1
|
Chen W, Wang X, Li X, Wang W, Huang Y, Qin Y, Liu P, Wu K, Li B, He Y, Zeng S, Yi L, Wang L, Zhao M, Ding H, Fan S, Li Z, Chen J. Foot-and-mouth disease virus activates glycolysis and hijacks HK2 to inhibit innate immunity and promote viral replication. Vet Res 2025; 56:71. [PMID: 40170113 PMCID: PMC11963632 DOI: 10.1186/s13567-025-01497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/23/2025] [Indexed: 04/03/2025] Open
Abstract
Foot-and-mouth disease (FMD) severely restricts the healthy development of global animal husbandry, and the unclear pathogenic mechanism of FMD virus (FMDV) leads to difficulty in preventing and purifying FMD. Glycolytic remodelling is considered one of the hallmarks of viral infection, providing energy and precursors for viral assembly and replication. In this work, the interaction and mechanism between FMDV and glycolysis were explored from the perspective of immune metabolism. We found that FMDV infection increased the extracellular acidification rate, lactic acid accumulation, and HK2 level. In addition, during FMDV infection, HK2 enhances glycolytic activity and mediates autophagic degradation of IRF3/7 to antagonize the innate immune response, thereby promoting viral replication. Our findings provide evidence that FMDV is closely correlated with host metabolism, increasing the understanding that glycolysis and HK2 facilitate virus infection, and provide new ideas for further elucidating the pathogenic mechanism of FMDV.
Collapse
Affiliation(s)
- Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weijun Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yaoyao Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Pengfei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yintao He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
- Wen's Foodstuffs Group Co., Ltd., Yunfu, Xinxing, China.
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
2
|
Ren M, Zhou H, Wu JE, Wang JN, Wang X, Abdullah SW, Guo H, Sun S. Heat shock protein A1 inhibits the replication of foot-and-mouth disease virus by degrading viral RNA polymerase 3D through chaperone-mediated autophagy. J Virol 2025:e0016825. [PMID: 40162788 DOI: 10.1128/jvi.00168-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae family, is a single-stranded, positive-sense RNA virus. Heat shock protein A1 (HSPA1) has been shown to influence the entry, translation, assembly, and release of enterovirus A71 (EV-A71), another Picornaviridae family member. In this study, we demonstrate that HSPA1 plays a different role in the replication of FMDV. By investigating various stages of virus replication, we found that HSPA1 specifically inhibits the RNA replication stage in which HSPA1 inhibits viral RNA replication by degrading the viral RNA-dependent RNA polymerase (RdRp), 3D protein. In the presence of specific inhibitors, we find out that this degradation occurs through the autophagy pathway. Activation and blockage of chaperone-mediated autophagy (CMA) demonstrate that HSPA1 degrades 3D through the CMA pathway. Mutation analysis reveals that 421QEKLI425 is the key motif in 3D responsible for HSPA1-mediated CMA degradation. In summary, this study shows that HSPA1 can degrade the viral 3D protein through the CMA pathway, thereby inhibiting the RNA replication of FMDV and interfering with virus infection. This study, for the first time, demonstrates that HSPA1 employs its chaperone function to mediate the degradation of the FMDV RdRp, revealing the crucial role of HSPA1 in the FMDV infection process and suggesting that HSPA1 could be a potential target for the prevention and treatment of FMDV infection. IMPORTANCE Viral RNA replication is the key stage in understanding the pathogenic mechanisms of foot-and-mouth disease virus (FMDV). During this process, the viral non-structural protein 3D serves as an RNA-dependent RNA polymerase (RdRp) to synthesize progeny RNA using the viral genomic RNA as a template. However, the regulatory effect of host cells on FMDV 3D proteins has not yet been studied. In this study, we find that heat shock protein A1 (HSPA1) degrades the viral 3D protein through the chaperone-mediated autophagy (CMA) pathway, thereby inhibiting the RNA replication of FMDV and interfering with virus infection. This study, for the first time, demonstrates that HSPA1 employs its chaperone function to mediate the degradation of the FMDV RdRp.
