1
|
Mai J, Nazari M, Stamminger T, Schreiner S. Daxx and HIRA go viral - How chromatin remodeling complexes affect DNA virus infection. Tumour Virus Res 2025; 19:200317. [PMID: 40120981 DOI: 10.1016/j.tvr.2025.200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Daxx and HIRA are key proteins in the host response to DNA virus infections. Daxx is involved in apoptosis, transcription regulation, and stress responses. During DNA virus infections, Daxx helps modulate the immune response and viral progression. Viruses like adenoviruses and herpesviruses can exploit Daxx to evade immune detection, either by targeting it for degradation or inhibiting its function. Daxx also interacts with chromatin to regulate transcription, which viruses can manipulate to enhance their own gene expression and replication. HIRA is a histone chaperone and reported to be essential for chromatin assembly and gene regulation. It plays a critical role in maintaining chromatin structure and modulating gene accessibility. During DNA virus infection, HIRA influences chromatin remodeling, affecting both viral and host DNA accessibility, which impacts viral replication and gene expression. Additionally, the histone variant H3.3 is crucial for maintaining active chromatin states. It is incorporated into chromatin independently of DNA replication and is associated with active gene regions. During viral infections, H3.3 dynamics can be altered, affecting viral genome accessibility and replication efficiency. Overall, Daxx and HIRA are integral to orchestrating viral infection programs, maintaining latency and/or persistence, and influencing virus-induced transformation by modulating chromatin dynamics and host immune responses, making them significant targets for therapeutic strategies once fully understood. Here, we summarize various DNA viruses and their crosstalk with Daxx and HIRA.
Collapse
Affiliation(s)
- Julia Mai
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Masih Nazari
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Sabrina Schreiner
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Johnstone M, Leck A, Lange T, Wilcher K, Shephard MS, Paranjpe A, Schutte S, Wells S, Kappes F, Salomonis N, Privette Vinnedge LM. The chromatin remodeler DEK promotes proliferation of mammary epithelium and is associated with H3K27me3 epigenetic modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612116. [PMID: 39314335 PMCID: PMC11419013 DOI: 10.1101/2024.09.09.612116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The DEK chromatin remodeling protein was previously shown to confer oncogenic phenotypes to human and mouse mammary epithelial cells using in vitro and knockout mouse models. However, its functional role in normal mammary gland epithelium remained unexplored. We developed two novel mouse models to study the role of Dek in normal mammary gland biology in vivo . Mammary gland-specific Dek over-expression in mice resulted in hyperproliferation of cells that visually resembled alveolar cells, and a transcriptional profile that indicated increased expression of cell cycle, mammary stem/progenitor, and lactation-associated genes. Conversely, Dek knockout mice exhibited an alveologenesis or lactation defect, resulting in dramatically reduced pup survival. Analysis of previously published single-cell RNA-sequencing of mouse mammary glands revealed that Dek is most highly expressed in mammary stem cells and alveolar progenitor cells, and to a lesser extent in basal epithelial cells, supporting the observed phenotypes. Mechanistically, we discovered that Dek is a modifier of Ezh2 methyltransferase activity, upregulating the levels of histone H3 trimethylation on lysine 27 (H3K27me3) to control gene transcription. Combined, this work indicates that Dek promotes proliferation of mammary epithelial cells via cell cycle deregulation. Furthermore, we report a novel function for Dek in alveologenesis and histone H3 K27 trimethylation.
Collapse
|
3
|
Rodriguez-Rodriguez P, Arroyo-Garcia LE, Tsagkogianni C, Li L, Wang W, Végvári Á, Salas-Allende I, Plautz Z, Cedazo-Minguez A, Sinha SC, Troyanskaya O, Flajolet M, Yao V, Roussarie JP. A cell autonomous regulator of neuronal excitability modulates tau in Alzheimer's disease vulnerable neurons. Brain 2024; 147:2384-2399. [PMID: 38462574 PMCID: PMC11224620 DOI: 10.1093/brain/awae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 03/12/2024] Open
Abstract
Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology. We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease. The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Christina Tsagkogianni
- Department of Neurobiology Care Sciences and Society, Karolinska Institutet, 17 164, Solna, Sweden
| | - Lechuan Li
- Department of Computer Science, Rice University, Houston, TX 77004, USA
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 164, Solna, Sweden
| | - Isabella Salas-Allende
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Zakary Plautz
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Angel Cedazo-Minguez
- Department of Neurobiology Care Sciences and Society, Karolinska Institutet, 17 164, Solna, Sweden
| | - Subhash C Sinha
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olga Troyanskaya
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Vicky Yao
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 164, Solna, Sweden
| | - Jean-Pierre Roussarie
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
4
|
Pierzynska-Mach A, Czada C, Vogel C, Gwosch E, Osswald X, Bartoschek D, Diaspro A, Kappes F, Ferrando-May E. DEK oncoprotein participates in heterochromatin replication via SUMO-dependent nuclear bodies. J Cell Sci 2023; 136:jcs261329. [PMID: 37997922 PMCID: PMC10753498 DOI: 10.1242/jcs.261329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
The correct inheritance of chromatin structure is key for maintaining genome function and cell identity and preventing cellular transformation. DEK, a conserved non-histone chromatin protein, has recognized tumor-promoting properties, its overexpression being associated with poor prognosis in various cancer types. At the cellular level, DEK displays pleiotropic functions, influencing differentiation, apoptosis and stemness, but a characteristic oncogenic mechanism has remained elusive. Here, we report the identification of DEK bodies, focal assemblies of DEK that regularly occur at specific, yet unidentified, sites of heterochromatin replication exclusively in late S-phase. In these bodies, DEK localizes in direct proximity to active replisomes in agreement with a function in the early maturation of heterochromatin. A high-throughput siRNA screen, supported by mutational and biochemical analyses, identifies SUMO as one regulator of DEK body formation, linking DEK to the complex SUMO protein network that controls chromatin states and cell fate. This work combines and refines our previous data on DEK as a factor essential for heterochromatin integrity and facilitating replication under stress, and delineates an avenue of further study for unraveling the contribution of DEK to cancer development.
Collapse
Affiliation(s)
| | - Christina Czada
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Christopher Vogel
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Eva Gwosch
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Xenia Osswald
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Denis Bartoschek
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
| | - Alberto Diaspro
- Nanoscopy & NIC@IIT, Istituto Italiano di Tecnologia, Genoa 16152, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Ferdinand Kappes
- Duke Kunshan University, Division of Natural and Applied Sciences, Kunshan 215316, People's Republic of China
| | - Elisa Ferrando-May
- Department of Biology, Bioimaging Center, University of Konstanz, Konstanz 78464, Germany
- German Cancer Research Center, Heidelberg 69120, Germany
| |
Collapse
|
5
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
6
|
Morozov VM, Riva A, Sarwar S, Kim WJ, Li J, Zhou L, Licht J, Daaka Y, Ishov A. HIRA-mediated loading of histone variant H3.3 controls androgen-induced transcription by regulation of AR/BRD4 complex assembly at enhancers. Nucleic Acids Res 2023; 51:10194-10217. [PMID: 37638746 PMCID: PMC10602887 DOI: 10.1093/nar/gkad700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Incorporation of histone variant H3.3 comprises active territories of chromatin. Exploring the function of H3.3 in prostate cancer (PC), we found that knockout (KO) of H3.3 chaperone HIRA suppresses PC growth in vitro and in xenograft settings, deregulates androgen-induced gene expression and alters androgen receptor (AR) binding within enhancers of target genes. H3.3 affects transcription in multiple ways, including activation of p300 by phosphorylated H3.3 at Ser-31 (H3.3S31Ph), which results in H3K27 acetylation (H3K27Ac) at enhancers. In turn, H3K27Ac recruits bromodomain protein BRD4 for enhancer-promoter interaction and transcription activation. We observed that HIRA KO reduces H3.3 incorporation, diminishes H3.3S31Ph and H3K27Ac, modifies recruitment of BRD4. These results suggest that H3.3-enriched enhancer chromatin serves as a platform for H3K27Ac-mediated BRD4 recruitment, which interacts with and retains AR at enhancers, resulting in transcription reprogramming. In addition, HIRA KO deregulates glucocorticoid- (GR) driven transcription of genes co-regulated by AR and GR, suggesting a common H3.3/HIRA-dependent mechanism of nuclear receptors function. Expression of HIRA complex proteins is increased in PC compared with normal prostate tissue, especially in high-risk PC groups, and is associated with a negative prognosis. Collectively, our results demonstrate function of HIRA-dependent H3.3 pathway in regulation of nuclear receptors activity.
Collapse
Affiliation(s)
- Viacheslav M Morozov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Sadia Sarwar
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Wan-Ju Kim
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jianping Li
- Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lei Zhou
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Jonathan D Licht
- Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Alexander M Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| |
Collapse
|
7
|
Wilcher KE, Page ERH, Privette Vinnedge LM. The impact of the chromatin binding DEK protein in hematopoiesis and acute myeloid leukemia. Exp Hematol 2023; 123:18-27. [PMID: 37172756 PMCID: PMC10330528 DOI: 10.1016/j.exphem.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Hematopoiesis is an exquisitely regulated process of cellular differentiation to create diverse cell types of the blood. Genetic mutations, or aberrant regulation of gene transcription, can interrupt normal hematopoiesis. This can have dire pathological consequences, including acute myeloid leukemia (AML), in which generation of the myeloid lineage of differentiated cells is interrupted. In this literature review, we discuss how the chromatin remodeling DEK protein can control hematopoietic stem cell quiescence, hematopoietic progenitor cell proliferation, and myelopoiesis. We further discuss the oncogenic consequences of the t(6;9) chromosomal translocation, which creates the DEK-NUP214 (aka: DEK-CAN) fusion gene, during the pathogenesis of AML. Combined, the literature indicates that DEK is crucial for maintaining homeostasis of hematopoietic stem and progenitor cells, including myeloid progenitors.
