1
|
Wu S, Wang H, Ren Y, Liu Y, Wen X. Generation of induced pluripotent stem cell-derived anterior foregut endoderms on integrin-binding short peptide-based synthetic substrates. Biomed Mater 2025; 20:035017. [PMID: 40132264 DOI: 10.1088/1748-605x/adc52b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 03/25/2025] [Indexed: 03/27/2025]
Abstract
Anterior foregut endoderms (AFEs) derived from induced pluripotent stem cells (iPSCs) are an important cell source in stem cell technology as they give rise to some important lineages like lung progenitors and thyroid cells. Coating substrates plays a critical role in AFE generation. Currently, conventional large molecule proteins like Matrigel are used in most differentiation protocols. However, the complex components and mechanisms of these coatings have limited both the exploration of cell-extracellular matrix (ECM) interaction and potential clinical applications. In this study, we identified eight pure synthetic integrin-binding short peptides as effective coatings for iPSC growth and AFE generation with an integrin-binding peptide array. Our results showed that integrinα5β1-,αVβ8-, andαIIbβ3-binding peptides supported the adhesion and expansion of iPSCs and AFE generation by guided differentiation via a definitive endoderm (DE) in a full-anchorage-dependent manner. AFE generation was also found on coatings based on integrinα3β1-,α6β1-,αVβ1-,αVβ6-, andαMβ2-binding peptides following a process with temporal suspension growth in the DE-inducing stage, with lower AFE generation efficiency compared to the full-anchorage-dependent peptide groups and Matrigel. According to the results, the integrinα5β1-binding peptide is the most promising defined substrate for inducing AFEs because of its equivalent efficiency with traditional Matrigel coating in supporting iPSC expansion and differentiation toward AFEs. Additionally, the other seven peptide-based coatings also exhibit potential and could be further investigated for developing synthetic-coating strategies in future studies involving AFEs. Our findings provide valuable insights into the role of integrin and ECM function and hold great potential for disease modeling as well as therapeutic exploration of AFE origin organs.
Collapse
Affiliation(s)
- Shujun Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Huan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yanbei Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23220, United States of America
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, People's Republic of China
| |
Collapse
|
2
|
Cipriano A, Colantoni A, Calicchio A, Fiorentino J, Gomes D, Moqri M, Parker A, Rasouli S, Caldwell M, Briganti F, Roncarolo MG, Baldini A, Weinacht KG, Tartaglia GG, Sebastiano V. Transcriptional and epigenetic characterization of a new in vitro platform to model the formation of human pharyngeal endoderm. Genome Biol 2024; 25:211. [PMID: 39118163 PMCID: PMC11312149 DOI: 10.1186/s13059-024-03354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The Pharyngeal Endoderm (PE) is an extremely relevant developmental tissue, serving as the progenitor for the esophagus, parathyroids, thyroids, lungs, and thymus. While several studies have highlighted the importance of PE cells, a detailed transcriptional and epigenetic characterization of this important developmental stage is still missing, especially in humans, due to technical and ethical constraints pertaining to its early formation. RESULTS Here we fill this knowledge gap by developing an in vitro protocol for the derivation of PE-like cells from human Embryonic Stem Cells (hESCs) and by providing an integrated multi-omics characterization. Our PE-like cells robustly express PE markers and are transcriptionally homogenous and similar to in vivo mouse PE cells. In addition, we define their epigenetic landscape and dynamic changes in response to Retinoic Acid by combining ATAC-Seq and ChIP-Seq of histone modifications. The integration of multiple high-throughput datasets leads to the identification of new putative regulatory regions and to the inference of a Retinoic Acid-centered transcription factor network orchestrating the development of PE-like cells. CONCLUSIONS By combining hESCs differentiation with computational genomics, our work reveals the epigenetic dynamics that occur during human PE differentiation, providing a solid resource and foundation for research focused on the development of PE derivatives and the modeling of their developmental defects in genetic syndromes.
Collapse
Affiliation(s)
- Andrea Cipriano
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano Di Tecnologia (IIT), 00161, Rome, Italy
| | - Alessandro Calicchio
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jonathan Fiorentino
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano Di Tecnologia (IIT), 00161, Rome, Italy
| | - Danielle Gomes
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Mahdi Moqri
- Biomedical Informatics Program, Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Alexander Parker
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Sajede Rasouli
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Matthew Caldwell
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Francesca Briganti
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Maria Grazia Roncarolo
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, 94305, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, USA
| | - Antonio Baldini
- Department of Molecular Medicine and Medical Biotech., University Federico II, 80131, Naples, Italy
| | - Katja G Weinacht
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano Di Tecnologia (IIT), 00161, Rome, Italy.
