1
|
Paries M, Hobecker K, Hernandez Luelmo S, Binci F, Guercio A, Usländer A, Cardoso C, Si Y, Wankner L, Bashyal S, Troycke P, Brückner F, Pimprikar P, Shabek N, Gutjahr C. The GRAS protein RAM1 interacts with WRI transcription factors to regulate plant genes required for arbuscule development and function. Proc Natl Acad Sci U S A 2025; 122:e2427021122. [PMID: 40388617 DOI: 10.1073/pnas.2427021122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/14/2025] [Indexed: 05/21/2025] Open
Abstract
During arbuscular mycorrhiza (AM) symbiosis AM fungi form tree-shaped structures called arbuscules in root cortex cells of host plants. Arbuscules and their host cells are central for reciprocal nutrient exchange between the symbionts. REQUIRED FOR ARBUSCULAR MYCORRHIZATION1 (RAM1) encodes a GRAS protein crucial for transcriptionally regulating plant genes needed for arbuscule development and nutrient exchange. Similar to other GRAS proteins, RAM1 likely does not bind to DNA and how RAM1 activates its target promoters remained elusive. Here, we demonstrate that RAM1 interacts with five AM-induced APETALA 2 (AP2) transcription factors of the WRINKLED1-like family called CTTC MOTIF-BINDING TRANSCRIPTION FACTOR1 (CBX1), WRI3, WRI5a, WRI5b, and WRI5c via a C-terminal domain containing the M2/M2a motif. This motif is conserved and enriched in WRI proteins encoded by genomes of AM-competent plants. RAM1 together with any of these WRI proteins activates the promoters of genes required for symbiotic nutrient exchange, namely RAM2, STUNTED ARBUSCULES (STR), and PHOSPHATE TRANSPORTER 4 (PT4), in Nicotiana benthamiana leaves. This activation as well as target promoter induction in Lotus japonicus hairy roots depends on MYCS (MYCORRHIZA SEQUENCE)-elements and AW-boxes, previously identified as WRI-binding sites. The WRI genes are activated in two waves: Transcription of RAM1, CBX1, and WRI3 is coregulated by calcium- and calmodulin-dependent protein kinase-activated CYCLOPS, through the AMCYC-RE in their promoter, and DELLA, while WRI5a, b, and c promoters contain MYCS-elements and AW-boxes and can be activated by RAM1 heterocomplexes with CBX1 or WRI3. We propose that RAM1 provides an activation domain to DNA-binding WRI proteins to activate genes with central roles in AM development and function.
Collapse
Affiliation(s)
- Michael Paries
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Karen Hobecker
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354 Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Postdam Science Park, 14476 Potsdam-Golm, Germany
| | - Sofia Hernandez Luelmo
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354 Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Postdam Science Park, 14476 Potsdam-Golm, Germany
| | - Filippo Binci
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Angelica Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616
| | - Annika Usländer
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Catarina Cardoso
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Yang Si
- Max-Planck-Institute of Molecular Plant Physiology, Postdam Science Park, 14476 Potsdam-Golm, Germany
| | - Lotta Wankner
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Sagar Bashyal
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Philip Troycke
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Franziska Brückner
- Max-Planck-Institute of Molecular Plant Physiology, Postdam Science Park, 14476 Potsdam-Golm, Germany
| | - Priya Pimprikar
- Faculty of Biology, Genetics, Ludwig Maximilians University of Munich (LMU), 82152 Martinsried, Germany
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), 85354 Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Postdam Science Park, 14476 Potsdam-Golm, Germany
- Faculty of Biology, Genetics, Ludwig Maximilians University of Munich (LMU), 82152 Martinsried, Germany
| |
Collapse
|
2
|
Sharma N, Vittal H, Dubey AK, Sharma RM, Singh SK, Sharma N, Singh N, Khandelwal A, Gupta DK, Mishra GP, Meena MC, Pandey R, Singh NK. Physiological and molecular insights into alternate bearing in mango using next-generation sequencing approaches. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1585-1606. [PMID: 39319672 DOI: 10.1093/jxb/erae403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
The productivity of the mango crop in India is hindered by many factors, one of the most important factors is our limited understanding of the genomic complexities behind the regular versus alternate bearing habit of fruit. In this study, we quantified carbohydrate fractions, protein content, and macro- and micronutrient storage pools together with their transportation and contributions to a regular bearing variety, Totapuri, and to an alternate-bearer, Bombay Green during the 'off' year. RNA-sequencing was used to assess gene expression dynamics between buds and flowers of these varieties. Differential pathway analysis showed the greatest number of differentially expressed genes in metabolic processes, followed by oxidoreductase, hormone, oxidative stress, starvation, alternate bearing, flowering, meristem, and cellular component pathways. Bioinformatics analysis showed that, among 15 highly differentially expressed genes between varieties representing alternate bearing, hormone, and carbohydrate metabolism pathways, 12 were up-regulated in Totapuri and 3 in Bombay Green, and this was confirmed by qRT-PCR. In addition, 202 single-nucleotide polymorphisms were identified in 32 genes related to alternate bearing. Our results confirmed the strong ability of reproductive buds to import sugars, proteins, and starch in the regular-bearer variety, thereby enhancing flowering and fruiting during 'off' years. Thus, our study shows a potential role for the mineral nutrient and biochemical constituents of buds and leaves in determining the regular versus alternate bearing fruiting habit in mango.
Collapse
Affiliation(s)
- Nimisha Sharma
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Hatkari Vittal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil K Dubey
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, UP, 226 002, India
| | - Radha M Sharma
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sanjay K Singh
- ICAR-Krishi Anusandhan Bhawan (KAB-II), New Delhi, 110012, India
| | - Neha Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Nisha Singh
- Gujarat Biotechnology University (GBU), Gandhinagar, Gujarat, 382355, India
| | - Ashish Khandelwal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Deepak K Gupta
- Department of Infectious Diseases Section, Im Neuenheimer Feld 26769120, Heidelberg, Germany
| | - Gyan P Mishra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Rakesh Pandey
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | |
Collapse
|
3
|
Huang B, Huang Y, Shen C, Fan L, Fu H, Liu Z, Sun Y, Wu B, Zhang J, Xin J. Roles of boron in preventing cadmium uptake by Capsicum annuum root tips: Novel insights from ultrastructural investigation and single-cell RNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177858. [PMID: 39631329 DOI: 10.1016/j.scitotenv.2024.177858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Sufficient boron (B) can reduce cadmium (Cd) accumulation in crops; however, the underlying mechanism remains unclear. Ultrastructural analysis and single-cell RNA sequencing were used to investigate the changes of the Casparian strip of hot pepper (Capsicum annuum L.) root tips exposed to Cd under different B supplements, lignin formation-related gene expression and regulation in the endodermis to deeper understand the molecular mechanisms by which B inhibits root Cd uptake. The results showed that the Casparian strip widths significantly increased in hot pepper root tips exposed to Cd under B-sufficient (B1Cd1) conditions compared to those under B-deficient conditions (B0Cd1). Additionally, more cerium precipitates, which indicate H2O2 accumulation, were observed in the Casparian strip region in B0Cd1 than that in B1Cd1. B supplementation markedly enhanced the expression of certain lignin formation-related genes only in the endodermis cells. These genes included transcription factor genes, WRKY (WRKY7/40/41/53) and ERF (ERF2/109), and two types of genes related to lignin formation, namely, PER genes (PER3/9/49/6472 and LAC3) and dirigent protein (DIR) genes (DIR16/21/24/25). It suggests that the main reason for B reducing Cd accumulation in hot peppers is that B-induced endodermal lignification of root tips under Cd exposure is beneficial to prevent Cd influx into the stele via the apoplastic pathway.
Collapse
Affiliation(s)
- Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yingying Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Chuang Shen
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ling Fan
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Huiling Fu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Zhilin Liu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yingfang Sun
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Bin Wu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jirong Zhang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
4
|
Tang Q, Wei S, Zheng X, Tu P, Tao F. APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Crit Rev Biotechnol 2024; 44:1533-1551. [PMID: 38267262 DOI: 10.1080/07388551.2023.2299769] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.
Collapse
Affiliation(s)
- Qiong Tang
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Sishan Wei
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Pengcheng Tu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
5
|
Zheng Y, Ou X, Li Q, Wu Z, Wu L, Li X, Zhang B, Sun Y. Genome-wide epigenetic dynamics of tea leaves under mechanical wounding stress during oolong tea postharvest processing. Food Res Int 2024; 194:114939. [PMID: 39232552 DOI: 10.1016/j.foodres.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Understanding the epigenetic responses to mechanical wounding stress during the postharvest processing of oolong tea provides insight into the reprogramming of the tea genome and its impact on tea quality. Here, we characterized the 5mC DNA methylation and chromatin accessibility landscapes of tea leaves subjected to mechanical wounding stress during the postharvest processing of oolong tea. Analysis of the differentially methylated regions and preferentially accessible promoters revealed many overrepresented TF-binding motifs, highlighting sets of TFs that are likely important for the quality of oolong tea. Within these sets, we constructed a chromatin accessibility-mediated gene regulatory network specific to mechanical wounding stress. In combination with the results of the TF-centred yeast one-hybrid assay, we identified potential binding sites of CsMYC2 and constructed a gene regulatory network centred on CsMYC2, clarifying the potential regulatory role of CsMYC2 in the postharvest processing of oolong tea. Interestingly, highly accessible chromatin and hypomethylated cytosine were found to coexist in the promoter region of the indole biosynthesis gene (tryptophan synthase β-subunit, CsTSB) under wounding stress, which indicates that these two important epigenetic regulatory mechanisms are jointly involved in regulating the synthesis of indole during the postharvest processing of oolong tea. These findings improve our understanding of the epigenetic regulatory mechanisms involved in quality formation during the postharvest processing of oolong tea.
Collapse
Affiliation(s)
- Yucheng Zheng
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China; Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Xiaoxi Ou
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Qiuming Li
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Zongjie Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Liangyu Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China
| | - Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Science, Fuzhou 350013, China
| | - Bo Zhang
- College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China.
| | - Yun Sun
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China.
| |
Collapse
|
6
|
Ros-Moner E, Jiménez-Góngora T, Villar-Martín L, Vogrinec L, González-Miguel VM, Kutnjak D, Rubio-Somoza I. Conservation of molecular responses upon viral infection in the non-vascular plant Marchantia polymorpha. Nat Commun 2024; 15:8326. [PMID: 39333479 PMCID: PMC11436993 DOI: 10.1038/s41467-024-52610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
After plants transitioned from water to land around 450 million years ago, they faced novel pathogenic microbes. Their colonization of diverse habitats was driven by anatomical innovations like roots, stomata, and vascular tissue, which became central to plant-microbe interactions. However, the impact of these innovations on plant immunity and pathogen infection strategies remains poorly understood. Here, we explore plant-virus interactions in the bryophyte Marchantia polymorpha to gain insights into the evolution of these relationships. Virome analysis reveals that Marchantia is predominantly associated with RNA viruses. Comparative studies with tobacco mosaic virus (TMV) show that Marchantia shares core defense responses with vascular plants but also exhibits unique features, such as a sustained wound response preventing viral spread. Additionally, general defense responses in Marchantia are equivalent to those restricted to vascular tissues in Nicotiana, suggesting that evolutionary acquisition of developmental innovations results in re-routing of defense responses in vascular plants.