Collapse
Affiliation(s)
- Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gembloux Agro-Biotech, University of Liege, Gembloux, Belgium
| | - Haiqian Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jin-En Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jia-Ning Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuefei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sahibzada Waheed Abdullah
- Livestock and Dairy Development Department Peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
3
|
Wu X, Yang Y, Ru Y, Hao R, Zhao D, Ren R, Lu B, Li Y, Sun S, Zheng H, Wang W. Knockout of the WD40 domain of ATG16L1 enhances foot and mouth disease virus replication. BMC Genomics 2024; 25:796. [PMID: 39179961 PMCID: PMC11342673 DOI: 10.1186/s12864-024-10703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
The WD40 domain is one of the most abundant domains and is among the top interacting domains in eukaryotic genomes. The WD40 domain of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Canonical autophagy was utilized by FMDV, while the relationship between FMDV and non-canonical autophagy is still elusive. In the present study, WD40 knockout (KO) PK15 cells were successfully generated via CRISPR/cas9 technology as a tool for studying the effect of non-canonical autophagy on FMDV replication. The results of growth curve analysis, morphological observation and karyotype analysis showed that the WD40 knockout cell line was stable in terms of growth and morphological characteristics. After infection with FMDV, the expression of viral protein, viral titers, and the number of copies of viral RNA in the WD40-KO cells were significantly greater than those in the wild-type PK15 cells. Moreover, RNA‒seq technology was used to sequence WD40-KO cells and wild-type cells infected or uninfected with FMDV. Differentially expressed factors such as Mx1, RSAD2, IFIT1, IRF9, IFITM3, GBP1, CXCL8, CCL5, TNFRSF17 were significantly enriched in the autophagy, NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and TNF signaling pathway, etc. The expression levels of differentially expressed genes were detected via qRT‒PCR, which was consistent with the RNA‒seq data. Here, we experimentally demonstrate for the first time that knockout of the WD40 domain of ATG16L1 enhances FMDV replication by downregulation innate immune factors. In addition, this result also indicates non-canonical autophagy inhibits FMDV replication. In total, our results play an essential role in regulating the replication level of FMDV and providing new insights into virus-host interactions and potential antiviral strategies.
Collapse
Affiliation(s)
- Xiuping Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Dongmei Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Ruifang Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Bingzhou Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yajun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Shengzhen Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Hirano J, Hayashi T, Kitamura K, Nishimura Y, Shimizu H, Okamoto T, Okada K, Uemura K, Yeh MT, Ono C, Taguwa S, Muramatsu M, Matsuura Y. Enterovirus 3A protein disrupts endoplasmic reticulum homeostasis through interaction with GBF1. J Virol 2024; 98:e0081324. [PMID: 38904364 PMCID: PMC11265424 DOI: 10.1128/jvi.00813-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Enteroviruses are single-stranded, positive-sense RNA viruses causing endoplasmic reticulum (ER) stress to induce or modulate downstream signaling pathways known as the unfolded protein responses (UPR). However, viral and host factors involved in the UPR related to viral pathogenesis remain unclear. In the present study, we aimed to identify the major regulator of enterovirus-induced UPR and elucidate the underlying molecular mechanisms. We showed that host Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1), which supports enteroviruses replication, was a major regulator of the UPR caused by infection with enteroviruses. In addition, we found that severe UPR was induced by the expression of 3A proteins encoded in human pathogenic enteroviruses, such as enterovirus A71, coxsackievirus B3, poliovirus, and enterovirus D68. The N-terminal-conserved residues of 3A protein interact with the GBF1 and induce UPR through inhibition of ADP-ribosylation factor 1 (ARF1) activation via GBF1 sequestration. Remodeling and expansion of ER and accumulation of ER-resident proteins were observed in cells infected with enteroviruses. Finally, 3A induced apoptosis in cells infected with enteroviruses via activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) pathway of UPR. Pharmaceutical inhibition of PERK suppressed the cell death caused by infection with enteroviruses, suggesting the UPR pathway is a therapeutic target for treating diseases caused by infection with enteroviruses.IMPORTANCEInfection caused by several plus-stranded RNA viruses leads to dysregulated ER homeostasis in the host cells. The mechanisms underlying the disruption and impairment of ER homeostasis and its significance in pathogenesis upon enteroviral infection remain unclear. Our findings suggested that the 3A protein encoded in human pathogenic enteroviruses disrupts ER homeostasis by interacting with GBF1, a major regulator of UPR. Enterovirus-mediated infections drive ER into pathogenic conditions, where ER-resident proteins are accumulated. Furthermore, in such scenarios, the PERK/CHOP signaling pathway induced by an unresolved imbalance of ER homeostasis essentially drives apoptosis. Therefore, elucidating the mechanisms underlying the virus-induced disruption of ER homeostasis might be a potential target to mitigate the pathogenesis of enteroviruses.
