1
|
Lin YC, Lu YH, Liu Y, Su YJ, Lin YH, Wu YL. Differential RNAi efficacy of siRNA and dsRNA targeting key genes for pest control in Spodoptera litura. FRONTIERS IN INSECT SCIENCE 2025; 5:1574585. [PMID: 40371213 PMCID: PMC12075318 DOI: 10.3389/finsc.2025.1574585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/01/2025] [Indexed: 05/16/2025]
Abstract
RNA interference (RNAi) is a promising gene-silencing technique for pest control that targets essential genes. We assessed the potential of double-stranded RNA (dsRNA) and small interfering RNA (siRNA) to silence mesh or iap genes in the midguts of Spodoptera litura larvae. Despite the theoretical promise of RNAi approaches, our findings revealed that dsRNA did not induce significant gene silencing or impact larval growth, whereas siRNA exhibited clear insecticidal effects, likely by disrupting intestinal osmoregulation and impairing larval fitness. Detailed analysis indicated that dsRNA could not be efficiently converted into functional siRNA in the midguts of S. litura, possibly due to the low expression levels of Dicer-2 and the rapid degradation of dsRNA within the gut environment. Furthermore, while dsRNA demonstrated greater environmental stability than siRNA under soil conditions, the inability of S. litura to process dsRNA effectively limits its viability as a pest control agent. These findings indicate the critical role of Dicer-2 in RNAi-mediated gene silencing and highlight the challenges and limitations of employing dsRNA-based genetic pesticides in lepidopteran species.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Hsien Lin
- Department of Entomology, National Taiwan University,
Taipei, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University,
Taipei, Taiwan
| |
Collapse
|
2
|
Wang C, Zhang Y, Guan F, He YZ, Wu Y. Genome-wide identification and phylogenetic analysis of the tetraspanin gene family in lepidopteran insects and expression profiling analysis in Helicoverpa armigera. INSECT SCIENCE 2025; 32:471-486. [PMID: 38880966 DOI: 10.1111/1744-7917.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
The tetraspanin gene family encodes cell-surface proteins that span the membrane 4 times and play critical roles in a wide range of biological processes across numerous organisms. Recent findings highlight the involvement of a tetraspanin of the lepidopteran pest Helicoverpa armigera in resistance to Bacillus thuringiensis Cry insecticidal proteins, which are extensively used in transgenic crops. Thus, a better understanding of lepidopteran tetraspanins is urgently needed. In the current study, genome scanning in 10 lepidopteran species identified a total of 283 sequences encoding potential tetraspanins. Based on conserved cysteine patterns in the large extracellular loop and their phylogenetic relationships, these tetraspanins were classified into 8 subfamilies (TspA to TspH). Six ancestral introns were identified within lepidopteran tetraspanin genes. Tetraspanins in TspA, TspB, TspC, and TspD subfamilies exhibit highly similar gene organization, while tetraspanins in the remaining 4 subfamilies exhibited variation in intron loss and/or gain during evolution. Analysis of chromosomal distribution revealed a lepidopteran-specific cluster of 10 to 11 tetraspanins, likely formed by tandem duplication events. Selective pressure analysis indicated negative selection across all orthologous groups, with ω values ranging between 0.004 and 0.362. However, positive selection was identified at 18 sites within TspB5, TspC5, TspE3, and TspF10. Furthermore, spatiotemporal expression analysis of H. armigera tetraspanins demonstrated variable expression levels across different developmental stages and tissues, suggesting diverse functions of tetraspanin members in this globally important insect pest. Our findings establish a solid foundation for subsequent functional investigations of tetraspanins in lepidopteran species.
Collapse
Affiliation(s)
- Chenyang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinuo Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Guan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya-Zhou He
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Beaven R, Denholm B. The cryptonephridial/rectal complex: an evolutionary adaptation for water and ion conservation. Biol Rev Camb Philos Soc 2025; 100:647-671. [PMID: 39438273 PMCID: PMC11885702 DOI: 10.1111/brv.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Arthropods have integrated digestive and renal systems, which function to acquire and maintain homeostatically the substances they require for survival. The cryptonephridial complex (CNC) is an evolutionary novelty in which the renal organs and gut have been dramatically reorganised. Parts of the renal or Malpighian tubules (MpTs) form a close association with the surface of the rectum, and are surrounded by a novel tissue, the perinephric membrane, which acts to insulate the system from the haemolymph and thus allows tight regulation of ions and water into and out of the CNC. The CNC can reclaim water and solutes from the rectal contents and recycle these back into the haemolymph. Fluid flow in the MpTs runs counter to flow within the rectum. It is this countercurrent arrangement that underpins its powerful recycling capabilities, and represents one of the most efficient water conservation mechanisms in nature. CNCs appear to have evolved multiple times, and are present in some of the largest and most evolutionarily successful insect groups including the larvae of most Lepidoptera and in a major beetle lineage (Cucujiformia + Bostrichoidea), suggesting that the CNC is an important adaptation. Here we review the knowledge of this remarkable organ system gained over the past 200 years. We first focus on the CNCs of tenebrionid beetles, for which we have an in-depth understanding from physiological, structural and ultrastructural studies (primarily in Tenebrio molitor), which are now being extended by studies in Tribolium castaneum enabled by advances in molecular and microscopy approaches established for this species. These recent studies are beginning to illuminate CNC development, physiology and endocrine control. We then take a broader view of arthropod CNCs, phylogenetically mapping their reported occurrence to assess their distribution and likely evolutionary origins. We explore CNCs from an ecological viewpoint, put forward evidence that CNCs may primarily be adaptations for facing the challenges of larval life, and argue that their loss in many aquatic species could point to a primary function in conserving water in terrestrial species. Finally, by considering the functions of renal and digestive epithelia in insects lacking CNCs, as well as the typical architecture of these organs in relation to one another, we propose that ancestral features of these organs predispose them for the evolution of CNCs.
Collapse
Affiliation(s)
- Robin Beaven
- Hugh Robson Building, George Square, Deanery of Biomedical SciencesThe University of EdinburghEdinburghEH8 9XDUK
| | - Barry Denholm
- Hugh Robson Building, George Square, Deanery of Biomedical SciencesThe University of EdinburghEdinburghEH8 9XDUK
| |
Collapse
|
4
|
Plygawko AT, Stephan-Otto Attolini C, Pitsidianaki I, Cook DP, Darby AC, Campbell K. The Drosophila adult midgut progenitor cells arise from asymmetric divisions of neuroblast-like cells. Dev Cell 2025; 60:429-446.e6. [PMID: 39532106 DOI: 10.1016/j.devcel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
The Drosophila adult midgut progenitor cells (AMPs) give rise to all cells in the adult midgut epithelium, including the intestinal stem cells (ISCs). While they share many characteristics with the ISCs, it remains unclear how they are generated in the early embryo. Here, we show that they arise from a population of endoderm cells, which exhibit multiple similarities with Drosophila neuroblasts. These cells, which we have termed endoblasts, are patterned by homothorax (Hth) and undergo asymmetric divisions using the same molecular machinery as neuroblasts. We also show that the conservation of this molecular machinery extends to the generation of the enteroendocrine lineages. Parallels have previously been drawn between the pupal ISCs and larval neuroblasts. Our results suggest that these commonalities exist from the earliest stages of specification of progenitor cells of the intestinal and nervous systems and may represent an ancestral pathway for multipotent progenitor cell specification.
Collapse
Affiliation(s)
- Andrew T Plygawko
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ioanna Pitsidianaki
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kyra Campbell
- School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
5
|
Jonusaite S, Himmerkus N. Paracellular barriers: Advances in assessing their contribution to renal epithelial function. Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111741. [PMID: 39276851 DOI: 10.1016/j.cbpa.2024.111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Regulation of salt and water balance occupies a dominant role in the physiology of many animals and often relies on the function of the renal system. In the mammalian kidney, epithelial ion and water transport requires high degree of coordination between the transcellular and paracellular pathways, the latter being defined by the intercellular tight junctions (TJs). TJs seal the paracellular pathway in a highly specialized manner, either by forming a barrier against the passage of solutes and/or water or by allowing the passage of ions and/or water through them. This functional TJ plasticity is now known to be provided by the members of the claudin family of tetraspan proteins. Unlike mammalian nephron, the renal structures of insects, the Malpighian tubules, lack TJs and instead have smooth septate junctions (sSJs) as paracellular barrier forming junctions. Many questions regarding the molecular and functional properties of sSJs remain open but research on model species have begun to inform our understanding. The goal of this commentary is to highlight key concepts and most recent findings that have emerged from the molecular and functional dissection of paracellular barriers in the mammalian and insect renal epithelia.