Collapse
Affiliation(s)
- Eric Ros-Moner
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Tamara Jiménez-Góngora
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Luis Villar-Martín
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Lana Vogrinec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Víctor M González-Miguel
- Data Analysis area, Bioinformatics Core Unit, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB-Edifci CRAG, Cerdanyola del Vallés, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
7
|
Han SY, Park SY, Won KH, Park SI, Park JH, Shim D, Hwang I, Jeong DH, Kim H. Elucidating the callus-to-shoot-forming mechanism in Capsicum annuum 'Dempsey' through comparative transcriptome analyses. BMC PLANT BIOLOGY 2024; 24:367. [PMID: 38711041 DOI: 10.1186/s12870-024-05033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The formation of shoots plays a pivotal role in plant organogenesis and productivity. Despite its significance, the underlying molecular mechanism of de novo regeneration has not been extensively elucidated in Capsicum annuum 'Dempsey', a bell pepper cultivar. To address this, we performed a comparative transcriptome analysis focusing on the differential expression in C. annuum 'Dempsey' shoot, callus, and leaf tissue. We further investigated phytohormone-related biological processes and their interacting genes in the C. annuum 'Dempsey' transcriptome based on comparative transcriptomic analysis across five species. RESULTS We provided a comprehensive view of the gene networks regulating shoot formation on the callus, revealing a strong involvement of hypoxia responses and oxidative stress. Our comparative transcriptome analysis revealed a significant conservation in the increase of gene expression patterns related to auxin and defense mechanisms in both callus and shoot tissues. Consequently, hypoxia response and defense mechanism emerged as critical regulators in callus and shoot formation in C. annuum 'Dempsey'. Current transcriptome data also indicated a substantial decline in gene expression linked to photosynthesis within regenerative tissues, implying a deactivation of the regulatory system governing photosynthesis in C. annuum 'Dempsey'. CONCLUSION Coupled with defense mechanisms, we thus considered spatial redistribution of auxin to play a critical role in the shoot morphogenesis via primordia outgrowth. Our findings shed light on shoot formation mechanisms in C. annuum 'Dempsey' explants, important information for regeneration programs, and have broader implications for precise molecular breeding in recalcitrant crops.
Collapse
Affiliation(s)
- Sang-Yun Han
- Department of Biological Sciences, Institute for Life Sciences, Kangwon National University, Chuncheon, 24341, Korea
| | - So Young Park
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Korea
| | - Kang-Hee Won
- Department of Biological Sciences, Institute for Life Sciences, Kangwon National University, Chuncheon, 24341, Korea
| | - Sung-Il Park
- Department of BIT Medical Convergence, Kangwon National University, Chuncheon, 24341, Korea
| | - Jae-Hyeong Park
- Department of BIT Medical Convergence, Kangwon National University, Chuncheon, 24341, Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dong-Hoon Jeong
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Korea.
| | - Hyeran Kim
- Department of Biological Sciences, Institute for Life Sciences, Kangwon National University, Chuncheon, 24341, Korea.
- Department of BIT Medical Convergence, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
8
|
Castro-Camba R, Vielba JM, Rico S, Covelo P, Cernadas MJ, Vidal N, Sánchez C. Wounding-Related Signaling Is Integrated within the Auxin-Response Framework to Induce Adventitious Rooting in Chestnut. Genes (Basel) 2024; 15:388. [PMID: 38540447 PMCID: PMC10970416 DOI: 10.3390/genes15030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 06/14/2024] Open
Abstract
Wounding and exogenous auxin are needed to induce adventitious roots in chestnut microshoots. However, the specific inductive role of wounding has not been characterized in this species. In the present work, two main goals were established: First, we prompted to optimize exogenous auxin treatments to improve the overall health status of the shoots at the end of the rooting cycle. Second, we developed a time-series transcriptomic analysis to compare gene expression in response to wounding alone and wounding plus auxin, focusing on the early events within the first days after treatments. Results suggest that the expression of many genes involved in the rooting process is under direct or indirect control of both stimuli. However, specific levels of expression of relevant genes are only attained when both treatments are applied simultaneously, leading to the successful development of roots. In this sense, we have identified four transcription factors upregulated by auxin (CsLBD16, CsERF113, Cs22D and CsIAA6), with some of them also being induced by wounding. The highest expression levels of these genes occurred when wounding and auxin treatments were applied simultaneously, correlating with the rooting response of the shoots. The results of this work clarify the genetic nature of the wounding response in chestnut, its relation to adventitious rooting, and might be helpful in the development of more specific protocols for the vegetative propagation of this species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Conchi Sánchez
- Department of Plant Production, Misión Biológica de Galicia (CSIC), Avda de Vigo s/n, 15705 Santiago de Compostela, Spain; (R.C.-C.); (J.M.V.); (S.R.); (P.C.); (M.J.C.); (N.V.)
| |
Collapse
|
9
|
Deokar AA, Sagi M, Tar’an B. Genetic Analysis of Partially Resistant and Susceptible Chickpea Cultivars in Response to Ascochyta rabiei Infection. Int J Mol Sci 2024; 25:1360. [PMID: 38279360 PMCID: PMC10816841 DOI: 10.3390/ijms25021360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
The molecular mechanism involved in chickpea (Cicer arietinum L.) resistance to the necrotrophic fungal pathogen Ascochyta rabiei is not well documented. A. rabiei infection can cause severe damage in chickpea, resulting in significant economic losses. Understanding the resistance mechanism against ascochyta blight can help to define strategies to develop resistant cultivars. In this study, differentially expressed genes from two partially resistant cultivars (CDC Corinne and CDC Luna) and a susceptible cultivar (ICCV 96029) to ascochyta blight were identified in the early stages (24, 48 and 72 h) of A. rabiei infection using RNA-seq. Altogether, 3073 genes were differentially expressed in response to A. rabiei infection across different time points and cultivars. A larger number of differentially expressed genes (DEGs) were found in CDC Corinne and CDC Luna than in ICCV 96029. Various transcription factors including ERF, WRKY, bHLH and MYB were differentially expressed in response to A. rabiei infection. Genes involved in pathogen detection and immune signalings such as receptor-like kinases (RLKs), Leucine-Rich Repeat (LRR)-RLKs, and genes associated with the post-infection defence response were differentially expressed among the cultivars. GO functional enrichment and pathway analysis of the DEGs suggested that the biological processes such as metabolic process, response to stimulus and catalytic activity were overrepresented in both resistant and susceptible chickpea cultivars. The expression patterns of eight randomly selected genes revealed by RNA-seq were confirmed by quantitative PCR (qPCR) analysis. The results provide insights into the complex molecular mechanism of the chickpea defence in response to the A. rabiei infection.
Collapse
Affiliation(s)
| | | | - Bunyamin Tar’an
- Crop Development Centre, Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
10
|
Ribeiro C, de Melo BP, Lourenço-Tessutti IT, Ballesteros HF, Ribeiro KVG, Menuet K, Heyman J, Hemerly A, de Sá MFG, De Veylder L, de Almeida Engler J. The regeneration conferring transcription factor complex ERF115-PAT1 coordinates a wound-induced response in root-knot nematode induced galls. THE NEW PHYTOLOGIST 2024; 241:878-895. [PMID: 38044565 DOI: 10.1111/nph.19399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/13/2023] [Indexed: 12/05/2023]
Abstract
The establishment of root-knot nematode (RKN; Meloidogyne spp.) induced galls in the plant host roots likely involves a wound-induced regeneration response. Confocal imaging demonstrates physical stress or injury caused by RKN infection during parasitism in the model host Arabidopsis thaliana. The ERF115-PAT1 heterodimeric transcription factor complex plays a recognized role in wound-induced regeneration. ERF115 and PAT1 expression flanks injured gall cells likely driving mechanisms of wound healing, implying a local reactivation of cell division which is also hypothetically involved in gall genesis. Herein, functional investigation revealed that ectopic ERF115 expression resulted in premature induction of galls, and callus formation adjacent to the expanding female RKN was seen upon PAT1 upregulation. Smaller galls and less reproduction were observed in ERF115 and PAT1 knockouts. Investigation of components in the ERF115 network upon overexpression and knockdown by qRT-PCR suggests it contributes to steer gall wound-sensing and subsequent competence for tissue regeneration. High expression of CYCD6;1 was detected in galls, and WIND1 overexpression resulted in similar ERF115OE gall phenotypes, also showing faster gall induction. Along these lines, we show that the ERF115-PAT1 complex likely coordinates stress signalling with tissue healing, keeping the gall functional until maturation and nematode reproduction.
Collapse
Affiliation(s)
- Cleberson Ribeiro
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
- Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Bruno Paes de Melo
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
- Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil
| | - Helkin Forero Ballesteros
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil
| | - Karla Veloso Gonçalves Ribeiro
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
- Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Killian Menuet
- INRAE, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Adriana Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil
| | | | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | | |
Collapse
|
11
|
Yadav VK, Jalmi SK, Tiwari S, Kerkar S. Deciphering shared attributes of plant long non-coding RNAs through a comparative computational approach. Sci Rep 2023; 13:15101. [PMID: 37699996 PMCID: PMC10497521 DOI: 10.1038/s41598-023-42420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/10/2023] [Indexed: 09/14/2023] Open
Abstract
Over the past decade, long non-coding RNA (lncRNA), which lacks protein-coding potential, has emerged as an essential regulator of the genome. The present study examined 13,599 lncRNAs in Arabidopsis thaliana, 11,565 in Oryza sativa, and 32,397 in Zea mays for their characteristic features and explored the associated genomic and epigenomic features. We found lncRNAs were distributed throughout the chromosomes and the Helitron family of transposable elements (TEs) enriched, while the terminal inverted repeat depleted in lncRNA transcribing regions. Our analyses determined that lncRNA transcribing regions show rare or weak signals for most epigenetic marks except for H3K9me2 and cytosine methylation in all three plant species. LncRNAs showed preferential localization in the nucleus and cytoplasm; however, the distribution ratio in the cytoplasm and nucleus varies among the studied plant species. We identified several conserved endogenous target mimic sites in the lncRNAs among the studied plants. We found 233, 301, and 273 unique miRNAs, potentially targeting the lncRNAs of A. thaliana, O. sativa, and Z. mays, respectively. Our study has revealed that miRNAs, which interact with lncRNAs, target genes that are involved in a diverse array of biological and molecular processes. The miRNA-targeted lncRNAs displayed a strong affinity for several transcription factors, including ERF and BBR-BPC, mutually present in all three plants, advocating their conserved functions. Overall, the present study showed that plant lncRNAs exhibit conserved genomic and epigenomic characteristics and potentially govern the growth and development of plants.