Collapse
Affiliation(s)
- Junki Hirano
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yorihiro Nishimura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuma Okada
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Kentaro Uemura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Ming Te Yeh
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Shuhei Taguwa
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Zhang H, Wang X, Qu M, Li Z, Yin X, Tang L, Liu X, Sun Y. Foot-and-mouth disease virus structural protein VP3 interacts with HDAC8 and promotes its autophagic degradation to facilitate viral replication. Autophagy 2023; 19:2869-2883. [PMID: 37408174 PMCID: PMC10549200 DOI: 10.1080/15548627.2023.2233847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023] Open
Abstract
Macroautophagy/autophagy has been utilized by many viruses, including foot-and-mouth disease virus (FMDV), to facilitate replication, while the underlying mechanism of the interplay between autophagy and innate immune responses is still elusive. This study showed that HDAC8 (histone deacetylase 8) inhibits FMDV replication by regulating innate immune signal transduction and antiviral response. To counteract the HDAC8 effect, FMDV utilizes autophagy to promote HDAC8 degradation. Further data showed that FMDV structural protein VP3 promotes autophagy during virus infection and interacts with and degrades HDAC8 in an AKT-MTOR-ATG5-dependent autophagy pathway. Our data demonstrated that FMDV evolved a strategy to counteract host antiviral activity by autophagic degradation of a protein that regulates innate immune response during virus infection.Abbreviations: 3-MA: 3-methyladenine; ATG: autophagy related; Baf-A1: bafilomycin A1; CCL5: C-C motif chemokine ligand 5; Co-IP: co-immunoprecipitation; CQ: chloroquine phosphate; DAPI: 4",6-diamidino-2-phenylindole; FMDV: foot-and-mouth disease virus; HDAC8: histone deacetylase 8; ISG: IFN-stimulated gene; IRF3: interferon regulatory factor 3; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MAVS: mitochondria antiviral signaling protein; OAS: 2"-5'-oligoadenylate synthetase; RB1: RB transcriptional corepressor 1; SAHA: suberoylanilide hydroxamic acid; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious doses; TNF/TNF-α: tumor necrosis factor; TSA: trichostatin A; UTR: untranslated region.
Collapse
Affiliation(s)
- Huijun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhiyong Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
6
|
Chen L, Yang L, Li Y, Liu T, Yang B, Liu L, Wu R. Autophagy and Inflammation: Regulatory Roles in Viral Infections. Biomolecules 2023; 13:1454. [PMID: 37892135 PMCID: PMC10604974 DOI: 10.3390/biom13101454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway in eukaryotic organisms, playing an adaptive role in various pathophysiological processes throughout evolution. Inflammation is the immune system's response to external stimuli and tissue damage. However, persistent inflammatory reactions can lead to a range of inflammatory diseases and cancers. The interaction between autophagy and inflammation is particularly evident during viral infections. As a crucial regulator of inflammation, autophagy can either promote or inhibit the occurrence of inflammatory responses. In turn, inflammation can establish negative feedback loops by modulating autophagy to suppress excessive inflammatory reactions. This interaction is pivotal in the pathogenesis of viral diseases. Therefore, elucidating the regulatory roles of autophagy and inflammation in viral infections will significantly enhance our understanding of the mechanisms underlying related diseases. Furthermore, it will provide new insights and theoretical foundations for disease prevention, treatment, and drug development.
