1
|
Bergmann C, Mousaei K, Rizzoli SO, Tchumatchenko T. How energy determines spatial localisation and copy number of molecules in neurons. Nat Commun 2025; 16:1424. [PMID: 39915472 PMCID: PMC11802781 DOI: 10.1038/s41467-025-56640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
In neurons, the quantities of mRNAs and proteins are traditionally assumed to be determined by functional, electrical or genetic factors. Yet, there may also be global, currently unknown computational rules that are valid across different molecular species inside a cell. Surprisingly, our results show that the energy for molecular turnover is a significant cellular expense, en par with spiking cost, and which requires energy-saving strategies. We show that the drive to save energy determines transcript quantities and their location while acting differently on each molecular species depending on the length, longevity and other features of the respective molecule. We combined our own data and experimental reports from five other large-scale mRNA and proteomics screens, comprising more than ten thousand molecular species to reveal the underlying computational principles of molecular localisation. We found that energy minimisation principles explain experimentally-reported exponential rank distributions of mRNA and protein copy numbers. Our results further reveal robust energy benefits when certain mRNA classes are moved into dendrites, for example mRNAs of proteins with long amino acid chains or mRNAs with large non-coding regions and long half-lives proving surprising insights at the level of molecular populations.
Collapse
Affiliation(s)
- Cornelius Bergmann
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kanaan Mousaei
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Silvio O Rizzoli
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen Center for Biostructural Imaging of Neurodegeneration, BIN Humboldtallee 23, 37073, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Jongsma MLM, Bakker N, Voortman LM, Koning RI, Bos E, Akkermans JJLL, Janssen L, Neefjes J. Systems mapping of bidirectional endosomal transport through the crowded cell. Curr Biol 2024; 34:4476-4494.e11. [PMID: 39276769 PMCID: PMC11466077 DOI: 10.1016/j.cub.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
Kinesin and dynein-dynactin motors move endosomes and other vesicles bidirectionally along microtubules, a process mainly studied under in vitro conditions. Here, we provide a physiological bidirectional transport model following color-coded, endogenously tagged transport-related proteins as they move through a crowded cellular environment. Late endosomes (LEs) surf bidirectionally on Protrudin-enriched endoplasmic reticulum (ER) membrane contact sites, while hopping and gliding along microtubules and bypassing cellular obstacles, such as mitochondria. During bidirectional transport, late endosomes do not switch between opposing Rab7 GTPase effectors, RILP and FYCO1, or their associated dynein and KIF5B motor proteins, respectively. In the endogenous setting, far fewer motors associate with endosomal membranes relative to effectors, implying coordination of transport with other aspects of endosome physiology through GTPase-regulated mechanisms. We find that directionality of transport is provided in part by various microtubule-associated proteins (MAPs), including MID1, EB1, and CEP169, which recruit Lis1-activated dynein motors to microtubule plus ends for transport of early and late endosomal populations. At these microtubule plus ends, activated dynein motors encounter the dynactin subunit p150glued and become competent for endosomal capture and minus-end movement in collaboration with membrane-associated Rab7-RILP. We show that endosomes surf over the ER through the crowded cell and move bidirectionally under the control of MAPs for motor activation and through motor replacement and capture by endosomal anchors.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Nina Bakker
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Erik Bos
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Jimmy J L L Akkermans
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Lennert Janssen
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE institute, Leiden University Medical Center LUMC, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
3
|
Ma TC, Gicking AM, Feng Q, Hancock WO. Simulations suggest robust microtubule attachment of kinesin and dynein in antagonistic pairs. Biophys J 2023; 122:3299-3313. [PMID: 37464742 PMCID: PMC10465704 DOI: 10.1016/j.bpj.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Intracellular transport is propelled by kinesin and cytoplasmic dynein motors that carry membrane-bound vesicles and organelles bidirectionally along microtubule tracks. Much is known about these motors at the molecular scale, but many questions remain regarding how kinesin and dynein cooperate and compete during bidirectional cargo transport at the cellular level. The goal of the present study was to use a stochastic stepping model constructed by using published load-dependent properties of kinesin-1 and dynein-dynactin-BicD2 (DDB) to identify specific motor properties that determine the speed, directionality, and transport dynamics of a cargo carried by one kinesin and one dynein motor. Model performance was evaluated by comparing simulations to recently published experiments of kinesin-DDB pairs connected by complementary oligonucleotide linkers. Plotting the instantaneous velocity distributions from kinesin-DDB experiments revealed a single peak centered around zero velocity. In contrast, velocity distributions from simulations displayed a central peak around 100 nm/s, along with two side peaks corresponding to the unloaded kinesin and DDB velocities. We hypothesized that frequent motor detachment events and relatively slow motor reattachment rates resulted in periods in which only one motor is attached. To investigate this hypothesis, we varied specific model parameters and compared the resulting instantaneous velocity distributions, and we confirmed this systematic investigation using a machine-learning approach that minimized the residual sum of squares between the experimental and simulation velocity distributions. The experimental data were best recapitulated by a model in which the kinesin and dynein stall forces are matched, the motor detachment rates are independent of load, and the kinesin-1 reattachment rate is 50 s-1. These results provide new insights into motor dynamics during bidirectional transport and put forth hypotheses that can be tested by future experiments.
Collapse
Affiliation(s)
- Tzu-Chen Ma
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Allison M Gicking
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Qingzhou Feng
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania; Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania.
| |
Collapse
|
4
|
Simple to Complex: The Role of Actin and Microtubules in Mitochondrial Dynamics in Amoeba, Yeast, and Mammalian Cells. Int J Mol Sci 2022; 23:ijms23169402. [PMID: 36012665 PMCID: PMC9409391 DOI: 10.3390/ijms23169402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are complex organelles that provide energy for the cell in the form of adenosine triphosphate (ATP) and have very specific structures. For most organisms, this is a reticular or tubular mitochondrial network, while others have singular oval-shaped organelles. Nonetheless, maintenance of this structure is dependent on the mitochondrial dynamics, fission, fusion, and motility. Recently, studies have shown that the cytoskeleton has a significant role in the regulation of mitochondrial dynamics. In this review, we focus on microtubules and actin filaments and look at what is currently known about the cytoskeleton’s role in mitochondrial dynamics in complex models like mammals and yeast, as well as what is known in the simple model system, Dictyostelium discoideum. Understanding how the cytoskeleton is involved in mitochondrial dynamics increases our understanding of mitochondrial disease, especially neurodegenerative diseases. Increases in fission, loss of fusion, and fragmented mitochondria are seen in several neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s disease. There is no known cure for these diseases, but new therapeutic strategies using drugs to alter mitochondrial fusion and fission activity are being considered. The future of these therapeutic studies is dependent on an in-depth understanding of the mechanisms of mitochondrial dynamics. Understanding the cytoskeleton’s role in dynamics in multiple model organisms will further our understanding of these mechanisms and could potentially uncover new therapeutic targets for these neurodegenerative diseases.
Collapse
|
5
|
Batty SR, Langlais PR. Microtubules in insulin action: what's on the tube? Trends Endocrinol Metab 2021; 32:776-789. [PMID: 34462181 PMCID: PMC8446328 DOI: 10.1016/j.tem.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Microtubules (MT) have a role in the intracellular response to insulin stimulation and subsequent glucose transport by glucose transporter 4 (GLUT4), which resides in specialized storage vesicles that travel through the cell. Before GLUT4 is inserted into the plasma membrane for glucose transport, it undergoes complex trafficking through the cell via the integration of cytoskeletal networks. In this review, we highlight the importance of MT elements in insulin action in adipocytes through a summary of MT depolymerization studies, MT-based GLUT4 movement, molecular motor proteins involved in GLUT4 trafficking, as well as MT-related phenomena in response to insulin and links between insulin action and MT-associated proteins.
Collapse
Affiliation(s)
- Skylar R Batty
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
6
|
Xia L, Zhang LJ, Tang HW, Pang DW. Revealing Microtubule-Dependent Slow-Directed Motility by Single-Particle Tracking. Anal Chem 2021; 93:5211-5217. [PMID: 33728900 DOI: 10.1021/acs.analchem.0c05377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microtubules (MTs) are the main component of cytoskeletons, providing long tracks for cargo trafficking across the cytoplasm. In the past years, transport along MTs was frequently reported to be rapid directed motions with speeds of several micrometers per second, but is that all the truth? Using single-particle tracking, we roundly and precisely analyzed the dynamic behaviors of three kinds of cargoes transported along MTs in two types of cells. It was found that during the transport processes, the directed motions of the cargoes were frequently interrupted by nondirected motions which greatly reduced the translocation rate toward the nucleus. What is more, in addition to the widely reported rapid directed motions, a type of directed motions with most speeds below 0.5 μm/s occurred more frequently. On the whole, these slow directed motions took longer than the rapid directed motions and resulted in displacements same as those of the rapid ones. To sum up, while travelling along MTs toward the cell interior, endocytosed cargoes moved alternately in rapid-directed, slow-directed and nondirected modes. In this process, the rapid- and the slow-directed motions contributed almost equally to the cargoes' translocation. This work provides original insights into the transport on MTs, facilitating a more comprehensive understanding of intracellular trafficking.