Collapse
Affiliation(s)
- Vikash Kumar Yadav
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Siddhi Kashinath Jalmi
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Shalini Tiwari
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, 74078, OK, USA
| | - Savita Kerkar
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| |
Collapse
|
12
|
Fehér A. A Common Molecular Signature Indicates the Pre-Meristematic State of Plant Calli. Int J Mol Sci 2023; 24:13122. [PMID: 37685925 PMCID: PMC10488067 DOI: 10.3390/ijms241713122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In response to different degrees of mechanical injury, certain plant cells re-enter the division cycle to provide cells for tissue replenishment, tissue rejoining, de novo organ formation, and/or wound healing. The intermediate tissue formed by the dividing cells is called a callus. Callus formation can also be induced artificially in vitro by wounding and/or hormone (auxin and cytokinin) treatments. The callus tissue can be maintained in culture, providing starting material for de novo organ or embryo regeneration and thus serving as the basis for many plant biotechnology applications. Due to the biotechnological importance of callus cultures and the scientific interest in the developmental flexibility of somatic plant cells, the initial molecular steps of callus formation have been studied in detail. It was revealed that callus initiation can follow various ways, depending on the organ from which it develops and the inducer, but they converge on a seemingly identical tissue. It is not known, however, if callus is indeed a special tissue with a defined gene expression signature, whether it is a malformed meristem, or a mass of so-called "undifferentiated" cells, as is mostly believed. In this paper, I review the various mechanisms of plant regeneration that may converge on callus initiation. I discuss the role of plant hormones in the detour of callus formation from normal development. Finally, I compare various Arabidopsis gene expression datasets obtained a few days, two weeks, or several years after callus induction and identify 21 genes, including genes of key transcription factors controlling cell division and differentiation in meristematic regions, which were upregulated in all investigated callus samples. I summarize the information available on all 21 genes that point to the pre-meristematic nature of callus tissues underlying their wide regeneration potential.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, 62 Temesvári Körút, 6726 Szeged, Hungary; or
- Department of Plant Biology, University of Szeged, 52 Közép Fasor, 6726 Szeged, Hungary
| |
Collapse
|
13
|
Bisht A, Eekhout T, Canher B, Lu R, Vercauteren I, De Jaeger G, Heyman J, De Veylder L. PAT1-type GRAS-domain proteins control regeneration by activating DOF3.4 to drive cell proliferation in Arabidopsis roots. THE PLANT CELL 2023; 35:1513-1531. [PMID: 36747478 PMCID: PMC10118276 DOI: 10.1093/plcell/koad028] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 05/22/2023]
Abstract
Plant roots possess remarkable regenerative potential owing to their ability to replenish damaged or lost stem cells. ETHYLENE RESPONSE FACTOR 115 (ERF115), one of the key molecular elements linked to this potential, plays a predominant role in the activation of regenerative cell divisions. However, the downstream operating molecular machinery driving wound-activated cell division is largely unknown. Here, we biochemically and genetically identified the GRAS-domain transcription factor SCARECROW-LIKE 5 (SCL5) as an interaction partner of ERF115 in Arabidopsis thaliana. Although nonessential under control growth conditions, SCL5 acts redundantly with the related PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) and SCL21 transcription factors to activate the expression of the DNA-BINDING ONE FINGER 3.4 (DOF3.4) transcription factor gene. DOF3.4 expression is wound-inducible in an ERF115-dependent manner and, in turn, activates D3-type cyclin expression. Accordingly, ectopic DOF3.4 expression drives periclinal cell division, while its downstream D3-type cyclins are essential for the regeneration of a damaged root. Our data highlight the importance and redundant roles of the SCL5, SCL21, and PAT1 transcription factors in wound-activated regeneration processes and pinpoint DOF3.4 as a key downstream element driving regenerative cell division.
Collapse
Affiliation(s)
- Anchal Bisht
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ran Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| |
Collapse
|
14
|
Fugate KK, Finger FL, Lafta AM, Dogramaci M, Khan MFR. Wounding rapidly alters transcription factor expression, hormonal signaling, and phenolic compound metabolism in harvested sugarbeet roots. FRONTIERS IN PLANT SCIENCE 2023; 13:1070247. [PMID: 36684748 PMCID: PMC9853395 DOI: 10.3389/fpls.2022.1070247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Injuries sustained by sugarbeet (Beta vulgaris L.) roots during harvest and postharvest operations seriously reduce the yield of white sugar produced from stored roots. Although wound healing is critically important to reduce losses, knowledge of these processes is limited for this crop as well as for roots in other species. To better understand the metabolic signals and changes that occur in wounded roots, dynamic changes in gene expression were determined by RNA sequencing and the activity of products from key genes identified in this analysis were determined in the 0.25 to 24 h following injury. Nearly five thousand differentially expressed genes that contribute to a wide range of cellular and molecular functions were identified in wounded roots. Highly upregulated genes included transcription factor genes, as well as genes involved in ethylene and jasmonic acid (JA) biosynthesis and signaling and phenolic compound biosynthesis and polymerization. Enzyme activities for key genes in ethylene and phenolic compound biosynthesis and polymerization also increased due to wounding. Results indicate that wounding causes a major reallocation of metabolism in sugarbeet taproots. Although both ethylene and JA are likely involved in triggering wound responses, the greater and more sustained upregulation of ethylene biosynthesis and signaling genes relative to those of JA, suggest a preeminence of ethylene signaling in wounded sugarbeet roots. Changes in gene expression and enzymes involved in phenolic compound metabolism additionally indicate that barriers synthesized to seal off wounds, such as suberin or lignin, are initiated within the first 24 h after injury.
Collapse
Affiliation(s)
- Karen K. Fugate
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Fernando L. Finger
- Departamento de Agronomia, Universidade Federal de Viҫosa, Viҫosa, Brazil
| | - Abbas M. Lafta
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Munevver Dogramaci
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Mohamed F. R. Khan
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
- University of Minnesota Extension Service, St. Paul, MN, United States
| |
Collapse
|
15
|
Thuzar M, Sae-lee Y, Saensuk C, Pitaloka MK, Dechkrong P, Aesomnuk W, Ruanjaichon V, Wanchana S, Arikit S. Primary Root Excision Induces ERF071, Which Mediates the Development of Lateral Roots in Makapuno Coconut ( Cocos nucifera). PLANTS (BASEL, SWITZERLAND) 2022; 12:105. [PMID: 36616233 PMCID: PMC9823405 DOI: 10.3390/plants12010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Coconut (Cocos nucifera L.) is widely recognized as one of nature's most beneficial plants. Makapuno, a special type of coconut with a soft, jelly-like endosperm, is a high-value commercial coconut and an expensive delicacy with a high cost of planting material. The embryo rescue technique is a very useful tool to support mass propagation of makapuno coconut. Nevertheless, transplanting the seedlings is a challenge due to poor root development, which results in the inability of the plant to acclimatize. In this study, primary root excision was used in makapuno to observe the effects of primary root excision on lateral root development. The overall results showed that seedlings with roots excised had a significantly higher number of lateral roots, and shoot length also increased significantly. Using de novo transcriptome assembly and differential gene expression analysis, we identified 512 differentially expressed genes in the excised and intact root samples. ERF071, encoding an ethylene-responsive transcription factor, was identified as a highly expressed gene in excised roots compared to intact roots, and was considered a candidate gene associated with lateral root formation induced by root excision in makapuno coconut. This study provides insight into the mechanism and candidate genes involved in the development of lateral roots in coconut, which may be useful for the future breeding and mass propagation of makapuno coconut through tissue culture.
Collapse
Affiliation(s)
- Mya Thuzar
- Rice Science and Innovation Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Yonlada Sae-lee
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Chatree Saensuk
- Rice Science and Innovation Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Mutiara K. Pitaloka
- Rice Science and Innovation Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Punyavee Dechkrong
- Central Laboratory and Greenhouse Complex, Research and Academic Services Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwaret Arikit
- Rice Science and Innovation Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
16
|
Ma Y, Jonsson K, Aryal B, De Veylder L, Hamant O, Bhalerao RP. Endoreplication mediates cell size control via mechanochemical signaling from cell wall. SCIENCE ADVANCES 2022; 8:eabq2047. [PMID: 36490331 PMCID: PMC9733919 DOI: 10.1126/sciadv.abq2047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/02/2022] [Indexed: 05/26/2023]
Abstract
Endoreplication is an evolutionarily conserved mechanism for increasing nuclear DNA content (ploidy). Ploidy frequently scales with final cell and organ size, suggesting a key role for endoreplication in these processes. However, exceptions exist, and, consequently, the endoreplication-size nexus remains enigmatic. Here, we show that prolonged tissue folding at the apical hook in Arabidopsis requires endoreplication asymmetry under the control of an auxin gradient. We identify a molecular pathway linking endoreplication levels to cell size through cell wall remodeling and stiffness modulation. We find that endoreplication is not only permissive for growth: Endoreplication reduction enhances wall stiffening, actively reducing cell size. The cell wall integrity kinase THESEUS plays a key role in this feedback loop. Our data thus explain the nonlinearity between ploidy levels and size while also providing a molecular mechanism linking mechanochemical signaling with endoreplication-mediated dynamic control of cell growth.
Collapse
Affiliation(s)
- Yuan Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
| | - Kristoffer Jonsson
- IRBV, Department of Biological Sciences, University of Montreal, 4101 Sherbrooke Est, Montreal H1X 2B2, QC, Canada
| | - Bibek Aryal
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Olivier Hamant
- Laboratoire Reproduction et Developpement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69364 Lyon, France
| | - Rishikesh P. Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
| |
Collapse
|
17
|
Mahalingam R, Duhan N, Kaundal R, Smertenko A, Nazarov T, Bregitzer P. Heat and drought induced transcriptomic changes in barley varieties with contrasting stress response phenotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:1066421. [PMID: 36570886 PMCID: PMC9772561 DOI: 10.3389/fpls.2022.1066421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/28/2022] [Indexed: 06/01/2023]
Abstract
Drought and heat stress substantially impact plant growth and productivity. When subjected to drought or heat stress, plants exhibit reduction in growth resulting in yield losses. The occurrence of these two stresses together intensifies their negative effects. Unraveling the molecular changes in response to combined abiotic stress is essential to breed climate-resilient crops. In this study, transcriptome profiles were compared between stress-tolerant (Otis), and stress-sensitive (Golden Promise) barley genotypes subjected to drought, heat, and combined heat and drought stress for five days during heading stage. The major differences that emerged from the transcriptome analysis were the overall number of differentially expressed genes was relatively higher in Golden Promise (GP) compared to Otis. The differential expression of more than 900 transcription factors in GP and Otis may aid this transcriptional reprogramming in response to abiotic stress. Secondly, combined heat and water deficit stress results in a unique and massive transcriptomic response that cannot be predicted from individual stress responses. Enrichment analyses of gene ontology terms revealed unique and stress type-specific adjustments of gene expression. Weighted Gene Co-expression Network Analysis identified genes associated with RNA metabolism and Hsp70 chaperone components as hub genes that can be useful for engineering tolerance to multiple abiotic stresses. Comparison of the transcriptomes of unstressed Otis and GP plants identified several genes associated with biosynthesis of antioxidants and osmolytes were higher in the former that maybe providing innate tolerance capabilities to effectively combat hostile conditions. Lines with different repertoire of innate tolerance mechanisms can be effectively leveraged in breeding programs for developing climate-resilient barley varieties with superior end-use traits.
Collapse
Affiliation(s)
| | - Naveen Duhan
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Rakesh Kaundal
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Phil Bregitzer
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, ID, United States
| |
Collapse
|
18
|
Ho BL, Chen JC, Huang TP, Fang SC. Protocorm-like-body extract of Phalaenopsis aphrodite combats watermelon fruit blotch disease. FRONTIERS IN PLANT SCIENCE 2022; 13:1054586. [PMID: 36523623 PMCID: PMC9745142 DOI: 10.3389/fpls.2022.1054586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Bacterial fruit blotch, caused by the seedborne gram-negative bacterium Acidovorax citrulli, is one of the most destructive bacterial diseases of cucurbits (gourds) worldwide. Despite its prevalence, effective and reliable means to control bacterial fruit blotch remain limited. Transcriptomic analyses of tissue culture-based regeneration processes have revealed that organogenesis-associated cellular reprogramming is often associated with upregulation of stress- and defense-responsive genes. Yet, there is limited evidence supporting the notion that the reprogrammed cellular metabolism of the regenerated tissued confers bona fide antimicrobial activity. Here, we explored the anti-bacterial activity of protocorm-like-bodies (PLBs) of Phalaenopsis aphrodite. Encouragingly, we found that the PLB extract was potent in slowing growth of A. citrulli, reducing the number of bacteria attached to watermelon seeds, and alleviating disease symptoms of watermelon seedlings caused by A. citrulli. Because the anti-bacterial activity can be fractionated chemically, we predict that reprogrammed cellular activity during the PLB regeneration process produces metabolites with antibacterial activity. In conclusion, our data demonstrated the antibacterial activity in developing PLBs and revealed the potential of using orchid PLBs to discover chemicals to control bacterial fruit blotch disease.