Collapse
Affiliation(s)
- Katherine E Wilcher
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Current: Wright State University Boonshoft School of Medicine, Fairborn, OH
| | - Evan R H Page
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Lisa M Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
8
|
Morozov VM, Riva A, Sarwar S, Kim W, Li J, Zhou L, Licht JD, Daaka Y, Ishov AM. HIRA-mediated loading of histone variant H3.3 controls androgen-induced transcription by regulation of AR/BRD4 complex assembly at enhancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.536256. [PMID: 37214820 PMCID: PMC10197601 DOI: 10.1101/2023.05.08.536256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Incorporation of histone variant H3.3 comprises active territories of chromatin. Exploring the function of H3.3 in prostate cancer (PC), we found that knockout (KO) of H3.3 chaperone HIRA suppresses PC growth in vitro and in xenograft settings, deregulates androgen-induced gene expression and alters androgen receptor (AR) binding within enhancers of target genes. H3.3 affects transcription in multiple ways, including activation of p300 by phosphorylated H3.3 at Ser-31 (H3.3S31Ph), which results in H3K27 acetylation (H3K27Ac) at enhancers. In turn, H3K27Ac recruits bromodomain protein BRD4 for enhancer-promoter interaction and transcription activation. We observed that HIRA KO reduces H3.3 incorporation, diminishes H3.3S31Ph and H3K27Ac, modifies recruitment of BRD4. These results suggest that H3.3-enriched enhancer chromatin serves as a platform for H3K27Ac-mediated BRD4 recruitment, which interacts with and retains AR at enhancers, resulting in transcription reprogramming. AR KO reduced levels of H3.3 at enhancers, indicating feedback mechanism. In addition, HIRA KO deregulates glucocorticoid-driven transcription, suggesting a common H3.3/HIRA-dependent mechanism of nuclear receptors function. Expression of HIRA complex proteins is increased in PC compared with normal prostate tissue, especially in high-risk PC groups, and is associated with a negative prognosis. Collectively, our results demonstrate function of HIRA-dependent H3.3 pathway in regulation of nuclear receptors activity. Key points *H3.3 at enhancers promotes acetylation of H3K27Ac and retention of AR/BRD4 complex for transcription regulation*Knockout of H3.3 chaperone HIRA suppresses PC cells growth and deregulates androgen-induced transcription*H3.3/HIRA pathway regulates both AR and GR, suggesting a common HIRA/H3.3 mechanism of nuclear receptors function.
Collapse
|
9
|
Carraro M, Hendriks IA, Hammond CM, Solis-Mezarino V, Völker-Albert M, Elsborg JD, Weisser MB, Spanos C, Montoya G, Rappsilber J, Imhof A, Nielsen ML, Groth A. DAXX adds a de novo H3.3K9me3 deposition pathway to the histone chaperone network. Mol Cell 2023; 83:1075-1092.e9. [PMID: 36868228 PMCID: PMC10114496 DOI: 10.1016/j.molcel.2023.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 03/05/2023]
Abstract
A multitude of histone chaperones are required to support histones from their biosynthesis until DNA deposition. They cooperate through the formation of histone co-chaperone complexes, but the crosstalk between nucleosome assembly pathways remains enigmatic. Using exploratory interactomics, we define the interplay between human histone H3-H4 chaperones in the histone chaperone network. We identify previously uncharacterized histone-dependent complexes and predict the structure of the ASF1 and SPT2 co-chaperone complex, expanding the role of ASF1 in histone dynamics. We show that DAXX provides a unique functionality to the histone chaperone network, recruiting histone methyltransferases to promote H3K9me3 catalysis on new histone H3.3-H4 prior to deposition onto DNA. Hereby, DAXX provides a molecular mechanism for de novo H3K9me3 deposition and heterochromatin assembly. Collectively, our findings provide a framework for understanding how cells orchestrate histone supply and employ targeted deposition of modified histones to underpin specialized chromatin states.
Collapse
Affiliation(s)
- Massimo Carraro
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colin M Hammond
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | - Jonas D Elsborg
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie B Weisser
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Axel Imhof
- EpiQMAx GmbH, Planegg, Germany; Faculty of Medicine, Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Albright ER, Walter RM, Saffert RT, Kalejta RF. NFκB and Cyclic AMP Response Element Sites Mediate the Valproic Acid and UL138 Responsiveness of the Human Cytomegalovirus Major Immediate Early Enhancer and Promoter. J Virol 2023; 97:e0002923. [PMID: 36856444 PMCID: PMC10062163 DOI: 10.1128/jvi.00029-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
The major immediate early enhancer and promoter (MIEP) of human cytomegalovirus (HCMV) drives the transcription of the immediate early one (IE1) and IE2 genes, whose encoded proteins stimulate productive, lytic replication. The MIEP is activated by the virally encoded and tegument-delivered pp71 protein at the start of de novo lytic infections of fully differentiated cells. Conversely, the MIEP is silenced at the start of de novo latent infections within incompletely differentiated myeloid cells in part because tegument-delivered pp71 is sequestered in the cytoplasm in these cells, but also by viral factors that repress transcription from this locus, including the UL138 protein. During both modes of infection, MIEP activity can be increased by the histone deacetylase inhibitor valproic acid (VPA); however, UL138 inhibits the VPA-responsiveness of the MIEP. Here, we show that two families of cellular transcription factors, NF-κB and cAMP response element-binding protein (CREB), together control the VPA-mediated activation and UL138-mediated repression of the HCMV MIEP. IMPORTANCE Artificial regulation of the HCMV MIEP, either activation or repression, is an attractive potential means to target the latent reservoirs of virus for which there is currently no available intervention. The MIEP could be repressed to prevent latency reactivation or induced to drive the virus into the lytic stage that is visible to the immune system and inhibited by multiple small-molecule antiviral drugs. Understanding how the MIEP is regulated is a critical part of designing and implementing either strategy. Our revelation here that NF-κB and CREB control the responsiveness of the MIEP to the viral UL138 protein and the FDA-approved drug VPA could help in the formulation and execution of promoter regulatory strategies against latent HCMV.
Collapse
Affiliation(s)
- Emily R. Albright
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan M. Walter
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan T. Saffert
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert F. Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Greene AN, Solomon MB, Privette Vinnedge LM. Novel molecular mechanisms in Alzheimer's disease: The potential role of DEK in disease pathogenesis. Front Aging Neurosci 2022; 14:1018180. [PMID: 36275000 PMCID: PMC9582447 DOI: 10.3389/fnagi.2022.1018180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease and age-related dementias (AD/ADRD) are debilitating diseases that exact a significant physical, emotional, cognitive, and financial toll on the individual and their social network. While genetic risk factors for early-onset AD have been identified, the molecular and genetic drivers of late-onset AD, the most common subtype, remain a mystery. Current treatment options are limited for the 35 million people in the United States with AD/ADRD. Thus, it is critically important to identify novel molecular mechanisms of dementia-related pathology that may be targets for the development of new interventions. Here, we summarize the overarching concepts regarding AD/ADRD pathogenesis. Then, we highlight one potential molecular driver of AD/ADRD, the chromatin remodeling protein DEK. We discuss in vitro, in vivo, and ex vivo findings, from our group and others, that link DEK loss with the cellular, molecular, and behavioral signatures of AD/ADRD. These include associations between DEK loss and cellular and molecular hallmarks of AD/ADRD, including apoptosis, Tau expression, and Tau hyperphosphorylation. We also briefly discuss work that suggests sex-specific differences in the role of DEK in AD/ADRD pathogenesis. Finally, we discuss future directions for exploiting the DEK protein as a novel player and potential therapeutic target for the treatment of AD/ADRD.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Psychology, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
Ishikura S, Yoshida K, Tsunoda T, Shirasawa S. Death domain-associated protein DAXX regulates non-coding RNA transcription at the centromere through the transcription regulator ZFAT. J Biol Chem 2022; 298:102528. [PMID: 36162510 PMCID: PMC9579039 DOI: 10.1016/j.jbc.2022.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/27/2022] Open
Abstract
The centromere is an essential chromosomal structure for faithful chromosome segregation during cell division. No protein-coding genes exist at the centromeres, but centromeric DNA is actively transcribed into noncoding RNA (ncRNA). This centromeric transcription and its ncRNA products play important roles in centromere functions. We previously reported that the transcriptional regulator ZFAT (zinc-finger protein with AT hook) plays a pivotal role in ncRNA transcription at the centromere; however, it was unclear how ZFAT involvement was regulated. Here, we show that the death domain–associated protein (DAXX) promotes centromeric localization of ZFAT to regulate ncRNA transcription at the centromere. Coimmunoprecipitation analysis of endogenous proteins clearly reveals that DAXX interacts with ZFAT. In addition, we show that ectopic coexpression of ZFAT with DAXX increases the centromeric levels of both ZFAT and ncRNA, compared with ectopic expression of ZFAT alone. On the other hand, we found that siRNA-mediated depletion of DAXX decreases the centromeric levels of both ZFAT and ncRNA in cells ectopically expressing ZFAT. These results suggest that DAXX promotes the centromeric localization of ZFAT and ZFAT-regulated centromeric ncRNA transcription. Furthermore, we demonstrate that depletion of endogenous DAXX protein is sufficient to cause a decrease in the ncRNA levels at the centromeres of chromosomes 17 and X in which ZFAT regulates the transcription, indicating a physiological significance of DAXX in ZFAT-regulated centromeric ncRNA transcription. Taken together, these results demonstrate that DAXX regulates centromeric ncRNA transcription through ZFAT.