Collapse
Affiliation(s)
- Li Chen
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Limin Yang
- School of Medicine, Dalian University, Dalian 116622, China;
| | - Yingyu Li
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Tianrun Liu
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Bolun Yang
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Lei Liu
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Rui Wu
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| |
Collapse
|
7
|
Cui B, Song L, Wang Q, Li K, He Q, Wu X, Gao F, Liu M, An C, Gao Q, Hu C, Hao X, Dong F, Zhou J, Liu D, Song Z, Yan X, Zhang J, Bai Y, Mao Q, Yang X, Liang Z. Non-small cell lung cancers (NSCLCs) oncolysis using coxsackievirus B5 and synergistic DNA-damage response inhibitors. Signal Transduct Target Ther 2023; 8:366. [PMID: 37743418 PMCID: PMC10518312 DOI: 10.1038/s41392-023-01603-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
With the continuous in-depth study of the interaction mechanism between viruses and hosts, the virus has become a promising tool in cancer treatment. In fact, many oncolytic viruses with selectivity and effectiveness have been used in cancer therapy. Human enterovirus is one of the most convenient sources to generate oncolytic viruses, however, the high seroprevalence of some enteroviruses limits its application which urges to exploit more oncolytic enteroviruses. In this study, coxsackievirus B5/Faulkner (CV-B5/F) was screened for its potential oncolytic effect against non-small cell lung cancers (NSCLCs) through inducing apoptosis and autophagy. For refractory NSCLCs, DNA-dependent protein kinase (DNA-PK) or ataxia telangiectasia mutated protein (ATM) inhibitors can synergize with CV-B5/F to promote refractory cell death. Here, we showed that viral infection triggered endoplasmic reticulum (ER) stress-related pro-apoptosis and autophagy signals, whereas repair for double-stranded DNA breaks (DSBs) contributed to cell survival which can be antagonized by inhibitor-induced cell death, manifesting exacerbated DSBs, apoptosis, and autophagy. Mechanistically, PERK pathway was activated by the combination of CV-B5/F and inhibitor, and the irreversible ER stress-induced exacerbated cell death. Furthermore, the degradation of activated STING by ERphagy promoted viral replication. Meanwhile, no treatment-related deaths due to CV-B5/F and/or inhibitors occurred. Conclusively, our study identifies an oncolytic CV-B5/F and the synergistic effects of inhibitors of DNA-PK or ATM, which is a potential therapy for NSCLCs.
Collapse
Affiliation(s)
- Bopei Cui
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Lifang Song
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Qian Wang
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Kelei Li
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Beijing Minhai Biotechnology Co., Ltd, Beijing, China
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xing Wu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Mingchen Liu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Chaoqiang An
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Beijing Minhai Biotechnology Co., Ltd, Beijing, China
| | - Qiushuang Gao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Chaoying Hu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaotian Hao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Fangyu Dong
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Taibang Biologic Group, Beijing, China
| | | | - Dong Liu
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Changchun Institute of Biological Products Co., Ltd, Changchun, China
| | - Ziyang Song
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Shanghai Institute of Biological Products Co., Ltd, Shanghai, China
| | - Xujia Yan
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- Changchun Institute of Biological Products Co., Ltd, Changchun, China
| | - Jialu Zhang
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Bai
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China.
- China National Biotec Group Company Limited, Beijing, China.
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
8
|
Wang J, Chen KY, Wang SH, Liu Y, Zhao YQ, Yang L, Yang GH, Wang XJ, Zhu YH, Yin JH, Wang JF. Effects of Spatial Expression of Activating Transcription Factor 4 on the Pathogenicity of Two Phenotypes of Bovine Viral Diarrhea Virus by Regulating the Endoplasmic Reticulum-Mediated Autophagy Process. Microbiol Spectr 2023; 11:e0422522. [PMID: 36939351 PMCID: PMC10101076 DOI: 10.1128/spectrum.04225-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
The endoplasmic reticulum (ER) stress response is a highly conserved stress-defense mechanism and activates the adaptive unfolded protein response (UPR) to mitigate imbalance. The ER stress-activated signaling pathways can also trigger autophagy to facilitate cellular repair. Bovine viral diarrhea virus (BVDV) utilizes the host cellular ER as the primary site of the life cycle. However, the interplay between cellular ER stress and BVDV replication remains unclear. This report reveals that cytopathic (cp) and noncytopathic (ncp) BVDV have distinct strategies to regulate UPR mechanisms and ER stress-mediated autophagy for their own benefit. Immunoblot analysis revealed that cp and ncp BVDV differentially regulated the abundance of ER chaperone GRP78 for viral replication, while the protein kinase RNA-like ER kinase (PERK)-eukaryotic translation initiation factor 2 subunit α (eIF2α)-activating transcription factor 4 (ATF4) pathway of the UPR was switched on at different stages of infection. Pretreatment with ER stress inducer promoted virion replication, but RNA interference (RNAi) knockdown of ATF4 in BVDV-infected cells significantly attenuated BVDV infectivity titers. More importantly, the effector ATF4 activated by cp BVDV infection translocated into the nucleus to mediate autophagy, but ATF4 was retained in the cytoplasm during ncp BVDV infection. In addition, we found that cp BVDV core protein was localized in the ER to induce ER stress-mediated autophagy. Overall, the potential therapeutic target ATF4 may contribute to the global eradication campaign of BVDV. IMPORTANCE The ER-tropic viruses hijack the host cellular ER as the replication platform of the life cycle, which can lead to strong ER stress. The UPR and related transcriptional cascades triggered by ER stress play a crucial role in viral replication and pathogenesis, but little is known about these underlying mechanisms. Here, we report that cytopathic and noncytopathic BVDV use different strategies to reprogram the cellular UPR and ER stress-mediated autophagy for their own advantage. The cytopathic BVDV unconventionally downregulated the expression level of GRP78, creating perfect conditions for self-replication via the UPR, and the noncytopathic BVDV retained ATF4 in the cytoplasm to provide an advantage for its persistent infection. Our findings provide new insights into exploring how BVDV and other ER-tropic viruses reprogram the UPR signaling pathway in the host cells for replication and reveal the attractive host target ATF4 for new antiviral agents.