Collapse
Affiliation(s)
- Sima Jonusaite
- Institute of Physiology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany.
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-University of Kiel, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| |
Collapse
|
6
|
Nagai H, Adachi Y, Nakasugi T, Takigawa E, Ui J, Makino T, Miura M, Nakajima YI. Highly regenerative species-specific genes improve age-associated features in the adult Drosophila midgut. BMC Biol 2024; 22:157. [PMID: 39090637 PMCID: PMC11295675 DOI: 10.1186/s12915-024-01956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The remarkable regenerative abilities observed in planarians and cnidarians are closely linked to the active proliferation of adult stem cells and the precise differentiation of their progeny, both of which typically deteriorate during aging in low regenerative animals. While regeneration-specific genes conserved in highly regenerative organisms may confer regenerative abilities and long-term maintenance of tissue homeostasis, it remains unclear whether introducing these regenerative genes into low regenerative animals can improve their regeneration and aging processes. RESULTS Here, we ectopically express highly regenerative species-specific JmjC domain-encoding genes (HRJDs) in Drosophila, a widely used low regenerative model organism. Surprisingly, HRJD expression impedes tissue regeneration in the developing wing disc but extends organismal lifespan when expressed in the intestinal stem cell lineages of the adult midgut under non-regenerative conditions. Notably, HRJDs enhance the proliferative activity of intestinal stem cells while maintaining their differentiation fidelity, ameliorating age-related decline in gut barrier functions. CONCLUSIONS These findings together suggest that the introduction of highly regenerative species-specific genes can improve stem cell functions and promote a healthy lifespan when expressed in aging animals.
Collapse
Affiliation(s)
- Hiroki Nagai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Yuya Adachi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Tenki Nakasugi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Ema Takigawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Junichiro Ui
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Masayuki Miura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yu-Ichiro Nakajima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Leung NY, Xu C, Li JSS, Ganguly A, Meyerhof GT, Regimbald-Dumas Y, Lane EA, Breault DT, He X, Perrimon N, Montell C. Gut tumors in flies alter the taste valence of an anti-tumorigenic bitter compound. Curr Biol 2024; 34:2623-2632.e5. [PMID: 38823383 PMCID: PMC11308992 DOI: 10.1016/j.cub.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 06/03/2024]
Abstract
The sense of taste is essential for survival, as it allows animals to distinguish between foods that are nutritious from those that are toxic. However, innate responses to different tastants can be modulated or even reversed under pathological conditions. Here, we examined whether and how the internal status of an animal impacts taste valence by using Drosophila models of hyperproliferation in the gut. In all three models where we expressed proliferation-inducing transgenes in intestinal stem cells (ISCs), hyperproliferation of ISCs caused a tumor-like phenotype in the gut. While tumor-bearing flies had no deficiency in overall food intake, strikingly, they exhibited an increased gustatory preference for aristolochic acid (ARI), which is a bitter and normally aversive plant-derived chemical. ARI had anti-tumor effects in all three of our gut hyperproliferation models. For other aversive chemicals we tested that are bitter but do not have anti-tumor effects, gut tumors did not affect avoidance behaviors. We demonstrated that bitter-sensing gustatory receptor neurons (GRNs) in tumor-bearing flies respond normally to ARI. Therefore, the internal pathology of gut hyperproliferation affects neural circuits that determine taste valence postsynaptic to GRNs rather than altering taste identity by GRNs. Overall, our data suggest that increased consumption of ARI may represent an attempt at self-medication. Finally, although ARI's potential use as a chemotherapeutic agent is limited by its known toxicity in the liver and kidney, our findings suggest that tumor-bearing flies might be a useful animal model to screen for novel anti-tumor drugs.
Collapse
Affiliation(s)
- Nicole Y Leung
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Chiwei Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Joshua Shing Shun Li
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Anindya Ganguly
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Geoff T Meyerhof
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Yannik Regimbald-Dumas
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A Lane
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xi He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Craig Montell
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
8
|
Chen X, Qi Y, Huang Q, Sun C, Zheng Y, Ji L, Shi Y, Cheng X, Li Z, Zheng S, Cao Y, Gu Z, Yu J. Single-cell transcriptome characteristics of testicular terminal epithelium lineages during aging in the Drosophila. Aging Cell 2024; 23:e14057. [PMID: 38044573 PMCID: PMC10928582 DOI: 10.1111/acel.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023] Open
Abstract
Aging is a complex biological process leading to impaired functions, with a variety of hallmarks. In the testis of Drosophila, the terminal epithelium region is involved in spermatid release and maturation, while its functional diversity and regulatory mechanism remain poorly understood. In this study, we performed single-cell RNA-sequencing analysis (scRNA-seq) to characterize the transcriptomes of terminal epithelium in Drosophila testes at 2-, 10 and 40-Days. Terminal epithelium populations were defined with Metallothionein A (MtnA) and subdivided into six novel sub-cell clusters (EP0-EP5), and a series of marker genes were identified based on their expressions. The data revealed the functional characteristics of terminal epithelium populations, such as tight junction, focal adhesion, bacterial invasion, oxidative stress, mitochondrial function, proteasome, apoptosis and metabolism. Interestingly, we also found that disrupting genes for several relevant pathways in terminal epithelium led to male fertility disorders. Moreover, we also discovered a series of age-biased genes and pseudotime trajectory mediated state-biased genes during terminal epithelium aging. Differentially expressed genes during terminal epithelium aging were mainly participated in the regulation of several common signatures, e.g. mitochondria-related events, protein synthesis and degradation, and metabolic processes. We further explored the Drosophila divergence and selection in the functional constraints of age-biased genes during aging, revealing that age-biased genes in epithelial cells of 2 Days group evolved rapidly and were endowed with greater evolutionary advantages. scRNA-seq analysis revealed the diversity of testicular terminal epithelium populations, providing a gene target resource for further systematic research of their functions during aging.
Collapse
Affiliation(s)
- Xia Chen
- Department of Obstetrics and Gynecology, Nantong First People's HospitalAffiliated Hospital 2 of Nantong University; Medical School of Nantong University, Nantong UniversityNantongJiangsuChina
| | - Yujuan Qi
- Clinical Center of Reproductive Medicine, Xuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical UniversityXuzhouChina
| | - Qiuru Huang
- Institute of Reproductive MedicineMedical School of Nantong University, Nantong UniversityNantongChina
| | - Chi Sun
- Department of GeriatricsAffiliated Hospital of Nantong University, Nantong UniversityNantongChina
| | - Yanli Zheng
- Department of Obstetrics and Gynecology, Nantong First People's HospitalAffiliated Hospital 2 of Nantong University; Medical School of Nantong University, Nantong UniversityNantongJiangsuChina
| | - Li Ji
- Institute of Reproductive MedicineMedical School of Nantong University, Nantong UniversityNantongChina
| | - Yi Shi
- Institute of Reproductive MedicineMedical School of Nantong University, Nantong UniversityNantongChina
| | - Xinmeng Cheng
- Institute of Reproductive MedicineMedical School of Nantong University, Nantong UniversityNantongChina
| | - Zhenbei Li
- Clinical Center of Reproductive Medicine, Xuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical UniversityXuzhouChina
| | - Sen Zheng
- Clinical Center of Reproductive Medicine, Xuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical UniversityXuzhouChina
| | - Yijuan Cao
- Clinical Center of Reproductive Medicine, Xuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical UniversityXuzhouChina
| | - Zhifeng Gu
- Department of RheumatologyAffiliated Hospital of Nantong University, Nantong UniversityNantongChina
| | - Jun Yu
- Institute of Reproductive MedicineMedical School of Nantong University, Nantong UniversityNantongChina
| |
Collapse
|
9
|
Zhang XQ, Yang R, Jin L, Li GQ. Requirement of Snakeskin for normal functions of midgut and Malpighian tubules in Henosepilachna vigintioctopunctata. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22033. [PMID: 37401505 DOI: 10.1002/arch.22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
Septate junctions (SJs) are located between epithelial cells and play crucial roles in epithelial barrier formation and epithelia cell homeostasis. Nevertheless, the molecular constituents, especially those related to smooth SJs (sSJs), have not been well explored in non-Drosophilid insects. A putative integral membrane protein Snakeskin (Ssk) was identified in a Coleoptera foliar pest Henosepilachna vigintioctopunctata. RNA interference-aided knockdown of Hvssk at the third-instar larval stage arrested larval development. Most resultant larvae failed to shed larval exuviae until their death. Silence of Hvssk at the fourth-instar larvae inhibited the growth and reduced foliage consumption. Dissection and microscopic observation revealed that compromised expression of Hvssk caused obvious phenotypic defects in the midgut. A great number of morphologically abnormal columnar epithelial cells accumulated throughout the midgut lumen. Moreover, numerous vesicles were observed in the malformed cells of the Malpighian tubules (Mt). All the Hvssk depleted larvae remained as prepupae; they gradually darkened and eventually died. Furthermore, depletion of Hvssk at the pupal stage suppressed adult feeding and shortened adult lifespan. These findings demonstrated that Ssk plays a vital role in the integrity and function of both midguts and Mt, and established the conservative roles of Ssk in the formation of epithelial barrier and the homeostasis of epithelial cells in H. vigintioctopunctata.