Collapse
Affiliation(s)
- Shuhei Ishikura
- Department of Cell Biology, Faculty of Medicine; Research institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazumasa Yoshida
- Department of Cell Biology, Faculty of Medicine; Research institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine; Research institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine; Research institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan.
| |
Collapse
|
13
|
Greene AN, Nguyen ET, Paranjpe A, Lane A, Privette Vinnedge LM, Solomon MB. In silico gene expression and pathway analysis of DEK in the human brain across the lifespan. Eur J Neurosci 2022; 56:4720-4743. [PMID: 35972263 PMCID: PMC9730547 DOI: 10.1111/ejn.15791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
DEK, a chromatin-remodelling phosphoprotein, is associated with various functions and biological pathways in the periphery, including inflammation, oncogenesis, DNA repair, and transcriptional regulation. We recently identified an association between DEK loss and central nervous system diseases, such as Alzheimer's. To understand DEK's potential role in disease, it is critical to characterize DEK in healthy human brain to distinguish between neural DEK expression and function in healthy versus diseased states like dementia. We utilized two public databases, BrainCloud and Human Brain Transcriptome, and analysed DEK mRNA expression across the lifespan in learning and memory relevant brain regions. Since DEK loss induces phenotypes associated with brain ageing (e.g., DNA damage and apoptosis), we hypothesized that neural DEK expression may be highest during foetal development and lower in elderly individuals. In agreement with this hypothesis, DEK was most prominently expressed during foetal development in all queried forebrain areas, relative to other ages. Consistent with its roles in the periphery, pathways related to DEK in the brain were associated with cellular proliferation, DNA replication and repair, apoptosis, and inflammation. We also found novel neural development-relevant pathways (e.g., synaptic transmission, neurite outgrowth, and myelination) to be enriched from genes correlated with DEK expression. These findings suggest that DEK is important for human brain development. Overall, we highlight age-related changes in neural DEK expression across the human lifespan and illuminate novel biological pathways associated with DEK that are distinct from normal brain ageing. These findings may further our understanding of how DEK impacts brain function and disease susceptibility.
Collapse
Affiliation(s)
- Allie N. Greene
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45267
| | | | - Aditi Paranjpe
- Division of Biomedical Informatics, Bioinformatics Collaborative Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Lisa M. Privette Vinnedge
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Matia B. Solomon
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA 45267
- Department of Psychology, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
14
|
Lai CY, Hsieh MC, Yeh CM, Yang PS, Cheng JK, Wang HH, Lin KH, Nie ST, Lin TB, Peng HY. MicroRNA-489-3p attenuates neuropathic allodynia by regulating oncoprotein DEK/TET1-dependent epigenetic modification in the dorsal horn. Neuropharmacology 2022; 210:109028. [PMID: 35304174 DOI: 10.1016/j.neuropharm.2022.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Originally characterized as an oncoprotein overexpressed in many forms of cancer that participates in numerous cellular pathways, DEK has since been well described regarding the regulation of epigenetic markers and transcription factors in neurons. However, its role in neuropathic allodynia processes remain elusive and intriguingly complex. Here, we show that DEK, which is induced in spinal dorsal horn neurons after spinal nerve ligation (SNL), is regulated by miR-489-3p. Moreover, SNL-induced decrease in miR-489-3p expression increased the expression of DEK, which recruited TET1 to the promoter fragments of the Bdnf, Grm5, and Stat3 genes, thereby enhancing their transcription in the dorsal horn. Remarkably, these effects were also induced by intrathecally administering naïve animals with miR-489-3p inhibitor, which could be inhibited by knockdown of TET1 siRNA or DEK siRNA. Conversely, delivery of intrathecal miR-489-3p-mimic into SNL rats attenuated allodynia behavior and reversed protein expression coupled to the promoter segments in the dorsal horn. Thus, a spinal miR-489-3p/DEK/TET1 transcriptional axis may contribute to neuropathic allodynia. These results may provide a new target for treating neuropathic allodynia.
Collapse
Affiliation(s)
- Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan
| | - Po-Sheng Yang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao-Tong Nie
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| |
Collapse
|
15
|
Impact of Chromatin Dynamics and DNA Repair on Genomic Stability and Treatment Resistance in Pediatric High-Grade Gliomas. Cancers (Basel) 2021; 13:cancers13225678. [PMID: 34830833 PMCID: PMC8616465 DOI: 10.3390/cancers13225678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pediatric high-grade gliomas (pHGGs) are the leading cause of mortality in pediatric neuro-oncology, due in great part to treatment resistance driven by complex DNA repair mechanisms. pHGGs have recently been divided into molecular subtypes based on mutations affecting the N-terminal tail of the histone variant H3.3 and the ATRX/DAXX histone chaperone that deposits H3.3 at repetitive heterochromatin loci that are of paramount importance to the stability of our genome. This review addresses the functions of H3.3 and ATRX/DAXX in chromatin dynamics and DNA repair, as well as the impact of mutations affecting H3.3/ATRX/DAXX on treatment resistance and how the vulnerabilities they expose could foster novel therapeutic strategies. Abstract Despite their low incidence, pediatric high-grade gliomas (pHGGs), including diffuse intrinsic pontine gliomas (DIPGs), are the leading cause of mortality in pediatric neuro-oncology. Recurrent, mutually exclusive mutations affecting K27 (K27M) and G34 (G34R/V) in the N-terminal tail of histones H3.3 and H3.1 act as key biological drivers of pHGGs. Notably, mutations in H3.3 are frequently associated with mutations affecting ATRX and DAXX, which encode a chaperone complex that deposits H3.3 into heterochromatic regions, including telomeres. The K27M and G34R/V mutations lead to distinct epigenetic reprogramming, telomere maintenance mechanisms, and oncogenesis scenarios, resulting in distinct subgroups of patients characterized by differences in tumor localization, clinical outcome, as well as concurrent epigenetic and genetic alterations. Contrasting with our understanding of the molecular biology of pHGGs, there has been little improvement in the treatment of pHGGs, with the current mainstays of therapy—genotoxic chemotherapy and ionizing radiation (IR)—facing the development of tumor resistance driven by complex DNA repair pathways. Chromatin and nucleosome dynamics constitute important modulators of the DNA damage response (DDR). Here, we summarize the major DNA repair pathways that contribute to resistance to current DNA damaging agent-based therapeutic strategies and describe the telomere maintenance mechanisms encountered in pHGGs. We then review the functions of H3.3 and its chaperones in chromatin dynamics and DNA repair, as well as examining the impact of their mutation/alteration on these processes. Finally, we discuss potential strategies targeting DNA repair and epigenetic mechanisms as well as telomere maintenance mechanisms, to improve the treatment of pHGGs.
Collapse
|
16
|
Cavalcante SG, Pereira BJA, Lerario AM, Sola PR, Oba-Shinjo SM, Marie SKN. The chromatin remodeler complex ATRX-DAXX-H3.3 and telomere length in meningiomas. Clin Neurol Neurosurg 2021; 210:106962. [PMID: 34624827 DOI: 10.1016/j.clineuro.2021.106962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
ATRX-DAXX-H3.3 chromatin remodeler complex is a well known epigenetic factor responsible for the heterochromatin maintenance and control. ATRX is an important nucleosome controller, especially in tandem repeat regions, and DAXX is a multi-function protein with particular role in histone H3.3 deposition due to its chaperone characteristic. Abnormalities in this complex have been associated with telomere dysfunction and consequently with activation of alternative lengthening of telomeres mechanism, genomic instability, and tumor progression in different types of cancer. However, the characterization of this complex is still incomplete in meningioma. We analyzed ATRX, DAXX and H3.3 expressions and the telomere length in a cohort of meningioma of different malignant grades. We observed ATRX upregulation at gene and protein levels in grade II/III meningiomas. A low variability of telomere length was observed in meningiomas across different ages and malignant grades, in contrast to the shortening of telomere length with aging in normal controls.
Collapse
Affiliation(s)
- Stella G Cavalcante
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - 4º floor, room 4110, Pacaembu, São Paulo, SP, Brazil.
| | - Benedito J A Pereira
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - 4º floor, room 4110, Pacaembu, São Paulo, SP, Brazil.
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Brehm Tower, Suite 5100, SPC 5714, 1000 Wall Street, Ann Arbor, MI 48109, USA.
| | - Paula R Sola
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - 4º floor, room 4110, Pacaembu, São Paulo, SP, Brazil.
| | - Sueli M Oba-Shinjo
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - 4º floor, room 4110, Pacaembu, São Paulo, SP, Brazil.
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 - 4º floor, room 4110, Pacaembu, São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Wang Y, Wang Y, Ci X, Choi SYC, Crea F, Lin D, Wang Y. Molecular events in neuroendocrine prostate cancer development. Nat Rev Urol 2021; 18:581-596. [PMID: 34290447 PMCID: PMC10802813 DOI: 10.1038/s41585-021-00490-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer. NEPC arises de novo only rarely; the disease predominantly develops from adenocarcinoma in response to drug-induced androgen receptor signalling inhibition, although the mechanisms behind this transdifferentiation are a subject of debate. The survival of patients with NEPC is poor, and few effective treatment options are available. To improve clinical outcomes, understanding of the biology and molecular mechanisms regulating NEPC development is crucial. Various NEPC molecular drivers make temporal contributions during NEPC development, and despite the limited treatment options available, several novel targeted therapeutics are currently under research.
Collapse
Affiliation(s)
- Yong Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Xinpei Ci
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Stephen Y C Choi
- Vancouver Prostate Centre, Vancouver, BC, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Francesco Crea
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, BC, Canada.
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada.
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Guo H, Prell M, Königs H, Xu N, Waldmann T, Hermans-Sachweh B, Ferrando-May E, Lüscher B, Kappes F. Bacterial Growth Inhibition Screen (BGIS) identifies a loss-of-function mutant of the DEK oncogene, indicating DNA modulating activities of DEK in chromatin. FEBS Lett 2021; 595:1438-1453. [PMID: 33686684 DOI: 10.1002/1873-3468.14070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
The DEK oncoprotein regulates cellular chromatin function via a number of protein-protein interactions. However, the biological relevance of its unique pseudo-SAP/SAP-box domain, which transmits DNA modulating activities in vitro, remains largely speculative. As hypothesis-driven mutations failed to yield DNA-binding null (DBN) mutants, we combined random mutagenesis with the Bacterial Growth Inhibition Screen (BGIS) to overcome this bottleneck. Re-expression of a DEK-DBN mutant in newly established human DEK knockout cells failed to reduce the increase in nuclear size as compared to wild type, indicating roles for DEK-DNA interactions in cellular chromatin organization. Our results extend the functional roles of DEK in metazoan chromatin and highlight the predictive ability of recombinant protein toxicity in E. coli for unbiased studies of eukaryotic DNA modulating protein domains.