- Center for Human Technology, Fondazione Istituto Italiano Di Tecnologia (IIT), 16152, Genoa, Italy.
| | - Vittorio Sebastiano
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Alasaadi DN, Mayor R. Mechanically guided cell fate determination in early development. Cell Mol Life Sci 2024; 81:242. [PMID: 38811420 PMCID: PMC11136904 DOI: 10.1007/s00018-024-05272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Cell fate determination, a vital process in early development and adulthood, has been the focal point of intensive investigation over the past decades. Its importance lies in its critical role in shaping various and diverse cell types during embryonic development and beyond. Exploration of cell fate determination started with molecular and genetic investigations unveiling central signaling pathways and molecular regulatory networks. The molecular studies into cell fate determination yielded an overwhelming amount of information invoking the notion of the complexity of cell fate determination. However, recent advances in the framework of biomechanics have introduced a paradigm shift in our understanding of this intricate process. The physical forces and biochemical interplay, known as mechanotransduction, have been identified as a pivotal drive influencing cell fate decisions. Certainly, the integration of biomechanics into the process of cell fate pushed our understanding of the developmental process and potentially holds promise for therapeutic applications. This integration was achieved by identifying physical forces like hydrostatic pressure, fluid dynamics, tissue stiffness, and topography, among others, and examining their interplay with biochemical signals. This review focuses on recent advances investigating the relationship between physical cues and biochemical signals that control cell fate determination during early embryonic development.
Collapse
Affiliation(s)
- Delan N Alasaadi
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
5
|
Wang J, Maeda E, Tsujimura Y, Abe T, Kiyonari H, Kitaguchi T, Yokota H, Matsumoto T. In situ FRET measurement of cellular tension using conventional confocal laser microscopy in newly established reporter mice expressing actinin tension sensor. Sci Rep 2023; 13:22729. [PMID: 38123655 PMCID: PMC10733408 DOI: 10.1038/s41598-023-50142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
FRET-based sensors are utilized for real-time measurements of cellular tension. However, transfection of the sensor gene shows low efficacy and is only effective for a short period. Reporter mice expressing such sensors have been developed, but sensor fluorescence has not been measured successfully using conventional confocal microscopy. Therefore, methods for spatiotemporal measurement of cellular tension in vivo or ex vivo are still limited. We established a reporter mouse line expressing FRET-based actinin tension sensors consisting of EGFP as the donor and mCherry as the acceptor and whose FRET ratio change is observable with confocal microscopy. Tension-induced changes in FRET signals were monitored in the aorta and tail tendon fascicles, as well as aortic smooth muscle cells isolated from these mice. The pattern of FRET changes was distinctive, depending on tissue type. Indeed, aortic smooth muscle cells exhibit different sensitivity to macroscopic tensile strain in situ and in an isolated state. This mouse strain will enable novel types of biomechanical investigations of cell functions in important physiological events.
Collapse
Affiliation(s)
- Junfeng Wang
- Biomechanics Laboratory, Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8603, Japan
| | - Eijiro Maeda
- Biomechanics Laboratory, Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8603, Japan
| | - Yuki Tsujimura
- RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Hideo Yokota
- RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama, Japan
| | - Takeo Matsumoto
- Biomechanics Laboratory, Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8603, Japan.
| |
Collapse
|
6
|
Nakamura K, Dalal AR, Yokoyama N, Pedroza AJ, Kusadokoro S, Mitchel O, Gilles C, Masoudian B, Leipzig M, Casey KM, Hiesinger W, Uchida T, Fischbein MP. Lineage-Specific Induced Pluripotent Stem Cell-Derived Smooth Muscle Cell Modeling Predicts Integrin Alpha-V Antagonism Reduces Aortic Root Aneurysm Formation in Marfan Syndrome Mice. Arterioscler Thromb Vasc Biol 2023; 43:1134-1153. [PMID: 37078287 PMCID: PMC10330156 DOI: 10.1161/atvbaha.122.318448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND The role of increased smooth muscle cell (SMC) integrin αv signaling in Marfan syndrome (MFS) aortic aneurysm remains unclear. Herein, we examine the mechanism and potential efficacy of integrin αv blockade as a therapeutic strategy to reduce aneurysm progression in MFS. METHODS Induced pluripotent stem cells (iPSCs) were differentiated into aortic SMCs of the second heart field (SHF) and neural crest (NC) lineages, enabling in vitro modeling of MFS thoracic aortic aneurysms. The pathological role of integrin αv during aneurysm formation was confirmed by blockade of integrin αv with GLPG0187 in Fbn1C1039G/+ MFS mice. RESULTS iPSC-derived MFS SHF SMCs overexpress integrin αv relative to MFS NC and healthy control SHF cells. Furthermore, integrin αv downstream targets (FAK [focal adhesion kinase]/AktThr308/mTORC1 [mechanistic target of rapamycin complex 1]) were activated, especially in MFS SHF. Treatment of MFS SHF SMCs with GLPG0187 reduced p-FAK/p-AktThr308/mTORC1 activity back to control SHF levels. Functionally, MFS SHF SMCs had increased proliferation and migration compared to MFS NC SMCs and control SMCs, which normalized with GLPG0187 treatment. In the Fbn1C1039G/+ MFS mouse model, integrin αv, p-AktThr308, and downstream targets of mTORC1 proteins were elevated in the aortic root/ascending segment compared to littermate wild-type control. Mice treated with GLPG0187 (age 6-14 weeks) had reduced aneurysm growth, elastin fragmentation, and reduction of the FAK/AktThr308/mTORC1 pathway. GLPG0187 treatment reduced the amount and severity of SMC modulation assessed by single-cell RNA sequencing. CONCLUSIONS The integrin αv-FAK-AktThr308 signaling pathway is activated in iPSC SMCs from MFS patients, specifically from the SHF lineage. Mechanistically, this signaling pathway promotes SMC proliferation and migration in vitro. As biological proof of concept, GLPG0187 treatment slowed aneurysm growth and p-AktThr308 signaling in Fbn1C1039G/+ mice. Integrin αv blockade via GLPG0187 may be a promising therapeutic approach to inhibit MFS aneurysmal growth.