Collapse
Affiliation(s)
- Li Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Li-Juan Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Dai-Wen Pang
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
7
|
Liu SL, Wang ZG, Xie HY, Liu AA, Lamb DC, Pang DW. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem Rev 2020; 120:1936-1979. [PMID: 31951121 PMCID: PMC7075663 DOI: 10.1021/acs.chemrev.9b00692] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Uncovering
the mechanisms of virus infection and assembly is crucial
for preventing the spread of viruses and treating viral disease. The
technique of single-virus tracking (SVT), also known as single-virus
tracing, allows one to follow individual viruses at different parts
of their life cycle and thereby provides dynamic insights into fundamental
processes of viruses occurring in live cells. SVT is typically based
on fluorescence imaging and reveals insights into previously unreported
infection mechanisms. In this review article, we provide the readers
a broad overview of the SVT technique. We first summarize recent advances
in SVT, from the choice of fluorescent labels and labeling strategies
to imaging implementation and analytical methodologies. We then describe
representative applications in detail to elucidate how SVT serves
as a valuable tool in virological research. Finally, we present our
perspectives regarding the future possibilities and challenges of
SVT.
Collapse
Affiliation(s)
- Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM) , Ludwig-Maximilians-Universität , München , 81377 , Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
8
|
Wu QM, Liu SL, Chen G, Zhang W, Sun EZ, Xiao GF, Zhang ZL, Pang DW. Uncovering the Rab5-Independent Autophagic Trafficking of Influenza A Virus by Quantum-Dot-Based Single-Virus Tracking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702841. [PMID: 29409147 DOI: 10.1002/smll.201702841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Autophagy is closely related to virus-induced disease and a comprehensive understanding of the autophagy-associated infection process of virus will be significant for developing more effective antiviral strategies. However, many critical issues and the underlying mechanism of autophagy in virus entry still need further investigation. Here, this study unveils the involvement of autophagy in influenza A virus entry. The quantum-dot-based single-virus tracking technique assists in real-time, prolonged, and multicolor visualization of the transport process of individual viruses and provides unambiguous dissection of the autophagic trafficking of viruses. These results reveal that roughly one-fifth of viruses are ferried into cells for infection by autophagic machineries, while the remaining are not. A comprehensive overview of the endocytic- and autophagic-trafficking process indicates two distinct trafficking pathway of viruses, either dependent on Rab5-positive endosomes or autophagosomes, with striking similarities. Expressing dominant-negative mutant of Rab5 suggests that the autophagic trafficking of viruses is independent on Rab5. The present study provides dynamic, precise, and mechanistic insights into the involvement of autophagy in virus entry, which contributes to a better understanding of the relationship between autophagy and virus entry. The quantum-dot-based single-virus tracking is proven to hold promise for autophagy-related fundamental research.
Collapse
Affiliation(s)
- Qiu-Mei Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Shu-Lin Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Gang Chen
- Key Laboratory of Oral Biomedicine (Ministry of Education) and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Wei Zhang
- Key Laboratory of Oral Biomedicine (Ministry of Education) and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - En-Ze Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Geng-Fu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
9
|
Zhang LJ, Xia L, Liu SL, Sun EZ, Wu QM, Wen L, Zhang ZL, Pang DW. A "Driver Switchover" Mechanism of Influenza Virus Transport from Microfilaments to Microtubules. ACS NANO 2018; 12:474-484. [PMID: 29232101 DOI: 10.1021/acsnano.7b06926] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When infecting host cells, influenza virus must move on microfilaments (MFs) at the cell periphery and then move along microtubules (MTs) through the cytosol to reach the perinuclear region for genome release. But how viruses switch from the actin roadway to the microtubule highway remains obscure. To settle this issue, we systematically dissected the role of related motor proteins in the transport of influenza virus between cytoskeletal filaments in situ and in real-time using quantum dot (QD)-based single-virus tracking (SVT) and multicolor imaging. We found that the switch between MF- and MT-based retrograde motor proteins, myosin VI (myoVI) and dynein, was responsible for the seamless transport of viruses from MFs to MTs during their infection. After virus entry by endocytosis, both the two types of motor proteins are attached to virus-carrying vesicles. MyoVI drives the viruses on MFs with dynein on the virus-carrying vesicle hitchhiking. After role exchanges at actin-microtubule intersections, dynein drives the virus along MTs toward the perinuclear region with myoVI remaining on the vesicle moving together. Such a "driver switchover" mechanism has answered the long-pending question of how viruses switch from MFs to MTs for their infection. It will also facilitate in-depth understanding of endocytosis.
Collapse
Affiliation(s)
- Li-Juan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Li Xia
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Shu-Lin Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - En-Ze Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Qiu-Mei Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Li Wen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University , Wuhan 430072, P.R. China
| |
Collapse
|
10
|
Malgaretti P, Pagonabarraga I, Joanny JF. Bistability, Oscillations, and Bidirectional Motion of Ensemble of Hydrodynamically Coupled Molecular Motors. PHYSICAL REVIEW LETTERS 2017; 119:168101. [PMID: 29099219 DOI: 10.1103/physrevlett.119.168101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 06/07/2023]
Abstract
We analyze the collective behavior of hydrodynamically coupled molecular motors. We show that the local fluxes induced by motor displacement can induce the experimentally observed bidirectional motion of cargoes and vesicles. By means of a mean-field approach we show that sustained oscillations as well as bistable collective motor motion arise even for very large collection of motors, when thermal noise is irrelevant. The analysis clarifies the physical mechanisms responsible for such dynamics by identifying the relevant coupling parameter and its dependence on the geometry of the hydrodynamic coupling as well as on system size. We quantify the phase diagram for the different phases that characterize the collective motion of hydrodynamically coupled motors and show that sustained oscillations can be reached for biologically relevant parameters, hence, demonstrating the relevance of hydrodynamic interactions in intracellular transport.
Collapse
Affiliation(s)
- P Malgaretti
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - I Pagonabarraga
- Departament de Fisica de la Matèria Condensada, Facultat de Fisica, Universitat de Barcelona, Carre Martí i Franques 1, Barcelona 08028, Spain
- UBICS, Institute of Complex Systems, Universitat de Barcelona, Barcelona 08028, Spain
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lasuanne, Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
| | - J-F Joanny
- Physicochiemie Curie (Institut Curie/CNRS-UMR168/UPMC), Institut Curie, Centre de Recherche, PSL Reseach University, 26 rue d'Ulm 75248 Paris Cedex 05, France
- ESPCI 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
11
|
RSV glycoprotein and genomic RNA dynamics reveal filament assembly prior to the plasma membrane. Nat Commun 2017; 8:667. [PMID: 28939853 PMCID: PMC5610308 DOI: 10.1038/s41467-017-00732-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/20/2017] [Indexed: 11/25/2022] Open
Abstract
The human respiratory syncytial virus G protein plays an important role in the entry and assembly of filamentous virions. Here, we report the use of fluorescently labeled soybean agglutinin to selectively label the respiratory syncytial virus G protein in living cells without disrupting respiratory syncytial virus infectivity or filament formation and allowing for interrogations of respiratory syncytial virus virion assembly. Using this approach, we discovered that plasma membrane-bound respiratory syncytial virus G rapidly recycles from the membrane via clathrin-mediated endocytosis. This event is then followed by the dynamic formation of filamentous and branched respiratory syncytial virus particles, and assembly with genomic ribonucleoproteins and caveolae-associated vesicles prior to re-insertion into the plasma membrane. We demonstrate that these processes are halted by the disruption of microtubules and inhibition of molecular motors. Collectively, our results show that for respiratory syncytial virus assembly, viral filaments are produced and loaded with genomic RNA prior to insertion into the plasma membrane. Assembly of filamentous RSV particles is incompletely understood due to a lack of techniques suitable for live-cell imaging. Here Vanover et al. use labeled soybean agglutinin to selectively label RSV G protein and show how filamentous RSV assembly, initiated in the cytoplasm, uses G protein recycled from the plasma membrane.