Collapse
Affiliation(s)
- Xiao-Qing Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rui Yang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Higashi T, Saito AC, Fukazawa Y, Furuse M, Higashi AY, Ono M, Chiba H. EpCAM proteolysis and release of complexed claudin-7 repair and maintain the tight junction barrier. J Cell Biol 2022; 222:213688. [PMID: 36378161 PMCID: PMC9671161 DOI: 10.1083/jcb.202204079] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
TJs maintain the epithelial barrier by regulating paracellular permeability. Since TJs are under dynamically fluctuating intercellular tension, cells must continuously survey and repair any damage. However, the underlying mechanisms allowing cells to sense TJ damage and repair the barrier are not yet fully understood. Here, we showed that proteinases play an important role in the maintenance of the epithelial barrier. At TJ break sites, EpCAM-claudin-7 complexes on the basolateral membrane become accessible to apical membrane-anchored serine proteinases (MASPs) and the MASPs cleave EpCAM. Biochemical data and imaging analysis suggest that claudin-7 released from EpCAM contributes to the rapid repair of damaged TJs. Knockout (KO) of MASPs drastically reduced barrier function and live-imaging of TJ permeability showed that MASPs-KO cells exhibited increased size, duration, and frequency of leaks. Together, our results reveal a novel mechanism of TJ maintenance through the localized proteolysis of EpCAM at TJ leaks, and provide a better understanding of the dynamic regulation of epithelial permeability.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan,Correspondence to Tomohito Higashi:
| | - Akira C. Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan,Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Atsuko Y. Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Masahiro Ono
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
11
|
Chen J, St Johnston D. De novo apical domain formation inside the Drosophila adult midgut epithelium. eLife 2022; 11:e76366. [PMID: 36169289 PMCID: PMC9545526 DOI: 10.7554/elife.76366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
In the adult Drosophila midgut, basal intestinal stem cells give rise to enteroblasts that integrate into the epithelium as they differentiate into enterocytes. Integrating enteroblasts must generate a new apical domain and break through the septate junctions between neighbouring enterocytes, while maintaining barrier function. We observe that enteroblasts form an apical membrane initiation site (AMIS) when they reach the septate junction between the enterocytes. Cadherin clears from the apical surface and an apical space appears between above the enteroblast. New septate junctions then form laterally with the enterocytes and the AMIS develops into an apical domain below the enterocyte septate junction. The enteroblast therefore forms a pre-assembled apical compartment before it has a free apical surface in contact with the gut lumen. Finally, the enterocyte septate junction disassembles and the enteroblast/pre-enterocyte reaches the gut lumen with a fully formed brush border. The process of enteroblast integration resembles lumen formation in mammalian epithelial cysts, highlighting the similarities between the fly midgut and mammalian epithelia.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
12
|
Chen J, St Johnston D. Epithelial Cell Polarity During Drosophila Midgut Development. Front Cell Dev Biol 2022; 10:886773. [PMID: 35846367 PMCID: PMC9281564 DOI: 10.3389/fcell.2022.886773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
The adult Drosophila midgut epithelium is derived from a group of stem cells called adult midgut precursors (AMPs) that are specified during the migration of the endoderm in early embryogenesis. AMPs are maintained and expanded in AMP nests that lie on the basal side of the larval midgut throughout the larval development. During metamorphosis, the larval midgut undergoes histolysis and programmed cell death, while the central cells in the AMP nests form the future adult midgut and the peripheral cells form the transient pupal midgut. Here we review what is known about how cells polarise in the embryonic, larval, pupal and adult midgut, and discuss the open questions about the mechanisms that control the changes in cell arrangements, cell shape and cell polarity during midgut development.
Collapse
Affiliation(s)
| | - Daniel St Johnston
- Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Tassi AD, Ramos-González PL, Sinico TE, Kitajima EW, Freitas-Astúa J. Circulative Transmission of Cileviruses in Brevipalpus Mites May Involve the Paracellular Movement of Virions. Front Microbiol 2022; 13:836743. [PMID: 35464977 PMCID: PMC9019602 DOI: 10.3389/fmicb.2022.836743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Plant viruses transmitted by mites of the genus Brevipalpus are members of the genera Cilevirus, family Kitaviridae, or Dichorhavirus, family Rhabdoviridae. They produce non-systemic infections that typically display necrotic and/or chlorotic lesions around the inoculation loci. The cilevirus citrus leprosis virus C (CiLV-C) causes citrus leprosis, rated as one of the most destructive diseases affecting this crop in the Americas. CiLV-C is vectored in a persistent manner by the flat mite Brevipalpus yothersi. Upon the ingestion of viral particles with the content of the infected plant cell, virions must pass through the midgut epithelium and the anterior podocephalic gland of the mites. Following the duct from this gland, virions reach the salivary canal before their inoculation into a new plant cell through the stylet canal. It is still unclear whether CiLV-C multiplies in mite cells and what mechanisms contribute to its movement through mite tissues. In this study, based on direct observation of histological sections from viruliferous mites using the transmission electron microscope, we posit the hypothesis of the paracellular movement of CiLV-C in mites which may involve the manipulation of septate junctions. We detail the presence of viral particles aligned in the intercellular spaces between cells and the gastrovascular system of Brevipalpus mites. Accordingly, we propose putative genes that could control either active or passive paracellular circulation of viral particles inside the mites.
Collapse
Affiliation(s)
- Aline Daniele Tassi
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | | | - Thais Elise Sinico
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Centro de Citricultura Sylvio Moreira, Cordeirópolis, Brazil
| | - Elliot Watanabe Kitajima
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Juliana Freitas-Astúa
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| |
Collapse
|
14
|
Zipper L, Batchu S, Kaya NH, Antonello ZA, Reiff T. The MicroRNA miR-277 Controls Physiology and Pathology of the Adult Drosophila Midgut by Regulating the Expression of Fatty Acid β-Oxidation-Related Genes in Intestinal Stem Cells. Metabolites 2022; 12:315. [PMID: 35448502 PMCID: PMC9028014 DOI: 10.3390/metabo12040315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cell division, growth, and differentiation are energetically costly and dependent processes. In adult stem cell-based epithelia, cellular identity seems to be coupled with a cell's metabolic profile and vice versa. It is thus tempting to speculate that resident stem cells have a distinct metabolism, different from more committed progenitors and differentiated cells. Although investigated for many stem cell types in vitro, in vivo data of niche-residing stem cell metabolism is scarce. In adult epithelial tissues, stem cells, progenitor cells, and their progeny have very distinct functions and characteristics. In our study, we hypothesized and tested whether stem and progenitor cell types might have a distinctive metabolic profile in the intestinal lineage. Here, taking advantage of the genetically accessible adult Drosophila melanogaster intestine and the availability of ex vivo single cell sequencing data, we tested that hypothesis and investigated the metabolism of the intestinal lineage from stem cell (ISC) to differentiated epithelial cell in their native context under homeostatic conditions. Our initial in silico analysis of single cell RNAseq data and functional experiments identify the microRNA miR-277 as a posttranscriptional regulator of fatty acid β-oxidation (FAO) in the intestinal lineage. Low levels of miR-277 are detected in ISC and progressively rising miR-277 levels are found in progenitors during their growth and differentiation. Supporting this, miR-277-regulated fatty acid β-oxidation enzymes progressively declined from ISC towards more differentiated cells in our pseudotime single-cell RNAseq analysis and in functional assays on RNA and protein level. In addition, in silico clustering of single-cell RNAseq data based on metabolic genes validates that stem cells and progenitors belong to two independent clusters with well-defined metabolic characteristics. Furthermore, studying FAO genes in silico indicates that two populations of ISC exist that can be categorized in mitotically active and quiescent ISC, of which the latter relies on FAO genes. In line with an FAO dependency of ISC, forced expression of miR-277 phenocopies RNAi knockdown of FAO genes by reducing ISC size and subsequently resulting in stem cell death. We also investigated miR-277 effects on ISC in a benign and our newly developed CRISPR-Cas9-based colorectal cancer model and found effects on ISC survival, which as a consequence affects tumor growth, further underlining the importance of FAO in a pathological context. Taken together, our study provides new insights into the basal metabolic requirements of intestinal stem cell on β-oxidation of fatty acids evolutionarily implemented by a sole microRNA. Gaining knowledge about the metabolic differences and dependencies affecting the survival of two central and cancer-relevant cell populations in the fly and human intestine might reveal starting points for targeted combinatorial therapy in the hope for better treatment of colorectal cancer in the future.