Collapse
Affiliation(s)
- Bo-Lin Ho
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Tzu-Pi Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
- Master’s and PhD Degree Program of Plant Health Care, Academy of Circular Economy, National Chung Hsing University, Nantou, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
19
|
Liang Y, Heyman J, Xiang Y, Vandendriessche W, Canher B, Goeminne G, De Veylder L. The wound-activated ERF15 transcription factor drives Marchantia polymorpha regeneration by activating an oxylipin biosynthesis feedback loop. SCIENCE ADVANCES 2022; 8:eabo7737. [PMID: 35960801 PMCID: PMC9374346 DOI: 10.1126/sciadv.abo7737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The regenerative potential in response to wounding varies widely among species. Within the plant lineage, the liverwort Marchantia polymorpha displays an extraordinary regeneration capacity. However, its molecular pathways controlling the initial regeneration response are unknown. Here, we demonstrate that the MpERF15 transcription factor gene is instantly activated after wounding and is essential for gemmaling regeneration following tissue incision. MpERF15 operates both upstream and downstream of the MpCOI1 oxylipin receptor by controlling the expression of oxylipin biosynthesis genes. The resulting rise in the oxylipin dinor-12-oxo-phytodienoic acid (dn-OPDA) levels results in an increase in gemma cell number and apical notch organogenesis, generating highly disorganized and compact thalli. Our data pinpoint MpERF15 as a key factor activating an oxylipin biosynthesis amplification loop after wounding, which eventually results in reactivation of cell division and regeneration. We suggest that the genetic networks controlling oxylipin biosynthesis in response to wounding might have been reshuffled over evolution.
Collapse
Affiliation(s)
- Yuanke Liang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Yanli Xiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Wiske Vandendriessche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| |
Collapse
|
20
|
Han Q, Song H, Yang C, Zhang S, Korpelainen H, Li C. Integrated DNA methylation, transcriptome and physiological analyses reveal new insights into superiority of poplars formed by interspecific grafting. TREE PHYSIOLOGY 2022; 42:1481-1500. [PMID: 35134240 DOI: 10.1093/treephys/tpac013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Plant grafting has a long history and it is extensively employed to improve plant performance. In our previous research, reciprocal grafts of Populus cathayana Rehder (C) and Populus deltoides Bart. Ex Marsh (D) were generated. The results showed that interspecific grafting combinations (scion/rootstock: C/D and D/C) grew better than intraspecific grafting combinations (C/C and D/D). To further understand differences in molecular mechanisms between interspecific and intraspecific grafting, we performed an integrated analysis, including bisulfite sequencing, RNA sequencing and measurements of physiological indicators, to investigate leaves of different grafting combinations. We found that the difference at the genome-wide methylation level was greater in D/C vs D/D than in C/D vs C/C, but no difference was detected at the transcription level in D/C vs D/D. Furthermore, the grafting superiority of D/C vs D/D was not as strong as that of C/D vs C/C. These results may be associated with the different methylation forms, mCHH (71.76%) and mCG (57.16%), that accounted for the highest percentages in C/D vs C/C and D/C vs D/D, respectively. In addition, the interspecific grafting superiority was found mainly related to the process of photosynthesis, phytohormone signal transduction, biosynthesis of secondary metabolites, cell wall and transcriptional regulation based on both physiological and molecular results. Overall, the results indicated that the physiological and molecular phenotypes of grafted plants are affected by the interaction between scion and rootstock. Thus, our study provides a theoretical basis for developing suitable scion-rootstock combinations for grafted plants.
Collapse
Affiliation(s)
- Qingquan Han
- Institute of Physical Education, Ludong University, Yantai 264025, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Congcong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Nemati I, Sedghi M, Hosseini Salekdeh G, Tavakkol Afshari R, Naghavi MR, Gholizadeh S. DELAY OF GERMINATION 1 ( DOG1) regulates dormancy in dimorphic seeds of Xanthium strumarium. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:742-758. [PMID: 35569923 DOI: 10.1071/fp21315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Seed dormancy ensures plant survival but many mechanisms remain unclear. A high-throughput RNA-seq analysis investigated the mechanisms involved in the establishment of dormancy in dimorphic seeds of Xanthium strumarium (L.) developing in one single burr. Results showed that DOG1 , the main dormancy gene in Arabidopsis thaliana L., was over-represented in the dormant seed leading to the formation of two seeds with different cell wall properties. Less expression of DME /EMB1649 , UBP26 , EMF2, MOM, SNL2, and AGO4 in the non-dormant seed was observed, which function in the chromatin remodelling of dormancy-associated genes through DNA methylation. However, higher levels of ATXR7 /SDG25, ELF6 , and JMJ16/PKDM7D in the non-dormant seed that act at the level of histone demethylation and activate germination were found. Dramatically lower expression in the splicing factors SUA, PWI , and FY in non-dormant seed may indicate that variation in RNA splicing for ABA sensitivity and transcriptional elongation control of DOG1 is of importance for inducing seed dormancy. Seed size and germination may be influenced by respiratory factors, and alterations in ABA content and auxin distribution and responses. TOR (a serine/threonine-protein kinase) is likely at the centre of a regulatory hub controlling seed metabolism, maturation, and germination. Over-representation of the respiration-associated genes (ACO3 , PEPC3 , and D2HGDH ) was detected in non-dormant seed, suggesting differential energy supplies in the two seeds. Degradation of ABA biosynthesis and/or proper auxin signalling in the large seed may control germinability, and suppression of endoreduplication in the small seed may be a mechanism for cell differentiation and cell size determination.
Collapse
Affiliation(s)
- Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Sedghi
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; and Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Reza Tavakkol Afshari
- Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Somayeh Gholizadeh
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
22
|
Yang M, He G, Hou Q, Fan Y, Duan L, Li K, Wei X, Qiu Z, Chen E, He T. Systematic analysis and expression profiles of TCP gene family in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) revealed the potential function of FtTCP15 and FtTCP18 in response to abiotic stress. BMC Genomics 2022; 23:415. [PMID: 35655134 PMCID: PMC9164426 DOI: 10.1186/s12864-022-08618-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Background As transcription factors, the TCP genes are considered to be promising targets for crop enhancement for their responses to abiotic stresses. However, information on the systematic characterization and functional expression profiles under abiotic stress of TCPs in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) is limited. Results In this study, we identified 26 FtTCPs and named them according to their position on the chromosomes. Phylogenetic tree, gene structure, duplication events, and cis-acting elements were further studied and syntenic analysis was conducted to explore the bioinformatic traits of the FtTCP gene family. Subsequently, 12 FtTCP genes were selected for expression analysis under cold, dark, heat, salt, UV, and waterlogging (WL) treatments by qRT-PCR. The spatio-temporal specificity, correlation analysis of gene expression levels and interaction network prediction revealed the potential function of FtTCP15 and FtTCP18 in response to abiotic stresses. Moreover, subcellular localization confirmed that FtTCP15 and FtTCP18 localized in the nucleus function as transcription factors. Conclusions In this research, 26 TCP genes were identified in Tartary buckwheat, and their structures and functions have been systematically explored. Our results reveal that the FtTCP15 and FtTCP18 have special cis-elements in response to abiotic stress and conserved nature in evolution, indicating they could be promising candidates for further functional verification under multiple abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08618-1.
Collapse
|
23
|
Sreeratree J, Butsayawarapat P, Chaisan T, Somta P, Juntawong P. RNA-Seq Reveals Waterlogging-Triggered Root Plasticity in Mungbean Associated with Ethylene and Jasmonic Acid Signal Integrators for Root Regeneration. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070930. [PMID: 35406910 PMCID: PMC9002673 DOI: 10.3390/plants11070930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 05/26/2023]
Abstract
Global climate changes increase the frequency and intensity of heavy precipitation events, which result in flooding or soil waterlogging. One way to overcome these low-oxygen stresses is via modifying the plant root system to improve internal aeration. Here, we used a comparative RNA-seq based transcriptomic approach to elucidate the molecular mechanisms of waterlogging-triggered root plasticity in mungbean (Vigna radiata), a major grain legume cultivated in Asia. Two mungbean varieties with contrasting waterlogging tolerance due to the plasticity of the root system architecture were subjected to short-term and long-term waterlogging. Then, RNA-seq was performed. Genes highly expressed in both genotypes under short-term waterlogging are related to glycolysis and fermentation. Under long-term waterlogging, the expression of these genes was less induced in the tolerant variety, suggesting it had effectively adapted to waterlogging via enhancing root plasticity. Remarkably, under short-term waterlogging, the expression of several transcription factors that serve as integrators for ethylene and jasmonic acid signals controlling root stem cell development was highly upregulated only in the tolerant variety. Sequentially, root development-related genes were more expressed in the tolerant variety under long-term waterlogging. Our findings suggest that ethylene and jasmonic acids may contribute to waterlogging-triggered root plasticity by relaying environmental signals to reprogram root regeneration. This research provides the basis for the breeding and genetic engineering of waterlogging-tolerant crops in the future.
Collapse
Affiliation(s)
- Jaruwan Sreeratree
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (P.B.)
| | - Pimprapai Butsayawarapat
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (P.B.)
| | - Tanapon Chaisan
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand;
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Piyada Juntawong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (J.S.); (P.B.)
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
24
|
Lyu J, Guo Y, Du C, Yu H, Guo L, Liu L, Zhao H, Wang X, Hu S. BnERF114.A1, a Rapeseed Gene Encoding APETALA2/ETHYLENE RESPONSE FACTOR, Regulates Plant Architecture through Auxin Accumulation in the Apex in Arabidopsis. Int J Mol Sci 2022; 23:ijms23042210. [PMID: 35216327 PMCID: PMC8877518 DOI: 10.3390/ijms23042210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Plant architecture is crucial for rapeseed breeding. Here, we demonstrate the involvement of BnERF114.A1, a transcription factor for ETHYLENE RESPONSE FACTOR (ERF), in the regulation of plant architecture in Brassica napus. BnERF114.A1 is a member of the ERF family group X-a, encoding a putative 252-amino acid (aa) protein, which harbours the AP2/ERF domain and the conserved CMX-1 motif. BnERF114.A1 is localised to the nucleus and presents transcriptional activity, with the functional region located at 142–252 aa of the C-terminus. GUS staining revealed high BnERF114.A1 expression in leaf primordia, shoot apical meristem, leaf marginal meristem, and reproductive organs. Ectopic BnERF114.A1 expression in Arabidopsis reduced plant height, increased branch and silique number per plant, and improved seed yield per plant. Furthermore, in Arabidopsis, BnERF114.A1 overexpression inhibited indole-3-acetic acid (IAA) efflux, thus promoting auxin accumulation in the apex and arresting apical dominance. Therefore, BnERF114.A1 probably plays an important role in auxin-dependent plant architecture regulation.