Collapse
Affiliation(s)
- Ken Nakamura
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Alex R. Dalal
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Nobu Yokoyama
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Albert J. Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Sho Kusadokoro
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Olivia Mitchel
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Casey Gilles
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Bahar Masoudian
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Matthew Leipzig
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Kerriann M. Casey
- Department of Comparative Medicine, Stanford University School of Medicine. Stanford CA, USA
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| | - Tetsuro Uchida
- Second Department of Surgery, Yamagata University Faculty of Medicine. Yamagata, Japan
| | - Michael P. Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine. Stanford CA, USA
| |
Collapse
|
7
|
Zhang S, Chong LH, Woon JYX, Chua TX, Cheruba E, Yip AK, Li HY, Chiam KH, Koh CG. Zyxin regulates embryonic stem cell fate by modulating mechanical and biochemical signaling interface. Commun Biol 2023; 6:62. [PMID: 36653484 PMCID: PMC9849324 DOI: 10.1038/s42003-023-04421-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Biochemical signaling and mechano-transduction are both critical in regulating stem cell fate. How crosstalk between mechanical and biochemical cues influences embryonic development, however, is not extensively investigated. Using a comparative study of focal adhesion constituents between mouse embryonic stem cell (mESC) and their differentiated counterparts, we find while zyxin is lowly expressed in mESCs, its levels increase dramatically during early differentiation. Interestingly, overexpression of zyxin in mESCs suppresses Oct4 and Nanog. Using an integrative biochemical and biophysical approach, we demonstrate involvement of zyxin in regulating pluripotency through actin stress fibres and focal adhesions which are known to modulate cellular traction stress and facilitate substrate rigidity-sensing. YAP signaling is identified as an important biochemical effector of zyxin-induced mechanotransduction. These results provide insights into the role of zyxin in the integration of mechanical and biochemical cues for the regulation of embryonic stem cell fate.
Collapse
Affiliation(s)
- Songjing Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lor Huai Chong
- Bioinformatics Institute A*STAR, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jessie Yong Xing Woon
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Theng Xuan Chua
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Ai Kia Yip
- Bioinformatics Institute A*STAR, Singapore, Singapore
| | - Hoi-Yeung Li
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
8
|
Li JH, Trivedi V, Diz-Muñoz A. Understanding the interplay of membrane trafficking, cell surface mechanics, and stem cell differentiation. Semin Cell Dev Biol 2023; 133:123-134. [PMID: 35641408 PMCID: PMC9703995 DOI: 10.1016/j.semcdb.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/08/2022] [Accepted: 05/14/2022] [Indexed: 01/17/2023]
Abstract
Stem cells can generate a diversity of cell types during development, regeneration and adult tissue homeostasis. Differentiation changes not only the cell fate in terms of gene expression but also the physical properties and functions of cells, e.g. the secretory activity, cell shape, or mechanics. Conversely, these activities and properties can also regulate differentiation itself. Membrane trafficking is known to modulate signal transduction and thus has the potential to control stem cell differentiation. On the other hand, membrane trafficking, particularly from and to the plasma membrane, depends on the mechanical properties of the cell surface such as tension within the plasma membrane or the cortex. Indeed, recent findings demonstrate that cell surface mechanics can also control cell fate. Here, we review the bidirectional relationships between these three fundamental cellular functions, i.e. membrane trafficking, cell surface mechanics, and stem cell differentiation. Furthermore, we discuss commonly used methods in each field and how combining them with new tools will enhance our understanding of their interplay. Understanding how membrane trafficking and cell surface mechanics can guide stem cell fate holds great potential as these concepts could be exploited for directed differentiation of stem cells for the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jia Hui Li
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Vikas Trivedi
- EMBL, PRBB, Dr. Aiguader, 88, Barcelona 08003, Spain,Developmental Biology Unit, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, Heidelberg 69117, Germany.
| |
Collapse
|
9
|
Thanuthanakhun N, Kim MH, Kino-oka M. Cell Behavioral Dynamics as a Cue in Optimizing Culture Stabilization in the Bioprocessing of Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:669. [PMID: 36354580 PMCID: PMC9687444 DOI: 10.3390/bioengineering9110669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 04/23/2024] Open
Abstract
Pluripotent stem cells (PSCs) are important for future regenerative medicine therapies. However, in the production of PSCs and derivatives, the control of culture-induced fluctuations in the outcome of cell quality remains challenging. A detailed mechanistic understanding of how PSC behaviors are altered in response to biomechanical microenvironments within a culture is necessary for rational bioprocessing optimization. In this review, we discuss recent insights into the role of cell behavioral and mechanical homeostasis in modulating the states and functions of PSCs during culture processes. We delineate promising ways to manipulate the culture variability through regulating cell behaviors using currently developed tools. Furthermore, we anticipate their potential implementation for designing a culture strategy based on the concept of Waddington's epigenetic landscape that may provide a feasible solution for tuning the culture quality and stability in the bioprocessing space.