Collapse
Affiliation(s)
- Haihong Guo
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Malte Prell
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Hiltrud Königs
- Institute of Pathology, Medical School, RWTH Aachen University, Germany
| | - Nengwei Xu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou Industrial Park, China
| | - Tanja Waldmann
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Germany
| | | | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, Germany
| | - Bernhard Lüscher
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
| | - Ferdinand Kappes
- Institute for Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Germany
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Dushu Lake Higher Education Town, Suzhou Industrial Park, China
| |
Collapse
|
19
|
Cabral JM, Cushman CH, Sodroski CN, Knipe DM. ATRX limits the accessibility of histone H3-occupied HSV genomes during lytic infection. PLoS Pathog 2021; 17:e1009567. [PMID: 33909709 PMCID: PMC8109836 DOI: 10.1371/journal.ppat.1009567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/10/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Histones are rapidly loaded on the HSV genome upon entry into the nucleus of human fibroblasts, but the effects of histone loading on viral replication have not been fully defined. We showed recently that ATRX is dispensable for de novo deposition of H3 to HSV genomes after nuclear entry but restricted infection through maintenance of viral heterochromatin. To further investigate the roles that ATRX and other histone H3 chaperones play in restriction of HSV, we infected human fibroblasts that were systematically depleted of nuclear H3 chaperones. We found that the ATRX/DAXX complex is unique among nuclear H3 chaperones in its capacity to restrict ICP0-null HSV infection. Only depletion of ATRX significantly alleviated restriction of viral replication. Interestingly, no individual nuclear H3 chaperone was required for deposition of H3 onto input viral genomes, suggesting that during lytic infection, H3 deposition may occur through multiple pathways. ChIP-seq for total histone H3 in control and ATRX-KO cells infected with ICP0-null HSV showed that HSV DNA is loaded with high levels of histones across the entire viral genome. Despite high levels of H3, ATAC-seq analysis revealed that HSV DNA is highly accessible, especially in regions of high GC content, and is not organized largely into ordered nucleosomes during lytic infection. ATRX reduced accessibility of viral DNA to the activity of a TN5 transposase and enhanced accumulation of viral DNA fragment sizes associated with nucleosome-like structures. Together, these findings support a model in which ATRX restricts viral infection by altering the structure of histone H3-loaded viral chromatin that reduces viral DNA accessibility for transcription. High GC rich regions of the HSV genome, especially the S component inverted repeats of the HSV-1 genome, show increased accessibility, which may lead to increased ability to transcribe the IE genes encoded in these regions during initiation of infection.
Collapse
Affiliation(s)
- Joseph M. Cabral
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Camille H. Cushman
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Catherine N. Sodroski
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David M. Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Abstract
Eukaryotic gene expression is regulated not only by genomic enhancers and promoters, but also by covalent modifications added to both chromatin and RNAs. Whereas cellular gene expression may be either enhanced or inhibited by specific epigenetic modifications deposited on histones (in particular, histone H3), these epigenetic modifications can also repress viral gene expression, potentially functioning as a potent antiviral innate immune response in DNA virus-infected cells. However, viruses have evolved countermeasures that prevent the epigenetic silencing of their genes during lytic replication, and they can also take advantage of epigenetic silencing to establish latent infections. By contrast, the various covalent modifications added to RNAs, termed epitranscriptomic modifications, can positively regulate mRNA translation and/or stability, and both DNA and RNA viruses have evolved to utilize epitranscriptomic modifications as a means to maximize viral gene expression. As a consequence, both chromatin and RNA modifications could serve as novel targets for the development of antivirals. In this Review, we discuss how host epigenetic and epitranscriptomic processes regulate viral gene expression at the levels of chromatin and RNA function, respectively, and explore how viruses modify, avoid or utilize these processes in order to regulate viral gene expression.
Collapse
|
21
|
Mahmud I, Liao D. DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res 2019; 47:7734-7752. [PMID: 31350900 PMCID: PMC6735914 DOI: 10.1093/nar/gkz634] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
DAXX displays complex biological functions. Remarkably, DAXX overexpression is a common feature in diverse cancers, which correlates with tumorigenesis, disease progression and treatment resistance. Structurally, DAXX is modular with an N-terminal helical bundle, a docking site for many DAXX interactors (e.g. p53 and ATRX). DAXX's central region folds with the H3.3/H4 dimer, providing a H3.3-specific chaperoning function. DAXX has two functionally critical SUMO-interacting motifs. These modules are connected by disordered regions. DAXX's structural features provide a framework for deciphering how DAXX mechanistically imparts its functions and how its activity is regulated. DAXX modulates transcription through binding to transcription factors, epigenetic modifiers, and chromatin remodelers. DAXX's localization in the PML nuclear bodies also plays roles in transcriptional regulation. DAXX-regulated genes are likely important effectors of its biological functions. Deposition of H3.3 and its interactions with epigenetic modifiers are likely key events for DAXX to regulate transcription, DNA repair, and viral infection. Interactions between DAXX and its partners directly impact apoptosis and cell signaling. DAXX's activity is regulated by posttranslational modifications and ubiquitin-dependent degradation. Notably, the tumor suppressor SPOP promotes DAXX degradation in phase-separated droplets. We summarize here our current understanding of DAXX's complex functions with a focus on how it promotes oncogenesis.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| |
Collapse
|
22
|
Cavalcante SG, Silva CPN, Sola PR, Tanaka LY, Oba-Shinjo SM, Marie SKN. ATRX-DAXX Complex Expression Levels and Telomere Length in Normal Young and Elder Autopsy Human Brains. DNA Cell Biol 2019; 38:955-961. [PMID: 31361513 DOI: 10.1089/dna.2019.4752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The chromatin-remodeling complex ATRX/DAXX is one of the major epigenetic factors that controls heterochromatin maintenance due to its role in histone deposition. ATRX is involved in nucleosome configuration and maintenance of higher order chromatin structure, and DAXX is a specific histone chaperone for H3.3 deposition. Dysfunctions in this complex have been associated with telomere shortening, which influences cell senescence. However, data about this complex in brain tissue related to aging are still scarce. Therefore, in the present study, we analyzed ATRX and DAXX expressions in autopsied human brain specimens and the telomere length. A significant decrease in gene and protein expressions was observed in the brain tissues from the elderly compared with those from the young, which were related to short telomeres. These findings may motivate further functional analysis to confirm the ATRX-DAXX complex involvement in telomere maintenance and brain aging.
Collapse
Affiliation(s)
- Stella G Cavalcante
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Clarisse P N Silva
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Paula R Sola
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Y Tanaka
- Vascular Biology Laboratory, Faculdade de Medicina FMUSP, Heart Institute (InCor), Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sueli M Oba-Shinjo
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology, LIM 15, Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
23
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
24
|
Shi Y, Jin J, Wang X, Ji W, Guan X. DAXX, as a Tumor Suppressor, Impacts DNA Damage Repair and Sensitizes BRCA-Proficient TNBC Cells to PARP Inhibitors. Neoplasia 2019; 21:533-544. [PMID: 31029033 PMCID: PMC6484230 DOI: 10.1016/j.neo.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Treatment options are limited for patients with triple negative breast cancer (TNBC). Understanding genes that participate in cancer progression and DNA damage response (DDR) may improve therapeutic strategies for TNBC. DAXX, a death domain-associated protein, has been reported to be critically involved in cancer progression and drug sensitivity in multiple cancer types. However, its role in breast cancer, especially for TNBC, remains unclear. Here, we demonstrated a tumor suppressor function of DAXX in TNBC proliferation, colony formation, and migration. In Mouse Xenograft Models, DAXX remarkably inhibited tumorigenicity of TNBC cells. Mechanistically, DAXX could directly bind to the promoter region of RAD51 and impede DNA damage repair, which impacted the protection mechanism of tumor cells that much depended on remaining DDR pathways for cell growth. Furthermore, DAXX-mediated inefficient DNA damage repair could sensitize BRCA-proficient TNBC cells to PARP inhibitors. Additionally, we identified that dual RAD51 and PARP inhibition with RI-1 and ABT888 significantly reduced TNBC growth both in vitro and in vivo, which provided the first evidence of combining RAD51 and PARP inhibition in BRCA-proficient TNBC. In conclusion, our data support DAXX as a modulator of DNA damage repair and suppressor of TNBC progression to sensitize tumors to the PARP inhibitor by repressing RAD51 functions. These provide an effective strategy for a better application of PARP inhibition in the treatment of TNBC.
Collapse
Affiliation(s)
- Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Juan Jin
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Xin Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Wenfei Ji
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China.
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
25
|
Song YS, Park YJ. Genomic Characterization of Differentiated Thyroid Carcinoma. Endocrinol Metab (Seoul) 2019; 34:1-10. [PMID: 30912334 PMCID: PMC6435845 DOI: 10.3803/enm.2019.34.1.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Since the release of The Cancer Genome Atlas study of papillary thyroid carcinoma (PTC) in 2014, additional genomic studies of differentiated thyroid carcinoma (DTC) using massively-parallel sequencing (MPS) have been published. Recent advances in MPS technology have started to provide important insights into the molecular pathogenesis of DTC. In the genomic landscape, the most recurrently altered genes in DTC, which has a low mutational burden relative to other cancers, are BRAF, RAS, and fusion genes. Some novel driver candidates also have been identified. The frequency of these genomic alterations varies across the subtypes of DTC (classical PTC, follicular variant of PTC, and follicular thyroid carcinoma). Telomerase reverse transcriptase (TERT) promoter mutations are the alteration that makes the most important contribution to the progression of DTC. In the transcriptomic landscape, DTC can be classified according to its gene expression profile, and each subtype has a distinct mutational profile, intracellular signaling output, and clinicopathological characteristics. Herein, we review the results of genomic studies using MPS technology, and describe the types and frequencies of genomic alterations according to histological classifications of DTC and the characteristics and significance of the gene expression signatures of DTC.