Collapse
|
12
|
Baumbach J, Murthy A, McClintock MA, Dix CI, Zalyte R, Hoang HT, Bullock SL. Lissencephaly-1 is a context-dependent regulator of the human dynein complex. eLife 2017; 6. [PMID: 28406398 PMCID: PMC5413349 DOI: 10.7554/elife.21768] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/11/2017] [Indexed: 01/19/2023] Open
Abstract
The cytoplasmic dynein-1 (dynein) motor plays a central role in microtubule organisation and cargo transport. These functions are spatially regulated by association of dynein and its accessory complex dynactin with dynamic microtubule plus ends. Here, we elucidate in vitro the roles of dynactin, end-binding protein-1 (EB1) and Lissencephaly-1 (LIS1) in the interaction of end tracking and minus end-directed human dynein complexes with these sites. LIS1 promotes dynactin-dependent tracking of dynein on both growing and shrinking plus ends. LIS1 also increases the frequency and velocity of processive dynein movements that are activated by complex formation with dynactin and a cargo adaptor. This stimulatory effect of LIS1 contrasts sharply with its documented ability to inhibit the activity of isolated dyneins. Collectively, our findings shed light on how mammalian dynein complexes associate with dynamic microtubules and help clarify how LIS1 promotes the plus-end localisation and cargo transport functions of dynein in vivo. DOI:http://dx.doi.org/10.7554/eLife.21768.001
Collapse
Affiliation(s)
- Janina Baumbach
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andal Murthy
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mark A McClintock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Carly I Dix
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ruta Zalyte
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ha Thi Hoang
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
13
|
Liu SL, Wu QM, Zhang LJ, Wang ZG, Sun EZ, Zhang ZL, Pang DW. Three-dimensional tracking of Rab5- and Rab7-associated infection process of influenza virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4746-53. [PMID: 24976105 DOI: 10.1002/smll.201400944] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/18/2014] [Indexed: 05/15/2023]
Abstract
Three-dimensional (3D) single-particle tracking (SPT) techniques have been widely reported. However, the 3D SPT technique remains poorly used for solving actual biological problems. In this work, a quantum dots (QDs)-based single-particle tracking technique is utilized to explore the Rab5- and Rab7-associated infection behaviors of influenza virus in three dimensions with a set of easily-attained equipment by the fast and accurate centroid method for 3D SPT. The experimental results indicate that Rab5 protein takes part in the virus infection process from the cell periphery to the perinuclear region, while Rab7 protein is mainly involved in the intermittent and confined movements of the virus in the perinuclear region. Evidently, the transition process of the virus-containing vesicles from early to late endosomes might occur during the intermittent movement in the perinuclear region. These findings reveal distinct dynamic behaviors of Rab5- and Rab7-positive endosomes in the course of the intracellular transport of viruses. This work is helpful in understanding the intracellular transport of cargoes.
Collapse
Affiliation(s)
- Shu-Lin Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Vesicles, organelles and other intracellular cargo are transported by kinesin and dynein motors, which move in opposite directions along microtubules. This bidirectional cargo movement is frequently described as a 'tug of war' between oppositely directed molecular motors attached to the same cargo. However, although many experimental and modelling studies support the tug-of-war paradigm, numerous knockout and inhibition studies in various systems have found that inhibiting one motor leads to diminished motility in both directions, which is a 'paradox of co-dependence' that challenges the paradigm. In an effort to resolve this paradox, three classes of bidirectional transport models--microtubule tethering, mechanical activation and steric disinhibition--are proposed, and a general mathematical modelling framework for bidirectional cargo transport is put forward to guide future experiments.
Collapse
|
15
|
Roberts AJ, Goodman BS, Reck-Peterson SL. Reconstitution of dynein transport to the microtubule plus end by kinesin. eLife 2014; 3:e02641. [PMID: 24916158 PMCID: PMC4046564 DOI: 10.7554/elife.02641] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein powers intracellular movement of cargo toward the microtubule minus end. The first step in a variety of dynein transport events is the targeting of dynein to the dynamic microtubule plus end, but the molecular mechanism underlying this spatial regulation is not understood. Here, we reconstitute dynein plus-end transport using purified proteins from S. cerevisiae and dissect the mechanism using single-molecule microscopy. We find that two proteins–homologs of Lis1 and Clip170–are sufficient to couple dynein to Kip2, a plus-end-directed kinesin. Dynein is transported to the plus end by Kip2, but is not a passive passenger, resisting its own plus-end-directed motion. Two microtubule-associated proteins, homologs of Clip170 and EB1, act as processivity factors for Kip2, helping it overcome dynein's intrinsic minus-end-directed motility. This reveals how a minimal system of proteins transports a molecular motor to the start of its track. DOI:http://dx.doi.org/10.7554/eLife.02641.001 Eukaryotic cells use transport systems to efficiently move materials from one location to another. Much transport in the cell interior is achieved using molecular motors, which carry cargoes along tracks called microtubules. Unlike roads of human construction, microtubules are very dynamic. One of their ends (the ‘plus’ end) explores the outskirts of the cell, growing and shrinking through the addition and loss of protein building blocks. The other microtubule end (the ‘minus’ end) typically lies in a hub near the center of the cell. There are two types of molecular motor that move on microtubules. Kinesin motors move toward the plus end of the microtubule, and dynein motors move in the opposite direction, toward the minus end. But if dynein only moves to the minus end of the microtubule, a problem arises: how would dynein initially reach the plus end of the microtubule and the outskirts of the cell, where it collects cargoes? Using purified yeast proteins, Roberts et al. reveal that a group of three proteins can solve this problem by transporting dynein to the plus end of the microtubule. The proteins comprise a kinesin motor, and two additional proteins that connect the dynein motor to the kinesin. Imaging the transport process shows that the dynein motor is not a passive passenger: it is able to resist against the kinesin. However, an additional microtubule-associated protein can help the kinesin motor to win this ‘tug of war’, and so the protein complex—including the dynein motor—moves toward the plus end of the microtubule. DOI:http://dx.doi.org/10.7554/eLife.02641.002
Collapse
Affiliation(s)
- Anthony J Roberts
- Department of Cell Biology, Harvard Medical School, Boston, United States Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Brian S Goodman
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | | |
Collapse
|
16
|
Welz T, Wellbourne-Wood J, Kerkhoff E. Orchestration of cell surface proteins by Rab11. Trends Cell Biol 2014; 24:407-15. [PMID: 24675420 DOI: 10.1016/j.tcb.2014.02.004] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
The organization of cells into interconnected structures such as animal tissues requires a sophisticated system directing receptors and adhesion proteins to the cell surface. The Rab11 small G proteins (Rab11a, b, and Rab25) of the Ras superfamily are master regulators of the surface expression of receptors and adhesion proteins. Acting as a molecular switch, Rab11 builds distinct molecular machinery such as motor protein complexes and the exocyst to transport proteins to the cell surface. Recent evidence reveals Rab11 localization at the trans-Golgi network (TGN), post-Golgi vesicles, and the recycling endosome, placing it at the intersection between the endocytic and exocytic trafficking pathways. We review Rab11 in various cellular contexts, and discuss its regulation and mechanisms by which Rab11 couples with effector proteins.
Collapse
Affiliation(s)
- Tobias Welz
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Germany
| | - Joel Wellbourne-Wood
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Germany
| | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, Regensburg, Germany.
| |
Collapse
|
17
|
O'Day DH, Budniak A. Nucleocytoplasmic protein translocation during mitosis in the social amoebozoan Dictyostelium discoideum. Biol Rev Camb Philos Soc 2014; 90:126-41. [PMID: 24618050 DOI: 10.1111/brv.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 01/03/2023]
Abstract
Mitosis is a fundamental and essential life process. It underlies the duplication and survival of all cells and, as a result, all eukaryotic organisms. Since uncontrolled mitosis is a dreaded component of many cancers, a full understanding of the process is critical. Evolution has led to the existence of three types of mitosis: closed, open, and semi-open. The significance of these different mitotic species, how they can lead to a full understanding of the critical events that underlie the asexual duplication of all cells, and how they may generate new insights into controlling unregulated cell division remains to be determined. The eukaryotic microbe Dictyostelium discoideum has proved to be a valuable biomedical model organism. While it appears to utilize closed mitosis, a review of the literature suggests that it possesses a form of mitosis that lies in the middle between truly open and fully closed mitosis-it utilizes a form of semi-open mitosis. Here, the nucleocytoplasmic translocation patterns of the proteins that have been studied during mitosis in the social amoebozoan D. discoideum are detailed followed by a discussion of how some of them provide support for the hypothesis of semi-open mitosis.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road N., Mississauga, Ontario, L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, M5S 3G5, Canada
| | | |
Collapse
|
18
|
Maeder CI, San-Miguel A, Wu EY, Lu H, Shen K. In vivo neuron-wide analysis of synaptic vesicle precursor trafficking. Traffic 2014; 15:273-91. [PMID: 24320232 DOI: 10.1111/tra.12142] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
Abstract
During synapse development, synaptic proteins must be targeted to sites of presynaptic release. Directed transport as well as local sequestration of synaptic vesicle precursors (SVPs), membranous organelles containing many synaptic proteins, might contribute to this process. Using neuron-wide time-lapse microscopy, we studied SVP dynamics in the DA9 motor neuron in Caenorhabditis elegans. SVP transport was highly dynamic and bi-directional throughout the entire neuron, including the dendrite. While SVP trafficking was anterogradely biased in axonal segments prior to the synaptic domain, directionality of SVP movement was stochastic in the dendrite and distal axon. Furthermore, frequency of movement and speed were variable between different compartments. These data provide evidence that SVP transport is differentially regulated in distinct neuronal domains. It also suggests that polarized SVP transport in concert with local vesicle capturing is necessary for accurate presynapse formation and maintenance. SVP trafficking analysis of two hypomorphs for UNC-104/KIF1A in combination with mathematical modeling identified directionality of movement, entry of SVPs into the axon as well as axonal speeds as the important determinants of steady-state SVP distributions. Furthermore, detailed dissection of speed distributions for wild-type and unc-104/kif1a mutant animals revealed an unexpected role for UNC-104/KIF1A in dendritic SVP trafficking.