Collapse
Affiliation(s)
- Lisa Zipper
- Institute of Genetics, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Sai Batchu
- Cooper Medical School, Rowan University, Camden, NJ 08102, USA; (S.B.); (Z.A.A.)
| | - Nida Hatice Kaya
- Institute for Zoology and Organismic Interactions, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Zeus Andrea Antonello
- Cooper Medical School, Rowan University, Camden, NJ 08102, USA; (S.B.); (Z.A.A.)
- Cooper University Hospital, Cooper University Health Care, Cooper Medical School, Rowan University, Camden, NJ 08102, USA
| | - Tobias Reiff
- Institute of Genetics, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
15
|
McKenna CH, Asgari D, Crippen TL, Zheng L, Sherman RA, Tomberlin JK, Meisel RP, Tarone AM. Gene expression in Lucilia sericata (Diptera: Calliphoridae) larvae exposed to Pseudomonas aeruginosa and Acinetobacter baumannii identifies shared and microbe-specific induction of immune genes. INSECT MOLECULAR BIOLOGY 2022; 31:85-100. [PMID: 34613655 DOI: 10.1111/imb.12740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance is a continuing challenge in medicine. There are various strategies for expanding antibiotic therapeutic repertoires, including the use of blow flies. Their larvae exhibit strong antibiotic and antibiofilm properties that alter microbiome communities. One species, Lucilia sericata, is used to treat problematic wounds due to its debridement capabilities and its excretions and secretions that kill some pathogenic bacteria. There is much to be learned about how L. sericata interacts with microbiomes at the molecular level. To address this deficiency, gene expression was assessed after feeding exposure (1 h or 4 h) to two clinically problematic pathogens: Pseudomonas aeruginosa and Acinetobacter baumannii. The results identified immunity-related genes that were differentially expressed when exposed to these pathogens, as well as non-immune genes possibly involved in gut responses to bacterial infection. There was a greater response to P. aeruginosa that increased over time, while few genes responded to A. baumannii exposure, and expression was not time-dependent. The response to feeding on pathogens indicates a few common responses and features distinct to each pathogen, which is useful in improving the wound debridement therapy and helps to develop biomimetic alternatives.
Collapse
Affiliation(s)
- C H McKenna
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - D Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - T L Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, USA
| | - L Zheng
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - R A Sherman
- BioTherapeutics, Education and Research (BTER) Foundation, Irvine, CA, USA
- Monarch Labs, Irvine, CA, USA
| | - J K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - R P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - A M Tarone
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Izumi Y, Furuse K, Furuse M. The novel membrane protein Hoka regulates septate junction organization and stem cell homeostasis in the Drosophila gut. J Cell Sci 2021; 134:jcs.257022. [PMID: 33589496 DOI: 10.1242/jcs.257022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Smooth septate junctions (sSJs) regulate the paracellular transport in the intestinal tract in arthropods. In Drosophila, the organization and physiological function of sSJs are regulated by at least three sSJ-specific membrane proteins: Ssk, Mesh and Tsp2A. Here, we report a novel sSJ membrane protein, Hoka, which has a single membrane-spanning segment with a short extracellular region, and a cytoplasmic region with Tyr-Thr-Pro-Ala motifs. The larval midgut in hoka mutants shows a defect in sSJ structure. Hoka forms a complex with Ssk, Mesh and Tsp2A, and is required for the correct localization of these proteins to sSJs. Knockdown of hoka in the adult midgut leads to intestinal barrier dysfunction and stem cell overproliferation. In hoka-knockdown midguts, aPKC is upregulated in the cytoplasm and the apical membrane of epithelial cells. The depletion of aPKC and yki in hoka-knockdown midguts results in reduced stem cell overproliferation. These findings indicate that Hoka cooperates with the sSJ proteins Ssk, Mesh and Tsp2A to organize sSJs, and is required for maintaining intestinal stem cell homeostasis through the regulation of aPKC and Yki activities in the Drosophila midgut.
Collapse
Affiliation(s)
- Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan .,Department of Physiological Sciences, The Graduate University of Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.,Department of Physiological Sciences, The Graduate University of Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| |
Collapse
|
17
|
Al Hayek S, Alsawadi A, Kambris Z, Boquete J, Bohère J, Immarigeon C, Ronsin B, Plaza S, Lemaitre B, Payre F, Osman D. Steroid-dependent switch of OvoL/Shavenbaby controls self-renewal versus differentiation of intestinal stem cells. EMBO J 2021; 40:e104347. [PMID: 33372708 PMCID: PMC7883054 DOI: 10.15252/embj.2019104347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Adult stem cells must continuously fine-tune their behavior to regenerate damaged organs and avoid tumors. While several signaling pathways are well known to regulate somatic stem cells, the underlying mechanisms remain largely unexplored. Here, we demonstrate a cell-intrinsic role for the OvoL family transcription factor, Shavenbaby (Svb), in balancing self-renewal and differentiation of Drosophila intestinal stem cells. We find that svb is a downstream target of Wnt and EGFR pathways, mediating their activity for stem cell survival and proliferation. This requires post-translational processing of Svb into a transcriptional activator, whose upregulation induces tumor-like stem cell hyperproliferation. In contrast, the unprocessed form of Svb acts as a repressor that imposes differentiation into enterocytes, and suppresses tumors induced by altered signaling. We show that the switch between Svb repressor and activator is triggered in response to systemic steroid hormone, which is produced by ovaries. Therefore, the Svb axis allows intrinsic integration of local signaling cues and inter-organ communication to adjust stem cell proliferation versus differentiation, suggesting a broad role of OvoL/Svb in adult and cancer stem cells.