Collapse
Affiliation(s)
- Jinyang Lyu
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Yuan Guo
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Chunlei Du
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Haibo Yu
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Lijian Guo
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Li Liu
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Huixian Zhao
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Correspondence: (X.W.); (S.H.)
| | - Shengwu Hu
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
- Correspondence: (X.W.); (S.H.)
| |
Collapse
|
25
|
Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS One 2021; 16:e0261472. [PMID: 34914788 PMCID: PMC8675742 DOI: 10.1371/journal.pone.0261472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
Kentucky bluegrass (Poa pratensis L.) is an excellent cool-season turfgrass utilized widely in Northern China. However, turf quality of Kentucky bluegrass declines significantly due to drought. Ethephon seeds-soaking treatment has been proved to effectively improve the drought tolerance of Kentucky bluegrass seedlings. In order to investigate the effect of ethephon leaf-spraying method on drought tolerance of Kentucky bluegrass and understand the underlying mechanism, Kentucky bluegrass plants sprayed with and without ethephon are subjected to either drought or well watered treatments. The relative water content and malondialdehyde conent were measured. Meanwhile, samples were sequenced through Illumina. Results showed that ethephon could improve the drought tolerance of Kentucky bluegrass by elevating relative water content and decreasing malondialdehyde content under drought. Transcriptome analysis showed that 58.43% transcripts (254,331 out of 435,250) were detected as unigenes. A total of 9.69% (24,643 out of 254,331) unigenes were identified as differentially expressed genes in one or more of the pairwise comparisons. Differentially expressed genes due to drought stress with or without ethephon pre-treatment showed that ethephon application affected genes associated with plant hormone, signal transduction pathway and plant defense, protein degradation and stabilization, transportation and osmosis, antioxidant system and the glyoxalase pathway, cell wall and cuticular wax, fatty acid unsaturation and photosynthesis. This study provides a theoretical basis for revealing the mechanism for how ethephon regulates drought response and improves drought tolerance of Kentucky bluegrass.
Collapse
|
26
|
Shu F, Han J, Ndayambaje JP, Jia Q, Sarsaiya S, Jain A, Huang M, Liu M, Chen J. Transcriptomic analysis of Pinellia ternata (Thunb.) Breit T2 plus line provides insights in host responses resist Pectobacterium carotovorum infection. Bioengineered 2021; 12:1173-1188. [PMID: 33830860 PMCID: PMC8806331 DOI: 10.1080/21655979.2021.1905325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 10/25/2022] Open
Abstract
Transcriptome is used to determine the induction response of Pinellia ternata (Thunb.) Breit T2 plus line (abbreviated as PT2P line) infected with Pectobacterium carotovorum. The main objective of the study was to deal with the transcriptome database of PT2P line resistance to soft rot pathogens to provide a new perspective for identifying the resistance-related genes and understanding the molecular mechanism. Results indicated that water soaking and tissue collapse started at 20 h after PT2P line was infected by P. carotovorum. A total of 1360 and 5768 differentially expressed genes (DEGs) were identified at 0 h and 20 h, respectively. After 20 h of infection, growth and development-related pathways were inhibited. Meanwhile, DEGs were promoted the colonization of P. carotovorum pathogens in specific cell wall modification processes at the early infected stage. A shift to a defensive response was triggered at 0 h. A large number of DEGs were mainly up-controlled at 20 h and were substantially used in the pathogen recognition and the introduction of signal transformation cascades, secondary metabolites biosynthesis, pathogenic proteins activation, transcription aspects and numerous transporters. Furthermore, our data provided novel insights into the transcript reprogramming of PT2P line in response to P. carotovorum infestation.
Collapse
Affiliation(s)
- Fuxing Shu
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jean Pierre Ndayambaje
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qi Jia
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Archana Jain
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Minglei Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Minghong Liu
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Jishuang Chen
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
27
|
Dob A, Lakehal A, Novak O, Bellini C. Jasmonate inhibits adventitious root initiation through repression of CKX1 and activation of RAP2.6L transcription factor in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7107-7118. [PMID: 34329421 PMCID: PMC8547155 DOI: 10.1093/jxb/erab358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/28/2021] [Indexed: 05/04/2023]
Abstract
Adventitious rooting is a de novo organogenesis process that enables plants to propagate clonally and cope with environmental stresses. Adventitious root initiation (ARI) is controlled by interconnected transcriptional and hormonal networks, but there is little knowledge of the genetic and molecular programs orchestrating these networks. Thus, we have applied genome-wide transcriptome profiling to elucidate the transcriptional reprogramming events preceding ARI. These reprogramming events are associated with the down-regulation of cytokinin (CK) signaling and response genes, which could be triggers for ARI. Interestingly, we found that CK free base (iP, tZ, cZ, and DHZ) content declined during ARI, due to down-regulation of de novo CK biosynthesis and up-regulation of CK inactivation pathways. We also found that MYC2-dependent jasmonate (JA) signaling inhibits ARI by down-regulating the expression of the CYTOKININ OXIDASE/DEHYDROGENASE1 (CKX1) gene. We also demonstrated that JA and CK synergistically activate expression of the transcription factor RELATED to APETALA2.6 LIKE (RAP2.6L), and constitutive expression of this transcription factor strongly inhibits ARI. Collectively, our findings reveal that previously unknown genetic interactions between JA and CK play key roles in ARI.
Collapse
Affiliation(s)
- Asma Dob
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90736 Umeå, Sweden
| | - Abdellah Lakehal
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90736 Umeå, Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90736 Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, FR-78000 Versailles, France
| |
Collapse
|
28
|
Sow MD, Le Gac AL, Fichot R, Lanciano S, Delaunay A, Le Jan I, Lesage-Descauses MC, Citerne S, Caius J, Brunaud V, Soubigou-Taconnat L, Cochard H, Segura V, Chaparro C, Grunau C, Daviaud C, Tost J, Brignolas F, Strauss SH, Mirouze M, Maury S. RNAi suppression of DNA methylation affects the drought stress response and genome integrity in transgenic poplar. THE NEW PHYTOLOGIST 2021; 232:80-97. [PMID: 34128549 DOI: 10.1111/nph.17555] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/08/2021] [Indexed: 05/27/2023]
Abstract
Trees are long-lived organisms that continuously adapt to their environments, a process in which epigenetic mechanisms are likely to play a key role. Via downregulation of the chromatin remodeler DECREASED IN DNA METHYLATION 1 (DDM1) in poplar (Populus tremula × Populus alba) RNAi lines, we examined how DNA methylation coordinates genomic and physiological responses to moderate water deficit. We compared the growth and drought response of two RNAi-ddm1 lines to wild-type (WT) trees under well-watered and water deficit/rewatering conditions, and analyzed their methylomes, transcriptomes, mobilomes and phytohormone contents in the shoot apical meristem. The RNAi-ddm1 lines were more tolerant to drought-induced cavitation but did not differ in height or stem diameter growth. About 5000 differentially methylated regions were consistently detected in both RNAi-ddm1 lines, colocalizing with 910 genes and 89 active transposable elements. Under water deficit conditions, 136 differentially expressed genes were found, including many involved in phytohormone pathways; changes in phytohormone concentrations were also detected. Finally, the combination of hypomethylation and drought led to the mobility of two transposable elements. Our findings suggest major roles for DNA methylation in regulation of genes involved in hormone-related stress responses, and the maintenance of genome integrity through repression of transposable elements.
Collapse
Affiliation(s)
- Mamadou D Sow
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Anne-Laure Le Gac
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Régis Fichot
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Sophie Lanciano
- IRD, UMR 232 DIADE, Université de Montpellier, Montpellier, 34090, France
- Laboratory of Plant Genome and Development, Université de Perpignan, Perpignan, 66860, France
| | - Alain Delaunay
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Isabelle Le Jan
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | | | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Jose Caius
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Vincent Segura
- BioForA, INRAE, ONF, UMR 0588, Orléans, 45075, France
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Montpellier SupAgro, UMR 1334, Montpellier, F-34398, France
| | | | - Christoph Grunau
- UMR 5244, IHPE, Université de Perpignan, Perpignan, 66100, France
| | - Christian Daviaud
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA- Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91057, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA- Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91057, France
| | - Franck Brignolas
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | - Marie Mirouze
- IRD, UMR 232 DIADE, Université de Montpellier, Montpellier, 34090, France
- Laboratory of Plant Genome and Development, Université de Perpignan, Perpignan, 66860, France
| | - Stéphane Maury
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| |
Collapse
|
29
|
Iwase A, Kondo Y, Laohavisit A, Takebayashi A, Ikeuchi M, Matsuoka K, Asahina M, Mitsuda N, Shirasu K, Fukuda H, Sugimoto K. WIND transcription factors orchestrate wound-induced callus formation, vascular reconnection and defense response in Arabidopsis. THE NEW PHYTOLOGIST 2021; 232:734-752. [PMID: 34375004 PMCID: PMC9291923 DOI: 10.1111/nph.17594] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/24/2021] [Indexed: 05/05/2023]
Abstract
Wounding triggers de novo organogenesis, vascular reconnection and defense response but how wound stress evoke such a diverse array of physiological responses remains unknown. We previously identified AP2/ERF transcription factors, WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and its homologs, WIND2, WIND3 and WIND4, as key regulators of wound-induced cellular reprogramming in Arabidopsis. To understand how WIND transcription factors promote downstream events, we performed time-course transcriptome analyses after WIND1 induction. We observed a significant overlap between WIND1-induced genes and genes implicated in cellular reprogramming, vascular formation and pathogen response. We demonstrated that WIND transcription factors induce several reprogramming genes to promote callus formation at wound sites. We, in addition, showed that WIND transcription factors promote tracheary element formation, vascular reconnection and resistance to Pseudomonas syringae pv. tomato DC3000. These results indicate that WIND transcription factors function as key regulators of wound-induced responses by promoting dynamic transcriptional alterations. This study provides deeper mechanistic insights into how plants control multiple physiological responses after wounding.
Collapse
Affiliation(s)
- Akira Iwase
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- JST, PRESTOKawaguchi332‐0012Japan
| | - Yuki Kondo
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
- Department of BiologyGraduate School of ScienceKobe UniversityKobe657‐8501Japan
| | | | | | - Momoko Ikeuchi
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of BiologyFaculty of ScienceNiigata University8050 Ikarashi 2‐no‐cho, Nishi‐kuNiigataJapan
| | - Keita Matsuoka
- Department of BiosciencesTeikyo University1‐1 ToyosatodaiUtsunomiya320‐8551Japan
| | - Masashi Asahina
- Department of BiosciencesTeikyo University1‐1 ToyosatodaiUtsunomiya320‐8551Japan
- Advanced Instrumental Analysis CenterTeikyo University1‐1 ToyosatodaiUtsunomiya320‐8551Japan
| | - Nobutaka Mitsuda
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba305‐8566Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Hiroo Fukuda
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| |
Collapse
|
30
|
Considine MJ, Foyer CH. Stress effects on the reactive oxygen species-dependent regulation of plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5795-5806. [PMID: 34106236 DOI: 10.1093/jxb/erab265] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 05/25/2023]
Abstract
Plant growth is mediated by cell proliferation and expansion. Both processes are controlled by a network of endogenous factors such as phytohormones, reactive oxygen species (ROS), sugars, and other signals, which influence gene expression and post-translational regulation of proteins. Stress resilience requires rapid and appropriate responses in plant growth and development as well as defence. Regulation of ROS accumulation in different cellular compartments influences growth responses to abiotic and biotic stresses. While ROS are essential for growth, they are also implicated in the stress-induced cessation of growth and, in some cases, programmed cell death. It is widely accepted that redox post-translational modifications of key proteins determine the growth changes and cell fate responses to stress, but the molecular pathways and factors involved remain poorly characterized. Here we discuss ROS as a signalling molecule, the mechanisms of ROS-dependent regulation that influence protein-protein interactions, protein function, and turnover, together with the relocation of key proteins to different intracellular compartments in a manner that can alter cell fate. Understanding how the redox interactome responds to stress-induced increases in ROS may provide a road map to tailoring the dynamic ROS interactions that determine growth and cell fate in order to enhance stress resilience.
