1
|
Yang T, Tan Z, Chen X, Wang F, Tao R, Tong Y, Wang X, Fan H, Yu M, Zhu Z. Skin Stretching Techniques: A Review of Clinical Application in Wound Repair. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6405. [PMID: 39712379 PMCID: PMC11661721 DOI: 10.1097/gox.0000000000006405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/22/2024] [Indexed: 12/24/2024]
Abstract
Background The repair of skin defect wounds is a long-term goal of clinical pursuit. Currently, free or pedicled skin flap transplantation is commonly used to repair skin defects. However, these methods may lead to complications such as flap necrosis, thrombosis, scarring, diminished sensation, and pigmentation in both the donor and recipient areas. Since its introduction in 1976, skin stretching techniques were widely used for minor skin and soft-tissue defects in the surgical field. Methods A narrative review was conducted to identify relevant articles about the skin stretching techniques for promoting wound healing. We searched the Web of Science and PubMed databases for all articles containing different combinations of "skin stretch techniques" and "wound repair," "skin defects," and "tissue expansion." Results Through the screening of 500 articles, 84 representative and persuasive articles were selected in this review. These studies collectively demonstrate the technique's effectiveness in reducing wound size, facilitating primary closure, and improving cosmetic outcomes. Reported complications were generally minor, including transient erythema and mild discomfort, with rare instances of skin necrosis. Conclusions Skin stretch techniques emerge as a promising approach for managing large-area wounds, offering the advantage of achieving primary healing without compromising surrounding healthy tissue. However, to optimize its clinical application, further research is warranted, particularly in addressing challenges related to precise stretching and infection management.
Collapse
Affiliation(s)
- Tian Yang
- From the Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhixiang Tan
- From the Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuejie Chen
- From the Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Wang
- From the Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Tao
- From the Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yilan Tong
- From the Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Wang
- From the Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huajun Fan
- From the Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mosheng Yu
- From the Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhanyong Zhu
- From the Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Boutillon A. Organizing collective cell migration through guidance by followers. C R Biol 2023; 346:117-126. [PMID: 38095130 DOI: 10.5802/crbiol.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Morphogenesis, wound healing, and some cancer metastases rely on the collective migration of groups of cells. In these processes, guidance and coordination between cells and tissues are critical. While strongly adherent epithelial cells have to move collectively, loosely organized mesenchymal cells can migrate as individual cells. Nevertheless, many of them migrate collectively. This article summarizes how migratory reactions to cell-cell contacts, also called "contact regulation of locomotion" behaviors, organize mesenchymal collective cell migration. It focuses on one recently discovered mechanism called "guidance by followers", through which a cell is oriented by its immediate followers. In the gastrulating zebrafish embryo, during embryonic axis elongation, this phenomenon is responsible for the collective migration of the leading tissue, the polster, and its guidance by the following posterior axial mesoderm. Such guidance of migrating cells by followers ensures long-range coordination of movements and developmental robustness. Along with other "contact regulation of locomotion" behaviors, this mechanism contributes to organizing collective migration of loose populations of cells.
Collapse
|
3
|
Sheppard L, Green DG, Lerchbaumer G, Rothenberg KE, Fernandez-Gonzalez R, Tepass U. The α-Catenin mechanosensing M region is required for cell adhesion during tissue morphogenesis. J Cell Biol 2023; 222:e202108091. [PMID: 36520419 PMCID: PMC9757846 DOI: 10.1083/jcb.202108091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
α-Catenin couples the cadherin-catenin complex to the actin cytoskeleton. The mechanosensitive α-Catenin M region undergoes conformational changes upon application of force to recruit interaction partners. Here, we took advantage of the tension landscape in the Drosophila embryo to define three different states of α-Catenin mechanosensing in support of cell adhesion. Low-, medium-, and high-tension contacts showed a corresponding recruitment of Vinculin and Ajuba, which was dependent on the α-Catenin M region. In contrast, the Afadin homolog Canoe acts in parallel to α-Catenin at bicellular low- and medium-tension junctions but requires an interaction with α-Catenin for its tension-sensitive enrichment at high-tension tricellular junctions. Individual M region domains make complex contributions to cell adhesion through their impact on interaction partner recruitment, and redundancies with the function of Canoe. Our data argue that α-Catenin and its interaction partners are part of a cooperative and partially redundant mechanoresponsive network that supports AJs remodeling during morphogenesis.
Collapse
Affiliation(s)
- Luka Sheppard
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - David G. Green
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Gerald Lerchbaumer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Katheryn E. Rothenberg
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Bohere J, Eldridge-Thomas BL, Kolahgar G. Vinculin recruitment to α-catenin halts the differentiation and maturation of enterocyte progenitors to maintain homeostasis of the Drosophila intestine. eLife 2022; 11:e72836. [PMID: 36269226 PMCID: PMC9586559 DOI: 10.7554/elife.72836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Mechanisms communicating changes in tissue stiffness and size are particularly relevant in the intestine because it is subject to constant mechanical stresses caused by peristalsis of its variable content. Using the Drosophila intestinal epithelium, we investigate the role of vinculin, one of the best characterised mechanoeffectors, which functions in both cadherin and integrin adhesion complexes. We discovered that vinculin regulates cell fate decisions, by preventing precocious activation and differentiation of intestinal progenitors into absorptive cells. It achieves this in concert with α-catenin at sites of cadherin adhesion, rather than as part of integrin function. Following asymmetric division of the stem cell into a stem cell and an enteroblast (EB), the two cells initially remain connected by adherens junctions, where vinculin is required, only on the EB side, to maintain the EB in a quiescent state and inhibit further divisions of the stem cell. By manipulating cell tension, we show that vinculin recruitment to adherens junction regulates EB activation and numbers. Consequently, removing vinculin results in an enlarged gut with improved resistance to starvation. Thus, mechanical regulation at the contact between stem cells and their progeny is used to control tissue cell number.