Collapse
Affiliation(s)
- Sandy Al Hayek
- Faculty of Sciences IIILebanese UniversityTripoliLebanon
- Azm Center for Research in Biotechnology and its ApplicationsLBA3B, EDST, Lebanese UniversityTripoliLebanon
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Ahmad Alsawadi
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Zakaria Kambris
- Biology DepartmentFaculty of Arts and SciencesAmerican University of BeirutBeirutLebanon
| | | | - Jérôme Bohère
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Clément Immarigeon
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Brice Ronsin
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Serge Plaza
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
- Present address:
Laboratoire de Recherche en Sciences Végétales (LSRV)CNRSUPSCastanet‐TolosanFrance
| | - Bruno Lemaitre
- Global Health Institute, School of Life SciencesLausanneSwitzerland
| | - François Payre
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Dani Osman
- Faculty of Sciences IIILebanese UniversityTripoliLebanon
- Azm Center for Research in Biotechnology and its ApplicationsLBA3B, EDST, Lebanese UniversityTripoliLebanon
| |
Collapse
|
18
|
Rouka E, Gourgoulianni N, Lüpold S, Hatzoglou C, Gourgoulianis K, Blanckenhorn WU, Zarogiannis SG. The Drosophila septate junctions beyond barrier function: Review of the literature, prediction of human orthologs of the SJ-related proteins and identification of protein domain families. Acta Physiol (Oxf) 2021; 231:e13527. [PMID: 32603029 DOI: 10.1111/apha.13527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
The involvement of Septate Junctions (SJs) in critical cellular functions that extend beyond their role as diffusion barriers in the epithelia and the nervous system has made the fruit fly an ideal model for the study of human diseases associated with impaired Tight Junction (TJ) function. In this study, we summarized current knowledge of the Drosophila melanogaster SJ-related proteins, focusing on their unconventional functions. Additionally, we sought to identify human orthologs of the corresponding genes as well as protein domain families. The systematic literature search was performed in PubMed and Scopus databases using relevant key terms. Orthologs were predicted using the DIOPT tool and aligned protein regions were determined from the Pfam database. 3-D models of the smooth SJ proteins were built on the Phyre2 and DMPFold protein structure prediction servers. A total of 30 proteins were identified as relatives to the SJ cellular structure. Key roles of these proteins, mainly in the regulation of morphogenetic events and cellular signalling, were highlighted. The investigation of protein domain families revealed that the SJ-related proteins contain conserved domains that are required not only for cell-cell interactions and cell polarity but also for cellular signalling and immunity. DIOPT analysis of orthologs identified novel human genes as putative functional homologs of the fruit fly SJ genes. A gap in our knowledge was identified regarding the domains that occur in the proteins encoded by eight SJ-associated genes. Future investigation of these domains is needed to provide functional information.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Physiology Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| | - Natalia Gourgoulianni
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Chrissi Hatzoglou
- Department of Physiology Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
- Department of Respiratory Medicine Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| | - Konstantinos Gourgoulianis
- Department of Respiratory Medicine Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Sotirios G. Zarogiannis
- Department of Physiology Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
- Department of Respiratory Medicine Faculty of Medicine School of Health Sciences University of ThessalyBIOPOLIS Larissa Greece
| |
Collapse
|
19
|
Lim HY, Bao H, Liu Y, Wang W. Select Septate Junction Proteins Direct ROS-Mediated Paracrine Regulation of Drosophila Cardiac Function. Cell Rep 2020; 28:1455-1470.e4. [PMID: 31390561 DOI: 10.1016/j.celrep.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/18/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Septate junction (SJ) complex proteins act in unison to provide a paracellular barrier and maintain structural integrity. Here, we identify a non-barrier role of two individual SJ proteins, Coracle (Cora) and Kune-kune (Kune). Reactive oxygen species (ROS)-p38 MAPK signaling in non-myocytic pericardial cells (PCs) is important for maintaining normal cardiac physiology in Drosophila. However, the underlying mechanisms remain unknown. We find that in PCs, Cora and Kune are altered in abundance in response to manipulations of ROS-p38 signaling. Genetic analyses establish Cora and Kune as key effectors of ROS-p38 signaling in PCs on proper heart function. We further determine that Cora regulates normal Kune levels in PCs, which in turn modulates normal Kune levels in the cardiomyocytes essential for proper heart function. Our results thereby reveal select SJ proteins Cora and Kune as signaling mediators of the PC-derived ROS regulation of cardiac physiology.
Collapse
Affiliation(s)
- Hui-Ying Lim
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| | - Hong Bao
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Ying Liu
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Weidong Wang
- Department of Medicine, Section of Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
20
|
Hu X, Boeckman CJ, Cong B, Steimel JP, Richtman NM, Sturtz K, Wang Y, Walker CA, Yin J, Unger A, Farris C, Lu AL. Characterization of DvSSJ1 transcripts targeting the smooth septate junction (SSJ) of western corn rootworm (Diabrotica virgifera virgifera). Sci Rep 2020; 10:11139. [PMID: 32636422 PMCID: PMC7341793 DOI: 10.1038/s41598-020-68014-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022] Open
Abstract
Transgenic maize plants expressing dsRNA targeting western corn rootworm (WCR, Diabrotica virgifera virgifera) DvSSJ1 mRNA, a Drosophila snakeskin (ssk) ortholog, show insecticidal activity and significant plant protection from WCR damage. The gene encodes a membrane protein associated with the smooth sepate junction (SSJ) which is required for intestinal barrier function. To understand the active RNA form that leads to the mortality of WCR larvae by DvSSJ1 RNA interference (RNAi), we characterized transgenic plants expressing DvSSJ1 RNA transcripts targeting WCR DvSSJ1 mRNA. The expression of the silencing cassette results in the full-length transcript of 901 nucleotides containing a 210 bp inverted fragment of the DvSSJ1 gene, the formation of a double-stranded RNA (dsRNA) transcript and siRNAs in transgenic plants. Our artificial diet-feeding study indicates that dsRNAs greater than or equal to approximately 60 base-pairs (bp) are required for DvSSJ1 insecticidal activity. Impact of specificity of dsRNA targeting DvSSJ1 mRNA on insecticidal activities was also evaluated in diet bioassay, which showed a single nucleotide mutation can have a significant impact or abolish diet activities against WCR. These results provide insights as to the functional forms of plant-delivered dsRNA for the protection of transgenic maize from WCR feeding damage and information contributing to the risk assessment of transgenic maize expressing insecticidal dsRNA.
Collapse
Affiliation(s)
- Xu Hu
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA.
| | - Chad J Boeckman
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA.
| | - Bin Cong
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA.
| | - Joe P Steimel
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Nina M Richtman
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Kristine Sturtz
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Yiwei Wang
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Carl A Walker
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Jiaming Yin
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Anita Unger
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Caitlin Farris
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Albert L Lu
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| |
Collapse
|
21
|
Shankhu PY, Mathur C, Mandal A, Sagar D, Somvanshi VS, Dutta TK. Txp40, a protein from Photorhabdus akhurstii, conferred potent insecticidal activity against the larvae of Helicoverpa armigera, Spodoptera litura and S. exigua. PEST MANAGEMENT SCIENCE 2020; 76:2004-2014. [PMID: 31867818 DOI: 10.1002/ps.5732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/28/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Txp40, a 37 kDa protein, previously characterized from the Gram-negative bacterium Photorhabdus akhurstii (symbiotically associates with insect-parasitic nematode, Heterorhabditis indica), conferred insecticidal activity against Galleria mellonella. Here, the biological activity of Txp40 was evaluated against economically important insects, including Helicoverpa armigera, Spodoptera litura and S. exigua. RESULTS When both intra-hemocoel injected and orally fed to test insects, comparatively greater oral LD50 (187.7-522 ng g-1 ) than injection LD50 (32.33-150.6 ng g-1 ) was obtained with Txp40 derived from P. akhurstii strain IARI-SGMG3. Injection of purified Txp40 caused a dose-dependent reduction in the total circulatory hemocytes and hemocyte viability of fourth-instar larvae of the test insects at 12 h post incubation; unlike healthy cells toxin-treated ones displayed aggregated distribution. Injection of Txp40 significantly elevated the phenoloxidase activity of insect hemolymph, which potentially led to unrestrained melanization reaction and ultimately larval death. Histological analyses showed the primary site of action of Txp40 in the insect midgut. Extensive damage to midgut epithelium 24 h after injection of the Txp40 explains the access of the toxin from hemocoel to midgut via leaky septate junctions. In silico analyses suggested that Txp40 can potentially interact with H. armigera midgut receptor proteins cadherin, ATP-binding cassettes, aminopeptidase N1 and alkaline phosphatase to exert toxicity. CONCLUSION We propose Txp40 as an attractive alternative to Cry toxins of Bacillus thuringiensis, the transgenic expression of which is reported to cause resistance development in insects. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Prakash Y Shankhu
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Chetna Mathur