Collapse
Affiliation(s)
- Michael J Considine
- The School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
31
|
Lu L, Qanmber G, Li J, Pu M, Chen G, Li S, Liu L, Qin W, Ma S, Wang Y, Chen Q, Liu Z. Identification and Characterization of the ERF Subfamily B3 Group Revealed GhERF13.12 Improves Salt Tolerance in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:705883. [PMID: 34434208 PMCID: PMC8382128 DOI: 10.3389/fpls.2021.705883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 06/12/2023]
Abstract
The APETALA2 (AP2)/ethylene response factor plays vital functions in response to environmental stimulus. The ethylene response factor (ERF) subfamily B3 group belongs to the AP2/ERF superfamily and contains a single AP2/ERF domain. Phylogenetic analysis of the ERF subfamily B3 group genes from Arabdiposis thaliana, Gossypium arboreum, Gossypium hirsutum, and Gossypium raimondii made it possible to divide them into three groups and showed that the ERF subfamily B3 group genes are conserved in cotton. Collinearity analysis identified172 orthologous/paralogous gene pairs between G. arboreum and G. hirsutum; 178 between G. hirsutum and G. raimondii; and 1,392 in G. hirsutum. The GhERF subfamily B3 group gene family experienced massive gene family expansion through either segmental or whole genome duplication events, with most genes showing signature compatible with the action of purifying selection during evolution. Most G. hirsutum ERF subfamily B3 group genes are responsive to salt stress. GhERF13.12 transgenic Arabidopsis showed enhanced salt stress tolerance and exhibited regulation of related biochemical parameters and enhanced expression of genes participating in ABA signaling, proline biosynthesis, and ROS scavenging. In addition, the silencing of the GhERF13.12 gene leads to increased sensitivity to salt stress in cotton. These results indicate that the ERF subfamily B3 group had remained conserved during evolution and that GhERF13.12 induces salt stress tolerance in Arabidopsis and cotton.
Collapse
Affiliation(s)
- Lili Lu
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jie Li
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Mengli Pu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Guoquan Chen
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Shengdong Li
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Le Liu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuya Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ye Wang
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, Xinjiang Agricultural University, Urumqi, China
| | - Zhao Liu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Schumacher C, Thümecke S, Schilling F, Köhl K, Kopka J, Sprenger H, Hincha DK, Walther D, Seddig S, Peters R, Zuther E, Haas M, Horn R. Genome-Wide Approach to Identify Quantitative Trait Loci for Drought Tolerance in Tetraploid Potato ( Solanum tuberosum L.). Int J Mol Sci 2021; 22:ijms22116123. [PMID: 34200118 PMCID: PMC8201130 DOI: 10.3390/ijms22116123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Drought represents a major abiotic stress factor negatively affecting growth, yield and tuber quality of potatoes. Quantitative trait locus (QTL) analyses were performed in cultivated potatoes for drought tolerance index DRYM (deviation of relative starch yield from the experimental median), tuber starch content, tuber starch yield, tuber fresh weight, selected transcripts and metabolites under control and drought stress conditions. Eight genomic regions of major interest for drought tolerance were identified, three representing standalone DRYM QTL. Candidate genes, e.g., from signaling pathways for ethylene, abscisic acid and brassinosteroids, and genes encoding cell wall remodeling enzymes were identified within DRYM QTL. Co-localizations of DRYM QTL and QTL for tuber starch content, tuber starch yield and tuber fresh weight with underlying genes of the carbohydrate metabolism were observed. Overlaps of DRYM QTL with metabolite QTL for ribitol or galactinol may indicate trade-offs between starch and compatible solute biosynthesis. Expression QTL confirmed the drought stress relevance of selected transcripts by overlaps with DRYM QTL. Bulked segregant analyses combined with next-generation sequencing (BSAseq) were used to identify mutations in genes under the DRYM QTL on linkage group 3. Future analyses of identified genes for drought tolerance will give a better insight into drought tolerance in potatoes.
Collapse
Affiliation(s)
- Christina Schumacher
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (C.S.); (S.T.); (F.S.)
| | - Susanne Thümecke
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (C.S.); (S.T.); (F.S.)
| | - Florian Schilling
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (C.S.); (S.T.); (F.S.)
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Heike Sprenger
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Dirk Karl Hincha
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Sylvia Seddig
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn Institut, Federal Research Centre for Cultivated Plants, Rudolf-Schick-Platz 3, 18190 Sanitz, Germany;
| | - Rolf Peters
- Landwirtschaftskammer Niedersachsen, Dethlingen 14, 29633 Munster, Germany;
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Manuela Haas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (K.K.); (J.K.); (H.S.); (D.K.H.); (D.W.); (E.Z.); (M.H.)
| | - Renate Horn
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany; (C.S.); (S.T.); (F.S.)
- Correspondence:
| |
Collapse
|
33
|
Plant Transcription Factors Involved in Drought and Associated Stresses. Int J Mol Sci 2021; 22:ijms22115662. [PMID: 34073446 PMCID: PMC8199153 DOI: 10.3390/ijms22115662] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription factors (TFs) play a significant role in signal transduction networks spanning the perception of a stress signal and the expression of corresponding stress-responsive genes. TFs are multi-functional proteins that may simultaneously control numerous pathways during stresses in plants-this makes them powerful tools for the manipulation of regulatory and stress-responsive pathways. In recent years, the structure-function relationships of numerous plant TFs involved in drought and associated stresses have been defined, which prompted devising practical strategies for engineering plants with enhanced stress tolerance. Vast data have emerged on purposely basic leucine zipper (bZIP), WRKY, homeodomain-leucine zipper (HD-Zip), myeloblastoma (MYB), drought-response elements binding proteins/C-repeat binding factor (DREB/CBF), shine (SHN), and wax production-like (WXPL) TFs that reflect the understanding of their 3D structure and how the structure relates to function. Consequently, this information is useful in the tailored design of variant TFs that enhances our understanding of their functional states, such as oligomerization, post-translational modification patterns, protein-protein interactions, and their abilities to recognize downstream target DNA sequences. Here, we report on the progress of TFs based on their interaction pathway participation in stress-responsive networks, and pinpoint strategies and applications for crops and the impact of these strategies for improving plant stress tolerance.
Collapse
|
34
|
Plant Copper Amine Oxidases: Key Players in Hormone Signaling Leading to Stress-Induced Phenotypic Plasticity. Int J Mol Sci 2021; 22:ijms22105136. [PMID: 34066274 PMCID: PMC8152075 DOI: 10.3390/ijms22105136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Polyamines are ubiquitous, low-molecular-weight aliphatic compounds, present in living organisms and essential for cell growth and differentiation. Copper amine oxidases (CuAOs) oxidize polyamines to aminoaldehydes releasing ammonium and hydrogen peroxide, which participates in the complex network of reactive oxygen species acting as signaling molecules involved in responses to biotic and abiotic stresses. CuAOs have been identified and characterized in different plant species, but the most extensive study on a CuAO gene family has been carried out in Arabidopsis thaliana. Growing attention has been devoted in the last years to the investigation of the CuAO expression pattern during development and in response to an array of stress and stress-related hormones, events in which recent studies have highlighted CuAOs to play a key role by modulation of a multilevel phenotypic plasticity expression. In this review, the attention will be focused on the involvement of different AtCuAOs in the IAA/JA/ABA signal transduction pathways which mediate stress-induced phenotypic plasticity events.
Collapse
|
35
|
Hu Y, Wang L, Jia R, Liang W, Zhang X, Xu J, Chen X, Lu D, Chen M, Luo Z, Xie J, Cao L, Xu B, Yu Y, Persson S, Zhang D, Yuan Z. Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2434-2449. [PMID: 33337484 DOI: 10.1093/jxb/eraa588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Floral patterning is regulated by intricate networks of floral identity genes. The peculiar MADS32 subfamily genes, absent in eudicots but prevalent in monocots, control floral organ identity. However, how the MADS32 family genes interact with other floral homeotic genes during flower development is mostly unknown. We show here that the rice homeotic transcription factor OsMADS32 regulates floral patterning by interacting synergistically with E class protein OsMADS6 in a dosage-dependent manner. Furthermore, our results indicate important roles for OsMADS32 in defining stamen, pistil, and ovule development through physical and genetic interactions with OsMADS1, OsMADS58, and OsMADS13, and in specifying floral meristem identity with OsMADS6, OsMADS3, and OsMADS58, respectively. Our findings suggest that OsMADS32 is an important factor for floral meristem identity maintenance and that it integrates the action of other MADS-box homeotic proteins to sustain floral organ specification and development in rice. Given that OsMADS32 is an orphan gene and absent in eudicots, our data substantially expand our understanding of flower development in plants.
Collapse
Affiliation(s)
- Yun Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ru Jia
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelian Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Lu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayang Xie
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Cao
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, China
| | - Ben Xu
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Yu Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Biosciences, University of Melbourne, Parkville VIC, Melbourne, Australia
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg C, Denmark
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Identification, classification, and characterization of AP2/ERF superfamily genes in Masson pine (Pinus massoniana Lamb.). Sci Rep 2021; 11:5441. [PMID: 33686110 PMCID: PMC7940494 DOI: 10.1038/s41598-021-84855-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) play crucial regulatory roles in controlling the expression of the target genes in plants. APETALA2/Ethylene-responsive factors (AP2/ERF) are part of a large superfamily of plant-specific TFs whose members are involved in the control of plant metabolism, development and responses to various biotic and abiotic stresses. However, the AP2/ERF superfamily has not been identified systematically in Masson pine (Pinus massoniana), which is one of the most important conifer in southern China. Therefore, we performed systematic identification of the AP2/ERF superfamily using transcriptome sequencing data from Masson pine. In the current study, we obtained 88 members of the AP2/ERF superfamily. All PmAP2/ERF members could be classified into 3 main families, AP2 (7 members), RAV (7 members), ERF (73 members) families, and a soloist protein. Subcellular localization assays suggested that two members of PmAP2/ERF were nuclear proteins. Based on pine wood nematode (PWN) inoculated transcriptome and qPCR analysis, we found that many members of PmAP2/ERF could respond to PWN inoculation and PWN related treatment conditions in vitro. In general, members of the AP2/ERF superfamily play an important role in the response of Masson pine responds to PWN. Furthermore, the roles of the AP2/ERF superfamily in other physiological activities of Masson pine remain to be further studied.