Collapse
Affiliation(s)
- Celine I Maeder
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA,, USA
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Leidel C, Longoria RA, Gutierrez FM, Shubeita GT. Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport. Biophys J 2013; 103:492-500. [PMID: 22947865 DOI: 10.1016/j.bpj.2012.06.038] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/03/2012] [Accepted: 06/20/2012] [Indexed: 12/27/2022] Open
Abstract
Molecular motor proteins use the energy released from ATP hydrolysis to generate force and haul cargoes along cytoskeletal filaments. Thus, measuring the force motors generate amounts to directly probing their function. We report on optical trapping methodology capable of making precise in vivo stall-force measurements of individual cargoes hauled by molecular motors in their native environment. Despite routine measurement of motor forces in vitro, performing and calibrating such measurements in vivo has been challenging. We describe the methodology recently developed to overcome these difficulties, and used to measure stall forces of both kinesin-1 and cytoplasmic dynein-driven lipid droplets in Drosophila embryos. Critically, by measuring the cargo dynamics in the optical trap, we find that there is memory: it is more likely for a cargo to resume motion in the same direction-rather than reverse direction-after the motors transporting it detach from the microtubule under the force of the optical trap. This suggests that only motors of one polarity are active on the cargo at any instant in time and is not consistent with the tug-of-war models of bidirectional transport where both polarity motors can bind the microtubules at all times. We further use the optical trap to measure in vivo the detachment rates from microtubules of kinesin-1 and dynein-driven lipid droplets. Unlike what is commonly assumed, we find that dynein's but not kinesin's detachment time in vivo increases with opposing load. This suggests that dynein's interaction with microtubules behaves like a catch bond.
Collapse
Affiliation(s)
- Christina Leidel
- Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas
| | - Rafael A Longoria
- Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas
| | - Franciso Marquez Gutierrez
- Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas
| | - George T Shubeita
- Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
21
|
Abstract
Coronaviruses are positive-strand RNA viruses that are important infectious agents of both animals and humans. A common feature among positive-strand RNA viruses is their assembly of replication-transcription complexes in association with cytoplasmic membranes. Upon infection, coronaviruses extensively rearrange cellular membranes into organelle-like replicative structures that consist of double-membrane vesicles and convoluted membranes to which the nonstructural proteins involved in RNA synthesis localize. Double-stranded RNA, presumably functioning as replicative intermediate during viral RNA synthesis, has been detected at the double-membrane vesicle interior. Recent studies have provided new insights into the assembly and functioning of the coronavirus replicative structures. This review will summarize the current knowledge on the biogenesis of the replicative structures, the membrane anchoring of the replication-transcription complexes, and the location of viral RNA synthesis, with particular focus on the dynamics of the coronavirus replicative structures and individual replication-associated proteins.
Collapse
|
22
|
Lund FW, Lomholt MA, Solanko LM, Bittman R, Wüstner D. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells. BMC BIOPHYSICS 2012; 5:20. [PMID: 23078907 PMCID: PMC3532368 DOI: 10.1186/2046-1682-5-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/19/2012] [Indexed: 01/08/2023]
Abstract
Background Cholesterol is an important membrane component, but our knowledge about its transport in cells is sparse. Previous imaging studies using dehydroergosterol (DHE), an intrinsically fluorescent sterol from yeast, have established that vesicular and non-vesicular transport modes contribute to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol) suggested that the latter probe has utility for prolonged live-cell imaging of sterol transport. Results We found that BChol is very photostable under two-photon (2P)-excitation allowing the acquisition of several hundred frames without significant photobleaching. Therefore, long-term tracking and diffusion measurements are possible. Two-photon temporal image correlation spectroscopy (2P-TICS) provided evidence for spatially heterogeneous diffusion constants of BChol varying over two orders of magnitude from the cell interior towards the plasma membrane, where D ~ 1.3 μm2/s. Number and brightness (N&B) analysis together with stochastic simulations suggest that transient partitioning of BChol into convoluted membranes slows local sterol diffusion. We observed sterol endocytosis as well as fusion and fission of sterol-containing endocytic vesicles. The mobility of endocytic vesicles, as studied by particle tracking, is well described by a model for anomalous subdiffusion on short time scales with an anomalous exponent α ~ 0.63 and an anomalous diffusion constant of Dα = 1.95 x 10-3 μm2/sα. On a longer time scale (t > ~5 s), a transition to superdiffusion consistent with slow directed transport with an average velocity of v ~ 6 x 10-3 μm/s was observed. We present an analytical model that bridges the two regimes and fit this model to vesicle trajectories from control cells and cells with disrupted microtubule or actin filaments. Both treatments reduced the anomalous diffusion constant and the velocity by ~40-50%. Conclusions The mobility of sterol-containing vesicles on the short time scale could reflect dynamic rearrangements of the cytoskeleton, while directed transport of sterol vesicles occurs likely along both, microtubules and actin filaments. Spatially varying anomalous diffusion could contribute to fine-tuning and local regulation of intracellular sterol transport.
Collapse
Affiliation(s)
- Frederik W Lund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark.
| | | | | | | | | |
Collapse
|
23
|
Analyses of dynein heavy chain mutations reveal complex interactions between dynein motor domains and cellular dynein functions. Genetics 2012; 191:1157-79. [PMID: 22649085 DOI: 10.1534/genetics.112.141580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic dynein transports cargoes for a variety of crucial cellular functions. However, since dynein is essential in most eukaryotic organisms, the in-depth study of the cellular function of dynein via genetic analysis of dynein mutations has not been practical. Here, we identify and characterize 34 different dynein heavy chain mutations using a genetic screen of the ascomycete fungus Neurospora crassa, in which dynein is nonessential. Interestingly, our studies show that these mutations segregate into five different classes based on the in vivo localization of the mutated dynein motors. Furthermore, we have determined that the different classes of dynein mutations alter vesicle trafficking, microtubule organization, and nuclear distribution in distinct ways and require dynactin to different extents. In addition, biochemical analyses of dynein from one mutant strain show a strong correlation between its in vitro biochemical properties and the aberrant intracellular function of that altered dynein. When the mutations were mapped to the published dynein crystal structure, we found that the three-dimensional structural locations of the heavy chain mutations were linked to particular classes of altered dynein functions observed in cells. Together, our data indicate that the five classes of dynein mutations represent the entrapment of dynein at five separate points in the dynein mechanochemical and transport cycles. We have developed N. crassa as a model system where we can dissect the complexities of dynein structure, function, and interaction with other proteins with genetic, biochemical, and cell biological studies.
Collapse
|
24
|
Baas PW, Mozgova OI. A novel role for retrograde transport of microtubules in the axon. Cytoskeleton (Hoboken) 2012; 69:416-25. [PMID: 22328357 DOI: 10.1002/cm.21013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/14/2023]
Abstract
Short microtubules move within the axon in both directions. In the past, it had been assumed that all of the short moving microtubules are oriented with their plus-ends distal to the cell body, regardless of their direction of movement. The anterogradely moving microtubules were posited to play critical roles in the establishment, expansion, and maintenance of the axonal microtubule array. There was no known function for the retrogradely moving microtubules. In considering the mechanism of their transport, we had assumed that all of the short microtubules have a plus-end-distal polarity orientation, as is characteristic of the long microtubules that dominate the axon. Here we discuss an alternative hypothesis, namely that the short microtubules moving retrogradely have the opposite polarity orientation of those moving anterogradely. Those that move anterogradely have their plus-ends distal to the cell body while those that move retrogradely have their minus ends distal to the cell body. In this view, retrograde transport is a means for clearing the axon of incorrectly oriented microtubules. This new model, if correct, has profound implications for the manner by which healthy axons preserve their characteristic pattern of microtubule polarity orientation. We speculate that pathological flaws in this mechanism may be a critical factor in the degeneration of axons during disease and injury, as well as in neuropathy caused by microtubule-active drugs.
Collapse
Affiliation(s)
- Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA.
| | | |
Collapse
|
25
|
Abstract
The organization and function of eukaryotic cells rely on the action of many different molecular motor proteins. Cytoplasmic dynein drives the movement of a wide range of cargoes towards the minus ends of microtubules, and these events are needed, not just at the single-cell level, but are vital for correct development. In the present paper, I review recent progress on understanding dynein's mechanochemistry, how it is regulated and how it binds to such a plethora of cargoes. The importance of a number of accessory factors in these processes is discussed.