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Abhishek Mandal
- Division of Agricultural Chemicals, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Doddachowdappa Sagar
- Division of Entomology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Vishal S Somvanshi
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Tushar K Dutta
- Division of Nematology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
22
|
The Snakeskin-Mesh Complex of Smooth Septate Junction Restricts Yorkie to Regulate Intestinal Homeostasis in Drosophila. Stem Cell Reports 2020; 14:828-844. [PMID: 32330445 PMCID: PMC7220990 DOI: 10.1016/j.stemcr.2020.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/27/2022] Open
Abstract
Tight junctions in mammals and septate junctions in insects are essential for epithelial integrity. We show here that, in the Drosophila intestine, smooth septate junction proteins provide barrier and signaling functions. During an RNAi screen for genes that regulate adult midgut tissue growth, we found that loss of two smooth septate junction components, Snakeskin and Mesh, caused a hyperproliferation phenotype. By examining epitope-tagged endogenous Snakeskin and Mesh, we demonstrate that the two proteins are present in the cytoplasm of differentiating enteroblasts and in cytoplasm and septate junctions of mature enterocytes. In both enteroblasts and enterocytes, loss of Snakeskin and Mesh causes Yorkie-dependent expression of the JAK-STAT pathway ligand Upd3, which in turn promotes proliferation of intestinal stem cells. Snakeskin and Mesh form a complex with each other, with other septate junction proteins and with Yorkie. Therefore, the Snakeskin-Mesh complex has both barrier and signaling function to maintain stem cell-mediated tissue homeostasis. Snakeskin and Mesh are septate junction proteins essential for intestinal homeostasis Snakeskin and Mesh act in enteroblasts and enterocytes to regulate stem cell division Snakeskin and Mesh form a complex with and restrict the activity of Yorkie Loss of Snakeskin and Mesh allows Yorkie to promote Upd3 expression and growth
Collapse
|
23
|
Beyenbach KW, Schöne F, Breitsprecher LF, Tiburcy F, Furuse M, Izumi Y, Meyer H, Jonusaite S, Rodan AR, Paululat A. The septate junction protein Tetraspanin 2A is critical to the structure and function of Malpighian tubules in Drosophila melanogaster. Am J Physiol Cell Physiol 2020; 318:C1107-C1122. [PMID: 32267718 DOI: 10.1152/ajpcell.00061.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tetraspanin-2A (Tsp2A) is an integral membrane protein of smooth septate junctions in Drosophila melanogaster. To elucidate its structural and functional roles in Malpighian tubules, we used the c42-GAL4/UAS system to selectively knock down Tsp2A in principal cells of the tubule. Tsp2A localizes to smooth septate junctions (sSJ) in Malpighian tubules in a complex shared with partner proteins Snakeskin (Ssk), Mesh, and Discs large (Dlg). Knockdown of Tsp2A led to the intracellular retention of Tsp2A, Ssk, Mesh, and Dlg, gaps and widening spaces in remaining sSJ, and tumorous and cystic tubules. Elevated protein levels together with diminished V-type H+-ATPase activity in Tsp2A knockdown tubules are consistent with cell proliferation and reduced transport activity. Indeed, Malpighian tubules isolated from Tsp2A knockdown flies failed to secrete fluid in vitro. The absence of significant transepithelial voltages and resistances manifests an extremely leaky epithelium that allows secreted solutes and water to leak back to the peritubular side. The tubular failure to excrete fluid leads to extracellular volume expansion in the fly and to death within the first week of adult life. Expression of the c42-GAL4 driver begins in Malpighian tubules in the late embryo and progresses upstream to distal tubules in third instar larvae, which can explain why larvae survive Tsp2A knockdown and adults do not. Uncontrolled cell proliferation upon Tsp2A knockdown confirms the role of Tsp2A as tumor suppressor in addition to its role in sSJ structure and transepithelial transport.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Zoology/Developmental Biology, University of Osnabrück, Osnabrück, Germany.,Department of Animal Physiology, University of Osnabrück, Osnabrück, Germany
| | - Frederike Schöne
- Department of Zoology/Developmental Biology, University of Osnabrück, Osnabrück, Germany
| | | | - Felix Tiburcy
- Department of Animal Physiology, University of Osnabrück, Osnabrück, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Sokendai, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, Sokendai, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Heiko Meyer
- Department of Zoology/Developmental Biology, University of Osnabrück, Osnabrück, Germany
| | - Sima Jonusaite
- Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Aylin R Rodan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Achim Paululat
- Department of Zoology/Developmental Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
24
|
Hung RJ, Hu Y, Kirchner R, Liu Y, Xu C, Comjean A, Tattikota SG, Li F, Song W, Ho Sui S, Perrimon N. A cell atlas of the adult Drosophila midgut. Proc Natl Acad Sci U S A 2020; 117:1514-1523. [PMID: 31915294 PMCID: PMC6983450 DOI: 10.1073/pnas.1916820117] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies of the adult Drosophila midgut have led to many insights in our understanding of cell-type diversity, stem cell regeneration, tissue homeostasis, and cell fate decision. Advances in single-cell RNA sequencing provide opportunities to identify new cell types and molecular features. We used single-cell RNA sequencing to characterize the transcriptome of midgut epithelial cells and identified 22 distinct clusters representing intestinal stem cells, enteroblasts, enteroendocrine cells (EEs), and enterocytes. This unbiased approach recovered most of the known intestinal stem cells/enteroblast and EE markers, highlighting the high quality of the dataset, and led to insights on intestinal stem cell biology, cell type-specific organelle features, the roles of new transcription factors in progenitors and regional variation along the gut, 5 additional EE gut hormones, EE hormonal expression diversity, and paracrine function of EEs. To facilitate mining of this rich dataset, we provide a web-based resource for visualization of gene expression in single cells. Altogether, our study provides a comprehensive resource for addressing functions of genes in the midgut epithelium.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
| | - Yanhui Hu
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Rory Kirchner
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Yifang Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Chiwei Xu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Aram Comjean
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Fangge Li
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Shannan Ho Sui
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
25
|
Jonusaite S, Beyenbach KW, Meyer H, Paululat A, Izumi Y, Furuse M, Rodan AR. The septate junction protein Mesh is required for epithelial morphogenesis, ion transport, and paracellular permeability in the Drosophila Malpighian tubule. Am J Physiol Cell Physiol 2020; 318:C675-C694. [PMID: 31913700 DOI: 10.1152/ajpcell.00492.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Septate junctions (SJs) are occluding cell-cell junctions that have roles in paracellular permeability and barrier function in the epithelia of invertebrates. Arthropods have two types of SJs, pleated SJs and smooth SJs (sSJs). In Drosophila melanogaster, sSJs are found in the midgut and Malpighian tubules, but the functions of sSJs and their protein components in the tubule epithelium are unknown. Here we examined the role of the previously identified integral sSJ component, Mesh, in the Malpighian tubule. We genetically manipulated mesh specifically in the principal cells of the tubule at different life stages. Tubules of flies with developmental mesh knockdown revealed defects in epithelial architecture, sSJ molecular and structural organization, and lack of urine production in basal and kinin-stimulated conditions, resulting in edema and early adult lethality. Knockdown of mesh during adulthood did not disrupt tubule epithelial and sSJ integrity but decreased the transepithelial potential, diminished transepithelial fluid and ion transport, and decreased paracellular permeability to 4-kDa dextran. Drosophila kinin decreased transepithelial potential and increased chloride permeability, and it stimulated fluid secretion in both control and adult mesh knockdown tubules but had no effect on 4-kDa dextran flux. Together, these data indicate roles for Mesh in the developmental maturation of the Drosophila Malpighian tubule and in ion and macromolecular transport in the adult tubule.
Collapse
Affiliation(s)
- Sima Jonusaite
- Division of Nephrology and Hypertension, Department of Internal Medicine, and Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Klaus W Beyenbach
- Division of Animal Physiology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Heiko Meyer
- Division of Zoology and Developmental Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Achim Paululat
- Division of Zoology and Developmental Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI, Okazaki, Japan
| | - Aylin R Rodan
- Division of Nephrology and Hypertension, Department of Internal Medicine, and Molecular Medicine Program, University of Utah, Salt Lake City, Utah.,Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
26
|
Abstract
Tight junctions (TJ) play a central role in the homeostasis of epithelial and endothelial tissues, by providing a semipermeable barrier to ions and solutes, by contributing to the maintenance of cell polarity, and by functioning as signaling platforms. TJ are associated with the actomyosin and microtubule cytoskeletons, and the crosstalk with the cytoskeleton is fundamental for junction biogenesis and physiology. TJ are spatially and functionally connected to adherens junctions (AJ), which are essential for the maintenance of tissue integrity. Mechano-sensing and mechano-transduction properties of several AJ proteins have been characterized during the last decade. However, little is known about how mechanical forces act on TJ and their proteins, how TJ control the mechanical properties of cells and tissues, and what are the underlying molecular mechanisms. Here I review recent studies that have advanced our understanding of the relationships between mechanical force and TJ biology.