Collapse
Affiliation(s)
- Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Research Base for Cell Manufacturability, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
10
|
De Belly H, Paluch EK, Chalut KJ. Interplay between mechanics and signalling in regulating cell fate. Nat Rev Mol Cell Biol 2022; 23:465-480. [PMID: 35365816 DOI: 10.1038/s41580-022-00472-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Mechanical signalling affects multiple biological processes during development and in adult organisms, including cell fate transitions, cell migration, morphogenesis and immune responses. Here, we review recent insights into the mechanisms and functions of two main routes of mechanical signalling: outside-in mechanical signalling, such as mechanosensing of substrate properties or shear stresses; and mechanical signalling regulated by the physical properties of the cell surface itself. We discuss examples of how these two classes of mechanical signalling regulate stem cell function, as well as developmental processes in vivo. We also discuss how cell surface mechanics affects intracellular signalling and, in turn, how intracellular signalling controls cell surface mechanics, generating feedback into the regulation of mechanosensing. The cooperation between mechanosensing, intracellular signalling and cell surface mechanics has a profound impact on biological processes. We discuss here our understanding of how these three elements interact to regulate stem cell fate and development.
Collapse
Affiliation(s)
- Henry De Belly
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ewa K Paluch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Kevin J Chalut
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Alvarez Y, Smutny M. Emerging Role of Mechanical Forces in Cell Fate Acquisition. Front Cell Dev Biol 2022; 10:864522. [PMID: 35676934 PMCID: PMC9168747 DOI: 10.3389/fcell.2022.864522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Mechanical forces are now recognized as key cellular effectors that together with genetic and cellular signals physically shape and pattern tissues and organs during development. Increasing efforts are aimed toward understanding the less explored role of mechanical forces in controlling cell fate decisions in embryonic development. Here we discuss recent examples of how differential forces feedback into cell fate specification and tissue patterning. In particular, we focus on the role of actomyosin-contractile force generation and transduction in affecting tissue morphogenesis and cell fate regulation in the embryo.
Collapse
Affiliation(s)
- Yanina Alvarez
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Michael Smutny
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
12
|
Emon MAB, Knoll S, Doha U, Ladehoff L, Lalonde L, Baietto D, Sivaguru M, Bhargava R, Saif MTA. Dose- independent threshold illumination for non-invasive time-lapse fluorescence imaging of live cells. EXTREME MECHANICS LETTERS 2021; 46:101249. [PMID: 34095408 PMCID: PMC8171180 DOI: 10.1016/j.eml.2021.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Fluorescent microscopy employs monochromatic light for excitation, which can adversely affect the cells being observed. We reported earlier that fibroblasts relax their contractile force in response to green light of typical intensity. Here we show that such effects are independent of extracellular matrix and cell lines. In addition, we establish a threshold intensity that elicits minimal or no adverse effect on cell contractility even for long-time exposure. This threshold intensity is wavelength dependent. We cultured fibroblasts on soft 2D elastic hydrogels embedded with fluorescent beads to trace substrate deformation and cell forces. The beads move towards cell center when cells contract, but they move away when cells relax. We use relaxation/contraction ratio (λ r), in addition to traction force, as measures of cell response to red (wavelength, λ=635-650 nm), green (λ=545-580 nm) and blue (λ=455-490 nm) lights with varying intensities. Our results suggest that intensities below 57, 31 and 3.5 W/m2 for red, green and blue lights, respectively, do not perturb force homeostasis. To our knowledge, these intensities are the lowest reported safe thresholds, implying that cell traction is a highly sensitive readout of the effect of light on cells. Most importantly, we find these threshold intensities to be dose-independent; i.e., safe regardless of the energy dosage or time of exposure. Conversely, higher intensities result in widespread force-relaxation in cells with λ r > 1. Furthermore, we present a photo-reaction based model that simulates photo-toxicity and predicts threshold intensity for different wavelengths within the visible spectra. In conclusion, we recommend employing illumination intensities below aforementioned wavelength-specific thresholds for time-lapse imaging of cells and tissues in order to avoid light-induced artifacts in experimental observations.