Collapse
Affiliation(s)
- Jing Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ke-Yuan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sheng-Hua Wang
- OIE Porcine-Reproductive and Respiratory Syndrome Reference Laboratory, China Animal Disease Control Center, Beijing, China
| | - Yi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi-Qing Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guang-Hui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jia Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao-Hong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin-hua Yin
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Jiu-Feng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Silencing MYOT Expression May Inhibit Autophagy in Human Skeletal Muscle Cells. DISEASE MARKERS 2023; 2023:3350685. [PMID: 36776921 PMCID: PMC9911237 DOI: 10.1155/2023/3350685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Muscle diseases are closely related to autophagy disorders. Studies of autophagy inhibition indicated the importance of autophagy in muscle regeneration, while activation of autophagy can restore muscle function in some myopathies. Previous studies have revealed that mutations in the MYOT gene may lead to several kinds of hereditary myopathies. However, whether the autophagy played a crucial role in hereditary myopathy caused by MYOT mutations was still not clear. In this study, we established the MYOT knockdown human skeletal muscle cell models (HSkMCs) by small interfering RNA. Real-time PCR and Western blot studies found that the expression of p62 and LC3B-II was decreased dramatically, which suggested that silencing MYOT expression may regulate the autophagy in HSkMCs. Further immunofluorescence study on Ad-mCherry-GFP-LC3B adenovirus transfection and monodansylcadaverine (MDC) staining revealed that knocking down the expression of MYOT may inhibit the autophagy. Next, we used the autophagy inducer Earle's balanced salt solution (EBSS) and late-autophagy inhibitor bafilomycin A1 (BAF A1) to treat the HSkMCs, respectively, and found that silencing MYOT expression can inhibit the activation of autophagy by EBSS and aggravate the inhibition of autophagy by BAF A1. Finally, we also found that silencing MYOT expression can downregulate the expression of ATG7 and ATG5, two important autophagy regulatory molecules. Hence, our study may first reveal that knocking down the expression of MYOT may inhibit the autophagy. Hereditary myopathies caused by MYOT mutations may partly result from the inhibition of autophagy in HSkMCs.
Collapse
|
10
|
Ranjitha HB, Dhanesh VV, Hosamani M, Sreenivasa BP, Jabeen U, Biswal JK, Saravanan P, Sanyal A, Bhanuprakash V, Basagoudanavar SH. Thermostable negative-marker foot-and-mouth disease virus serotype O induces protective immunity in guinea pigs. Appl Microbiol Biotechnol 2023; 107:1285-1297. [PMID: 36656322 PMCID: PMC9850340 DOI: 10.1007/s00253-023-12359-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023]
Abstract
Foot-and-mouth disease (FMD) is a contagious viral disease of high economic importance, caused by FMD virus (FMDV), a positive-sense single-stranded RNA virus, affecting cloven-hoofed animals. Preventive vaccination using inactivated virus is in practice to control the disease in many endemic countries. While the vaccination induces antibodies mainly to structural proteins, the presence of antibodies to the non-structural proteins (NSP) is suggestive of infection, a criterion for differentiation of infected from vaccinated animals (DIVA). Also, there is a growing demand for enhancing the stability of the FMD vaccine virus capsid antigen as the strength of the immune response is proportional to the amount of intact 146S particles in the vaccine. Considering the need for a DIVA compliant stable vaccine, here we report generation and rescue of a thermostable and negative marker virus FMDV serotype O (IND/R2/1975) containing a partial deletion in non-structural protein 3A, generated by reverse genetics approach. Immunization of guinea pigs with the inactivated thermostable-negative marker virus antigen induced 91% protective immune response. Additionally, a companion competitive ELISA (cELISA) targeting the deleted 3A region was developed, which showed 92.3% sensitivity and 97% specificity, at cut-off value of 36% percent inhibition. The novel thermostable-negative marker FMDV serotype O vaccine strain and the companion cELISA could be useful in FMDV serotype O enzootic countries to benefit the FMD control program. KEY POINTS: • Thermostable foot-and-mouth disease virus serotype O with partial deletion in 3A. • Inactivated thermostable marker vaccine induced 91% protection in guinea pigs. • Companion cELISA based on deleted region in 3A could potentially facilitate DIVA.