Collapse
|
27
|
Xu C, Tang HW, Hung RJ, Hu Y, Ni X, Housden BE, Perrimon N. The Septate Junction Protein Tsp2A Restricts Intestinal Stem Cell Activity via Endocytic Regulation of aPKC and Hippo Signaling. Cell Rep 2019; 26:670-688.e6. [PMID: 30650359 PMCID: PMC6394833 DOI: 10.1016/j.celrep.2018.12.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/24/2018] [Accepted: 12/17/2018] [Indexed: 01/23/2023] Open
Abstract
Hippo signaling and the activity of its transcriptional coactivator, Yorkie (Yki), are conserved and crucial regulators of tissue homeostasis. In the Drosophila midgut, after tissue damage, Yki activity increases to stimulate stem cell proliferation, but how Yki activity is turned off once the tissue is repaired is unknown. From an RNAi screen, we identified the septate junction (SJ) protein tetraspanin 2A (Tsp2A) as a tumor suppressor. Tsp2A undergoes internalization to facilitate the endocytic degradation of atypical protein kinase C (aPKC), a negative regulator of Hippo signaling. In the Drosophila midgut epithelium, adherens junctions (AJs) and SJs are prominent in intestinal stem cells or enteroblasts (ISCs or EBs) and enterocytes (ECs), respectively. We show that when ISCs differentiate toward ECs, Tsp2A is produced, participates in SJ assembly, and turns off aPKC and Yki-JAK-Stat activity. Altogether, our study uncovers a mechanism allowing the midgut to restore Hippo signaling and restrict proliferation once tissue repair is accomplished.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Hong-Wen Tang
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ruei-Jiun Hung
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xiaochun Ni
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Benjamin E Housden
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Hu X, Steimel JP, Kapka-Kitzman DM, Davis-Vogel C, Richtman NM, Mathis JP, Nelson ME, Lu AL, Wu G. Molecular characterization of the insecticidal activity of double-stranded RNA targeting the smooth septate junction of western corn rootworm (Diabrotica virgifera virgifera). PLoS One 2019; 14:e0210491. [PMID: 30629687 PMCID: PMC6328145 DOI: 10.1371/journal.pone.0210491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/24/2018] [Indexed: 01/14/2023] Open
Abstract
The western corn rootworm (WCR, Diabrotica virgifera virgifera) gene, dvssj1, is a putative homolog of the Drosophila melanogaster gene, snakeskin (ssk). This gene encodes a membrane protein associated with the smooth septate junction (SSJ) which is required for the proper barrier function of the epithelial lining of insect intestines. Disruption of DVSSJ integrity by RNAi technique has been shown previously to be an effective approach for corn rootworm control, by apparent suppression of production of DVSSJ1 protein leading to growth inhibition and mortality. To understand the mechanism that leads to the death of WCR larvae by dvssj1 double-stranded RNA, we examined the molecular characteristics associated with SSJ functions during larval development. Dvssj1 dsRNA diet feeding results in dose-dependent suppression of mRNA and protein; this impairs SSJ formation and barrier function of the midgut and results in larval mortality. These findings suggest that the malfunctioning of the SSJ complex in midgut triggered by dvssj1 silencing is the principal cause of WCR death. This study also illustrates that dvssj1 is a midgut-specific gene in WCR and its functions are consistent with biological functions described for ssk.
Collapse
Affiliation(s)
- Xu Hu
- DuPont Pioneer, Johnston, Iowa, United States of America
- * E-mail: (XH); (MEN)
| | | | | | | | | | - John P. Mathis
- DuPont Pioneer, Johnston, Iowa, United States of America
| | - Mark E. Nelson
- DuPont Pioneer, Johnston, Iowa, United States of America
- * E-mail: (XH); (MEN)
| | - Albert L. Lu
- DuPont Pioneer, Johnston, Iowa, United States of America
| | - Gusui Wu
- DuPont Pioneer, Hayward, California, United States of America
| |
Collapse
|
29
|
Kolosov D, Jonusaite S, Donini A, Kelly SP, O'Donnell MJ. Septate junction in the distal ileac plexus of larval lepidopteran Trichoplusia ni: alterations in paracellular permeability during ion transport reversal. J Exp Biol 2019; 222:jeb.204750. [DOI: 10.1242/jeb.204750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/01/2019] [Indexed: 01/18/2023]
Abstract
The Malpighian tubules (MTs) and hindgut together act as the functional kidney in insects. MTs of caterpillars are notably complex and consist of several regions that display prominent differences in ion transport. The distal ileac plexus (DIP) is a region of Malpighian tubule that is of particular interest because it switches from ion secretion to ion reabsorption in larvae fed on ion-rich diets. The pathways of solute transport in the DIP are not well understood, but one potential route is the paracellular pathway between epithelial cells. This pathway is regulated by the septate junctions (SJs) in invertebrates, and in this study, we found regional and cellular heterogeneity in expression of several integral SJ proteins. DIP of larvae fed ion-rich diets demonstrated a reduction in paracellular permeability, coupled with alterations in both SJ morphology and the abundance of its molecular components. Similarly, treatment in vitro with helicokinin (HK), an antidiuretic hormone identified by previous studies, altered mRNA abundance of many SJ proteins and reduced paracellular permeability. HK was also shown to target a secondary cell-specific SJ protein Tsp2A. Taken together, our data suggest that dietary ion loading, known to cause ion transport reversal in the DIP of larval T. ni, leads to alterations in the paracellular permeability, SJ morphology and its molecular component abundance. The results suggest that HK is an important endocrine factor that co-regulates ion transport, water transport and paracellular permeability in MTs of larval lepidopterans. We propose that co-regulation of all three components of the MT function in larval lepidopterans allows for safe toggling between ion secretion and reabsorption in the DIP in response to variations in dietary ion availability.
Collapse
Affiliation(s)
- Dennis Kolosov
- McMaster University, Department of Biology, Hamilton, L8S 4K1, Canada
| | - Sima Jonusaite
- University of Utah, Division of Nephrology and Hypertension, Department of Internal Medicine, Molecular Medicine Program, Salt Lake City, 84132, USA
| | - Andrew Donini
- York University, Department of Biology, M3J 1P3, Canada
| | | | | |
Collapse
|
30
|
Izumi Y, Furuse K, Furuse M. Septate junctions regulate gut homeostasis through regulation of stem cell proliferation and enterocyte behavior in Drosophila. J Cell Sci 2019; 132:jcs.232108. [DOI: 10.1242/jcs.232108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022] Open
Abstract
Smooth septate junctions (sSJs) contribute to the epithelial barrier, which restricts leakage of solutes through the paracellular route of epithelial cells in the Drosophila midgut. We previously identified three sSJ-associated membrane proteins, Ssk, Mesh, and Tsp2A, and showed that these proteins were required for sSJ formation and intestinal barrier function in the larval midgut. Here, we investigated the roles of sSJs in the Drosophila adult midgut. Depletion of any of the sSJ-proteins from enterocytes resulted in remarkably shortened lifespan and intestinal barrier dysfunction in flies. Interestingly, the sSJ-protein-deficient flies showed intestinal hypertrophy accompanied by accumulation of morphologically abnormal enterocytes. The phenotype was associated with increased stem cell proliferation and activation of the MAP kinase and Jak-Stat pathways in stem cells. Loss of cytokines Unpaired2 and Unpaired3, which are involved in Jak-Stat pathway activation, reduced the intestinal hypertrophy, but not the increased stem cell proliferation, in flies lacking Mesh. The present findings suggest that SJs play a crucial role in maintaining tissue homeostasis through regulation of stem cell proliferation and enterocyte behavior in the Drosophila adult midgut.