Collapse
|
37
|
Harun S, Rohani ER, Ohme-Takagi M, Goh HH, Mohamed-Hussein ZA. ADAP is a possible negative regulator of glucosinolate biosynthesis in Arabidopsis thaliana based on clustering and gene expression analyses. JOURNAL OF PLANT RESEARCH 2021; 134:327-339. [PMID: 33558947 DOI: 10.1007/s10265-021-01257-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Glucosinolates (GSLs) are plant secondary metabolites consisting of sulfur and nitrogen, commonly found in Brassicaceae crops, such as Arabidopsis thaliana. These compounds are known for their roles in plant defense mechanisms against pests and pathogens. 'Guilt-by-association' (GBA) approach predicts genes encoding proteins with similar function tend to share gene expression pattern generated from high throughput sequencing data. Recent studies have successfully identified GSL genes using GBA approach, followed by targeted verification of gene expression and metabolite data. Therefore, a GSL co-expression network was constructed using known GSL genes obtained from our in-house database, SuCComBase. DPClusO was used to identify subnetworks of the GSL co-expression network followed by Fisher's exact test leading to the discovery of a potential gene that encodes the ARIA-interacting double AP2-domain protein (ADAP) transcription factor (TF). Further functional analysis was performed using an effective gene silencing system known as CRES-T. By applying CRES-T, ADAP TF gene was fused to a plant-specific EAR-motif repressor domain (SRDX), which suppresses the expression of ADAP target genes. In this study, ADAP was proposed as a negative regulator in aliphatic GSL biosynthesis due to the over-expression of downstream aliphatic GSL genes (UGT74C1 and IPMI1) in ADAP-SRDX line. The significant over-expression of ADAP gene in the ADAP-SRDX line also suggests the behavior of the TF that negatively affects the expression of UGT74C1 and IPMI1 via a feedback mechanism in A. thaliana.
Collapse
Affiliation(s)
- S Harun
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - E R Rohani
- Centre for Plant Biotechnology, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - M Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - H-H Goh
- Centre for Plant Biotechnology, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Z-A Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
38
|
Krishnatreya DB, Agarwala N, Gill SS, Bandyopadhyay T. Understanding the role of miRNAs for improvement of tea quality and stress tolerance. J Biotechnol 2021; 328:34-46. [PMID: 33421509 DOI: 10.1016/j.jbiotec.2020.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are an emerging class of small non-coding RNAs that exhibit important role in regulation of gene expression, mostly through the mechanism of cleavage and/or inhibition of translation of target mRNAs during or after transcription. Although much has been unravelled about the role of miRNAs in diverse biological processes like maintenance of functional integrity of genes and genome, growth and development, metabolism, and adaptive responses towards biotic and abiotic stresses in plants, not much is known on their specific roles in majority of cash crops - an area of investigation with potentially significant and gainful economic implications. Tea (Camellia sinensis) is globally the second most consumed beverage after water and its cultivation has major agro-economic and social ramifications. In recent years, global tea production has been greatly challenged by many biotic and abiotic stress factors and a deeper understanding of molecular processes regulating stress adaptation in this largely under investigated crop stands to significantly facilitate potential crop improvement strategies towards durable stress tolerance. This review endeavours to highlight recent advances in our understanding of the role of miRNAs in regulating stress tolerance traits in tea plant with additional focus on their role in determining tea quality attributes.
Collapse
Affiliation(s)
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Jalukbari, Guwahati, Assam, 781014, India.
| | - Sarvajeet Singh Gill
- Center for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | | |
Collapse
|
39
|
Christiaens F, Canher B, Lanssens F, Bisht A, Stael S, De Veylder L, Heyman J. Pars Pro Toto: Every Single Cell Matters. FRONTIERS IN PLANT SCIENCE 2021; 12:656825. [PMID: 34194448 PMCID: PMC8236983 DOI: 10.3389/fpls.2021.656825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 05/04/2023]
Abstract
Compared to other species, plants stand out by their unparalleled self-repair capacities. Being the loss of a single cell or an entire tissue, most plant species are able to efficiently repair the inflicted damage. Although this self-repair process is commonly referred to as "regeneration," depending on the type of damage and organ being affected, subtle to dramatic differences in the modus operandi can be observed. Recent publications have focused on these different types of tissue damage and their associated response in initiating the regeneration process. Here, we review the regeneration response following loss of a single cell to a complete organ, emphasizing key molecular players and hormonal cues involved in the model species Arabidopsis thaliana. In addition, we highlight the agricultural applications and techniques that make use of these regenerative responses in different crop and tree species.
Collapse
Affiliation(s)
- Fien Christiaens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Fien Lanssens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Anchal Bisht
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB Center for Plant Systems Biology, Ghent, Belgium
- *Correspondence: Lieven De Veylder,
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
40
|
Zheng Y, Hu Q, Yang Y, Wu Z, Wu L, Wang P, Deng H, Ye N, Sun Y. Architecture and Dynamics of the Wounding-Induced Gene Regulatory Network During the Oolong Tea Manufacturing Process ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2021; 12:788469. [PMID: 35154182 PMCID: PMC8829136 DOI: 10.3389/fpls.2021.788469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/20/2021] [Indexed: 04/14/2023]
Abstract
Understanding extensive transcriptional reprogramming events mediated by wounding during the oolong tea manufacturing process is essential for improving oolong tea quality. To improve our comprehension of the architecture of the wounding-induced gene regulatory network, we systematically analyzed the high-resolution transcriptomic and metabolomic data from wounding-treated (after turnover stage) tea leaves at 11 time points over a 220-min period. The results indicated that wounding activates a burst of transcriptional activity within 10 min and that the temporal expression patterns over time could be partitioned into 18 specific clusters with distinct biological processes. The transcription factor (TF) activity linked to the TF binding motif participated in specific biological processes within different clusters. A chronological model of the wounding-induced gene regulatory network provides insight into the dynamic transcriptional regulation event after wounding treatment (the turnover stage). Time series data of wounding-induced volatiles reveal the scientific significance of resting for a while after wounding treatment during the actual manufacturing process of oolong tea. Integrating information-rich expression data with information on volatiles allowed us to identify many high-confidence TFs participating in aroma formation regulation after wounding treatment by using weighted gene co-expression network analysis (WGCNA). Collectively, our research revealed the complexity of the wounding-induced gene regulatory network and described wounding-mediated dynamic transcriptional reprogramming events, serving as a valuable theoretical basis for the quality formation of oolong tea during the post-harvest manufacturing process.
Collapse
Affiliation(s)
- Yucheng Zheng
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingcai Hu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yun Yang
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zongjie Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangyu Wu
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengjie Wang
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huili Deng
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Naixing Ye
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Naixing Ye,
| | - Yun Sun
- Key Laboratory of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Yun Sun,
| |
Collapse
|
41
|
Marra R, Coppola M, Pironti A, Grasso F, Lombardi N, d’Errico G, Sicari A, Bolletti Censi S, Woo SL, Rao R, Vinale F. The Application of Trichoderma Strains or Metabolites Alters the Olive Leaf Metabolome and the Expression of Defense-Related Genes. J Fungi (Basel) 2020; 6:jof6040369. [PMID: 33339378 PMCID: PMC7766153 DOI: 10.3390/jof6040369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Biocontrol fungal strains of the genus Trichoderma can antagonize numerous plant pathogens and promote plant growth using different mechanisms of action, including the production of secondary metabolites (SMs). In this work we analyzed the effects of repeated applications of selected Trichoderma strains or SMs on young olive trees on the stimulation of plant growth and on the development of olive leaf spot disease caused by Fusicladium oleagineum. In addition, metabolomic analyses and gene expression profiles of olive leaves were carried out by LC-MS Q-TOF and real-time RT-PCR, respectively. A total of 104 phenolic compounds were detected from olive leave extracts and 20 were putatively identified. Targeted and untargeted approaches revealed significant differences in both the number and type of phenolic compounds accumulated in olive leaves after Trichoderma applications, as compared to water-treated plants. Different secoiridoids were less abundant in treated plants than in controls, while the accumulation of flavonoids (including luteolin and apigenin derivatives) increased following the application of specific Trichoderma strain. The induction of defense-related genes, and of genes involved in the synthesis of the secoiridoid oleuropein, was also analyzed and revealed a significant variation of gene expression according to the strain or metabolite applied.
Collapse
Affiliation(s)
- Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Correspondence: ; Tel.: +39-0812532253
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Angela Pironti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Filomena Grasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
| | - Giada d’Errico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Andrea Sicari
- Linfa S.c.a r.l., 89900 Vibo Valentia, Italy; (A.S.); (S.B.C.)
| | | | - Sheridan L. Woo
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Vinale
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Portici, 80055 Naples, Italy
| |
Collapse
|
42
|
Vega-Muñoz I, Duran-Flores D, Fernández-Fernández ÁD, Heyman J, Ritter A, Stael S. Breaking Bad News: Dynamic Molecular Mechanisms of Wound Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:610445. [PMID: 33363562 PMCID: PMC7752953 DOI: 10.3389/fpls.2020.610445] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 05/08/2023]
Abstract
Recognition and repair of damaged tissue are an integral part of life. The failure of cells and tissues to appropriately respond to damage can lead to severe dysfunction and disease. Therefore, it is essential that we understand the molecular pathways of wound recognition and response. In this review, we aim to provide a broad overview of the molecular mechanisms underlying the fate of damaged cells and damage recognition in plants. Damaged cells release the so-called damage associated molecular patterns to warn the surrounding tissue. Local signaling through calcium (Ca2+), reactive oxygen species (ROS), and hormones, such as jasmonic acid, activates defense gene expression and local reinforcement of cell walls to seal off the wound and prevent evaporation and pathogen colonization. Depending on the severity of damage, Ca2+, ROS, and electrical signals can also spread throughout the plant to elicit a systemic defense response. Special emphasis is placed on the spatiotemporal dimension in order to obtain a mechanistic understanding of wound signaling in plants.
Collapse
Affiliation(s)
- Isaac Vega-Muñoz
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Dalia Duran-Flores
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
43
|
Lakehal A, Dob A, Rahneshan Z, Novák O, Escamez S, Alallaq S, Strnad M, Tuominen H, Bellini C. ETHYLENE RESPONSE FACTOR 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1611-1626. [PMID: 32634250 DOI: 10.1111/nph.16794] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/27/2020] [Indexed: 05/02/2023]
Abstract
Adventitious root initiation (ARI) is a de novo organogenesis program and a key adaptive trait in plants. Several hormones regulate ARI but the underlying genetic architecture that integrates the hormonal crosstalk governing this process remains largely elusive. In this study, we use genetics, genome editing, transcriptomics, hormone profiling and cell biological approaches to demonstrate a crucial role played by the APETALA2/ETHYLENE RESPONSE FACTOR 115 transcription factor. We demonstrate that ERF115 functions as a repressor of ARI by activating the cytokinin (CK) signaling machinery. We also demonstrate that ERF115 is transcriptionally activated by jasmonate (JA), an oxylipin-derived phytohormone, which represses ARI in NINJA-dependent and independent manners. Our data indicate that NINJA-dependent JA signaling in pericycle cells blocks early events of ARI. Altogether, our results reveal a previously unreported molecular network involving cooperative crosstalk between JA and CK machineries that represses ARI.