Collapse
Affiliation(s)
- Huildore Bommanna Ranjitha
- FMD Vaccine Research Laboratory, ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, 560 024, India
| | - Valiya Valappil Dhanesh
- FMD Vaccine Research Laboratory, ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, 560 024, India
| | - Madhusudan Hosamani
- FMD Vaccine Research Laboratory, ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, 560 024, India
| | - B P Sreenivasa
- FMD Vaccine Research Laboratory, ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, 560 024, India
| | - Uzma Jabeen
- FMD Vaccine Research Laboratory, ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, 560 024, India
| | - Jitendra Kumar Biswal
- Directorate of Foot and Mouth Disease, ICAR-International Centre for FMD, Bhubaneswar, 752 050, India
| | - P Saravanan
- FMD Vaccine Research Laboratory, ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, 560 024, India
| | - Aniket Sanyal
- FMD Vaccine Research Laboratory, ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, 560 024, India
| | - Veerakyathappa Bhanuprakash
- FMD Vaccine Research Laboratory, ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, 560 024, India
| | - Suresh H Basagoudanavar
- FMD Vaccine Research Laboratory, ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru, 560 024, India.
| |
Collapse
|
11
|
Lee HW, Jiang YF, Chang HW, Cheng IC. Foot-and-Mouth Disease Virus 3A Hijacks Sar1 and Sec12 for ER Remodeling in a COPII-Independent Manner. Viruses 2022; 14:v14040839. [PMID: 35458569 PMCID: PMC9028839 DOI: 10.3390/v14040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Positive-stranded RNA viruses modify host organelles to form replication organelles (ROs) for their own replication. The enteroviral 3A protein has been demonstrated to be highly associated with the COPI pathway, in which factors operate on the ER-to-Golgi intermediate and the Golgi. However, Sar1, a COPII factor exerting coordinated action at endoplasmic reticulum (ER) exit sites rather than COPI factors, is required for the replication of foot-and-mouth disease virus (FMDV). Therefore, further understanding regarding FMDV 3A could be key to explaining the differences and to understanding FMDV’s RO formation. In this study, FMDV 3A was confirmed as a peripheral membrane protein capable of modifying the ER into vesicle-like structures, which were neither COPII vesicles nor autophagosomes. When the C-terminus of 3A was truncated, it was located at the ER without vesicular modification. This change was revealed using mGFP and APEX2 fusion constructs, and observed by fluorescence microscopy and electron tomography, respectively. For the other 3A truncation, the minimal region for modification was aa 42–92. Furthermore, we found that the remodeling was related to two COPII factors, Sar1 and Sec12; both interacted with 3A, but their binding domains on 3A were different. Finally, we hypothesized that the N-terminus of 3A would interact with Sar1, as its C-terminus simultaneously interacted with Sec12, which could possibly enhance Sar1 activation. On the ER membrane, active Sar1 interacted with regions of aa 42–59 and aa 76–92 from 3A for vesicle formation. This mechanism was distinct from the traditional COPII pathway and could be critical for FMDV RO formation.
Collapse
Affiliation(s)
- Heng-Wei Lee
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (H.-W.L.); (Y.-F.J.); (H.-W.C.)
| | - Yi-Fan Jiang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (H.-W.L.); (Y.-F.J.); (H.-W.C.)
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (H.-W.L.); (Y.-F.J.); (H.-W.C.)
