from the role of NEDD9 in assembling complexes and supporting activity of cancer signaling proteins, including FAK, Src, Shc, and AKT, and would support evaluation of NEDD9 expression as an unambiguous biomarker for tumor aggressiveness. However, we here show that despite the initial delay in tumor growth, cells derived from MMTV-PyVT;Nedd9(-/-) tumors are characteristically hyperaggressive versus MMTV-PyVT;Nedd9(+/+) cells in anchorage-independent growth, in growth on three-dimensional matrix produced by tumor-associated fibroblasts, and in formation of tumors after mammary orthotopic reinjection and of lung metastases after tail vein injection. This reversal suggests the specific selection of MMTV-PyVT;Nedd9(-/-) cells for growth in an in vivo microenvironment. Indeed, MMTV-PyVT;Nedd9(-/-) cells have increased cell cycle, centrosomal, and mitotic defects, phenotypes compatible with the increased selection of these cells for aggressive growth. Intriguingly, in spite of their aggressive phenotype, MMTV-PyVT;Nedd9(-/-) cells persistently have low levels of Src activation and are hypersensitive to the Src kinase inhibitor dasatinib. These studies identify NEDD9 as a complex modulator of different aspects of mammary tumor growth.
Collapse
Affiliation(s)
- Mahendra K Singh
- Departments of Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
40
|
Tikhmyanova N, Tulin AV, Roegiers F, Golemis EA. Dcas supports cell polarization and cell-cell adhesion complexes in development. PLoS One 2010; 5:e12369. [PMID: 20808771 PMCID: PMC2927436 DOI: 10.1371/journal.pone.0012369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/29/2010] [Indexed: 01/17/2023] Open
Abstract
Mammalian Cas proteins regulate cell migration, division and survival, and are often deregulated in cancer. However, the presence of four paralogous Cas family members in mammals (BCAR1/p130Cas, EFS/Sin1, NEDD9/HEF1/Cas-L, and CASS4/HEPL) has limited their analysis in development. We deleted the single Drosophila Cas gene, Dcas, to probe the developmental function of Dcas. Loss of Dcas had limited effect on embryonal development. However, we found that Dcas is an important modulator of the severity of the developmental phenotypes of mutations affecting integrins (If and mew) and their downstream effectors Fak56D or Src42A. Strikingly, embryonic lethal Fak56D-Dcas double mutant embryos had extensive cell polarity defects, including mislocalization and reduced expression of E-cadherin. Further genetic analysis established that loss of Dcas modified the embryonal lethal phenotypes of embryos with mutations in E-cadherin (Shg) or its signaling partners p120- and beta-catenin (Arm). These results support an important role for Cas proteins in cell-cell adhesion signaling in development.
Collapse
Affiliation(s)
- Nadezhda Tikhmyanova
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry, Drexel University Medical School, Philadelphia, Pennsylvania, United States of America
| | - Alexei V. Tulin
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Fabrice Roegiers
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Erica A. Golemis
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
41
|
Lucas JT, Salimath BP, Slomiany MG, Rosenzweig SA. Regulation of invasive behavior by vascular endothelial growth factor is HEF1-dependent. Oncogene 2010; 29:4449-59. [PMID: 20498643 PMCID: PMC2921319 DOI: 10.1038/onc.2010.185] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 04/08/2010] [Accepted: 04/19/2010] [Indexed: 12/13/2022]
Abstract
We previously reported a vascular endothelial growth factor (VEGF) autocrine loop in head and neck squamous cell carcinoma (HNSCC) cell lines, supporting a role for VEGF in HNSCC tumorigenesis. Using a phosphotyrosine proteomics approach, we screened the HNSCC cell line, squamous cell carcinoma-9 for effectors of VEGFR2 signaling. A cluster of proteins involved in cell migration and invasion, including the p130Cas paralog, human enhancer of filamentation 1 (HEF1/Cas-L/Nedd9) was identified. HEF1 silencing and overexpression studies revealed a role for VEGF in regulating cell migration, invasion and matrix metalloproteinase (MMP) expression in a HEF1-dependent manner. Moreover, cells plated on extracellular matrix-coated coverslips showed enhanced invadopodia formation in response to VEGF that was HEF1-dependent. Immunolocalization revealed that HEF1 colocalized to invadopodia with MT1-MMP. Analysis of HNSCC tissue microarrays for HEF1 immunoreactivity revealed a 6.5-fold increase in the odds of having a metastasis with a high HEF1 score compared with a low HEF1 score. These findings suggest that HEF1 may be prognostic for advanced stage HNSCC. They also show for the first time that HEF1 is required for VEGF-mediated HNSCC cell migration and invasion, consistent with HEF1's recent identification as a metastatic regulator. These results support a strategy targeting VEGF:VEGFR2 in HNSCC therapeutics.