Collapse
Affiliation(s)
- Jerome Bohere
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| | - Buffy L Eldridge-Thomas
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| | - Golnar Kolahgar
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
5
|
Moore RP, Fogerson SM, Tulu US, Yu JW, Cox AH, Sican MA, Li D, Legant WR, Weigel AV, Crawford JM, Betzig E, Kiehart DP. Super-resolution microscopy reveals actomyosin dynamics in medioapical arrays. Mol Biol Cell 2022; 33:ar94. [PMID: 35544300 DOI: 10.1091/mbc.e21-11-0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Arrays of actin filaments (F-actin) near the apical surface of epithelial cells (medioapical arrays) contribute to apical constriction and morphogenesis throughout phylogeny. Here, super-resolution approaches (grazing incidence structured illumination, GI-SIM and lattice light sheet, LLSM) microscopy resolve individual, fluorescently labeled F-actin and bipolar myosin filaments that drive amnioserosa cell shape changes during dorsal closure in Drosophila. In expanded cells, F-actin and myosin form loose, apically domed meshworks at the plasma membrane. The arrays condense as cells contract, drawing the domes into the plane of the junctional belts. As condensation continues, individual filaments are no longer uniformly apparent. As cells expand, arrays of actomyosin are again resolved - some F-actin turnover likely occurs, but a large fraction of existing filaments rearrange. In morphologically isotropic cells, actin filaments are randomly oriented and during contraction, are drawn together but remain essentially randomly oriented. In anisotropic cells, largely parallel actin filaments are drawn closer to one another. Our images offer unparalleled resolution of F-actin in embryonic tissue show that medioapical arrays are tightly apposed to the plasma membrane, are continuous with meshworks of lamellar F-actin and thereby constitute modified cell cortex. In concert with other tagged array components, super-resolution imaging of live specimens will offer new understanding of cortical architecture and function. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Regan P Moore
- Biology Department, Duke University, Durham, NC, 27708, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599, USA and North Carolina State University, Raleigh, NC, 27695, USA
| | | | - U Serdar Tulu
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Jason W Yu
- Biology Department, Duke University, Durham, NC, 27708, USA
| | - Amanda H Cox
- Biology Department, Duke University, Durham, NC, 27708, USA
| | | | - Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599, USA and North Carolina State University, Raleigh, NC, 27695, USA
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | | | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.,Departments of Physics and Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | | |
Collapse
|
6
|
The Tbx6 Transcription Factor Dorsocross Mediates Dpp Signaling to Regulate Drosophila Thorax Closure. Int J Mol Sci 2022; 23:ijms23094543. [PMID: 35562934 PMCID: PMC9104307 DOI: 10.3390/ijms23094543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022] Open
Abstract
Movement and fusion of separate cell populations are critical for several developmental processes, such as neural tube closure in vertebrates or embryonic dorsal closure and pupal thorax closure in Drosophila. Fusion failure results in an opening or groove on the body surface. Drosophila pupal thorax closure is an established model to investigate the mechanism of tissue closure. Here, we report the identification of T-box transcription factor genes Dorsocross (Doc) as Decapentaplegic (Dpp) targets in the leading edge cells of the notum in the late third instar larval and early pupal stages. Reduction of Doc in the notum region results in a thorax closure defect, similar to that in dpp loss-of-function flies. Nine genes are identified as potential downstream targets of Doc in regulating thorax closure by molecular and genetic screens. Our results reveal a novel function of Doc in Drosophila development. The candidate target genes provide new clues for unravelling the mechanism of collective cell movement.
Collapse
|
7
|
Barrera-Velázquez M, Ríos-Barrera LD. Crosstalk between basal extracellular matrix adhesion and building of apical architecture during morphogenesis. Biol Open 2021; 10:bio058760. [PMID: 34842274 PMCID: PMC8649640 DOI: 10.1242/bio.058760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissues build complex structures like lumens and microvilli to carry out their functions. Most of the mechanisms used to build these structures rely on cells remodelling their apical plasma membranes, which ultimately constitute the specialised compartments. In addition to apical remodelling, these shape changes also depend on the proper attachment of the basal plasma membrane to the extracellular matrix (ECM). The ECM provides cues to establish apicobasal polarity, and it also transduces forces that allow apical remodelling. However, physical crosstalk mechanisms between basal ECM attachment and the apical plasma membrane remain understudied, and the ones described so far are very diverse, which highlights the importance of identifying the general principles. Here, we review apicobasal crosstalk of two well-established models of membrane remodelling taking place during Drosophila melanogaster embryogenesis: amnioserosa cell shape oscillations during dorsal closure and subcellular tube formation in tracheal cells. We discuss how anchoring to the basal ECM affects apical architecture and the mechanisms that mediate these interactions. We analyse this knowledge under the scope of other morphogenetic processes and discuss what aspects of apicobasal crosstalk may represent widespread phenomena and which ones are used to build subsets of specialised compartments.