Collapse
Affiliation(s)
- Young Shin Song
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
26
|
Mendes A, Fahrenkrog B. NUP214 in Leukemia: It's More than Transport. Cells 2019; 8:cells8010076. [PMID: 30669574 PMCID: PMC6356203 DOI: 10.3390/cells8010076] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
NUP214 is a component of the nuclear pore complex (NPC) with a key role in protein and mRNA nuclear export. Chromosomal translocations involving the NUP214 locus are recurrent in acute leukemia and frequently fuse the C-terminal region of NUP214 with SET and DEK, two chromatin remodeling proteins with roles in transcription regulation. SET-NUP214 and DEK-NUP214 fusion proteins disrupt protein nuclear export by inhibition of the nuclear export receptor CRM1, which results in the aberrant accumulation of CRM1 protein cargoes in the nucleus. SET-NUP214 is primarily associated with acute lymphoblastic leukemia (ALL), whereas DEK-NUP214 exclusively results in acute myeloid leukemia (AML), indicating different leukemogenic driver mechanisms. Secondary mutations in leukemic blasts may contribute to the different leukemia outcomes. Additional layers of complexity arise from the respective functions of SET and DEK in transcription regulation and chromatin remodeling, which may drive malignant hematopoietic transformation more towards ALL or AML. Another, less frequent fusion protein involving the C terminus of NUP214 results in the sequestosome-1 (SQSTM1)-NUP214 chimera, which was detected in ALL. SQSTM1 is a ubiquitin-binding protein required for proper autophagy induction, linking the NUP214 fusion protein to yet another cellular mechanism. The scope of this review is to summarize the general features of NUP214-related leukemia and discuss how distinct chromosomal translocation partners can influence the cellular effects of NUP214 fusion proteins in leukemia.
Collapse
Affiliation(s)
- Adélia Mendes
- Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
27
|
E1B-55K-Mediated Regulation of RNF4 SUMO-Targeted Ubiquitin Ligase Promotes Human Adenovirus Gene Expression. J Virol 2018; 92:JVI.00164-18. [PMID: 29695423 DOI: 10.1128/jvi.00164-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 01/26/2023] Open
Abstract
Human adenovirus (HAdV) E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in nonpermissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established. RNF4, a cellular SUMO-targeted ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNA interference resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies.IMPORTANCE Daxx is a PML-NB-associated transcription factor that was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain a productive viral life cycle, HAdV E1B-55K early viral protein inhibits the chromatin-remodeling factor Daxx in a SUMO-dependent manner. In addition, viral E1B-55K protein recruits the STUbL RNF4 and sequesters it into the insoluble fraction of the infected cell. E1B-55K promotes complex formation between RNF4- and E1B-55K-targeted Daxx protein, supporting Daxx posttranslational modification prior to functional inhibition. Hence, RNF4 represents a novel host factor that is beneficial for HAdV gene expression by supporting Daxx counteraction. In this regard, RNF4 and other STUbL proteins might represent novel targets for therapeutic intervention.
Collapse
|
28
|
Ko TY, Kim JI, Park ES, Mun JM, Park SD. The Clinical Implications of Death Domain-Associated Protein (DAXX) Expression. THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2018; 51:187-194. [PMID: 29854663 PMCID: PMC5973215 DOI: 10.5090/kjtcs.2018.51.3.187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 01/10/2023]
Abstract
Background Death domain-associated protein (DAXX), originally identified as a pro-apoptotic protein, is now understood to be either a pro-apoptotic or an anti-apoptotic factor with a chromatin remodeler, depending on the cell type and context. This study evaluated DAXX expression and its clinical implications in squamous cell carcinoma of the esophagus. Methods Paraffin-embedded tissues from 60 cases of esophageal squamous carcinoma were analyzed immunohistochemically. An immune reaction with more than 10% of tumor cells was interpreted as positive. Positive reactions were sorted into 2 groups: reactions in 11%–50% of tumor cells and reactions in more than 51% of tumor cells, and the correlations between expression and survival and clinical prognosticators were analyzed. Results Forty-three of the 60 cases (71.7%) showed strong nuclear DAXX expression, among which 19 cases showed a positive reaction (31.7%) in 11%–50% of tumor cells, and 24 cases (40.0%) showed a positive reaction in more than 51% of tumor cells. A negative reaction was found in 17 cases (28.3%). These patterns of immunostaining were significantly associated with the N stage (p=0.005) and American Joint Committee on Cancer stage (p=0.001), but overall survival showed no significant difference. There were no correlations of DAXX expression with age, gender, or T stage. However, in stage IIB (p=0.046) and stage IV (p=0.014) disease, DAXX expression was significantly correlated with survival. Conclusion This investigation found upregulation of DAXX in esophageal cancer, with a 71.7% expression rate. DAXX immunostaining could be used in clinical practice to predict aggressive tumors with lymph node metastasis in advanced-stage disease, especially in stages IIB and IV.
Collapse
Affiliation(s)
- Taek Yong Ko
- Department of Thoracic and Cardiovascular Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine
| | - Jong In Kim
- Department of Thoracic and Cardiovascular Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine
| | - Eok Sung Park
- Department of Thoracic and Cardiovascular Surgery, Haeundae Bumin Hospital
| | - Jeong Min Mun
- Department of Thoracic and Cardiovascular Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine
| | - Sung Dal Park
- Department of Thoracic and Cardiovascular Surgery, Kosin University Gospel Hospital, Kosin University College of Medicine
| |
Collapse
|
29
|
Mechanisms of Host IFI16, PML, and Daxx Protein Restriction of Herpes Simplex Virus 1 Replication. J Virol 2018; 92:JVI.00057-18. [PMID: 29491153 DOI: 10.1128/jvi.00057-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/16/2018] [Indexed: 02/06/2023] Open
Abstract
The initial events after DNA virus infection involve a race between epigenetic silencing of the incoming viral DNA by host cell factors and expression of viral genes. Several host gene products, including the nuclear domain 10 (ND10) components PML (promyelocytic leukemia) and Daxx (death domain-associated protein 6), as well as IFI16 (interferon-inducible protein 16), have been shown to restrict herpes simplex virus 1 (HSV-1) replication. Whether IFI16 and ND10 components work together or separately to restrict HSV-1 replication is not known. To determine the combinatorial effects of IFI16 and ND10 proteins on viral infection, we depleted Daxx or PML in primary human foreskin fibroblasts (HFFs) in the presence or absence of IFI16. Daxx or IFI16 depletion resulted in higher ICP0 mutant viral yields, and the effects were additive. Surprisingly, small interfering RNA (siRNA) depletion of PML in the HFF cells led to decreased ICP0-null virus replication, while short hairpin RNA (shRNA) depletion led to increased ICP0-null virus replication, arguing that different PML isoforms or PML-related proteins may have restrictive or proviral functions. In normal human cells, viral DNA replication increases expression of all classes of HSV-1 genes. We observed that IFI16 repressed transcription from both parental and progeny DNA genomes. Taken together, our results show that the mechanisms of action of IFI16 and ND10 proteins are independent, at least in part, and that IFI16 exerts restrictive effects on both input and replicated viral genomes. These results raise the potential for distinct mechanisms of action of IFI16 on parental and progeny viral DNA molecules.IMPORTANCE Many human DNA viruses transcribe their genomes and replicate in the nucleus of a host cell, where they exploit the host cell nuclear machinery for their own replication. Host factors attempt to restrict viral replication by blocking such events, and viruses have evolved mechanisms to neutralize the host restriction factors. In this study, we provide information about the mechanisms of action of three host cell factors that restrict replication of herpes simplex virus (HSV). We found that these factors function independently and that one acts to restrict viral transcription from parental and progeny viral DNA genomes. These results provide new information about how cells counter DNA virus replication in the nucleus and provide possible approaches to enhance the ability of human cells to resist HSV infection.
Collapse
|
30
|
Smith EA, Krumpelbeck EF, Jegga AG, Greis KD, Ali AM, Meetei AR, Wells SI. The nuclear DEK interactome supports multi-functionality. Proteins 2018; 86:88-97. [PMID: 29082557 PMCID: PMC5730476 DOI: 10.1002/prot.25411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023]
Abstract
DEK is an oncoprotein that is overexpressed in many forms of cancer and participates in numerous cellular pathways. Of these different pathways, relevant interacting partners and functions of DEK are well described in regard to the regulation of chromatin structure, epigenetic marks, and transcription. Most of this understanding was derived by investigating DNA-binding and chromatin processing capabilities of the oncoprotein. To facilitate the generation of mechanism-driven hypotheses regarding DEK activities in underexplored areas, we have developed the first DEK interactome model using tandem-affinity purification and mass spectrometry. With this approach, we identify IMPDH2, DDX21, and RPL7a as novel DEK binding partners, hinting at new roles for the oncogene in de novo nucleotide biosynthesis and ribosome formation. Additionally, a hydroxyurea-specific interaction with replication protein A (RPA) was observed, suggesting that a DEK-RPA complex may form in response to DNA replication fork stalling. Taken together, these findings highlight diverse activities for DEK across cellular pathways and support a model wherein this molecule performs a plethora of functions.