Collapse
|
26
|
Segal M, Soifer I, Petzold H, Howard J, Elbaum M, Reiner O. Ndel1-derived peptides modulate bidirectional transport of injected beads in the squid giant axon. Biol Open 2012; 1:220-31. [PMID: 23213412 PMCID: PMC3507287 DOI: 10.1242/bio.2012307] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bidirectional transport is a key issue in cellular biology. It requires coordination between microtubule-associated molecular motors that work in opposing directions. The major retrograde and anterograde motors involved in bidirectional transport are cytoplasmic dynein and conventional kinesin, respectively. It is clear that failures in molecular motor activity bear severe consequences, especially in the nervous system. Neuronal migration may be impaired during brain development, and impaired molecular motor activity in the adult is one of the hallmarks of neurodegenerative diseases leading to neuronal cell death. The mechanisms that regulate or coordinate kinesin and dynein activity to generate bidirectional transport of the same cargo are of utmost importance. We examined how Ndel1, a cytoplasmic dynein binding protein, may regulate non-vesicular bidirectional transport. Soluble Ndel1 protein, Ndel1-derived peptides or control proteins were mixed with fluorescent beads, injected into the squid giant axon, and the bead movements were recorded using time-lapse microscopy. Automated tracking allowed for extraction and unbiased analysis of a large data set. Beads moved in both directions with a clear bias to the anterograde direction. Velocities were distributed over a broad range and were typically slower than those associated with fast vesicle transport. Ironically, the main effect of Ndel1 and its derived peptides was an enhancement of anterograde motion. We propose that they may function primarily by inhibition of dynein-dependent resistance, which suggests that both dynein and kinesin motors may remain engaged with microtubules during bidirectional transport.
Collapse
Affiliation(s)
- Michal Segal
- Department of Molecular Genetics, The Weizmann Institute of Science , Rehovot 76100 , Israel
| | | | | | | | | | | |
Collapse
|
27
|
Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking. Biomaterials 2011; 32:7616-24. [DOI: 10.1016/j.biomaterials.2011.06.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/20/2011] [Indexed: 11/18/2022]
|
28
|
Chang C, Hsieh YW, Lesch BJ, Bargmann CI, Chuang CF. Microtubule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal asymmetry in C. elegans. Development 2011; 138:3509-18. [PMID: 21771813 DOI: 10.1242/dev.069740] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The axons of C. elegans left and right AWC olfactory neurons communicate at synapses through a calcium-signaling complex to regulate stochastic asymmetric cell identities called AWC(ON) and AWC(OFF). However, it is not known how the calcium-signaling complex, which consists of UNC-43/CaMKII, TIR-1/SARM adaptor protein and NSY-1/ASK1 MAPKKK, is localized to postsynaptic sites in the AWC axons for this lateral interaction. Here, we show that microtubule-based localization of the TIR-1 signaling complex to the synapses regulates AWC asymmetry. Similar to unc-43, tir-1 and nsy-1 loss-of-function mutants, specific disruption of microtubules in AWC by nocodazole generates two AWC(ON) neurons. Reduced localization of UNC-43, TIR-1 and NSY-1 proteins in the AWC axons strongly correlates with the 2AWC(ON) phenotype in nocodazole-treated animals. We identified kinesin motor unc-104/kif1a mutants for enhancement of the 2AWC(ON) phenotype of a hypomorphic tir-1 mutant. Mutations in unc-104, like microtubule depolymerization, lead to a reduced level of UNC-43, TIR-1 and NSY-1 proteins in the AWC axons. In addition, dynamic transport of TIR-1 in the AWC axons is dependent on unc-104, the primary motor required for the transport of presynaptic vesicles. Furthermore, unc-104 acts non-cell autonomously in the AWC(ON) neuron to regulate the AWC(OFF) identity. Together, these results suggest a model in which UNC-104 may transport some unknown presynaptic factor(s) in the future AWC(ON) cell that non-cell autonomously control the trafficking of the TIR-1 signaling complex to postsynaptic regions of the AWC axons to regulate the AWC(OFF) identity.
Collapse
Affiliation(s)
- Chieh Chang
- Division of Developmental Biology, Children's Hospital Medical Center Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
29
|
The role of molecular microtubule motors and the microtubule cytoskeleton in stress granule dynamics. Int J Cell Biol 2011; 2011:939848. [PMID: 21760798 PMCID: PMC3132543 DOI: 10.1155/2011/939848] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic foci that appear in cells exposed to stress-induced translational inhibition. SGs function as a triage center, where mRNAs are sorted for storage, degradation, and translation reinitiation. The underlying mechanisms of SGs dynamics are still being characterized, although many key players have been identified. The main components of SGs are stalled 48S preinitiation complexes. To date, many other proteins have also been found to localize in SGs and are hypothesized to function in SG dynamics. Most recently, the microtubule cytoskeleton and associated motor proteins have been demonstrated to function in SG dynamics. In this paper, we will discuss current literature examining the function of microtubules and the molecular microtubule motors in SG assembly, coalescence, movement, composition, organization, and disassembly.
Collapse
|
30
|
Clathrin-mediated endocytosis in living host cells visualized through quantum dot labeling of infectious hematopoietic necrosis virus. J Virol 2011; 85:6252-62. [PMID: 21525360 DOI: 10.1128/jvi.00109-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) is an important fish pathogen that infects both wild and cultured salmonids. As a species of the genus Novirhabdovirus, IHNV is a valuable model system for exploring the host entry mechanisms of rhabdoviruses. In this study, quantum dots (QDs) were used as fluorescent labels for sensitive, long-term tracking of IHNV entry. Using live-cell fluorescence microscopy, we found that IHNV is internalized through clathrin-coated pits after the virus binds to host cell membranes. Pretreatment of host cells with chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and clathrin light chain (LCa) depletion using RNA interference both resulted in a marked reduction in viral entry. We also visualized transport of the virus via the cytoskeleton (i.e., actin filaments and microtubules) in real time. Actin polymerization is involved in the transport of endocytic vesicles into the cytosol, whereas microtubules are required for the trafficking of clathrin-coated vesicles to early endosomes, late endosomes, and lysosomes. Disrupting the host cell cytoskeleton with cytochalasin D or nocodazole significantly impaired IHNV infectivity. Furthermore, infection was significantly affected by pretreating the host cells with bafilomycin A1, a compound that inhibits the acidification of endosomes and lysosomes. Strong colocalizations of IHNV with endosomes indicated that the virus is internalized into these membrane-bound compartments. This is the first report in which QD labeling is used to visualize the dynamic interactions between viruses and endocytic structures; the results presented demonstrate that IHNV enters host cells via clathrin-mediated endocytic, cytoskeleton-dependent, and low-pH-dependent pathways.
Collapse
|
31
|
Schuster M, Lipowsky R, Assmann MA, Lenz P, Steinberg G. Transient binding of dynein controls bidirectional long-range motility of early endosomes. Proc Natl Acad Sci U S A 2011; 108:3618-23. [PMID: 21317367 PMCID: PMC3048114 DOI: 10.1073/pnas.1015839108] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In many cell types, bidirectional long-range endosome transport is mediated by the opposing motor proteins dynein and kinesin-3. Here we use a fungal model system to investigate how both motors cooperate in early endosome (EE) motility. It was previously reported that Kin3, a member of the kinesin-3 family, and cytoplasmic dynein mediate bidirectional motility of EEs in the fungus Ustilago maydis. We fused the green fluorescent protein to the endogenous dynein heavy chain and the kin3 gene and visualized both motors and their cargo in the living cells. Whereas kinesin-3 was found on anterograde and retrograde EEs, dynein motors localize only to retrograde organelles. Live cell imaging shows that binding of retrograde moving dynein to anterograde moving endosomes changes the transport direction of the organelles. When dynein is leaving the EEs, the organelles switch back to anterograde kinesin-3-based motility. Quantitative photobleaching and comparison with nuclear pores as an internal calibration standard show that single dynein motors and four to five kinesin-3 motors bind to the organelles. These data suggest that dynein controls kinesin-3 activity on the EEs and thereby determines the long-range motility behavior of the organelles.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Biosciences, University of Exeter, Exeter EX4 4PE, United Kingdom
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany; and
| | - Marcus-Alexander Assmann
- Fachbereich Physik and Zentrum für Synthetische Mikrobiologie, Philipps University Marburg, D-35032 Marburg, Germany
| | - Peter Lenz
- Fachbereich Physik and Zentrum für Synthetische Mikrobiologie, Philipps University Marburg, D-35032 Marburg, Germany
| | - Gero Steinberg
- Department of Biosciences, University of Exeter, Exeter EX4 4PE, United Kingdom
| |
Collapse
|
32
|
Ashwin P, Lin C, Steinberg G. Queueing induced by bidirectional motor motion near the end of a microtubule. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:051907. [PMID: 21230500 DOI: 10.1103/physreve.82.051907] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Indexed: 05/15/2023]
Abstract
Recent live observations of motors in long-range microtubule (MT) dependent transport in the fungus Ustilago maydis have reported bidirectional motion of dynein and an accumulation of the motors at the polymerization-active (the plus-end) of the microtubule. Quantitative data derived from in vivo observation of dynein has enabled us to develop an accurate, quantitatively-valid asymmetric simple exclusion process (ASEP) model that describes the coordinated motion of anterograde and retrograde motors sharing a single oriented microtubule. We give approximate expressions for the size and distribution of the accumulation, and discuss queueing properties for motors entering this accumulation. We show for this ASEP model, that the mean accumulation can be modeled as an M/M/∞ queue that is Poisson distributed with mean F(arr)/p(d), where F(arr) is the flux of motors that arrives at the tip and p(d) is the rate at which individual motors change direction from anterograde to retrograde motion. Deviations from this can in principle be used to gain information about other processes at work in the accumulation. Furthermore, our work is a significant step toward a mathematical description of the complex interactions of motors in cellular long-range transport of organelles.