Collapse
Affiliation(s)
- M A Bashar Emon
- Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
| | - Samantha Knoll
- Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
| | - Umnia Doha
- Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
| | - Lauren Ladehoff
- Dept. of Bioengineering, University of Illinois at Urbana-Champaign
| | - Luke Lalonde
- Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
| | - Danielle Baietto
- Dept. of Bioengineering, University of Illinois at Urbana-Champaign
| | - Mayandi Sivaguru
- Carle Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign
| | - Rohit Bhargava
- Dept. of Bioengineering, University of Illinois at Urbana-Champaign
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign
| | - M Taher A Saif
- Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign
- Dept. of Bioengineering, University of Illinois at Urbana-Champaign
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign
- Corresponding author: M Taher A Saif, Gutgsell Professor, Associate Head for Graduate Programs and Research, Mechanical Science and Engineering, Research Professor, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 2101D Mechanical Engineering Laboratory, 105 S. Mathews Avenue, Urbana, IL 61801, USA, , Tel: 217-333-8552, Fax: 217-244-6534, http://saif.mechse.illinois.edu/
| |
Collapse
|
13
|
Dwivedi N, Das S, Bellare J, Majumder A. Viscoelastic substrate decouples cellular traction force from other related phenotypes. Biochem Biophys Res Commun 2021; 543:38-44. [PMID: 33508771 DOI: 10.1016/j.bbrc.2021.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023]
Abstract
Survival and maintenance of normal physiological functions depends on continuous interaction of cells with its microenvironment. Cells sense the mechanical properties of underlying substrate by applying force and modulate their behaviour in response to the resistance offered by the substrate. Most of the studies addressing cell-substrate mechanical interactions have been carried out using elastic substrates. Since tissues within our body are viscoelastic in nature, here we explore the effect of substrate's viscoelasticity on various properties of mesenchymal stem cells. Here, we used two sets of polyacrylamide substrates having similar storage modulus (G' = 1.1-1.6 kPa) but different loss modulus (G" = 45 Pa and 300 Pa). We report that human mesenchymal stem cells spread more but apply less force on the viscoelastic substrate (substrate with higher loss modulus). We further investigated the effect of substrate viscoelasticity on the expression of other contractility-associated proteins such as focal adhesion (FA) proteins (Vinculin, Paxillin, Talin), cytoskeletal proteins (actin, mysion, intermediate filaments, and microtubules) and mechano-sensor protein Yes-Associated Protein (YAP). Our results show that substrate viscoelasticity decouples cellular traction from other known traction related phenotypes.
Collapse
Affiliation(s)
- Nehal Dwivedi
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai, 400076, India
| | - Siddhartha Das
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai, 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai, 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IITB), Mumbai, 400076, India.
| |
Collapse
|
14
|
Iosef C, Pedroza AJ, Cui JZ, Dalal AR, Arakawa M, Tashima Y, Koyano TK, Burdon G, Churovich SMP, Orrick JO, Pariani M, Fischbein MP. Quantitative proteomics reveal lineage-specific protein profiles in iPSC-derived Marfan syndrome smooth muscle cells. Sci Rep 2020; 10:20392. [PMID: 33230159 PMCID: PMC7683538 DOI: 10.1038/s41598-020-77274-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the FBN1 gene that produces wide disease phenotypic variability. The lack of ample genotype-phenotype correlation hinders translational study development aimed at improving disease prognosis. In response to this need, an induced pluripotent stem cell (iPSC) disease model has been used to test patient-specific cells by a proteomic approach. This model has the potential to risk stratify patients to make clinical decisions, including timing for surgical treatment. The regional propensity for aneurysm formation in MFS may be related to distinct smooth muscle cell (SMC) embryologic lineages. Thus, peripheral blood mononuclear cell (PBMC)-derived induced pluripotent stem cells (iPSC) were differentiated into lateral mesoderm (LM, aortic root) and neural crest (NC, ascending aorta/transverse arch) SMC lineages to model MFS aortic pathology. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) proteomic analysis by tandem mass spectrometry was applied to profile LM and NC iPSC SMCs from four MFS patients and two healthy controls. Analysis revealed 45 proteins with lineage-dependent expression in MFS patients, many of which were specific to diseased samples. Single protein-level data from both iPSC SMCs and primary MFS aortic root aneurysm tissue confirmed elevated integrin αV and reduced MRC2 in clinical disease specimens, validating the iPSC iTRAQ findings. Functionally, iPSC SMCs exhibited defective adhesion to a variety of extracellular matrix proteins, especially laminin-1 and fibronectin, suggesting altered cytoskeleton dynamics. This study defines the aortic embryologic origin-specific proteome in a validated iPSC SMC model to identify novel protein markers associated with MFS aneurysm phenotype. Translating iPSC findings into clinical aortic aneurysm tissue samples highlights the potential for iPSC-based methods to model MFS disease for mechanistic studies and therapeutic discovery in vitro.