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Ivan-Chen Cheng
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (H.-W.L.); (Y.-F.J.); (H.-W.C.)
- Correspondence:
| |
Collapse
|
12
|
Yang J, Yang B, Wang Y, Zhang T, Hao Y, Cui H, Zhao D, Yuan X, Chen X, Shen C, Yan W, Zheng H, Zhang K, Liu X. Profiling and functional analysis of differentially expressed circular RNAs identified in foot-and-mouth disease virus infected PK-15 cells. Vet Res 2022; 53:24. [PMID: 35313983 PMCID: PMC8935690 DOI: 10.1186/s13567-022-01037-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) are a new type of endogenous noncoding RNA that exhibit a variety of biological functions. However, it is not clear whether they are involved in foot-and-mouth disease virus (FMDV) infection and host response. In this study, we established circRNA expression profiles in FMDV-infected PK-15 cells using RNA-seq (RNA-sequencing) technology analysis. The biological function of the differentially expressed circRNAs was determined by protein interaction network, Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment. We found 1100 differentially expressed circRNAs (675 downregulated and 425 upregulated) which were involved in various biological processes such as protein ubiquitination modification, cell cycle regulation, RNA transport, and autophagy. We also found that circRNAs identified after FMDV infection may be involved in the host cell immune response. RNA-Seq results were validated by circRNAs qRT-PCR. In this study, we analyzed for the first time circRNAs expression profile and the biological function of these genes after FMDV infection of host cells. The results provide new insights into the interactions between FMDV and host cells.
Collapse
|
13
|
Gatica D, Chiong M, Lavandero S, Klionsky DJ. The role of autophagy in cardiovascular pathology. Cardiovasc Res 2022; 118:934-950. [PMID: 33956077 PMCID: PMC8930074 DOI: 10.1093/cvr/cvab158] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic recycling pathway in which cytoplasmic components are sequestered, degraded, and recycled to survive various stress conditions. Autophagy dysregulation has been observed and linked with the development and progression of several pathologies, including cardiovascular diseases, the leading cause of death in the developed world. In this review, we aim to provide a broad understanding of the different molecular factors that govern autophagy regulation and how these mechanisms are involved in the development of specific cardiovascular pathologies, including ischemic and reperfusion injury, myocardial infarction, cardiac hypertrophy, cardiac remodelling, and heart failure.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| | - Mario Chiong
- Department of Biochemistry and Molecular Biology, Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Olivos 1007, Independencia, Santiago 8380492, Chile
| | - Sergio Lavandero
- Department of Biochemistry and Molecular Biology, Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Olivos 1007, Independencia, Santiago 8380492, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), 926 JF Gonzalez, Santiago 7860201, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-8573, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| |
Collapse
|
14
|
Jan MW, Su HL, Chang TH, Tsai KJ. Characterization of Pathogenesis and Inflammatory Responses to Experimental Parechovirus Encephalitis. Front Immunol 2021; 12:753683. [PMID: 34899705 PMCID: PMC8654935 DOI: 10.3389/fimmu.2021.753683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Human parechovirus type 3 (PeV-A3) infection has been recognized as an emerging etiologic factor causing severe nerve disease or sepsis in infants and young children. But the neuropathogenic mechanisms of PeV-A3 remain unknown. To understand the pathogenesis of PeV-A3 infection in the neuronal system, PeV-A3-mediated cytopathic effects were analyzed in human glioblastoma cells and neuroblastoma cells. PeV-A3 induced interferons and inflammatory cytokine expression in these neuronal cells. The pronounced cytopathic effects accompanied with activation of death signaling pathways of apoptosis, autophagy, and pyroptosis were detected. A new experimental disease model of parechovirus encephalitis was established. In the disease model, intracranial inoculation with PeV-A3 in C57BL/6 neonatal mice showed body weight loss, hindlimb paralysis, and approximately 20% mortality. PeV-A3 infection in the hippocampus and cortex regions of the neonatal mouse brain was revealed. Mechanistic assay supported the in vitro results, indicating detection of PeV-A3 replication, inflammatory cytokine expression, and death signaling transduction in mouse brain tissues. These in vitro and in vivo studies revealed that the activation of death signaling and inflammation responses is involved in PeV-A3-mediated neurological disorders. The present results might account for some of the PeV-A3-associated clinical manifestations.