Collapse
Affiliation(s)
- Peter Ashwin
- Mathematics Research Institute, University of Exeter, Exeter, Devon EX4 4QF, United Kingdom
| | | | | |
Collapse
|
33
|
Zhang J, Zhuang L, Lee Y, Abenza JF, Peñalva MA, Xiang X. The microtubule plus-end localization of Aspergillus dynein is important for dynein-early-endosome interaction but not for dynein ATPase activation. J Cell Sci 2010; 123:3596-604. [PMID: 20876661 DOI: 10.1242/jcs.075259] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic dynein in filamentous fungi accumulates at microtubule plus-ends near the hyphal tip, which is important for minus-end-directed transport of early endosomes. It was hypothesized that dynein is switched on at the plus-end by cargo association. Here, we show in Aspergillus nidulans that kinesin-1-dependent plus-end localization is not a prerequisite for dynein ATPase activation. First, the Walker A and Walker B mutations in the dynein heavy chain AAA1 domain implicated in blocking different steps of the ATPase cycle cause different effects on dynein localization to microtubules, arguing against the suggestion that ATPase is inactive before arriving at the plus-end. Second, dynein from ΔkinA (kinesin 1) mutant cells has normal ATPase activity despite the absence of dynein plus-end accumulation. In ΔkinA hyphae, dynein localizes along microtubules and does not colocalize with abnormally accumulated early endosomes at the hyphal tip. This is in contrast to the colocalization of dynein and early endosomes in the absence of NUDF/LIS1. However, the Walker B mutation allows dynein to colocalize with the hyphal-tip-accumulated early endosomes in the ΔkinA background. We suggest that the normal ability of dyenin to interact with microtubules as an active minus-end-directed motor demands kinesin-1-mediated plus-end accumulation for effective interactions with early endosomes.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, USUHS, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|
34
|
Ou CY, Poon VY, Maeder CI, Watanabe S, Lehrman EK, Fu AKY, Park M, Fu WY, Jorgensen EM, Ip NY, Shen K. Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components. Cell 2010; 141:846-58. [PMID: 20510931 PMCID: PMC3168554 DOI: 10.1016/j.cell.2010.04.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 01/14/2010] [Accepted: 04/06/2010] [Indexed: 02/05/2023]
Abstract
Polarized trafficking of synaptic proteins to axons and dendrites is crucial to neuronal function. Through forward genetic analysis in C. elegans, we identified a cyclin (CYY-1) and a cyclin-dependent Pctaire kinase (PCT-1) necessary for targeting presynaptic components to the axon. Another cyclin-dependent kinase, CDK-5, and its activator p35, act in parallel to and partially redundantly with the CYY-1/PCT-1 pathway. Synaptic vesicles and active zone proteins mostly mislocalize to dendrites in animals defective for both PCT-1 and CDK-5 pathways. Unlike the kinesin-3 motor, unc-104/Kif1a mutant, cyy-1 cdk-5 double mutants have no reduction in anterogradely moving synaptic vesicle precursors (SVPs) as observed by dynamic imaging. Instead, the number of retrogradely moving SVPs is dramatically increased. Furthermore, this mislocalization defect is suppressed by disrupting the retrograde motor, the cytoplasmic dynein complex. Thus, PCT-1 and CDK-5 pathways direct polarized trafficking of presynaptic components by inhibiting dynein-mediated retrograde transport and setting the balance between anterograde and retrograde motors.
Collapse
Affiliation(s)
- Chan-Yen Ou
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, California 94305, USA
| | - Vivian Y. Poon
- Neurosciences Program, Stanford University School of Medicine, 385 Serra Mall, Stanford, California 94305, USA
| | - Celine I. Maeder
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, California 94305, USA
| | - Shigeki Watanabe
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Emily K. Lehrman
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, California 94305, USA
| | - Amy K. Y. Fu
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mikyoung Park
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, California 94305, USA
| | - Wing-Yu Fu
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Erik M. Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Nancy Y. Ip
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, California 94305, USA
| |
Collapse
|
35
|
Holzbaur ELF, Goldman YE. Coordination of molecular motors: from in vitro assays to intracellular dynamics. Curr Opin Cell Biol 2010; 22:4-13. [PMID: 20102789 DOI: 10.1016/j.ceb.2009.12.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/17/2009] [Accepted: 12/23/2009] [Indexed: 01/20/2023]
Abstract
New technologies have emerged that enable the tracking of molecular motors and their cargos with very high resolution both in vitro and in live cells. Classic in vitro motility assays are being supplemented with assays of increasing complexity that more closely model the cellular environment. In cells, the introduction of probes such as quantum dots allows the high-resolution tracking of both motors and vesicular cargos. The 'bottom up' enhancement of in vitro assays and the 'top down' analysis of motility inside cells are likely to converge over the next few years. Together, these studies are providing new insights into the coordination of motors during intracellular transport.
Collapse
Affiliation(s)
- Erika L F Holzbaur
- Pennsylvania Muscle Institute and Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | |
Collapse
|
36
|
Abstract
Coronaviruses induce in infected cells the formation of double-membrane vesicles (DMVs) in which the replication-transcription complexes (RTCs) are anchored. To study the dynamics of these coronavirus replicative structures, we generated recombinant murine hepatitis coronaviruses that express tagged versions of the nonstructural protein nsp2. We demonstrated by using immunofluorescence assays and electron microscopy that this protein is recruited to the DMV-anchored RTCs, for which its C terminus is essential. Live-cell imaging of infected cells demonstrated that small nsp2-positive structures move through the cytoplasm in a microtubule-dependent manner. In contrast, large fluorescent structures are rather immobile. Microtubule-mediated transport of DMVs, however, is not required for efficient replication. Biochemical analyses indicated that the nsp2 protein is associated with the cytoplasmic side of the DMVs. Yet, no recovery of fluorescence was observed when (part of) the nsp2-positive foci were bleached. This result was confirmed by the observation that preexisting RTCs did not exchange fluorescence after fusion of cells expressing either a green or a red fluorescent nsp2. Apparently, nsp2, once recruited to the RTCs, is not exchanged with nsp2 present in the cytoplasm or at other DMVs. Our data show a remarkable resemblance to results obtained recently by others with hepatitis C virus. The observations point to intriguing and as yet unrecognized similarities between the RTC dynamics of different plus-strand RNA viruses.
Collapse
|
37
|
Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. Proc Natl Acad Sci U S A 2009; 106:19381-6. [PMID: 19864630 DOI: 10.1073/pnas.0906524106] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intracellular transport is interspersed with frequent reversals in direction due to the presence of opposing kinesin and dynein motors on organelles that are carried as cargo. The cause and the mechanism of reversals are unknown, but are a key to understanding how cargos are delivered in a regulated manner to specific cellular locations. Unlike established single-motor biophysical assays, this problem requires understanding of the cooperative behavior of multiple interacting motors. Here we present measurements inside live Dictyostelium cells, in a cell extract and with purified motors to quantify such an ensemble function of motors. We show through precise motion analysis that reversals during endosome motion are caused by a tug-of-war between kinesin and dynein. Further, we use a combination of optical trap-based force measurements and Monte Carlo simulations to make the surprising discovery that endosome transport uses many (approximately four to eight) weak and detachment-prone dyneins in a tug-of-war against a single strong and tenacious kinesin. We elucidate how this clever choice of dissimilar motors and motor teams achieves net transport together with endosome fission, both of which are important in controlling the balance of endocytic sorting. To the best of our knowledge, this is a unique demonstration that dynein and kinesin function differently at the molecular level inside cells and of how this difference is used in a specific cellular process, namely endosome biogenesis. Our work may provide a platform to understand intracellular transport of a variety of organelles in terms of measurable quantities.