Collapse
Affiliation(s)
- Cristiana Iosef
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Albert J Pedroza
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Jason Z Cui
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Alex R Dalal
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Mamoru Arakawa
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Yasushi Tashima
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Tiffany K Koyano
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Grayson Burdon
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Samantha M P Churovich
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Joshua O Orrick
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA
| | - Mitchel Pariani
- Department of Pediatrics-Genetics, Stanford University, Stanford, CA, USA
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University, 300 Pasteur Dr, Falk CVRB, Stanford, CA, 94305, USA.
| |
Collapse
|
15
|
Lamiré LA, Milani P, Runel G, Kiss A, Arias L, Vergier B, de Bossoreille S, Das P, Cluet D, Boudaoud A, Grammont M. Gradient in cytoplasmic pressure in germline cells controls overlying epithelial cell morphogenesis. PLoS Biol 2020; 18:e3000940. [PMID: 33253165 PMCID: PMC7703951 DOI: 10.1371/journal.pbio.3000940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/13/2020] [Indexed: 12/31/2022] Open
Abstract
It is unknown how growth in one tissue impacts morphogenesis in a neighboring tissue. To address this, we used the Drosophila ovarian follicle, in which a cluster of 15 nurse cells and a posteriorly located oocyte are surrounded by a layer of epithelial cells. It is known that as the nurse cells grow, the overlying epithelial cells flatten in a wave that begins in the anterior. Here, we demonstrate that an anterior to posterior gradient of decreasing cytoplasmic pressure is present across the nurse cells and that this gradient acts through TGFβ to control both the triggering and the progression of the wave of epithelial cell flattening. Our data indicate that intrinsic nurse cell growth is important to control proper nurse cell pressure. Finally, we reveal that nurse cell pressure and subsequent TGFβ activity in the stretched cells combine to increase follicle elongation in the anterior, which is crucial for allowing nurse cell growth and pressure control. More generally, our results reveal that during development, inner cytoplasmic pressure in individual cells has an important role in shaping their neighbors.
Collapse
Affiliation(s)
- Laurie-Anne Lamiré
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Pascale Milani
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Gaël Runel
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Annamaria Kiss
- Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Leticia Arias
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Blandine Vergier
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Stève de Bossoreille
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Pradeep Das
- Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - David Cluet
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Muriel Grammont
- Laboratoire de Biologie et de Modélisation de la Cellule, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, Lyon, France
| |
Collapse
|
16
|
Tran R, Moraes C, Hoesli CA. Developmentally-Inspired Biomimetic Culture Models to Produce Functional Islet-Like Cells From Pluripotent Precursors. Front Bioeng Biotechnol 2020; 8:583970. [PMID: 33117786 PMCID: PMC7576674 DOI: 10.3389/fbioe.2020.583970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Insulin-producing beta cells sourced from pluripotent stem cells hold great potential as a virtually unlimited cell source to treat diabetes. Directed pancreatic differentiation protocols aim to mimic various stimuli present during embryonic development through sequential changes of in vitro culture conditions. This is commonly accomplished by the timed addition of soluble signaling factors, in conjunction with cell-handling steps such as the formation of 3D cell aggregates. Interestingly, when stem cells at the pancreatic progenitor stage are transplanted, they form functional insulin-producing cells, suggesting that in vivo microenvironmental cues promote beta cell specification. Among these cues, biophysical stimuli have only recently emerged in the context of optimizing pancreatic differentiation protocols. This review focuses on studies of cell–microenvironment interactions and their impact on differentiating pancreatic cells when considering cell signaling, cell–cell and cell–ECM interactions. We highlight the development of in vitro cell culture models that allow systematic studies of pancreatic cell mechanobiology in response to extracellular matrix proteins, biomechanical effects, soluble factor modulation of biomechanics, substrate stiffness, fluid flow and topography. Finally, we explore how these new mechanical insights could lead to novel pancreatic differentiation protocols that improve efficiency, maturity, and throughput.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Haage A, Wagner K, Deng W, Venkatesh B, Mitchell C, Goodwin K, Bogutz A, Lefebvre L, Van Raamsdonk CD, Tanentzapf G. Precise coordination of cell-ECM adhesion is essential for efficient melanoblast migration during development. Development 2020; 147:dev.184234. [PMID: 32580934 DOI: 10.1242/dev.184234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 06/08/2020] [Indexed: 01/07/2023]
Abstract
Melanoblasts disperse throughout the skin and populate hair follicles through long-range cell migration. During migration, cells undergo cycles of coordinated attachment and detachment from the extracellular matrix (ECM). Embryonic migration processes that require cell-ECM attachment are dependent on the integrin family of adhesion receptors. Precise regulation of integrin-mediated adhesion is important for many developmental migration events. However, the mechanisms that regulate integrin-mediated adhesion in vivo in melanoblasts are not well understood. Here, we show that autoinhibitory regulation of the integrin-associated adapter protein talin coordinates cell-ECM adhesion during melanoblast migration in vivo Specifically, an autoinhibition-defective talin mutant strengthens and stabilizes integrin-based adhesions in melanocytes, which impinges on their ability to migrate. Mice with defective talin autoinhibition exhibit delays in melanoblast migration and pigmentation defects. Our results show that coordinated integrin-mediated cell-ECM attachment is essential for melanoblast migration and that talin autoinhibition is an important mechanism for fine-tuning cell-ECM adhesion during cell migration in development.