Collapse
Affiliation(s)
- Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, SOKENDAI, Okazaki, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, SOKENDAI, Okazaki, Japan
| |
Collapse
|
31
|
Denecke S, Swevers L, Douris V, Vontas J. How do oral insecticidal compounds cross the insect midgut epithelium? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:22-35. [PMID: 30366055 DOI: 10.1016/j.ibmb.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The use of oral insecticidal molecules (small molecules, peptides, dsRNA) via spray or plant mediated applications represents an efficient way to manage damaging insect species. With the exception of Bt toxins that target the midgut epithelium itself, most of these compounds have targets that lie within the hemocoel (body) of the insect. Because of this, one of the greatest factors in determining the effectiveness of an oral insecticidal compound is its ability to traverse the gut epithelium and enter the hemolymph. However, for many types of insecticidal compounds, neither the pathway taken across the gut nor the specific genes which influence uptake are fully characterized. Here, we review how different types of insecticidal compounds enter or cross the midgut epithelium through passive (diffusion) or active (transporter based, endocytosis) routes. A deeper understanding of how insecticidal molecules cross the gut will help to best utilize current insecticides and also provide for more rational design of future ones.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences & Applications, NCSR "Demokritos", Athens, Greece
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
32
|
Chen J, Sayadian AC, Lowe N, Lovegrove HE, St Johnston D. An alternative mode of epithelial polarity in the Drosophila midgut. PLoS Biol 2018; 16:e3000041. [PMID: 30339698 PMCID: PMC6209374 DOI: 10.1371/journal.pbio.3000041] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/31/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022] Open
Abstract
Apical-basal polarity is essential for the formation and function of epithelial tissues, whereas loss of polarity is a hallmark of tumours. Studies in Drosophila have identified conserved polarity factors that define the apical (Crumbs, Stardust, Par-6, atypical protein kinase C [aPKC]), junctional (Bazooka [Baz]/Par-3), and basolateral (Scribbled [Scrib], Discs large [Dlg], Lethal [2] giant larvae [Lgl]) domains of epithelial cells. Because these conserved factors mark equivalent domains in diverse types of vertebrate and invertebrate epithelia, it is generally assumed that this system underlies polarity in all epithelia. Here, we show that this is not the case, as none of these canonical factors are required for the polarisation of the endodermal epithelium of the Drosophila adult midgut. Furthermore, like vertebrate epithelia but not other Drosophila epithelia, the midgut epithelium forms occluding junctions above adherens junctions (AJs) and requires the integrin adhesion complex for polarity. Thus, Drosophila contains two types of epithelia that polarise by fundamentally different mechanisms. This diversity of epithelial types may reflect their different developmental origins, junctional arrangement, or whether they polarise in an apical-basal direction or vice versa. Since knock-outs of canonical polarity factors in vertebrates often have little or no effect on epithelial polarity and the Drosophila midgut shares several common features with vertebrate epithelia, this diversity of polarity mechanisms is likely to be conserved in other animals.
Collapse
Affiliation(s)
- Jia Chen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Aram-Christopher Sayadian
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nick Lowe
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Holly E. Lovegrove
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
34
|
Douglas AE. The Drosophila model for microbiome research. Lab Anim (NY) 2018; 47:157-164. [PMID: 29795158 DOI: 10.1038/s41684-018-0065-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
The gut microbiome is increasingly recognized to play an important role in shaping the health and fitness of animals, including humans. Drosophila is emerging as a valuable model for microbiome research, combining genetic and genomic resources with simple protocols to manipulate the microbiome, such that microbiologically sterile flies and flies bearing a standardized microbiota can readily be produced in large numbers. Studying Drosophila has the potential to increase our understanding of how the microbiome influences host traits, and allows opportunities for hypothesis testing of microbial impacts on human health. Drosophila is being used to investigate aspects of host-microbe interactions, including the metabolism, the immune system and behavior. Drosophila offers a valuable alternative to rodent and other mammalian models of microbiome research for fundamental discovery of microbiome function, enabling improved research cost effectiveness and benefits for animal welfare.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
35
|
Furuse M, Izumi Y. Molecular dissection of smooth septate junctions: understanding their roles in arthropod physiology. Ann N Y Acad Sci 2017. [DOI: 10.1111/nyas.13366] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mikio Furuse
- Division of Cell Structure; National Institute for Physiological Sciences; Okazaki Japan
- Department of Physiological Sciences, School of Life Science; SOKENDAI (The Graduate University for Advanced Studies); Okazaki Japan
| | - Yasushi Izumi
- Division of Cell Structure; National Institute for Physiological Sciences; Okazaki Japan
- Department of Physiological Sciences, School of Life Science; SOKENDAI (The Graduate University for Advanced Studies); Okazaki Japan
| |
Collapse
|
36
|
Miyado K, Kang W, Yamatoya K, Hanai M, Nakamura A, Mori T, Miyado M, Kawano N. Exosomes versus microexosomes: Shared components but distinct functions. JOURNAL OF PLANT RESEARCH 2017; 130:479-483. [PMID: 28160150 DOI: 10.1007/s10265-017-0907-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
In multicellular organisms, cellular components are constantly translocated within cells and are also transported exclusively between limited cells, regardless of their physical distance. Exosomes function as one of the key mediators of intercellular transportation. External vesicles were identified 50 years ago in plants and now reconsidered to be exosome-like vesicles. Meanwhile, a well-known exosomal component, tetraspanin CD9, regulates sperm-egg fusion in mammals. A number of Arabidopsis tetraspanins are also expressed in reproductive tissues at fertilization, and are localized at the plasma membrane of protoplasts. Moreover, CD9-containing structures (or 'microexosomes') are released from mouse eggs during their maturation and promote the sperm-egg fusion. This phenomenon implies that two types of shared-component intercellular carriers might be released from multiple types of plant and animal cells, which widely regulate biological phenomena. We herein highlight their discrete structures, formation processes, and functions.
Collapse
Affiliation(s)
- Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kenji Yamatoya
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Maito Hanai
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Akihiro Nakamura
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Toshiyuki Mori
- Department of Tropical Medicine and Parasitology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Natsuko Kawano
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
37
|
Jonusaite S, Kelly SP, Donini A. Identification of the septate junction protein gliotactin in the mosquito Aedes aegypti: evidence for a role in increased paracellular permeability in larvae. ACTA ACUST UNITED AC 2017; 220:2354-2363. [PMID: 28432154 DOI: 10.1242/jeb.156125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
Septate junctions (SJs) regulate paracellular permeability across invertebrate epithelia. However, little is known about the function of SJ proteins in aquatic invertebrates. In this study, a role for the transmembrane SJ protein gliotactin (Gli) in the osmoregulatory strategies of larval mosquito (Aedes aegypti) was examined. Differences in gli transcript abundance were observed between the midgut, Malpighian tubules, hindgut and anal papillae of A. aegypti, which are epithelia that participate in larval mosquito osmoregulation. Western blotting of Gli revealed its presence in monomer, putative dimer and alternatively processed protein forms in different larval mosquito organs. Gli localized to the entire SJ domain between midgut epithelial cells and showed a discontinuous localization along the plasma membranes of epithelial cells of the rectum as well as the syncytial anal papillae epithelium. In the Malpighian tubules, Gli immunolocalization was confined to SJs between the stellate and principal cells. Rearing larvae in 30% seawater caused an increase in Gli protein abundance in the anterior midgut, Malpighian tubules and hindgut. Transcriptional knockdown of gli using dsRNA reduced Gli protein abundance in the midgut and increased the flux rate of the paracellular permeability marker, polyethylene glycol (molecular weight 400 Da; PEG-400). Data suggest that in larval A. aegypti, Gli participates in the maintenance of salt and water balance and that one role for Gli is to participate in the regulation of paracellular permeability across the midgut of A. aegypti in response to changes in environmental salinity.
Collapse
Affiliation(s)
- Sima Jonusaite
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Scott P Kelly
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Andrew Donini
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
38
|
Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti. Comp Biochem Physiol A Mol Integr Physiol 2016; 205:58-67. [PMID: 27988380 DOI: 10.1016/j.cbpa.2016.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022]
Abstract
This study examined the distribution and localization of the septate junction (SJ) proteins snakeskin (Ssk) and mesh in osmoregulatory organs of larval mosquito (Aedes aegypti), as well as their response to altered environmental salt levels. Ssk and mesh transcripts and immunoreactivity were detected in tissues of endodermal origin such as the midgut and Malpighian tubules of A. aegypti larvae, but not in ectodermally derived hindgut and anal papillae. Immunolocalization of Ssk and mesh in the midgut and Malpighian tubules indicated that both proteins are concentrated at regions of cell-cell contact between epithelial cells. Transcript abundance of ssk and mesh was higher in the midgut and Malpighian tubules of brackish water (BW, 30% SW) reared A. aegypti larvae when compared with freshwater (FW) reared animals. Therefore, [3H]polyethylene glycol (MW 400Da, PEG-400) flux was examined across isolated midgut and Malpighian tubule preparations as a measure of their paracellular permeability. It was found that PEG-400 flux was greater across the midgut of BW versus FW larvae while the Malpighian tubules of BW-reared larvae had reduced PEG-400 permeability in conjunction with increased Cl- secretion compared to FW animals. Taken together, data suggest that Ssk and mesh are found in smooth SJs (sSJs) of larval A. aegypti and that their abundance alters in association with changes in epithelial permeability when larvae reside in water of differing salt content. This latter observation suggests that Ssk and mesh play a role in the homeostatic control of salt and water balance in larval A. aegypti.
Collapse
|
39
|
Izumi Y, Motoishi M, Furuse K, Furuse M. A tetraspanin regulates septate junction formation in Drosophila midgut. Development 2016. [DOI: 10.1242/dev.137646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|