Collapse
Affiliation(s)
- John T. Lucas
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Bharathi P. Salimath
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
| | - Mark G. Slomiany
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC
| | - Steven A. Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
42
|
Tikhmyanova N, Little JL, Golemis EA. CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci 2010; 67:1025-48. [PMID: 19937461 PMCID: PMC2836406 DOI: 10.1007/s00018-009-0213-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/03/2009] [Accepted: 11/09/2009] [Indexed: 12/20/2022]
Abstract
Proteins of the CAS (Crk-associated substrate) family (BCAR1/p130Cas, NEDD9/HEF1/Cas-L, EFS/SIN and CASS4/HEPL) are integral players in normal and pathological cell biology. CAS proteins act as scaffolds to regulate protein complexes controlling migration and chemotaxis, apoptosis, cell cycle, and differentiation, and have more recently been linked to a role in progenitor cell function. Reflecting these complex functions, over-expression of CAS proteins has now been strongly linked to poor prognosis and increased metastasis in cancer, as well as resistance to first-line chemotherapeutics in multiple tumor types including breast and lung cancers, glioblastoma, and melanoma. Further, CAS proteins have also been linked to additional pathological conditions including inflammatory disorders, Alzheimer's and Parkinson's disease, as well as developmental defects. This review will explore the roles of the CAS proteins in normal and pathological states in the context of the many mechanistic insights into CAS protein function that have emerged in the past decade.
Collapse
Affiliation(s)
- Nadezhda Tikhmyanova
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111 USA
- Department of Biochemistry, Drexel University Medical School, Philadelphia, PA 19102 USA
| | - Joy L. Little
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Erica A. Golemis
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111 USA
| |
Collapse
|
43
|
Fps/Fes protein-tyrosine kinase regulates mast cell adhesion and migration downstream of Kit and β1 integrin receptors. Cell Signal 2010; 22:427-36. [DOI: 10.1016/j.cellsig.2009.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/23/2009] [Indexed: 11/17/2022]
|
44
|
Aquino JB, Lallemend F, Marmigère F, Adameyko I, Golemis EA, Ernfors P. The retinoic acid inducible Cas-family signaling protein Nedd9 regulates neural crest cell migration by modulating adhesion and actin dynamics. Neuroscience 2009; 162:1106-19. [PMID: 19464348 PMCID: PMC2797478 DOI: 10.1016/j.neuroscience.2009.05.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 04/21/2009] [Accepted: 05/18/2009] [Indexed: 01/12/2023]
Abstract
Cell migration is essential for the development of numerous structures derived from embryonic neural crest cells (NCCs), however the underlying molecular mechanisms are incompletely understood. NCCs migrate long distances in the embryo and contribute to many different cell types, including peripheral neurons, glia and pigment cells. In the present work we report expression of Nedd9, a scaffolding protein within the integrin signaling pathway, in non-lineage-restricted neural crest progenitor cells. In particular, Nedd9 was found to be expressed in the dorsal neural tube at the time of neural crest delamination and in early migrating NCCs. To analyze the role of Nedd9 in neural crest development we performed loss- and gain-of-function experiments and examined the subsequent effects on delamination and migration in vitro and in vivo. Our results demonstrate that loss of Nedd9 activity in chick NCCs perturbs cell spreading and the density of focal complexes and actin filaments, properties known to depend on integrins. Moreover, a siRNA dose-dependent decrease in Nedd9 activity results in a graded reduction of NCC's migratory distance while forced overexpression increases it. Retinoic acid (RA) was found to regulate Nedd9 expression in NCCs. Our results demonstrate in vivo that Nedd9 promotes the migration of NCCs in a graded manner and suggest a role for RA in the control of Nedd9 expression levels.