Collapse
Affiliation(s)
- Eric A. Smith
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Eric F. Krumpelbeck
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45219, USA
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine; Cincinnati, OH 45219, USA
| | - Abdullah M. Ali
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Amom R. Meetei
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| | - Susanne I. Wells
- Department of Oncology; Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, 45219; USA
| |
Collapse
|
31
|
Hoelper D, Huang H, Jain AY, Patel DJ, Lewis PW. Structural and mechanistic insights into ATRX-dependent and -independent functions of the histone chaperone DAXX. Nat Commun 2017; 8:1193. [PMID: 29084956 PMCID: PMC5662737 DOI: 10.1038/s41467-017-01206-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
The ATRX-DAXX histone chaperone complex incorporates the histone variant H3.3 at heterochromatic regions in a replication-independent manner. Here, we present a high-resolution x-ray crystal structure of an interaction surface between ATRX and DAXX. We use single amino acid substitutions in DAXX that abrogate formation of the complex to explore ATRX-dependent and ATRX-independent functions of DAXX. We find that the repression of specific murine endogenous retroviruses is dependent on DAXX, but not on ATRX. In support, we reveal the existence of two biochemically distinct DAXX-containing complexes: the ATRX-DAXX complex involved in gene repression and telomere chromatin structure, and a DAXX-SETDB1-KAP1-HDAC1 complex that represses endogenous retroviruses independently of ATRX and H3.3 incorporation into chromatin. We find that histone H3.3 stabilizes DAXX protein levels and can affect DAXX-regulated gene expression without incorporation into nucleosomes. Our study demonstrates a nucleosome-independent function for the H3.3 histone variant.
Collapse
Affiliation(s)
- Dominik Hoelper
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA
| | - Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
- Department of Biology, South University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Aayushi Y Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA.
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, 53715, USA.
| |
Collapse
|
32
|
Ashley CL, Glass MS, Abendroth A, McSharry BP, Slobedman B. Nuclear domain 10 components upregulated via interferon during human cytomegalovirus infection potently regulate viral infection. J Gen Virol 2017; 98:1795-1805. [PMID: 28745271 DOI: 10.1099/jgv.0.000858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that causes life-threatening disease in immunocompromised and immunonaïve individuals. Type I interferons (IFNs) are crucial molecules in the innate immune response to HCMV and are also known to upregulate several components of the interchromosomal multiprotein aggregates collectively referred to as nuclear domain 10 (ND10). In the context of herpesvirus infection, ND10 components are known to restrict gene expression. This raises the question as to whether key ND10 components (PML, Sp100 and hDaxx) act as anti-viral IFN-stimulated genes (ISGs) during HCMV infection. In this study, analysis of ND10 component transcription during HCMV infection demonstrated that PML and Sp100 were significantly upregulated whilst hDaxx expression remained unchanged. In cells engineered to block the production of, or response to, type I IFNs, upregulation of PML and Sp100 was not detected during HCMV infection. Furthermore, pre-treatment with an IFN-β neutralizing antibody inhibited upregulation of PML and Sp100 during both infection and treatment with HCMV-infected cell supernatant. The significance of ND10 components functioning as anti-viral ISGs during HCMV infection was determined through knockdown of PML, Sp100 and hDaxx. ND10 knockdown cells were significantly more permissive to HCMV infection, as previously described but, in contrast to control cells, could support HCMV plaque formation following IFN-β pre-treatment. This ability of HCMV to overcome the potently anti-viral effects of IFN-β in ND10 expression deficient cells provides evidence that ND10 component upregulation is a key mediator of the anti-viral activity of IFN-β.
Collapse
Affiliation(s)
- Caroline L Ashley
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Mandy S Glass
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Garscube Campus, Glasgow, Scotland, UK
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, High Street, Paisley, Scotland, UK
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Brian P McSharry
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
33
|
Shi L, Wen H, Shi X. The Histone Variant H3.3 in Transcriptional Regulation and Human Disease. J Mol Biol 2017; 429:1934-1945. [PMID: 27894815 PMCID: PMC5446305 DOI: 10.1016/j.jmb.2016.11.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/19/2023]
Abstract
Histone proteins wrap around DNA to form nucleosomes, which further compact into the higher-order structure of chromatin. In addition to the canonical histones, there are also variant histones that often have pivotal roles in regulating chromatin dynamics and in the accessibility of the underlying DNA. H3.3 is the most common non-centromeric variant of histone H3 that differs from the canonical H3 by just 4-5 aa. Here, we discuss the current knowledge of H3.3 in transcriptional regulation and the recent discoveries and molecular mechanisms of H3.3 mutations in human cancer.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Wen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Warren C, Shechter D. Fly Fishing for Histones: Catch and Release by Histone Chaperone Intrinsically Disordered Regions and Acidic Stretches. J Mol Biol 2017; 429:2401-2426. [PMID: 28610839 DOI: 10.1016/j.jmb.2017.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/21/2023]
Abstract
Chromatin is the complex of eukaryotic DNA and proteins required for the efficient compaction of the nearly 2-meter-long human genome into a roughly 10-micron-diameter cell nucleus. The fundamental repeating unit of chromatin is the nucleosome: 147bp of DNA wrapped about an octamer of histone proteins. Nucleosomes are stable enough to organize the genome yet must be dynamically displaced and reassembled to allow access to the underlying DNA for transcription, replication, and DNA damage repair. Histone chaperones are a non-catalytic group of proteins that are central to the processes of nucleosome assembly and disassembly and thus the fluidity of the ever-changing chromatin landscape. Histone chaperones are responsible for binding the highly basic histone proteins, shielding them from non-specific interactions, facilitating their deposition onto DNA, and aiding in their eviction from DNA. Although most histone chaperones perform these common functions, recent structural studies of many different histone chaperones reveal that there are few commonalities in their folds. Importantly, sequence-based predictions show that histone chaperones are highly enriched in intrinsically disordered regions (IDRs) and acidic stretches. In this review, we focus on the molecular mechanisms underpinning histone binding, selectivity, and regulation of these highly dynamic protein regions. We highlight new evidence suggesting that IDRs are often critical for histone chaperone function and play key roles in chromatin assembly and disassembly pathways.
Collapse
Affiliation(s)
- Christopher Warren
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
35
|
Matrka MC, Watanabe M, Muraleedharan R, Lambert PF, Lane AN, Romick-Rosendale LE, Wells SI. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis. PLoS One 2017; 12:e0177952. [PMID: 28558019 PMCID: PMC5448751 DOI: 10.1371/journal.pone.0177952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.
Collapse
Affiliation(s)
- Marie C. Matrka
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Miki Watanabe
- NMR-Based Metabolomics Core Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ranjithmenon Muraleedharan
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Andrew N. Lane
- Center for Environmental Systems Biochemistry, Dept. Toxicology and Cancer Biology and Markey Cancer Center, Lexington, Kentucky, United States of America
| | - Lindsey E. Romick-Rosendale
- NMR-Based Metabolomics Core Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Susanne I. Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
36
|
Dixon CR, Platani M, Makarov AA, Schirmer EC. Microinjection of Antibodies Targeting the Lamin A/C Histone-Binding Site Blocks Mitotic Entry and Reveals Separate Chromatin Interactions with HP1, CenpB and PML. Cells 2017; 6:cells6020009. [PMID: 28346356 PMCID: PMC5492013 DOI: 10.3390/cells6020009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Lamins form a scaffold lining the nucleus that binds chromatin and contributes to spatial genome organization; however, due to the many other functions of lamins, studies knocking out or altering the lamin polymer cannot clearly distinguish between direct and indirect effects. To overcome this obstacle, we specifically targeted the mapped histone-binding site of A/C lamins by microinjecting antibodies specific to this region predicting that this would make the genome more mobile. No increase in chromatin mobility was observed; however, interestingly, injected cells failed to go through mitosis, while control antibody-injected cells did. This effect was not due to crosslinking of the lamin polymer, as Fab fragments also blocked mitosis. The lack of genome mobility suggested other lamin-chromatin interactions. To determine what these might be, mini-lamin A constructs were expressed with or without the histone-binding site that assembled into independent intranuclear structures. HP1, CenpB and PML proteins accumulated at these structures for both constructs, indicating that other sites supporting chromatin interactions exist on lamin A. Together, these results indicate that lamin A-chromatin interactions are highly redundant and more diverse than generally acknowledged and highlight the importance of trying to experimentally separate their individual functions.
Collapse
Affiliation(s)
- Charles R Dixon
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Melpomeni Platani
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Alexandr A Makarov
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
37
|
Dyer MA, Qadeer ZA, Valle-Garcia D, Bernstein E. ATRX and DAXX: Mechanisms and Mutations. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026567. [PMID: 28062559 DOI: 10.1101/cshperspect.a026567] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent genome sequencing efforts in a variety of cancers have revealed mutations and/or structural alterations in ATRX and DAXX, which together encode a complex that deposits histone variant H3.3 into repetitive heterochromatin. These regions include retrotransposons, pericentric heterochromatin, and telomeres, the latter of which show deregulation in ATRX/DAXX-mutant tumors. Interestingly, ATRX and DAXX mutations are often found in pediatric tumors, suggesting a particular developmental context in which these mutations drive disease. Here we review the functions of ATRX and DAXX in chromatin regulation as well as their potential contributions to tumorigenesis. We place emphasis on the chromatin remodeler ATRX, which is mutated in the developmental disorder for which it is named, α-thalassemia, mental retardation, X-linked syndrome, and at high frequency in a number of adult and pediatric tumors.
Collapse
Affiliation(s)
- Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Zulekha A Qadeer
- Departments of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - David Valle-Garcia
- Departments of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Emily Bernstein
- Departments of Oncological Sciences and Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
38
|
Hornig J, Choi KY, McGregor A. The essential role of guinea pig cytomegalovirus (GPCMV) IE1 and IE2 homologs in viral replication and IE1-mediated ND10 targeting. Virology 2017; 504:122-140. [PMID: 28189970 DOI: 10.1016/j.virol.2017.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/02/2023]
Abstract
Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234-474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection.