Collapse
|
38
|
Cytoplasmic bulk flow propels nuclei in mature hyphae of Neurospora crassa. EUKARYOTIC CELL 2009; 8:1880-90. [PMID: 19684281 DOI: 10.1128/ec.00062-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used confocal microscopy to evaluate nuclear dynamics in mature, growing hyphae of Neurospora crassa whose nuclei expressed histone H1-tagged green fluorescent protein (GFP). In addition to the H1-GFP wild-type (WT) strain, we examined nuclear displacement (passive transport) in four mutants deficient in microtubule-related motor proteins (ro-1, ro-3, kin-1, and a ro-1 kin-1 double mutant). We also treated the WT strain with benomyl and cytochalasin A to disrupt microtubules and actin microfilaments, respectively. We found that the degree of nuclear displacement in the subapical regions of all strains correlated with hyphal elongation rate. The WT strain and that the ro-1 kin-1 double mutant showed the highest correlation between nuclear movement and hyphal elongation. Although most nuclei seemed to move forward passively, presumably carried by the cytoplasmic bulk flow, a small proportion of the movement detected was either retrograde or accelerated anterograde. The absence of a specific microtubule motor in the mutants ro-1, ro-3, or kin-1 did not prevent the anterograde and retrograde migration of nuclei; however, in the ro-1 kin-1 double mutant retrograde migration was absent. In the WT strain, almost all nuclei were elongated, whereas in all other strains a majority of nuclei were nearly spherical. With only one exception, a sizable exclusion zone was maintained between the apex and the leading nucleus. The ro-1 mutant showed the largest nucleus exclusion zone; only the treatment with cytochalasin A abolished the exclusion zone. In conclusion, the movement and distribution of nuclei in mature hyphae appear to be determined by a combination of forces, with cytoplasmic bulk flow being a major determinant. Motor proteins probably play an active role in powering the retrograde or accelerated anterograde migrations of nuclei and may also contribute to passive anterograde displacement by binding nuclei to microtubules.
Collapse
|
39
|
Simple non-fluorescent polarity labeling of microtubules for molecular motor assays. Biotechniques 2009; 46:543-9. [DOI: 10.2144/000113124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Transport of intracellular organelles along the microtubule cytoskeleton occurs in a bidirectional manner due to opposing activity of microtubule-associated motor proteins of the kinesin and dynein families. Regulation of this opposing activity and the resultant motion is believed to generate a polarized distribution of many organelles within the cell. The bidirectional motion can be reconstituted on in vitro assembled microtubules using organelles extracted from cells. This provides an opportunity to understand the regulation of intracellular transport through quantitative analysis of the motion of organelles in a controlled environment. Such analysis requires the use of polarity-labeled microtubules to resolve the plus and minus components of bidirectional motion. However, existing methods of in vitro microtubule polarity labeling are unsuitable for high-resolution recording of motion. Here we present a simple and reliable method that uses avidin-coated magnetic beads to prepare microtubules labeled at the minus end. The microtubule polarity can be identified without any need for fluorescence excitation. We demonstrate video-rate high-resolution imaging of single cellular organelles moving along plus and minus directions on labeled microtubules. Quantitative analysis of this motion indicates that these organelles are likely to be driven by multiple dynein motors in vivo.
Collapse
|
40
|
Lehmann M, Milev MP, Abrahamyan L, Yao XJ, Pante N, Mouland AJ. Intracellular transport of human immunodeficiency virus type 1 genomic RNA and viral production are dependent on dynein motor function and late endosome positioning. J Biol Chem 2009; 284:14572-85. [PMID: 19286658 PMCID: PMC2682905 DOI: 10.1074/jbc.m808531200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/03/2009] [Indexed: 11/06/2022] Open
Abstract
Our earlier work indicated that the human immunodeficiency virus type 1 (HIV-1) genomic RNA (vRNA) is trafficked to the microtubule-organizing center (MTOC) when heterogeneous nuclear ribonucleoprotein A2/B1 is depleted from cells. Also, Rab7-interacting lysosomal protein promoted dynein motor complex, late endosome and vRNA clustering at the MTOC suggesting that the dynein motor and late endosomes were involved in vRNA trafficking. To investigate the role of the dynein motor in vRNA trafficking, dynein motor function was disrupted by small interference RNA-mediated depletion of the dynein heavy chain or by p50/dynamitin overexpression. These treatments led to a marked relocalization of vRNA and viral structural protein Gag to the cell periphery with late endosomes and a severalfold increase in HIV-1 production. In contrast, rerouting vRNA to the MTOC reduced virus production. vRNA localization depended on Gag membrane association as shown using both myristoylation and Gag nucleocapsid domain proviral mutants. Furthermore, the cytoplasmic localization of vRNA and Gag was not attributable to intracellular or internalized endocytosed virus particles. Our results demonstrate that dynein motor function is important for regulating Gag and vRNA egress on endosomal membranes in the cytoplasm to directly impact on viral production.
Collapse
Affiliation(s)
- Martin Lehmann
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Quebec
| | | | | | | | | | | |
Collapse
|
41
|
Lardong K, Maas C, Kneussel M. Neuronal depolarization modifies motor protein mobility. Neuroscience 2009; 160:1-5. [PMID: 19250960 DOI: 10.1016/j.neuroscience.2009.02.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 01/28/2009] [Accepted: 02/14/2009] [Indexed: 12/21/2022]
Abstract
Active neuronal transport along microtubules participates in the targeting of mRNAs, proteins and organelles to their sites of action. Cytoplasmic dynein represents a minus-end-directed microtubule-dependent motor protein. Due to the polarity of microtubules in axonal and distal dendritic compartments, with microtubule minus-ends pointing toward the inside of the cell, dyneins mainly mediate retrograde transport pathways in neurons. Since dyneins transport synaptic proteins, we asked whether changes in neuronal activity would in general influence dynein transport. KCl-induced depolarization, a condition that mimics the effects of neuronal activity, or pharmacological blockade of neuronal action potentials, respectively, was combined with neuronal live cell imaging, using an autofluorescent dynein intermediate chain fusion (monomeric red fluorescent protein [mRFP]-dynein intermediate chain [DIC]) as a model protein. Notably, we found that induced activity significantly reduced dynein particle mobility, as well as both the total distance and velocity of movements in mouse cultured hippocampal neurons. In contrast, blockade of neuronal action potentials through TTX did not alter any of the parameters analyzed. Neuronal depolarization processes therefore represent candidate mechanisms to regulate intracellular transport of neuronal cargoes.
Collapse
Affiliation(s)
- K Lardong
- Zentrum für Molekulare Neurobiologie Hamburg, ZMNH, Universität Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | | | | |
Collapse
|
42
|
Microtubule-nucleus interactions in Dictyostelium discoideum mediated by central motor kinesins. EUKARYOTIC CELL 2009; 8:723-31. [PMID: 19286984 DOI: 10.1128/ec.00018-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kinesins are a diverse superfamily of motor proteins that drive organelles and other microtubule-based movements in eukaryotic cells. These motors play important roles in multiple events during both interphase and cell division. Dictyostelium discoideum contains 13 kinesin motors, 12 of which are grouped into nine families, plus one orphan. Functions for 11 of the 13 motors have been previously investigated; we address here the activities of the two remaining kinesins, both isoforms with central motor domains. Kif6 (of the kinesin-13 family) appears to be essential for cell viability. The partial knockdown of Kif6 with RNA interference generates mitotic defects (lagging chromosomes and aberrant spindle assemblies) that are consistent with kinesin-13 disruptions in other organisms. However, the orphan motor Kif9 participates in a completely novel kinesin activity, one that maintains a connection between the microtubule-organizing center (MTOC) and nucleus during interphase. kif9 null cell growth is impaired, and the MTOC appears to disconnect from its normally tight nuclear linkage. Mitotic spindles elongate in a normal fashion in kif9(-) cells, but we hypothesize that this kinesin is important for positioning the MTOC into the nuclear envelope during prophase. This function would be significant for the early steps of cell division and also may play a role in regulating centrosome replication.
Collapse
|
43
|
Arcizet D, Meier B, Sackmann E, Rädler JO, Heinrich D. Temporal analysis of active and passive transport in living cells. PHYSICAL REVIEW LETTERS 2008; 101:248103. [PMID: 19113674 DOI: 10.1103/physrevlett.101.248103] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Indexed: 05/27/2023]
Abstract
The cellular cytoskeleton is a fascinating active network, in which Brownian motion is intercepted by distinct phases of active transport. We present a time-resolved statistical analysis dissecting phases of directed motion out of otherwise diffusive motion of tracer particles in living cells. The distribution of active lifetimes is found to decay exponentially with a characteristic time tauA = 0.65 s. The velocity distribution of active events exhibits several peaks, in agreement with a discrete number of motor proteins acting collectively.