Collapse
Affiliation(s)
- Mariana Barrera-Velázquez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
- Undergraduate Program on Genomic Sciences, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Luis Daniel Ríos-Barrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
8
|
Falo-Sanjuan J, Bray SJ. Membrane architecture and adherens junctions contribute to strong Notch pathway activation. Development 2021; 148:272068. [PMID: 34486648 PMCID: PMC8543148 DOI: 10.1242/dev.199831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022]
Abstract
The Notch pathway mediates cell-to-cell communication in a variety of tissues, developmental stages and organisms. Pathway activation relies on the interaction between transmembrane ligands and receptors on adjacent cells. As such, pathway activity could be influenced by the size, composition or dynamics of contacts between membranes. The initiation of Notch signalling in the Drosophila embryo occurs during cellularization, when lateral cell membranes and adherens junctions are first being deposited, allowing us to investigate the importance of membrane architecture and specific junctional domains for signalling. By measuring Notch-dependent transcription in live embryos, we established that it initiates while lateral membranes are growing and that signalling onset correlates with a specific phase in their formation. However, the length of the lateral membranes per se was not limiting. Rather, the adherens junctions, which assemble concurrently with membrane deposition, contributed to the high levels of signalling required for transcription, as indicated by the consequences of α-Catenin depletion. Together, these results demonstrate that the establishment of lateral membrane contacts can be limiting for Notch trans-activation and suggest that adherens junctions play an important role in modulating Notch activity. Summary: Measuring Notch-dependent transcription in live embryos reveals that features associated with lateral membranes are required for initiation of Notch signalling. Perturbing membrane growth or adherens junctions prevents normal activation.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
9
|
Characterization of the strain-rate-dependent mechanical response of single cell-cell junctions. Proc Natl Acad Sci U S A 2021; 118:2019347118. [PMID: 33531347 DOI: 10.1073/pnas.2019347118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell-cell adhesions are often subjected to mechanical strains of different rates and magnitudes in normal tissue function. However, the rate-dependent mechanical behavior of individual cell-cell adhesions has not been fully characterized due to the lack of proper experimental techniques and therefore remains elusive. This is particularly true under large strain conditions, which may potentially lead to cell-cell adhesion dissociation and ultimately tissue fracture. In this study, we designed and fabricated a single-cell adhesion micro tensile tester (SCAµTT) using two-photon polymerization and performed displacement-controlled tensile tests of individual pairs of adherent epithelial cells with a mature cell-cell adhesion. Straining the cytoskeleton-cell adhesion complex system reveals a passive shear-thinning viscoelastic behavior and a rate-dependent active stress-relaxation mechanism mediated by cytoskeleton growth. Under low strain rates, stress relaxation mediated by the cytoskeleton can effectively relax junctional stress buildup and prevent adhesion bond rupture. Cadherin bond dissociation also exhibits rate-dependent strengthening, in which increased strain rate results in elevated stress levels at which cadherin bonds fail. This bond dissociation becomes a synchronized catastrophic event that leads to junction fracture at high strain rates. Even at high strain rates, a single cell-cell junction displays a remarkable tensile strength to sustain a strain as much as 200% before complete junction rupture. Collectively, the platform and the biophysical understandings in this study are expected to build a foundation for the mechanistic investigation of the adaptive viscoelasticity of the cell-cell junction.
Collapse
|
10
|
Kong D, Großhans J. Planar Cell Polarity and E-Cadherin in Tissue-Scale Shape Changes in Drosophila Embryos. Front Cell Dev Biol 2020; 8:619958. [PMID: 33425927 PMCID: PMC7785826 DOI: 10.3389/fcell.2020.619958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/07/2020] [Indexed: 12/04/2022] Open
Abstract
Planar cell polarity and anisotropic cell behavior play critical roles in large-scale epithelial morphogenesis, homeostasis, wound repair, and regeneration. Cell-Cell communication and mechano-transduction in the second to minute scale mediated by E-cadherin complexes play a central role in the coordination and self-organization of cellular activities, such as junction dynamics, cell shape changes, and cell rearrangement. Here we review the current understanding in the interplay of cell polarity and cell dynamics during body axis elongation and dorsal closure in Drosophila embryos with a focus on E-cadherin dynamics in linking cell and tissue polarization and tissue-scale shape changes.
Collapse
Affiliation(s)
- Deqing Kong
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | |
Collapse
|
11
|
Identifying Key Genetic Regions for Cell Sheet Morphogenesis on Chromosome 2L Using a Drosophila Deficiency Screen in Dorsal Closure. G3-GENES GENOMES GENETICS 2020; 10:4249-4269. [PMID: 32978263 PMCID: PMC7642946 DOI: 10.1534/g3.120.401386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell sheet morphogenesis is essential for metazoan development and homeostasis of animal form - it contributes to developmental milestones including gastrulation, neural tube closure, heart and palate formation and to tissue maintenance during wound healing. Dorsal closure, a well-characterized stage in Drosophila embryogenesis and a model for cell sheet morphogenesis, is a remarkably robust process during which coordination of conserved gene expression patterns and signaling cascades regulate the cellular shape changes and movements. New 'dorsal closure genes' continue to be discovered due to advances in imaging and genetics. Here, we extend our previous study of the right arm of the 2nd chromosome to the left arm of the 2nd chromosome using the Bloomington deficiency kit's set of large deletions, which collectively remove 98.9% of the genes on the left arm of chromosome two (2L) to identify 'dorsal closure deficiencies'. We successfully screened 87.2% of the genes and identified diverse dorsal closure defects in embryos homozygous for 49 deficiencies, 27 of which delete no known dorsal closure gene. These homozygous deficiencies cause defects in cell shape, canthus formation and tissue dynamics. Within these deficiencies, we have identified pimples, odd-skipped, paired, and sloppy-paired 1 as dorsal closure genes on 2L that affect lateral epidermal cells. We will continue to identify novel 'dorsal closure genes' with further analysis. These forward genetic screens are expected to identify new processes and pathways that contribute to closure and links between pathways and structures already known to coordinate various aspects of closure.