Collapse
Affiliation(s)
- Julia Hornig
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - K Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States.
| |
Collapse
|
39
|
Feng Z, Wang L, Sun Y, Jiang Z, Domsic J, An C, Xing B, Tian J, Liu X, Metz DC, Yang X, Marmorstein R, Ma X, Hua X. Menin and Daxx Interact to Suppress Neuroendocrine Tumors through Epigenetic Control of the Membrane Metallo-Endopeptidase. Cancer Res 2017; 77:401-411. [PMID: 27872097 PMCID: PMC5243199 DOI: 10.1158/0008-5472.can-16-1567] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/22/2016] [Accepted: 10/06/2016] [Indexed: 01/06/2023]
Abstract
Neuroendocrine tumors (NET) often harbor loss-of-function mutations in the MEN1 and DAXX tumor suppressor genes. Here, we report that the products of these genes, menin and Daxx, interact directly with each other to suppress the proliferation of NET cells, to a large degree by inhibiting expression of the membrane metallo-endopeptidase (MME). Menin and Daxx were required to enhance histone H3 lysine9 trimethylation (H3K9me3) at the MME promoter, as mediated partly by the histone H3 methyltransferase SUV39H1. Notably, the menin T429K mutation associated with a NET syndrome reduced Daxx binding, MME repression, and proliferation of NET cells. Conversely, inhibition of MME in NET cells repressed proliferation and tumor growth in vivo Our findings reveal a previously unappreciated cross-talk between two crucial tumor suppressor genes thought to work by independent pathways, focusing on MME as a common target of menin/Daxx to treat NET. Cancer Res; 77(2); 401-11. ©2016 AACR.
Collapse
Affiliation(s)
- Zijie Feng
- Shenzhen University College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute (AFCRI), Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lei Wang
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute (AFCRI), Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanmei Sun
- Shenzhen University College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Zongzhe Jiang
- Shenzhen University College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - John Domsic
- Abramson Family Cancer Research Institute (AFCRI), Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biochemistry and Biophysics, AFCRI, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chiying An
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute (AFCRI), Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bowen Xing
- Shenzhen University College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Jingjing Tian
- Shenzhen University College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - David C Metz
- Abramson Family Cancer Research Institute (AFCRI), Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaolu Yang
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute (AFCRI), Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute (AFCRI), Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biochemistry and Biophysics, AFCRI, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaosong Ma
- Shenzhen University College of Medicine, Medical Center and Diabetes Center, Shenzhen, China.
| | - Xianxin Hua
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
- Abramson Family Cancer Research Institute (AFCRI), Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
The Role of Nuclear Antiviral Factors against Invading DNA Viruses: The Immediate Fate of Incoming Viral Genomes. Viruses 2016; 8:v8100290. [PMID: 27782081 PMCID: PMC5086622 DOI: 10.3390/v8100290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
In recent years, it has been suggested that host cells exert intrinsic mechanisms to control nuclear replicating DNA viruses. This cellular response involves nuclear antiviral factors targeting incoming viral genomes. Herpes simplex virus-1 (HSV-1) is the best-studied model in this context, and it was shown that upon nuclear entry HSV-1 genomes are immediately targeted by components of promyelocytic leukemia nuclear bodies (PML-NBs) and the nuclear DNA sensor IFI16 (interferon gamma inducible protein 16). Based on HSV-1 studies, together with limited examples in other viral systems, these phenomena are widely believed to be a common cellular response to incoming viral genomes, although formal evidence for each virus is lacking. Indeed, recent studies suggest that the case may be different for adenovirus infection. Here we summarize the existing experimental evidence for the roles of nuclear antiviral factors against incoming viral genomes to better understand cellular responses on a virus-by-virus basis. We emphasize that cells seem to respond differently to different incoming viral genomes and discuss possible arguments for and against a unifying cellular mechanism targeting the incoming genomes of different virus families.
Collapse
|
41
|
Abstract
Telomerase activity is responsible for the maintenance of chromosome end structures (telomeres) and cancer cell immortality in most human malignancies, making telomerase an attractive therapeutic target. The rationale for targeting components of the telomerase holoenzyme has been strengthened by accumulating evidence indicating that these molecules have extra-telomeric functions in tumour cell survival and proliferation. This Review discusses current knowledge of the biogenesis, structure and multiple functions of telomerase-associated molecules intertwined with recent advances in drug discovery approaches. We also describe the fertile ground available for the pursuit of next-generation small-molecule inhibitors of telomerase.
Collapse
Affiliation(s)
- Greg M Arndt
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Karen L MacKenzie
- Personalised Medicine Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| |
Collapse
|
42
|
Age-dependent differential expression of death-associated protein 6 (Daxx) in various peripheral tissues and different brain regions of C57BL/6 male mice. Biogerontology 2016; 17:817-828. [PMID: 27465500 DOI: 10.1007/s10522-016-9651-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022]
Abstract
Death-associated protein 6 (DAXX) is a ubiquitous protein implicated in various cellular processes such as apoptosis, tumorigenesis, development and transcription. The role of DAXX is however ambiguous and many contradictory results regarding its function in apoptosis upon various cellular stresses are described in the literature. In order to have a better understanding of the role of DAXX throughout the entire organism under physiological stress conditions, we have characterized the mRNA levels, protein expression and the proteolytic processing of DAXX in the normal aging process in peripheral organs and brain regions in C57BL/6 male mice. Overall, Daxx mRNA expression decreases with aging in the liver, kidney, heart, cortex and cerebellum. In contrast, an increase is observed in the striatum. The protein expression of DAXX and of its proteolytic fragments increases with aging in the kidney, heart and cortex. In liver and spleen, no changes are observed while in the striatum and cerebellum, certain forms increase and others decrease with age, suggesting that the functions of DAXX may be cell type dependent. This study provides important details regarding the expression and post-translational modifications of DAXX in aging in the entire organism and provides reference data for the deregulation observed in age-associated diseases.
Collapse
|
43
|
Yu L, Huang X, Zhang W, Zhao H, Wu G, Lv F, Shi L, Teng Y. Critical role of DEK and its regulation in tumorigenesis and metastasis of hepatocellular carcinoma. Oncotarget 2016; 7:26844-26855. [PMID: 27057626 PMCID: PMC5042019 DOI: 10.18632/oncotarget.8565] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/01/2016] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. Therefore, it is quite essential to identify novel HCC-related molecules for the discovery of new prognostic markers and therapeutic targets. As an oncogene, DEK plays an important role in cell processes and participates in a variety of cellular metabolic functions, and its altered expression is associated with several human malignancies. However, the functional significance of DEK and the involved complex biological events in HCC development and progression are poorly understood. Here, combing the results from clinical specimens and cultured cell lines, we uncover a critical oncogenic role of DEK, which is highly expressed in HCC cells. DEK protein encompasses two isoforms (isoforms 1 and 2) and isoform 1 is the most frequently expressed DEK isoform in HCC cells. DEK depletion by using shRNA inhibited the cell proliferation and migration in vitro and suppressed tumorigenesis and metastasis in mouse models. Consistently, DEK overexpression regardless of which isoform produced the opposite effects. Further studies showed that DEK induced cell proliferation through upregulating cell cycle related CDK signaling, and promoted cell migration and EMT, at least in part, through the repression of β-catenin/E-cadherin axis. Interestingly, isoform 1 induced cell proliferation more efficiently than isoform 2, however, no functional differences existed between these two isoforms in cell migration. Together, our study indicates that DEK expression is required for tumorigenesis and metastasis of HCC, providing molecular insights for DEK-related pathogenesis and a basis for developing new strategies against HCC.
Collapse
Affiliation(s)
- Le Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Xiaobin Huang
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Wenfa Zhang
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Huakan Zhao
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Gang Wu
- Third Affiliated Hospital, Third Military Medical University, Chongqing 400044, PR China
| | - Fenglin Lv
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Yong Teng
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
44
|
Subburaju S, Coleman AJ, Ruzicka WB, Benes FM. Toward dissecting the etiology of schizophrenia: HDAC1 and DAXX regulate GAD67 expression in an in vitro hippocampal GABA neuron model. Transl Psychiatry 2016; 6:e723. [PMID: 26812044 PMCID: PMC5068889 DOI: 10.1038/tp.2015.224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia (SZ) is associated with GABA neuron dysfunction in the hippocampus, particularly the stratum oriens of sector CA3/2. A gene expression profile analysis of human postmortem hippocampal tissue followed by a network association analysis had shown a number of genes differentially regulated in SZ, including the epigenetic factors HDAC1 and DAXX. To characterize the contribution of these factors to the developmental perturbation hypothesized to underlie SZ, lentiviral vectors carrying short hairpin RNA interference (shRNAi) for HDAC1 and DAXX were used. In the hippocampal GABA neuron culture model, HiB5, transduction with HDAC1 shRNAi showed a 40% inhibition of HDAC1 mRNA and a 60% inhibition of HDAC1 protein. GAD67, a enzyme associated with GABA synthesis, was increased twofold (mRNA); the protein showed a 35% increase. The expression of DAXX, a co-repressor of HDAC1, was not influenced by HDAC1 inhibition. Transduction of HiB5 cells with DAXX shRNAi resulted in a 30% inhibition of DAXX mRNA that translated into a 90% inhibition of DAXX protein. GAD1 mRNA was upregulated fourfold, while its protein increased by ~30%. HDAC1 expression was not altered by inhibition of DAXX. However, a physical interaction between HDAC1 and DAXX was demonstrated by co-immunoprecipitation. Inhibition of HDAC1 or DAXX increased expression of egr-1, transcription factor that had previously been shown to regulate the GAD67 promoter. Our in vitro results point to a key role of both HDAC1 and DAXX in the regulation of GAD67 in GABAergic HiB5 cells, strongly suggesting that these epigenetic/transcription factors contribute to mechanisms underlying GABA cell dysfunction in SZ.