Collapse
Affiliation(s)
- Jorge B. Aquino
- Unit of Molecular Neurobiology-MBB, Karolinska Institute, 171 77 Stockholm, SWEDEN
| | - François Lallemend
- Unit of Molecular Neurobiology-MBB, Karolinska Institute, 171 77 Stockholm, SWEDEN
| | - Frédéric Marmigère
- Unit of Molecular Neurobiology-MBB, Karolinska Institute, 171 77 Stockholm, SWEDEN
| | - Igor Adameyko
- Unit of Molecular Neurobiology-MBB, Karolinska Institute, 171 77 Stockholm, SWEDEN
| | - Erica A. Golemis
- Division of Basic Science, Fox Chase Cancer Center, 333 Cottman Ave. Philadelphia, PA 19111, USA
| | - Patrik Ernfors
- Unit of Molecular Neurobiology-MBB, Karolinska Institute, 171 77 Stockholm, SWEDEN
| |
Collapse
|
45
|
Izumchenko E, Singh MK, Plotnikova OV, Tikhmyanova N, Little JL, Serebriiskii IG, Seo S, Kurokawa M, Egleston BL, Klein-Szanto A, Pugacheva EN, Hardy RR, Wolfson M, Connolly DC, Golemis EA. NEDD9 promotes oncogenic signaling in mammary tumor development. Cancer Res 2009; 69:7198-206. [PMID: 19738060 PMCID: PMC2758619 DOI: 10.1158/0008-5472.can-09-0795] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the past 3 years, altered expression of the HEF1/CAS-L/NEDD9 scaffolding protein has emerged as contributing to cancer metastasis in multiple cancer types. However, whereas some studies have identified elevated NEDD9 expression as prometastatic, other work has suggested a negative role in tumor progression. We here show that the Nedd9-null genetic background significantly limits mammary tumor initiation in the MMTV-polyoma virus middle T genetic model. Action of NEDD9 is tumor cell intrinsic, with immune cell infiltration, stroma, and angiogenesis unaffected. The majority of the late-appearing mammary tumors of MMTV-polyoma virus middle T;Nedd9(-/-) mice are characterized by depressed activation of proteins including AKT, Src, FAK, and extracellular signal-regulated kinase, emphasizing an important role of NEDD9 as a scaffolding protein for these prooncogenic proteins. Analysis of cells derived from primary Nedd9(+/+) and Nedd9(-/-) tumors showed persistently reduced FAK activation, attachment, and migration, consistent with a role for NEDD9 activation of FAK in promoting tumor aggressiveness. This study provides the first in vivo evidence of a role for NEDD9 in breast cancer progression and suggests that NEDD9 expression may provide a biomarker for tumor aggressiveness.
Collapse
Affiliation(s)
- Eugene Izumchenko
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Mahendra K. Singh
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Olga V. Plotnikova
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
- Department of Molecular Biology and Medical Biotechnology, Russian State Medical University, Moscow, Russia
| | - Nadezhda Tikhmyanova
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
- Department of Biochemistry, Drexel University School of Medicine, Philadelphia, PA 19102
| | - Joy L. Little
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Ilya G. Serebriiskii
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Sachiko Seo
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Brian L. Egleston
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Andres Klein-Szanto
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Elena N. Pugacheva
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Richard R. Hardy
- Program in Immunology, Fox Chase Cancer Center, Philadelphia, PA, 19111
| | - Marina Wolfson
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Denise C. Connolly
- Program in Women’s Cancer, Fox Chase Cancer Center, Philadelphia, PA, 19111
| | - Erica A. Golemis
- Program in Molecular and Translational Medicine, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
46
|
Hivert V, Pierre J, Raingeaud J. Phosphorylation of human enhancer of filamentation (HEF1) on serine 369 induces its proteasomal degradation. Biochem Pharmacol 2009; 78:1017-25. [PMID: 19539609 DOI: 10.1016/j.bcp.2009.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/29/2009] [Accepted: 06/05/2009] [Indexed: 11/29/2022]
Abstract
Human enhancer of filamentation 1 (HEF1) is a multi-domain docking protein of the p130 Cas family. HEF1 is present at focal adhesions and is involved in integrin signalling mediating cytoskeleton reorganization associated with cell migration, adhesion or apoptosis. HEF1 functions are regulated in part by phosphorylation on tyrosine residues. HEF1 is also phosphorylated on serines/threonines leading to two isoforms refered to as p105 and p115. In most cases, the serine/threonine kinase(s) responsible for HEF1 phosphorylation have not been identified. In the present study, we have investigated HEF1 ser/thr phosphorylation. In the HCT-116 cell line transiently overexpressing Flag-HEF1 we showed that Hesperadin, a synthetic indolinone displaying antiproliferative effect and described as an inhibitor of various kinases including Aurora-B, prevented HEF1 phosphorylation induced by the ser/thr phosphatase PP2A inhibitor: okadaic acid (OA). In addition we showed that conversion of endogenous HEF1 p105 to p115 in HaCaT cells was prevented upon treatment with Hesperadin, resulting in accumulation of p105HEF1. We also identified serine 369 as the target site of phosphorylation by this Hesperadin-inhibited kinase in HCT-116. Finally, we provide evidence that phosphorylation on serine 369 but not phosphorylation on serine 296, triggers HEF1 degradation by the proteasomal machinery. These data suggest that conversion of p105 to p115 results from a ser-369-dependent phosphorylation mediated by an Hesperadin-sensitive kinase and regulates the half-life of HEF1.