Collapse
|
12
|
Díaz-Díaz C, Baonza G, Martín-Belmonte F. The vertebrate epithelial apical junctional complex: Dynamic interplay between Rho GTPase activity and cell polarization processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183398. [DOI: 10.1016/j.bbamem.2020.183398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
|
13
|
Perez-Vale KZ, Peifer M. Orchestrating morphogenesis: building the body plan by cell shape changes and movements. Development 2020; 147:dev191049. [PMID: 32917667 PMCID: PMC7502592 DOI: 10.1242/dev.191049] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During embryonic development, a simple ball of cells re-shapes itself into the elaborate body plan of an animal. This requires dramatic cell shape changes and cell movements, powered by the contractile force generated by actin and myosin linked to the plasma membrane at cell-cell and cell-matrix junctions. Here, we review three morphogenetic events common to most animals: apical constriction, convergent extension and collective cell migration. Using the fruit fly Drosophila as an example, we discuss recent work that has revealed exciting new insights into the molecular mechanisms that allow cells to change shape and move without tearing tissues apart. We also point out parallel events at work in other animals, which suggest that the mechanisms underlying these morphogenetic processes are conserved.
Collapse
Affiliation(s)
- Kia Z Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Monemian Esfahani A, Rosenbohm J, Reddy K, Jin X, Bouzid T, Riehl B, Kim E, Lim JY, Yang R. Tissue Regeneration from Mechanical Stretching of Cell-Cell Adhesion. Tissue Eng Part C Methods 2019; 25:631-640. [PMID: 31407627 PMCID: PMC6859692 DOI: 10.1089/ten.tec.2019.0098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/05/2019] [Indexed: 01/09/2023] Open
Abstract
Cell-cell adhesion complexes are macromolecular adhesive organelles that integrate cells into tissues. This mechanochemical coupling in cell-cell adhesion is required for a large number of cell behaviors, and perturbations of the cell-cell adhesion structure or related mechanotransduction pathways can lead to critical pathological conditions such as skin and heart diseases, arthritis, and cancer. Mechanical stretching has been a widely used method to stimulate the mechanotransduction process originating from the cell-cell adhesion and cell-extracellular matrix (ECM) complexes. These studies aimed to reveal the biophysical processes governing cell proliferation, wound healing, gene expression regulation, and cell differentiation in various tissues, including cardiac, muscle, vascular, and bone. This review explores techniques in mechanical stretching in two-dimensional settings with different stretching regimens on different cell types. The mechanotransduction responses from these different cell types will be discussed with an emphasis on their biophysical transformations during mechanical stretching and the cross talk between the cell-cell and cell-ECM adhesion complexes. Therapeutic aspects of mechanical stretching are reviewed considering these cellular responses after the application of mechanical forces, with a focus on wound healing and tissue regeneration. Impact Statement Mechanical stretching has been proposed as a therapeutic option for tissue regeneration and wound healing. It has been accepted that mechanotransduction processes elicited by mechanical stretching govern cellular response and behavior, and these studies have predominantly focused on the cell-extracellular matrix (ECM) sites. This review serves the mechanobiology community by shifting the focus of mechanical stretching effects from cell-ECM adhesions to the less examined cell-cell adhesions, which we believe play an equally important role in orchestrating the response pathways.
Collapse
Affiliation(s)
- Amir Monemian Esfahani
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jordan Rosenbohm
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Keerthana Reddy
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Xiaowei Jin
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Tasneem Bouzid
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Brandon Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
15
|
Terekhova K, Pokutta S, Kee YS, Li J, Tajkhorshid E, Fuller G, Dunn AR, Weis WI. Binding partner- and force-promoted changes in αE-catenin conformation probed by native cysteine labeling. Sci Rep 2019; 9:15375. [PMID: 31653927 PMCID: PMC6814714 DOI: 10.1038/s41598-019-51816-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Adherens Junctions (AJs) are cell-cell adhesion complexes that sense and propagate mechanical forces by coupling cadherins to the actin cytoskeleton via β-catenin and the F-actin binding protein αE-catenin. When subjected to mechanical force, the cadherin•catenin complex can tightly link to F-actin through αE-catenin, and also recruits the F-actin-binding protein vinculin. In this study, labeling of native cysteines combined with mass spectrometry revealed conformational changes in αE-catenin upon binding to the E-cadherin•β-catenin complex, vinculin and F-actin. A method to apply physiologically meaningful forces in solution revealed force-induced conformational changes in αE-catenin when bound to F-actin. Comparisons of wild-type αE-catenin and a mutant with enhanced vinculin affinity using cysteine labeling and isothermal titration calorimetry provide evidence for allosteric coupling of the N-terminal β-catenin-binding and the middle (M) vinculin-binding domain of αE-catenin. Cysteine labeling also revealed possible crosstalk between the actin-binding domain and the rest of the protein. The data provide insight into how binding partners and mechanical stress can regulate the conformation of full-length αE-catenin, and identify the M domain as a key transmitter of conformational changes.