Collapse
Affiliation(s)
- Amanda Haage
- Department of Biomedical Sciences, University of North Dakota, 1301 N Columbia Rd, Grand Forks, ND 58202, ND, USA
| | - Kelsey Wagner
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Wenjun Deng
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Bhavya Venkatesh
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Caitlin Mitchell
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Aaron Bogutz
- Department of Medical Genetics, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Louis Lefebvre
- Department of Medical Genetics, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Pirkkanen J, Tharmalingam S, Morais IH, Lam-Sidun D, Thome C, Zarnke AM, Benjamin LV, Losch AC, Borgmann AJ, Sinex HC, Mendonca MS, Boreham DR. Transcriptomic profiling of gamma ray induced mutants from the CGL1 human hybrid cell system reveals novel insights into the mechanisms of radiation-induced carcinogenesis. Free Radic Biol Med 2019; 145:300-311. [PMID: 31580949 DOI: 10.1016/j.freeradbiomed.2019.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Somatic cell hybrid systems generated by combining cancerous with non-cancerous cells provide useful model systems to study neoplastic transformation. Combined with recent advances in omics-based technologies, novel molecular signatures that drive radiation-induced carcinogenesis can be analyzed at an exceptional global level. METHODS Here, we present a complete whole-transcriptome analysis of gamma-induced mutants (GIM) and gamma irradiated control (CON) segregants isolated from the CGL1 (HeLa x normal fibroblast) human hybrid cell-system exposed to high doses of radiation. Using the Human Transcriptome Array 2.0 microarray technology and conservative discrimination parameters, we have elucidated 1067 differentially expressed genes (DEGs) between tumorigenic and non-tumorigenic cells. RESULTS Gene ontology enrichment analysis revealed that tumorigenic cells demonstrated shifts in extracellular matrix (ECM) and cellular adhesion profiles, dysregulation of cyclic AMP (cAMP) signaling, and alterations in nutrient transport and cellular energetics. Furthermore, putative upstream master regulator analysis demonstrated that loss of TGFβ1 signaling due to reduced SMAD3 expression is involved in radiation-induced carcinogenesis. CONCLUSIONS Taken together, this study presents novel insights into specific gene expression and pathway level differences that contribute to radiation-induced carcinogenesis in a human cell-based model. This global transcriptomic analysis and our published tumor suppressor gene deletion loci analyses will allow us to identify and functionally test candidate nexus upstream tumor suppressor genes that are deleted or silenced after exposure to radiation.
Collapse
Affiliation(s)
- Jake Pirkkanen
- Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario, P3E 2C6, Canada.
| | | | - Igor H Morais
- Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario, P3E 2C6, Canada.
| | - Daniel Lam-Sidun
- Northern Ontario School of Medicine, 935 Ramsey Lake Rd, Sudbury, Ontario, P3E 2C6, Canada.
| | - Christopher Thome
- Northern Ontario School of Medicine, 935 Ramsey Lake Rd, Sudbury, Ontario, P3E 2C6, Canada.
| | - Andrew M Zarnke
- Laurentian University, 935 Ramsey Lake Rd, Sudbury, Ontario, P3E 2C6, Canada.
| | - Laura V Benjamin
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Adam C Losch
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Anthony J Borgmann
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Helen Chin Sinex
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Marc S Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Douglas R Boreham
- Northern Ontario School of Medicine, 935 Ramsey Lake Rd, Sudbury, Ontario, P3E 2C6, Canada; Bruce Power, PO Box 1540, 177 Tie Rd, R.R. 2, Tiverton, Ontario, N0G 2T0, Canada.
| |
Collapse
|
19
|
Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm. Stem Cell Res 2018; 28:48-55. [PMID: 29427839 DOI: 10.1016/j.scr.2018.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/04/2017] [Accepted: 01/11/2018] [Indexed: 12/25/2022] Open
Abstract
Differentiation of human pluripotent stem cells towards definitive endoderm (DE) is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. This study improves our understanding of the cellular heterogeneity during in-vitro directed differentiation and provides a valuable resource to improve DE differentiation efficiency.