Collapse
Affiliation(s)
- Virginie Hivert
- INSERM U749, Université Paris-sud 11, Faculté de Pharmacie, 5 rue JB Clement, 92296 Chatenay-Malabry, France
| | | | | |
Collapse
|
47
|
Simpson F, Kerr MC, Wicking C. Trafficking, development and hedgehog. Mech Dev 2009; 126:279-88. [PMID: 19368798 DOI: 10.1016/j.mod.2009.01.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 11/27/2022]
Abstract
Embryogenesis is mediated by a relatively small number of developmental signaling pathways, and the morphogens, receptors and transcription factors integral to these cascades are considered the master regulators of development. However, superimposed on this is an additional layer of control by complex intracellular trafficking networks. The importance of trafficking in controlling the processes of morphogenesis and development is highlighted by recent data regarding the transport and localisation of the morphogen sonic hedgehog (Shh) and the machinery that leads to its secretion, modification, cellular internalisation and signal transduction. Here we review the regulation of hedgehog signaling by intracellular trafficking, including the role of the primary cilium and lipids in mediating pathway activity.
Collapse
Affiliation(s)
- Fiona Simpson
- The University of Queensland, Institute for Molecular Bioscience, Qld, Australia
| | | | | |
Collapse
|
48
|
Moreau D, Jacquot C, Tsita P, Chinou I, Tomasoni C, Juge M, Antoniadou-Vyza E, Martignat L, Pineau A, Roussakis C. Original triazine inductor of new specific molecular targets, with antitumor activity against nonsmall cell lung cancer. Int J Cancer 2008; 123:2676-83. [PMID: 18798255 DOI: 10.1002/ijc.23809] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite our growing insight into carcinogenesis, treatment of tumors, especially nonsmall cell lung cancer (NSCLC), remains limited and it is urgent to develop strategies that target tumor cells and their genetic features. Drug discovery efforts have historically focused on the search for compounds that modulate the protein products of genes. Current drug therapy targets only a few hundred endogenous targets, mainly proteins, such as receptors and enzymes. But now, the interest in specifically targeting RNA is increasing, both for target validation and/or therapeutic purposes. In this regard, our work was concerned with the induction of new molecular targets correlated to a cytostatic effect on NSCLC cell line, after treatment with a new triazin named A190. The in vitro study of cell cycle and apoptosis induction demonstrated the antiproliferative potential of this new compounds, and the use of quantitative RT-PCR analysis permit to display an original mechanism of action involving 2 genes: HEF1 and B2. The antitumor effect was also confirmed by the good results in vivo on nude mice xenografts.
Collapse
Affiliation(s)
- Dimitri Moreau
- Laboratoire de Pharmacologie Marine, ISOMer, Faculté de Pharmacie de Nantes, 1 rue Gaston Veil, BP 92208, Nantes Cedex 03, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Knutson DC, Clagett-Dame M. atRA Regulation of NEDD9, a gene involved in neurite outgrowth and cell adhesion. Arch Biochem Biophys 2008; 477:163-74. [PMID: 18585997 DOI: 10.1016/j.abb.2008.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 12/01/2022]
Abstract
We previously identified NEDD9 (RAINB2/HEF1/Cas-L) as a new downstream target of all-trans retinoic acid (atRA) and its receptors in the human neuroblastoma cell line, SH-SY5Y [R.A. Merrill, A.W.-M. See, M.L. Wertheim, M. Clagett-Dame, Dev. Dyn. 231 (2004) 564-575; R.A. Merrill, J.M. Ahrens, M.E. Kaiser, K.S. Federhart, V.Y. Poon, M. Clagett-Dame, Biol. Chem. 385 (2004) 605-614]. We now provide functional evidence that NEDD9 is directly regulated by atRA through a complex retinoic acid response element (RARE) located in the NEDD9 proximal promoter and consisting of four conserved half-sites separated by 1, 5, and 1 intervening base pairs. We show that a region of the human NEDD9 promoter from -1670 to +15 is sufficient to confer atRA-responsiveness and that a complex RARE located from -475 to -445 is necessary for this effect. While mutation of any one half-site does not eliminate complex formation in electrophoretic mobility shift assays (EMSA); these same mutations, when tested in transient transfection assays, markedly decrease atRA-responsiveness. Finally, chromatin immunoprecipitation (ChIP) assays demonstrate that RAR and RXR are bound to the RARE in cells.
Collapse
Affiliation(s)
- D C Knutson
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | | |
Collapse
|
50
|
Aquino JB, Marmigère F, Lallemend F, Lundgren TK, Villar MJ, Wegner M, Ernfors P. Differential expression and dynamic changes of murine NEDD9 in progenitor cells of diverse tissues. Gene Expr Patterns 2008; 8:217-26. [DOI: 10.1016/j.gep.2008.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 11/30/2022]
|