Collapse
Affiliation(s)
- Ksenia Terekhova
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sabine Pokutta
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yee S Kee
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080 (Y.S.K.); Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 (J.L.), USA
| | - Jing Li
- Departments of Chemistry, Chemical and Biomolecular Engineering, and Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL, USA.,Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080 (Y.S.K.); Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 (J.L.), USA
| | - Emad Tajkhorshid
- Departments of Chemistry, Chemical and Biomolecular Engineering, and Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL, USA
| | - Gerald Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - William I Weis
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Abstract
Cell-cell junctions are specializations of the plasma membrane responsible for physically integrating cells into tissues. We are now beginning to appreciate the diverse impacts that mechanical forces exert upon the integrity and function of these junctions. Currently, this is best understood for cadherin-based adherens junctions in epithelia and endothelia, where cell-cell adhesion couples the contractile cytoskeletons of cells together to generate tissue-scale tension. Junctional tension participates in morphogenesis and tissue homeostasis. Changes in tension can also be detected by mechanotransduction pathways that allow cells to communicate with each other. In this review, we discuss progress in characterising the forces present at junctions in physiological conditions; the cellular mechanisms that generate intrinsic tension and detect changes in tension; and, finally, we consider how tissue integrity is maintained in the face of junctional stresses.
Collapse
|
17
|
Cell Adhesion-Mediated Actomyosin Assembly Regulates the Activity of Cubitus Interruptus for Hematopoietic Progenitor Maintenance in Drosophila. Genetics 2019; 212:1279-1300. [PMID: 31138608 PMCID: PMC6707476 DOI: 10.1534/genetics.119.302209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The actomyosin network is involved in crucial cellular processes including morphogenesis, cell adhesion, apoptosis, proliferation, differentiation, and collective cell migration in Drosophila, Caenorhabditiselegans, and mammals. Here, we demonstrate that Drosophila larval blood stem-like progenitors require actomyosin activity for their maintenance. Genetic loss of the actomyosin network from progenitors caused a decline in their number. Likewise, the progenitor population increased upon sustained actomyosin activation via phosphorylation by Rho-associated kinase. We show that actomyosin positively regulates larval blood progenitors by controlling the maintenance factor Cubitus interruptus (Ci). Overexpression of the maintenance signal via a constitutively activated construct (ci.HA) failed to sustain Ci-155 in the absence of actomyosin components like Zipper (zip) and Squash (sqh), thus favoring protein kinase A (PKA)-independent regulation of Ci activity. Furthermore, we demonstrate that a change in cortical actomyosin assembly mediated by DE-cadherin modulates Ci activity, thereby determining progenitor status. Thus, loss of cell adhesion and downstream actomyosin activity results in desensitization of the progenitors to Hh signaling, leading to their differentiation. Our data reveal how cell adhesion and the actomyosin network cooperate to influence patterning, morphogenesis, and maintenance of the hematopoietic stem-like progenitor pool in the developing Drosophila hematopoietic organ.
Collapse
|
18
|
Rauskolb C, Cervantes E, Madere F, Irvine KD. Organization and function of tension-dependent complexes at adherens junctions. J Cell Sci 2019; 132:jcs.224063. [PMID: 30837288 DOI: 10.1242/jcs.224063] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/22/2019] [Indexed: 12/17/2022] Open
Abstract
Adherens junctions provide attachments between neighboring epithelial cells and a physical link to the cytoskeleton, which enables them to sense and transmit forces and to initiate biomechanical signaling. Examination of the Ajuba LIM protein Jub in Drosophila embryos revealed that it is recruited to adherens junctions in tissues experiencing high levels of myosin activity, and that the pattern of Jub recruitment varies depending upon how tension is organized. In cells with high junctional myosin, Jub is recruited to puncta near intercellular vertices, which are distinct from Ena-containing puncta, but can overlap Vinc-containing puncta. We identify roles for Jub in modulating tension and cellular organization, which are shared with the cytohesin Step, and the cytohesin adapter Sstn, and show that Jub and Sstn together recruit Step to adherens junctions under tension. Our observations establish Jub as a reporter of tension experienced at adherens junctions, and identify distinct types of tension-dependent and tension-independent junctional complexes. They also identify a role for Jub in mediating a feedback loop that modulates the distribution of tension and cellular organization in epithelia.