Collapse
Affiliation(s)
- S Subburaju
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - A J Coleman
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA, USA
| | - W B Ruzicka
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - F M Benes
- Program in Structural and Molecular Neuroscience, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Scherer M, Wagenknecht N, Reuter N, Stamminger T. Silencing of Human Cytomegalovirus Gene Expression Mediated by Components of PML Nuclear Bodies. EPIGENETICS - A DIFFERENT WAY OF LOOKING AT GENETICS 2016. [DOI: 10.1007/978-3-319-27186-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Svadlenka J, Brazina J, Hanzlikova H, Cermak L, Andera L. Multifunctional adaptor protein Daxx interacts with chromatin-remodelling ATPase Brg1. Biochem Biophys Rep 2015; 5:246-252. [PMID: 28955830 PMCID: PMC5600331 DOI: 10.1016/j.bbrep.2015.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 11/25/2015] [Accepted: 12/28/2015] [Indexed: 01/22/2023] Open
Abstract
Multifunctional adapter and chaperone protein Daxx participates in the regulation of a number of mainly transcription-related processes. Most notably in a complex with chromatin-remodelling ATPase ATRX, Daxx serves as a histone H3.3 chaperone at telomeric regions and certain genes. In this report we document that Daxx interacts with another chromatin-remodelling, ATPase Brg1. We confirm the Daxx-Brg1 association both in vitro and in cells and show that Daxx interacts with Brg1 in high-molecular-weight complexes. Ectopic co-expression of Daxx with Brg1 and PML could shift disperse nuclear localisation of Brg1 into PML bodies. Mapping the Daxx-Brg1 interaction revealed that Daxx preferentially binds the region between Brg1 N-terminal QLQ and HSA domains, but also weakly interacts with its C-terminal part. Brg1 interacted with both the central and N-terminal parts of Daxx. SiRNA-mediated down-regulation of Daxx in SW13 adrenal carcinoma cells markedly enhanced expression of Brg1-activated genes CD44 or SCEL, suggesting that Daxx either directly through Brg1 and/or indirectly via other factors is a negative regulator of their transcription. Our findings point to Brg1 as another chromatin-remodelling protein that might similarly, as ATRX, target Daxx to specific chromatin regions where it can carry out its chromatin- and transcription-regulating functions.
Collapse
Affiliation(s)
- Jan Svadlenka
- Institute of Molecular Genetics AS CR, Czech Republic
| | - Jan Brazina
- Institute of Molecular Genetics AS CR, Czech Republic
| | | | - Lukas Cermak
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Ladislav Andera
- Institute of Molecular Genetics AS CR, Czech Republic.,Institute of Biotechnology AS CR, Prague, Czech Republic
| |
Collapse
|
47
|
Brazina J, Svadlenka J, Macurek L, Andera L, Hodny Z, Bartek J, Hanzlikova H. DNA damage-induced regulatory interplay between DAXX, p53, ATM kinase and Wip1 phosphatase. Cell Cycle 2015; 14:375-87. [PMID: 25659035 PMCID: PMC4353233 DOI: 10.4161/15384101.2014.988019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Death domain-associated protein 6 (DAXX) is a histone chaperone, putative regulator of apoptosis and transcription, and candidate modulator of p53-mediated gene expression following DNA damage. DAXX becomes phosphorylated upon DNA damage, however regulation of this modification, and its relationship to p53 remain unclear. Here we show that in human cells exposed to ionizing radiation or genotoxic drugs etoposide and neocarzinostatin, DAXX became rapidly phosphorylated in an ATM kinase-dependent manner. Our deletion and site-directed mutagenesis experiments identified Serine 564 (S564) as the dominant ATM-targeted site of DAXX, and immunofluorescence experiments revealed localization of S564-phosphorylated DAXX to PML nuclear bodies. Furthermore, using a panel of human cell types, we identified the p53-regulated Wip1 protein phosphatase as a key negative regulator of DAXX phosphorylation at S564, both in vitro and in cells. Consistent with the emerging oncogenic role of Wip1, its DAXX-dephosphorylating impact was most apparent in cancer cell lines harboring gain-of-function mutant and/or overexpressed Wip1. Unexpectedly, while Wip1 depletion increased DAXX phosphorylation both before and after DNA damage and increased p53 stability and transcriptional activity, knock-down of DAXX impacted neither p53 stabilization nor p53-mediated expression of Gadd45a, Noxa, Mdm2, p21, Puma, Sesn2, Tigar or Wip1. Consistently, analyses of cells with genetic, TALEN-mediated DAXX deletion corroborated the notion that neither phosphorylated nor non-phosphorylated DAXX is required for p53-mediated gene expression upon DNA damage. Overall, we identify ATM kinase and Wip1 phosphatase as opposing regulators of DAXX-S564 phosphorylation, and propose that the role of DAXX phosphorylation and DAXX itself are independent of p53-mediated gene expression.
Collapse
Affiliation(s)
- Jan Brazina
- a Department of Cell Signaling and Apoptosis
| | | | | | | | | | | | | |
Collapse
|
48
|
Hölscher C, Sonntag F, Henrich K, Chen Q, Beneke J, Matula P, Rohr K, Kaderali L, Beil N, Erfle H, Kleinschmidt JA, Müller M. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses. PLoS Pathog 2015; 11:e1005281. [PMID: 26625259 PMCID: PMC4666624 DOI: 10.1371/journal.ppat.1005281] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/25/2015] [Indexed: 12/21/2022] Open
Abstract
Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | - Qingxin Chen
- German Cancer Research Center, Heidelberg, Germany
| | - Jürgen Beneke
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | - Petr Matula
- Biomedical Computer Vision Group, Dept. Bioinformatics and Functional Genomics, University of Heidelberg, BIOQUANT, IPMB, and German Cancer Research Center, Heidelberg, Germany
| | - Karl Rohr
- Biomedical Computer Vision Group, Dept. Bioinformatics and Functional Genomics, University of Heidelberg, BIOQUANT, IPMB, and German Cancer Research Center, Heidelberg, Germany
| | - Lars Kaderali
- University Medicine Greifswald, Institute for Bioinformatics, Greifswald, Germany
| | - Nina Beil
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | - Holger Erfle
- VIROQUANT-CellNetworks RNAi Screening Facility, BIOQUANT Center University Heidelberg, Heidelberg, Germany
| | | | - Martin Müller
- German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
49
|
KAP1 Is a Host Restriction Factor That Promotes Human Adenovirus E1B-55K SUMO Modification. J Virol 2015; 90:930-46. [PMID: 26537675 DOI: 10.1128/jvi.01836-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/26/2015] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Once transported to the replication sites, human adenoviruses (HAdVs) need to ensure decondensation and transcriptional activation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These early stages during adenoviral infection are poorly characterized but represent a decisive moment in the establishment of a productive infection. Here, we identify a novel host viral restriction factor, KAP1. This heterochromatin-associated transcription factor regulates the dynamic organization of the host chromatin structure via its ability to influence epigenetic marks and chromatin compaction. In response to DNA damage, KAP1 is phosphorylated and functionally inactive, resulting in chromatin relaxation. We discovered that KAP1 posttranslational modification is dramatically altered during HAdV infection to limit the antiviral capacity of this host restriction factor, which represents an essential step required for efficient viral replication. Conversely, we also observed during infection an HAdV-mediated decrease of KAP1 SUMO moieties, known to promote chromatin decondensation events. Based on our findings, we provide evidence that HAdV induces KAP1 deSUMOylation to minimize epigenetic gene silencing and to promote SUMO modification of E1B-55K by a so far unknown mechanism. IMPORTANCE Here we describe a novel cellular restriction factor for human adenovirus (HAdV) that sheds light on very early modulation processes in viral infection. We reported that chromatin formation and cellular SWI/SNF chromatin remodeling play key roles in HAdV transcriptional regulation. We observed that the cellular chromatin-associated factor and epigenetic reader SPOC1 represses HAdV infection and gene expression. Here, we illustrate the role of the SPOC1-interacting factor KAP1 during productive HAdV growth. KAP1 binds to the viral E1B-55K protein, promoting its SUMO modification, therefore illustrating a crucial step for efficient viral replication. Simultaneously, KAP1 posttranslational modification is dramatically altered during infection. We observed an HAdV-mediated decrease in KAP1 SUMOylation, known to promote chromatin decondensation events. These findings indicate that HAdV induces the loss of KAP1 SUMOylation to minimize epigenetic gene silencing and to promote the SUMO modification of E1B-55K by a so far unknown mechanism.
Collapse
|
50
|
Lohmann F, Dangeti M, Soni S, Chen X, Planutis A, Baron MH, Choi K, Bieker JJ. The DEK Oncoprotein Is a Critical Component of the EKLF/KLF1 Enhancer in Erythroid Cells. Mol Cell Biol 2015; 35:3726-38. [PMID: 26303528 PMCID: PMC4589598 DOI: 10.1128/mcb.00382-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
Understanding how transcriptional regulators are themselves controlled is important in attaining a complete picture of the intracellular effects that follow signaling cascades during early development and cell-restricted differentiation. We have addressed this issue by focusing on the regulation of EKLF/KLF1, a zinc finger transcription factor that plays a necessary role in the global regulation of erythroid gene expression. Using biochemical affinity purification, we have identified the DEK oncoprotein as a critical factor that interacts with an essential upstream enhancer element of the EKLF promoter and exerts a positive effect on EKLF levels. This element also binds a core set of erythroid transcription factors, suggesting that DEK is part of a tissue-restricted enhanceosome that contains BMP4-dependent and -independent components. Together with local enrichment of properly coded histones and an open chromatin domain, optimal transcriptional activation of the EKLF locus can be established.
Collapse
Affiliation(s)
- Felix Lohmann
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Mohan Dangeti
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Shefali Soni
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Xiaoyong Chen
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Antanas Planutis
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Margaret H Baron
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA Department of Medicine, Mount Sinai School of Medicine, New York, New York, USA
| | - Kyunghee Choi
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James J Bieker
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|