Collapse
Affiliation(s)
- Delphine Arcizet
- Center for NanoScience (CeNS), Ludwig-Maximilians Universität, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany.
| | | | | | | | | |
Collapse
|
44
|
Githui EK, De Villiers EP, McArthur AG. Plasmodium possesses dynein light chain classes that are unique and conserved across species. INFECTION GENETICS AND EVOLUTION 2008; 9:337-43. [PMID: 18467191 DOI: 10.1016/j.meegid.2008.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 03/09/2008] [Accepted: 03/16/2008] [Indexed: 10/22/2022]
Abstract
Plasmodium belongs to the phylum Apicomplexa. Within the Apicomplexa, Plasmodium, Toxoplasma and Cryptosporidium are parasites of considerable medical importance while Theileria and Eimeria are animal pathogens. P. falciparum is particularly important as it causes malaria, resulting in more than 1 million deaths each year. The malaria parasite actively invades the host cell in which it propagates and several proteins associated with the apical organelles have been implicated to be crucial in the invasion process. The biogenesis of the apical organelles is not well understood, but several studies indicate that microtubule-based vesicular transport is involved. Vesicular transport proteins are also present in Plasmodium and are presumed to be involved in transcellular transport in infected erythrocytes. Dynein is a multi-subunit motor protein involved in microtubule-based vesicular transport. In this study, we analyzed the cytoplasmic dynein light chains (Dlcs) of P. falciparum since they provide adaptor surface to the cargoes and are likely to be involved in differential transport. Dlcs consist of three different families: TcTex1/2, LC8 and LC7/roadblock. The data presented demonstrate that P. falciparum Dlcs sequences and functional domains show high sequence similarity within the species, but that only the Dlc group 1 (LC8) has a high similarity to human orthologues. TcTex1 and LC7/roadblock have low similarity to human orthologues. This sequence variation could be targeted for vaccine or drug development.
Collapse
Affiliation(s)
- Elijah K Githui
- Laboratory of Molecular Genetics, National Museums of Kenya, P.O. Box 40658, Nairobi, Kenya.
| | | | | |
Collapse
|
45
|
Abstract
The role of cholesterol in the regulation of endosome motility was investigated by monitoring the intracellular trafficking of endocytosed folate receptors (FRs) labeled with fluorescent folate conjugates. Real-time fluorescence imaging of HeLa cells transfected with green fluorescent protein-tubulin revealed that FR-containing endosomes migrate along microtubules. Moreover, microinjection with antibodies that inhibit microtubule-associated motor proteins demonstrated that dynein and kinesin I participate in the delivery of FR-containing endosomes to the perinuclear area and plasma membrane, respectively. Further, single-particle tracking analysis revealed bidirectional motions of FR endosomes, mediated by dynein and kinesin motors associated with the same endosome. These experimental tools allowed us to use FR-containing endosomes to evaluate the impact of cholesterol on intracellular membrane trafficking. Lowering plasma membrane cholesterol by metabolic depletion or methyl-beta-cyclodextrin extraction was found to both increase FR-containing endosome motility and change endosome distribution from colocalization with Rab7 to colocalization with Rab4. These data provide evidence that cholesterol regulates intracellular membrane trafficking via modulation of the distribution of low molecular weight G-proteins that are adaptors for microtubule motors.
Collapse
|
46
|
Hess GT, Humphries WH, Fay NC, Payne CK. Cellular binding, motion, and internalization of synthetic gene delivery polymers. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1583-8. [PMID: 17888530 PMCID: PMC2121221 DOI: 10.1016/j.bbamcr.2007.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 07/09/2007] [Accepted: 07/16/2007] [Indexed: 12/30/2022]
Abstract
Using fluorescence microscopy we have tracked the cellular binding, surface motion, and internalization of polyarginine and polyethylenimine, cationic ligands used for gene and protein delivery. Each ligand was complexed with a quantum dot to provide a photostable probe. Transfection with exogenous DNA was used to relate the observed motion to gene delivery. Cell surface motion was independent of sulfated proteoglycans, but dependent on cholesterol. Cellular internalization required sulfated proteoglycans and cholesterol. These observations suggest that sulfated proteoglycans act as cellular receptors for the cationic ligands, rather than only passive binding sites. Understanding the interaction of polyarginine and polyethylenimine with the plasma membrane may assist in designing more efficient gene delivery systems.
Collapse
Affiliation(s)
- Gaelen T Hess
- Biophysics Program, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
47
|
Wanschers BFJ, van de Vorstenbosch R, Schlager MA, Splinter D, Akhmanova A, Hoogenraad CC, Wieringa B, Fransen JAM. A role for the Rab6B Bicaudal-D1 interaction in retrograde transport in neuronal cells. Exp Cell Res 2007; 313:3408-20. [PMID: 17707369 DOI: 10.1016/j.yexcr.2007.05.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 05/23/2007] [Accepted: 05/24/2007] [Indexed: 11/15/2022]
Abstract
The Rab6 subfamily of small GTPases consists of three different isoforms: Rab6A, Rab6A' and Rab6B. Both Rab6A and Rab6A' are ubiquitously expressed whereas Rab6B is predominantly expressed in brain. Recent studies have shown that Rab6A' is the isoform regulating the retrograde transport from late endosomes via the Golgi to the ER and in the transition from anaphase to metaphase during mitosis. Since the role of Rab6B is still ill defined, we set out to characterize its intracellular environment and dynamic behavior. In a Y-2H search for novel Rab6 interacting proteins, we identified Bicaudal-D1, a large coiled-coil protein known to bind to the dynein/dynactin complex and previously shown to be a binding partner for Rab6A/Rab6A'. Co-immunoprecipitation studies and pull down assays confirmed that Bicaudal-D1 also interacts with Rab6B in its active form. Using confocal laser scanning microscopy it was established that Rab6B and Bicaudal-D1 co-localize at the Golgi and vesicles that align along microtubules. Furthermore, both proteins co-localized with dynein in neurites of SK-N-SH cells. Live cell imaging revealed bi-directional movement of EGFP-Rab6B structures in SK-N-SH neurites. We conclude from our data that the brain-specific Rab6B via Bicaudal-D1 is linked to the dynein/dynactin complex, suggesting a regulatory role for Rab6B in the retrograde transport of cargo in neuronal cells.
Collapse
Affiliation(s)
- Bas F J Wanschers
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Centre, Geert Grooteplein-Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Byers HR, Dykstra SG, Boissel SJS. Requirement of Dynactin p150Glued Subunit for the Functional Integrity of the Keratinocyte Microparasol. J Invest Dermatol 2007; 127:1736-44. [PMID: 17344930 DOI: 10.1038/sj.jid.5700760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The keratinocyte microparasol, composed of a perinuclear microtubular/melano-phagolysosomal complex, protects the nucleus from UV-induced DNA damage. We have previously demonstrated that cytoplasmic dynein is the motor involved in the perinuclear-directed aggregation of phagocytosed melanosomes. Dynactin, of which p150(Glued) is the major subunit, can link directly to microtubules and links organelles to dynein at different domains. To further define the mechanism of the microparasol, we transfected siRNA targeted against p150(Glued) into human keratinocytes cultured with 0.5 mm fluorescent microspheres and performed time-lapse analysis, confocal immunolocalization, and Western immunoblotting after 24 and 48 hours. Western blots revealed a significant knockdown of the p150(Glued) subunit. The knockdown decreased p150(Glued) colocalization with microtubules and decreased perinuclear positioning of the convergent microtubular framework. It also inhibited perinuclear aggregation of phagocytosed fluorescent microspheres and reduced mean centripetal microsphere displacement. The findings provide evidence that dynactin p150(Glued) plays an important role in the functional integrity of the keratinocyte microparasol.
Collapse
Affiliation(s)
- H Randolph Byers
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | |
Collapse
|
49
|
Abstract
Molecular motor proteins are crucial for the proper distribution of organelles and vesicles in cells. Much of our current understanding of how motors function stems from studies of single motors moving cargos in vitro. More recently, however, there has been mounting evidence that the cooperation of multiple motors in moving cargos and the regulation of motor-filament affinity could be key mechanisms that cells utilize to regulate cargo transport. Here, we review these recent advances and present a picture of how the different mechanisms of regulating the number of motors moving a cargo could facilitate cellular functions.
Collapse
Affiliation(s)
- Steven P Gross
- Department of Developmental and Cell Biology, 2222 Nat Sci I, University of California Irvine, Irvine, California, USA.
| | | | | |
Collapse
|
50
|
Levi V, Gratton E. Exploring dynamics in living cells by tracking single particles. Cell Biochem Biophys 2007; 48:1-15. [PMID: 17703064 DOI: 10.1007/s12013-007-0010-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/19/2022]
Abstract
In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.
Collapse
Affiliation(s)
- Valeria Levi
- Laboratorio de Electrónica Cuántica, Departamento de Física, Universidad de Buenos Aires, Pabellón I Ciudad Universitaria, Buenos Aires, Argentina
| | | |
Collapse
|