Collapse
|
20
|
Nagayama K, Inoue T, Hamada Y, Matsumoto T. A novel patterned magnetic micropillar array substrate for analysis of cellular mechanical responses. J Biomech 2017; 65:194-202. [PMID: 29126605 DOI: 10.1016/j.jbiomech.2017.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 02/02/2023]
Abstract
Traction forces generated at cellular focal adhesions (FAs) play an essential role in regulating various cellular functions. These forces (1-100 nN) can be measured by observing the local displacement of a flexible substrate upon which cells have been plated. Approaches employing this method include using microfabricated arrays of poly(dimethylsiloxane) (PDMS) micropillars that bend by cellular traction forces. A tool capable of applying a force to FAs independently, by actively moving the micropillars, should become a powerful tool to delineate the cellular mechanotransduction mechanisms. Here, we developed a patterned magnetic micropillar array PDMS substrate that can be used for the mechanical stimulation of cellular FAs and the measurement of associated traction forces. The diameter, length, and center-to-center spacing of the micropillars were 3, 9, and 9 µm, respectively. Iron particles were embedded into the micropillars, enabling the pillars to bend in response to an external magnetic field, which also controlled their location on the substrate. Applying a magnetic field of 0.3 T bent the pillars by ∼4 µm and allowed transfer of external forces to the actin cytoskeleton through FAs formed on the pillar top. Using this approach, we investigated the traction force changes in cultured aortic smooth muscle cells (SMCs) after local compressive stimuli to release cell pretension. The mechanical responses of SMCs were roughly classified into two types: almost a half of the cells showed a little decrease of traction force at each pillar following compressive stimulation, although cell area increased significantly; and the rest showed the opposite, with increased forces and a simultaneous decrease in area. The traction forces of SMCs fluctuated markedly during the local compression. The root mean square of traction forces significantly increased during the compression, and returned to the baseline level after its release. These results suggest that the fluctuation of forces may be caused by active reorganization of the actin cytoskeleton and/or its dynamic interaction with myosin molecules. Thus, our magnetic micropillar substrate would be useful in investigating the mechanotransduction mechanisms of cells.
Collapse
Affiliation(s)
- Kazuaki Nagayama
- Micro-Nano Biomechanics Laboratory, Department of Intelligent Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi 316-8511, Japan.
| | - Takuya Inoue
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Yasuhiro Hamada
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takeo Matsumoto
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; Biomechanics Laboratory, Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| |
Collapse
|
21
|
Sart S, Bejoy J, Li Y. Characterization of 3D pluripotent stem cell aggregates and the impact of their properties on bioprocessing. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Mekhdjian AH, Kai F, Rubashkin MG, Prahl LS, Przybyla LM, McGregor AL, Bell ES, Barnes JM, DuFort CC, Ou G, Chang AC, Cassereau L, Tan SJ, Pickup MW, Lakins JN, Ye X, Davidson MW, Lammerding J, Odde DJ, Dunn AR, Weaver VM. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol Biol Cell 2017; 28:1467-1488. [PMID: 28381423 PMCID: PMC5449147 DOI: 10.1091/mbc.e16-09-0654] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/21/2022] Open
Abstract
Mammary tumor cells adopt a basal-like phenotype when invading through a dense, stiffened, 3D matrix. These cells exert higher integrin-mediated traction forces, consistent with a physical motor-clutch model, display an altered molecular organization at the nanoscale, and recruit a suite of paxillin-associated proteins implicated in metastasis. Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome.
Collapse
Affiliation(s)
- Armen H Mekhdjian
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - FuiBoon Kai
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Matthew G Rubashkin
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Louis S Prahl
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Laralynne M Przybyla
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Alexandra L McGregor
- Nancy E. and Peter C. Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Emily S Bell
- Nancy E. and Peter C. Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J Matthew Barnes
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Christopher C DuFort
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Guanqing Ou
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Alice C Chang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Luke Cassereau
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Steven J Tan
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Michael W Pickup
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Jonathan N Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Xin Ye
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143 .,Departments of Anatomy, Bioengineering and Therapeutic Sciences, and Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
23
|
Kaushik G, Leijten J, Khademhosseini A. Concise Review: Organ Engineering: Design, Technology, and Integration. Stem Cells 2017; 35:51-60. [PMID: 27641724 PMCID: PMC6527109 DOI: 10.1002/stem.2502] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 01/19/2023]
Abstract
Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Jeroen Leijten
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Ali Khademhosseini
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Abstract
Motile cells navigate through tissue by relying on tactile cues from gradients provided by extracellular matrix (ECM) such as ligand density or stiffness. Mesenchymal stem cells (MSCs) and fibroblasts encounter adhesive or 'haptotactic' gradients at the interface between healthy and fibrotic tissue as they migrate towards an injury site. Mimicking this phenomenon, we developed tunable RGD and collagen gradients in polyacrylamide hydrogels of physiologically relevant stiffness using density gradient multilayer polymerization (DGMP) to better understand how such ligand gradients regulate migratory behaviors. Independent of ligand composition and fiber deformation, haptotaxis was observed in mouse 3T3 fibroblasts. Human MSCs however, haptotaxed only when cell-substrate adhesion was indirectly reduced via addition of free soluble matrix ligand mimetic peptides. Under basal conditions, MSCs were more contractile than fibroblasts. However, the presence of soluble adhesive peptides reduced MSC-induced substrate deformations; increased contractility may contribute to limited migration, but modulating cytoskeletal assembly was ineffective at promoting MSC haptotaxis. When introduced to gradients of increased absolute ligand concentrations, 3T3s displayed increased contractility and no longer haptotaxed. These data suggest that haptotactic behaviors are limited by adhesion and that although both cell types may home to tissue to aid in repair, fibroblasts may be more responsive to ligand gradients than MSCs.
Collapse
|
25
|
Taylor-Weiner H, Ravi N, Engler AJ. Traction forces mediated by integrin signaling are necessary for definitive endoderm specification. Development 2015. [DOI: 10.1242/dev.126243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|