Collapse
Affiliation(s)
- Cordelia Rauskolb
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Estelle Cervantes
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Ferralita Madere
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
19
|
Kale GR, Yang X, Philippe JM, Mani M, Lenne PF, Lecuit T. Distinct contributions of tensile and shear stress on E-cadherin levels during morphogenesis. Nat Commun 2018; 9:5021. [PMID: 30479400 PMCID: PMC6258672 DOI: 10.1038/s41467-018-07448-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/12/2018] [Indexed: 11/08/2022] Open
Abstract
During epithelial morphogenesis, cell contacts (junctions) are constantly remodeled by mechanical forces that work against adhesive forces. E-cadherin complexes play a pivotal role in this process by providing persistent cell adhesion and by transmitting mechanical tension. In this context, it is unclear how mechanical forces affect E-cadherin adhesion and junction dynamics. During Drosophila embryo axis elongation, Myosin-II activity in the apico-medial and junctional cortex generates mechanical forces to drive junction remodeling. Here we report that the ratio between Vinculin and E-cadherin intensities acts as a ratiometric readout for these mechanical forces (load) at E-cadherin complexes. Medial Myosin-II loads E-cadherin complexes on all junctions, exerts tensile forces, and increases levels of E-cadherin. Junctional Myosin-II, on the other hand, biases the distribution of load between junctions of the same cell, exerts shear forces, and decreases the levels of E-cadherin. This work suggests distinct effects of tensile versus shear stresses on E-cadherin adhesion.
Collapse
Affiliation(s)
- Girish R Kale
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009, Marseille, France
- National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Xingbo Yang
- Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jean-Marc Philippe
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009, Marseille, France
| | - Madhav Mani
- Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Pierre-François Lenne
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009, Marseille, France.
| | - Thomas Lecuit
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009, Marseille, France.
- Collège de France, 11 Place Marcelin Berthelot, 75005, Paris, France.
| |
Collapse
|
20
|
Blanchard GB, Étienne J, Gorfinkiel N. From pulsatile apicomedial contractility to effective epithelial mechanics. Curr Opin Genet Dev 2018; 51:78-87. [DOI: 10.1016/j.gde.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
|
21
|
Abstract
Precisely controlled cell deformations are key to cell migration, division and tissue morphogenesis, and have been implicated in cell differentiation during development, as well as cancer progression. In animal cells, shape changes are primarily driven by the cellular cortex, a thin actomyosin network that lies directly underneath the plasma membrane. Myosin-generated forces create tension in the cortical network, and gradients in tension lead to cellular deformations. Recent studies have provided important insight into the molecular control of cortical tension by progressively unveiling cortex composition and organization. In this Cell Science at a Glance article and the accompanying poster, we review our current understanding of cortex composition and architecture. We then discuss how the microscopic properties of the cortex control cortical tension. While many open questions remain, it is now clear that cortical tension can be modulated through both cortex composition and organization, providing multiple levels of regulation for this key cellular property during cell and tissue morphogenesis. Summary: A summary of the composition, architecture, mechanics and function of the cellular actin cortex, which determines the shape of animal cells, and, thus, provides the foundation for cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Priyamvada Chugh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
22
|
Identifying Genetic Players in Cell Sheet Morphogenesis Using a Drosophila Deficiency Screen for Genes on Chromosome 2R Involved in Dorsal Closure. G3-GENES GENOMES GENETICS 2018; 8:2361-2387. [PMID: 29776969 PMCID: PMC6027880 DOI: 10.1534/g3.118.200233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell sheet morphogenesis characterizes key developmental transitions and homeostasis, in vertebrates and throughout phylogeny, including gastrulation, neural tube formation and wound healing. Dorsal closure, a process during Drosophila embryogenesis, has emerged as a model for cell sheet morphogenesis. ∼140 genes are currently known to affect dorsal closure and new genes are identified each year. Many of these genes were identified in screens that resulted in arrested development. Dorsal closure is remarkably robust and many questions regarding the molecular mechanisms involved in this complex biological process remain. Thus, it is important to identify all genes that contribute to the kinematics and dynamics of closure. Here, we used a set of large deletions (deficiencies), which collectively remove 98.5% of the genes on the right arm of Drosophila melanogaster’s 2nd chromosome to identify “dorsal closure deficiencies”. Through two crosses, we unambiguously identified embryos homozygous for each deficiency and time-lapse imaged them for the duration of closure. Images were analyzed for defects in cell shapes and tissue movements. Embryos homozygous for 47 deficiencies have notable, diverse defects in closure, demonstrating that a number of discrete processes comprise closure and are susceptible to mutational disruption. Further analysis of these deficiencies will lead to the identification of at least 30 novel “dorsal closure genes”. We expect that many of these novel genes will identify links to pathways and structures already known to coordinate various aspects of closure. We also expect to identify new processes and pathways that contribute to closure.
Collapse
|
23
|
Kiehart DP, Crawford JM, Aristotelous A, Venakides S, Edwards GS. Cell Sheet Morphogenesis: Dorsal Closure in Drosophila melanogaster as a Model System. Annu Rev Cell Dev Biol 2018; 33:169-202. [PMID: 28992442 DOI: 10.1146/annurev-cellbio-111315-125357] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dorsal closure is a key process during Drosophila morphogenesis that models cell sheet movements in chordates, including neural tube closure, palate formation, and wound healing. Closure occurs midway through embryogenesis and entails circumferential elongation of lateral epidermal cell sheets that close a dorsal hole filled with amnioserosa cells. Signaling pathways regulate the function of cellular structures and processes, including Actomyosin and microtubule cytoskeletons, cell-cell/cell-matrix adhesion complexes, and endocytosis/vesicle trafficking. These orchestrate complex shape changes and movements that entail interactions between five distinct cell types. Genetic and laser perturbation studies establish that closure is robust, resilient, and the consequence of redundancy that contributes to four distinct biophysical processes: contraction of the amnioserosa, contraction of supracellular Actomyosin cables, elongation (stretching?) of the lateral epidermis, and zipping together of two converging cell sheets. What triggers closure and what the emergent properties are that give rise to its extraordinary resilience and fidelity remain key, extant questions.