Collapse
Affiliation(s)
- Abdellah Lakehal
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
| | - Asma Dob
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
| | - Zahra Rahneshan
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
- Department of Biology, Faculty of Science, Shahid Bahonar University, Kerman, 76169-14111, Iran
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, 78371, Olomouc, Czech Republic
- Department of Forest Genetics and Physiology, Umeå Plant Science Center, Swedish Agriculture University, SE-90183, Umea, Sweden
| | - Sacha Escamez
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
| | - Sanaria Alallaq
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, 78371, Olomouc, Czech Republic
| | - Hannele Tuominen
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
| | - Catherine Bellini
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, SE-90736, Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, FR-78000, Versailles, France
| |
Collapse
|
44
|
Recent Advances in Adventitious Root Formation in Chestnut. PLANTS 2020; 9:plants9111543. [PMID: 33187282 PMCID: PMC7698097 DOI: 10.3390/plants9111543] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023]
Abstract
The genus Castanea includes several tree species that are relevant because of their geographical extension and their multipurpose character, that includes nut and timber production. However, commercial exploitation of the trees is hindered by several factors, particularly by their limited regeneration ability. Regardless of recent advances, there exists a serious limitation for the propagation of elite genotypes of chestnut due to decline of rooting ability as the tree ages. In the present review, we summarize the research developed in this genus during the last three decades concerning the formation of adventitious roots (ARs). Focusing on cuttings and in vitro microshoots, we gather the information available on several species, particularly C. sativa, C. dentata and the hybrid C.sativa × C. crenata, and analyze the influence of several factors on the achievements of the applied protocols, including genotype, auxin treatment, light regime and rooting media. We also pay attention to the acclimation phase, as well as compile the information available about biochemical and molecular related aspects. Furthermore, we considerate promising biotechnological approaches that might enable the improvement of the current protocols.
Collapse
|
45
|
Kavas M, Gökdemir G, Seçgin Z, Bakhsh A. Ectopic expression of common bean ERF transcription factor PvERF35 promotes salt stress tolerance in tobacco. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1102-1112. [PMID: 32777125 DOI: 10.1111/plb.13167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
In the present study, a TINY-like AP2/ERF gene, PvERF35i, was amplified from common bean (Phaseolus vulgaris L.), cloned and functionally characterized by overexpressing in tobacco cv. Petite havana. Transgenic plants overexpressing PvERF35 were generated using Agrobacterium-mediated transformation and used to evaluate the possible roles of the transgene under salt stress conditions. Evaluation of transgenics was completed using both molecular and biochemical analysis. PCR, Southern blot and RT-qPCR assays revealed the correct integration and enhanced expression of the transgene. Physiological and biochemical analysis of transgenic plants showed their better performance compared to the wild type in terms of germination and survival rates and root and shoot growth under salt stress treatment (200 mM NaCl). Having a high concentration of proline, APX and POX, the PvERF35 overexpressed plants were physiologically and morphologically less affected by salt stress application. In silico promoter analysis of the PvERF35 gene led to identification of important cis-regulatory elements, MYB, MYC and TGACG-motif, annotated with salt response of plants. The protein-protein interaction network showed that there was a strong association between ABC transporter proteins and PvERF35 protein. Salt stress-related miRNA, miRNA156 and miRNA159, targeting PvERF35 were identified using in silico target finding analysis. These findings suggest that PvERF35 functions as a stress-responsive transcription factor in differential modulation of salt stress tolerance and may have applications in the engineering of economically important crops.
Collapse
Affiliation(s)
- M Kavas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - G Gökdemir
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - Z Seçgin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - A Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| |
Collapse
|
46
|
Spanò R, Ferrara M, Gallitelli D, Mascia T. The Role of Grafting in the Resistance of Tomato to Viruses. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1042. [PMID: 32824316 PMCID: PMC7463508 DOI: 10.3390/plants9081042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022]
Abstract
Grafting is routinely implemented in modern agriculture to manage soilborne pathogens such as fungi, oomycetes, bacteria, and viruses of solanaceous crops in a sustainable and environmentally friendly approach. Some rootstock/scion combinations use specific genetic resistance mechanisms to impact also some foliar and airborne pathogens, including arthropod or contact-transmitted viruses. These approaches resulted in poor efficiency in the management of plant viruses with superior virulence such as the strains of tomato spotted wilt virus breaking the Sw5 resistance, strains of cucumber mosaic virus carrying necrogenic satellite RNAs, and necrogenic strains of potato virus Y. Three different studies from our lab documented that suitable levels of resistance/tolerance can be obtained by grafting commercial tomato varieties onto the tomato ecotype Manduria (Ma) rescued in the framework of an Apulian (southern Italy) regional program on biodiversity. Here we review the main approaches, methods, and results of the three case studies and propose some mechanisms leading to the tolerance/resistance observed in susceptible tomato varieties grafted onto Ma as well as in self-grafted plants. The proposed mechanisms include virus movement in plants, RNA interference, genes involved in graft wound response, resilience, and tolerance to virus infection.
Collapse
Affiliation(s)
- Roberta Spanò
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (D.G.); (T.M.)
| | - Massimo Ferrara
- Institute of Sciences of Food Production (ISPA)—CNR, 70126 Bari, Italy;
| | - Donato Gallitelli
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (D.G.); (T.M.)
| | - Tiziana Mascia
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; (D.G.); (T.M.)
| |
Collapse
|
47
|
Seven M, Akdemir H. DOF, MYB and TCP transcription factors: Their possible roles on barley germination and seedling establishment. Gene Expr Patterns 2020; 37:119116. [PMID: 32603687 DOI: 10.1016/j.gep.2020.119116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/03/2020] [Indexed: 12/28/2022]
Abstract
Seed germination is a multi-staged complex process during seed plant life cycle, and it is tightly regulated through a coordinated expression of diverse genes in diverse tissues. As regulatory molecules of gene expression, determination of transcription factors is crucial to understanding molecular basis and regulatory network of germination process and seedling establishment. However, limited data on the contributions of these transcription factors to the germination of crop barley (Hordeum vulgare L.) are available. Here, we investigated the expression profiles of selected transcription factors from different families (DOF, MYB and TCP) with qRT-PCR analysis in various tissues including coleoptiles, leaves and roots following the germination. Analysis of MYB and DOF gene expression profiles indicated that there were differing expressions in different aged tissues, HvMYB5 and HvDOF2 being the most outstanding one in the oldest tissue, 15-day-old root. On the other hand, investigated TCP genes were lowly expressed compared to selected MYB and DOF genes, except HvTCP3, where the highest expression was observed in 15-day-old root tissue. The obtained expression profiles illustrate the importance of potential regulatory roles of transcription factors in early developmental stages of barley germination and seedling establishment.
Collapse
Affiliation(s)
- Merve Seven
- Yeditepe University, Department of Genetics and Bioengineering, 34755, Istanbul, Turkey
| | - Hulya Akdemir
- Gebze Technical University, Faculty of Science, Department of Molecular Biology and Genetics, 41400, Kocaeli, Turkey.
| |
Collapse
|
48
|
Comparative RNA-Seq profiling of a resistant and susceptible peanut ( Arachis hypogaea) genotypes in response to leaf rust infection caused by Puccinia arachidis. 3 Biotech 2020; 10:284. [PMID: 32550103 DOI: 10.1007/s13205-020-02270-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022] Open
Abstract
The goal of this study was to identify differentially expressed genes (DEGs) responsible for peanut plant (Arachis hypogaea) defence against Puccinia arachidis (causative agent of rust disease). Genes were identified using a high-throughput RNA-sequencing strategy. In total, 86,380,930 reads were generated from RNA-Seq data of two peanut genotypes, JL-24 (susceptible), and GPBD-4 (resistant). Gene Ontology (GO) and KEGG analysis of DEGs revealed essential genes and their pathways responsible for defence response to P. arachidis. DEGs uniquely upregulated in resistant genotype included pathogenesis-related (PR) proteins, MLO such as protein, ethylene-responsive factor, thaumatin, and F-box, whereas, other genes down-regulated in susceptible genotype were Caffeate O-methyltransferase, beta-glucosidase, and transcription factors (WRKY, bZIP, MYB). Moreover, various genes, such as Chitinase, Cytochrome P450, Glutathione S-transferase, and R genes such as NBS-LRR were highly up-regulated in the resistant genotype, indicating their involvement in the plant defence mechanism. RNA-Seq analysis data were validated by RT-qPCR using 15 primer sets derived from DEGs producing high correlation value (R 2 = 0.82). A total of 4511 EST-SSRs were identified from the unigenes, which can be useful in evaluating genetic diversity among genotypes, QTL mapping, and plant variety improvement through marker-assisted breeding. These findings will help to understand the molecular defence mechanisms of the peanut plant in response to P. arachidis infection.
Collapse
|
49
|
Villano C, Esposito S, D'Amelia V, Garramone R, Alioto D, Zoina A, Aversano R, Carputo D. WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species. Sci Rep 2020; 10:7196. [PMID: 32346026 PMCID: PMC7188836 DOI: 10.1038/s41598-020-63823-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/06/2020] [Indexed: 01/30/2023] Open
Abstract
Wild potatoes, as dynamic resource adapted to various environmental conditions, represent a powerful and informative reservoir of genes useful for breeding efforts. WRKY transcription factors (TFs) are encoded by one of the largest families in plants and are involved in several biological processes such as growth and development, signal transduction, and plant defence against stress. In this study, 79 and 84 genes encoding putative WRKY TFs have been identified in two wild potato relatives, Solanum commersonii and S. chacoense. Phylogenetic analysis of WRKY proteins divided ScWRKYs and SchWRKYs into three Groups and seven subGroups. Structural and phylogenetic comparative analyses suggested an interspecific variability of WRKYs. Analysis of gene expression profiles in different tissues and under various stresses allowed to select ScWRKY045 as a good candidate in wounding-response, ScWRKY055 as a bacterial infection triggered WRKY and ScWRKY023 as a multiple stress-responsive WRKY gene. Those WRKYs were further studied through interactome analysis allowing the identification of potential co-expression relationships between ScWRKYs/SchWRKYs and genes of various pathways. Overall, this study enabled the discrimination of WRKY genes that could be considered as potential candidates in both breeding programs and functional studies.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Salvatore Esposito
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy.,CREA Via Cavalleggeri 25, 84098, Pontecagnano-Faiano, Italy
| | - Vincenzo D'Amelia
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy.,National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, Portici, NA, Italy
| | - Raffaele Garramone
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | - Daniela Alioto
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| | | | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy.
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy.
| |
Collapse
|
50
|
Krishnatreya DB, Baruah PM, Dowarah B, Bordoloi KS, Agarwal H, Agarwala N. Mining of miRNAs from EST data in Dendrobium nobile. Bioinformation 2020; 16:245-255. [PMID: 32308267 PMCID: PMC7147496 DOI: 10.6026/97320630016245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 12/05/2022] Open
Abstract
Dendrobium nobile is an orchid species highly popular for its therapeutic properties and is often used as a medicinal herb. Documenting miRNA-target associations in D. nobile is an important step to facilitate functional genomics studies in this species. Therefore, it is of interest to identify miRNA sequences from EST data available in public databases using known techniques and tools. We report 14 potential miRNAs from three ESTs of D. nobile. They belong to 3 miRNA families (miR390, miR528 and miR414) linking to transcription factor regulation, signal transduction, DNA and protein binding, and various cellular processes covering 34 different metabolic networks in KEGG. These results help in the understanding of miRNA-mRNAs functional networks in Dendrobium nobile.
Collapse
Affiliation(s)
| | - Pooja Moni Baruah
- Department of Botany, Gauhati University, Guwahati, Assam, India - 7810014
| | - Bhaskar Dowarah
- Department of Botany, Gauhati University, Guwahati, Assam, India - 7810014
| | | | - Heena Agarwal
- Department of Botany, Gauhati University, Guwahati, Assam, India - 7810014
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Guwahati, Assam, India - 7810014
| |
Collapse
|