Collapse
Affiliation(s)
- Daniel P Kiehart
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Janice M Crawford
- Department of Biology, Duke University, Durham, North Carolina 27708;
| | - Andreas Aristotelous
- Department of Mathematics, West Chester University, West Chester, Pennsylvania 19383
| | | | - Glenn S Edwards
- Physics Department, Duke University, Durham, North Carolina 27708
| |
Collapse
|
24
|
Ozawa M. Nonmuscle myosin IIA is involved in recruitment of apical junction components through activation of α-catenin. Biol Open 2018; 7:bio.031369. [PMID: 29654115 PMCID: PMC5992523 DOI: 10.1242/bio.031369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MDCK dog kidney epithelial cells express two isoforms of nonmuscle myosin heavy chain II, IIA and IIB. Using the CRISPR/Cas9 system, we established cells in which the IIA gene was ablated. These cells were then transfected with a vector that expresses GFP-IIA chimeric molecule under the control of a tetracycline-responsible element. In the absence of Dox (doxycyclin), when GFP-IIA is expressed (GFP-IIA+), the cells exhibit epithelial cell morphology, but in the presence of Dox, when expression of GFP-IIA is repressed (GFP-IIA-), the cells lose epithelial morphology and strong cell-cell adhesion. Consistent with these observations, GFP-IIA- cells failed to assemble junction components such as E-cadherin, desmoplakin, and occludin at cell-cell contact sites. Therefore, IIA is required for assembly of junction complexes. MDCK cells with an ablation of the α-catenin gene also exhibited the same phenotype. However, when in GFP-IIA- cells expressed α-catenin lacking the inhibitory region or E-cadherin/α-catenin chimeras, the cells acquired the ability to establish the junction complex. These experiments reveal that IIA acts as an activator of α-catenin in junction assembly.
Collapse
Affiliation(s)
- Masayuki Ozawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
25
|
Seddiki R, Narayana GHNS, Strale PO, Balcioglu HE, Peyret G, Yao M, Le AP, Teck Lim C, Yan J, Ladoux B, Mège RM. Force-dependent binding of vinculin to α-catenin regulates cell-cell contact stability and collective cell behavior. Mol Biol Cell 2017; 29:380-388. [PMID: 29282282 PMCID: PMC6014167 DOI: 10.1091/mbc.e17-04-0231] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/20/2017] [Accepted: 12/14/2017] [Indexed: 11/12/2022] Open
Abstract
Combining cell biology and biomechanical analysis, we show here that the coupling between cadherin complexes and actin through tension-dependent α-catenin/vinculin association is regulating AJ stability and dynamics as well as tissue-scale mechanics. The shaping of a multicellular body and repair of adult tissues require fine-tuning of cell adhesion, cell mechanics, and intercellular transmission of mechanical load. Adherens junctions (AJs) are the major intercellular junctions by which cells sense and exert mechanical force on each other. However, how AJs adapt to mechanical stress and how this adaptation contributes to cell–cell cohesion and eventually to tissue-scale dynamics and mechanics remains largely unknown. Here, by analyzing the tension-dependent recruitment of vinculin, α-catenin, and F-actin as a function of stiffness, as well as the dynamics of GFP-tagged wild-type and mutated α-catenins, altered for their binding capability to vinculin, we demonstrate that the force-dependent binding of vinculin stabilizes α-catenin and is responsible for AJ adaptation to force. Challenging cadherin complexes mechanical coupling with magnetic tweezers, and cell–cell cohesion during collective cell movements, further highlight that tension-dependent adaptation of AJs regulates cell–cell contact dynamics and coordinated collective cell migration. Altogether, these data demonstrate that the force-dependent α-catenin/vinculin interaction, manipulated here by mutagenesis and mechanical control, is a core regulator of AJ mechanics and long-range cell–cell interactions.
Collapse
Affiliation(s)
- Rima Seddiki
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France
| | | | - Pierre-Olivier Strale
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | | - Grégoire Peyret
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Anh Phuong Le
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Biomedical Engineering, National University of Singapore, Singapore 117542
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Biomedical Engineering, National University of Singapore, Singapore 117542
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Benoit Ladoux
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - René Marc Mège
- Institut Jacques Monod, Centre National de la Recherche Scientifique, CNRS UMR 7592, Université Paris-Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
26
|
Maddala R, Rao PV. Switching of α-Catenin From Epithelial to Neuronal Type During Lens Epithelial Cell Differentiation. Invest Ophthalmol Vis Sci 2017; 58:3445-3455. [PMID: 28692740 PMCID: PMC5505122 DOI: 10.1167/iovs.17-21539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Ocular lens fiber cell elongation, differentiation, and compaction are associated with extensive reorganization of cell adhesive interactions and cytoskeleton; however, our knowledge of proteins critical to these events is still evolving. This study characterizes the distribution pattern of neuronal-specific α-catenin (αN-catenin) and its interaction with the N-cadherin–associated adherens junctions (AJs) and their stability in the mouse lens fibers. Methods Expression and distribution of αN-catenin in developing mouse and adult human lenses was determined by RT-PCR, immunoblot, and immunofluorescence analyses. Characterization of αN-catenin and N-cadherin interacting proteins and colocalization analyses were performed using immunoprecipitation, mass spectrometry, and confocal imaging. Effects of periaxin deficiency on the stability of lens fiber cell AJs were evaluated using perixin-null mice. Results αN-catenin exhibits discrete distribution to lens fibers in both mouse and human lenses, undergoing a robust up-regulation during fiber cell differentiation and maturation. Epithelial-specific α-catenin (αE-catenin), in contrast, distributes primarily to the lens epithelium. αN-catenin and N-cadherin reciprocally coimmunoprecipitate and colocalize along with β-catenin, actin, spectrin, vinculin, Armadillo repeat protein deleted in velo-cardio-facial syndrome homolog, periaxin, and ankyrin-B in lens fibers. Fiber cells from periaxin-null mouse lenses revealed disrupted N-cadherin/αN-catenin–based AJs. Conclusions These results suggest that the discrete shift in α-catenin expression from αE-catenin to αN-catenin subtype that occurs during lens epithelial cell differentiation may play a key role in fiber cell cytoarchitecture by regulating the assembly and stability of N-cadherin–based AJs. This study also provides evidence for the importance of the fiber cell–specific cytoskeletal interacting periaxin, in the stability of N-cadherin/αN-catenin–based AJs in lens fibers.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States 2Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
27
|
De Pascalis C, Etienne-Manneville S. Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 2017; 28:1833-1846. [PMID: 28684609 PMCID: PMC5541834 DOI: 10.1091/mbc.e17-03-0134] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
Chemical and physical properties of the environment control cell proliferation, differentiation, or apoptosis in the long term. However, to be able to move and migrate through a complex three-dimensional environment, cells must quickly adapt in the short term to the physical properties of their surroundings. Interactions with the extracellular matrix (ECM) occur through focal adhesions or hemidesmosomes via the engagement of integrins with fibrillar ECM proteins. Cells also interact with their neighbors, and this involves various types of intercellular adhesive structures such as tight junctions, cadherin-based adherens junctions, and desmosomes. Mechanobiology studies have shown that cell-ECM and cell-cell adhesions participate in mechanosensing to transduce mechanical cues into biochemical signals and conversely are responsible for the transmission of intracellular forces to the extracellular environment. As they migrate, cells use these adhesive structures to probe their surroundings, adapt their mechanical properties, and exert the appropriate forces required for their movements. The focus of this review is to give an overview of recent developments showing the bidirectional relationship between the physical properties of the environment and the cell mechanical responses during single and collective cell migration.
Collapse
Affiliation(s)
- Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
- UPMC Université Paris 06, IFD, Sorbonne Universités, 75252 Paris Cedex 05, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur Paris, CNRS UMR3691, 75724 Paris Cedex 15, France
| |
Collapse
|
28
|
Hara Y. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue. Dev Growth Differ 2017; 59:340-350. [DOI: 10.1111/dgd.12356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/02/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Yusuke Hara
- Mechanobiology Institute National University of Singapore T‐Lab 5A Engineering Drive 1, Level 9 Singapore 117411
- Temasek Life Sciences Laboratory National University of Singapore 1 Research Link Singapore 117604 Singapore
| |
Collapse
|
29
|
Goodwin K, Lostchuck EE, Cramb KML, Zulueta-Coarasa T, Fernandez-Gonzalez R, Tanentzapf G. Cell-cell and cell-extracellular matrix adhesions cooperate to organize actomyosin networks and maintain force transmission during dorsal closure. Mol Biol Cell 2017; 28:1301-1310. [PMID: 28331071 PMCID: PMC5426845 DOI: 10.1091/mbc.e17-01-0033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/13/2022] Open
Abstract
Cell–extracellular matrix (ECM) and cell–cell adhesion are interdependent during dorsal closure in the fly. Cell–ECM adhesion is required for normal myosin dynamics and organization of both cell–cell adhesions and actin networks during dorsal closure. Loss of cell–cell adhesion affects cell–ECM adhesion and tissue biomechanics. Tissue morphogenesis relies on the coordinated action of actin networks, cell–cell adhesions, and cell–extracellular matrix (ECM) adhesions. Such coordination can be achieved through cross-talk between cell–cell and cell–ECM adhesions. Drosophila dorsal closure (DC), a morphogenetic process in which an extraembryonic tissue called the amnioserosa contracts and ingresses to close a discontinuity in the dorsal epidermis of the embryo, requires both cell–cell and cell–ECM adhesions. However, whether the functions of these two types of adhesions are coordinated during DC is not known. Here we analyzed possible interdependence between cell–cell and cell–ECM adhesions during DC and its effect on the actomyosin network. We find that loss of cell–ECM adhesion results in aberrant distributions of cadherin-mediated adhesions and actin networks in the amnioserosa and subsequent disruption of myosin recruitment and dynamics. Moreover, loss of cell–cell adhesion caused up-regulation of cell–ECM adhesion, leading to reduced cell deformation and force transmission across amnioserosa cells. Our results show how interdependence between cell–cell and cell–ECM adhesions is important in regulating cell behaviors, force generation, and force transmission critical for tissue morphogenesis.
Collapse
Affiliation(s)
- Katharine Goodwin
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Emily E Lostchuck
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kaitlyn M L Cramb
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Teresa Zulueta-Coarasa
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5S 1X8, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|