Collapse
Affiliation(s)
- Ming-Wei Jan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, Agriculture Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| | - Tsung-Hsien Chang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Wu J, Zhang Z, Teng Z, Abdullah SW, Sun S, Guo H. Sec62 Regulates Endoplasmic Reticulum Stress and Autophagy Balance to Affect Foot-and-Mouth Disease Virus Replication. Front Cell Infect Microbiol 2021; 11:707107. [PMID: 34532300 PMCID: PMC8438241 DOI: 10.3389/fcimb.2021.707107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 01/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress-induced autophagy is closely associated with viral infection and propagation. However, the intrinsic link between ER stress, autophagy, and viral replication during foot-and-mouth disease virus (FMDV) infection is not fully elucidated. Our previous studies demonstrated that FMDV infection activated the ER stress-associated UPR of the PERK-eIF2a and ATF6 signaling pathway, whereas the IRE1a signaling was suppressed. We found that the activated-ATF6 pathway participated in FMDV-induced autophagy and FMDV replication, while the IRE1α pathway only affected FMDV replication. Further studies indicated that Sec62 was greatly reduced in the later stages of FMDV infection and blocked the activation of the autophagy-related IRE1α-JNK pathway. Moreover, it was also found that Sec62 promoted IRE1a phosphorylation and negatively regulated FMDV proliferation. Importantly, Sec62 may interact with LC3 to regulate ER stress and autophagy balance and eventually contribute to FMDV clearance via fusing with lysosomes. Altogether, these results suggest that Sec62 is a critical molecule in maintaining and recovering ER homeostasis by activating the IRE1α-JNK pathway and delivering autophagosome into the lysosome, thus providing new insights on FMDV-host interactions and novel antiviral therapies.
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhihui Zhang
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
16
|
Dahal B, Lehman CW, Akhrymuk I, Bracci NR, Panny L, Barrera MD, Bhalla N, Jacobs JL, Dinman JD, Kehn-Hall K. PERK Is Critical for Alphavirus Nonstructural Protein Translation. Viruses 2021; 13:892. [PMID: 34065980 PMCID: PMC8151226 DOI: 10.3390/v13050892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an alphavirus that causes encephalitis. Previous work indicated that VEEV infection induced early growth response 1 (EGR1) expression, leading to cell death via the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) arm of the unfolded protein response (UPR) pathway. Loss of PERK prevented EGR1 induction and decreased VEEV-induced death. The results presented within show that loss of PERK in human primary astrocytes dramatically reduced VEEV and eastern equine encephalitis virus (EEEV) infectious titers by 4-5 log10. Loss of PERK also suppressed VEEV replication in primary human pericytes and human umbilical vein endothelial cells, but it had no impact on VEEV replication in transformed U87MG and 293T cells. A significant reduction in VEEV RNA levels was observed as early as 3 h post-infection, but viral entry assays indicated that the loss of PERK minimally impacted VEEV entry. In contrast, the loss of PERK resulted in a dramatic reduction in viral nonstructural protein translation and negative-strand viral RNA production. The loss of PERK also reduced the production of Rift Valley fever virus and Zika virus infectious titers. These data indicate that PERK is an essential factor for the translation of alphavirus nonstructural proteins and impacts multiple RNA viruses, making it an exciting target for antiviral development.
Collapse
Affiliation(s)
- Bibha Dahal
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
| | - Caitlin W. Lehman
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ivan Akhrymuk
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Nicole R. Bracci
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lauren Panny
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Michael D. Barrera
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
| | - Nishank Bhalla
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
| | | | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (B.D.); (C.W.L.); (I.A.); (N.R.B.); (L.P.); (M.D.B.); (N.B.)
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
17
|
Liu Y, Cheng A, Wang M, Mao S, Ou X, Yang Q, Wu Y, Gao Q, Liu M, Zhang S, Huang J, Jia R, Zhu D, Chen S, Zhao X, Yu Y, Liu Y, Zhang L, Tian B, Pan L. Duck Hepatitis A Virus Type 1 Induces eIF2α Phosphorylation-Dependent Cellular Translation Shutoff via PERK/GCN2. Front Microbiol 2021; 12:624540. [PMID: 33912143 PMCID: PMC8072014 DOI: 10.3389/fmicb.2021.624540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/12/2021] [Indexed: 11/20/2022] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is one of the most deadly pathogens that endanger the duck industry. Most viruses usually turn off host translation after infection to facilitate viral replication and translation. For the first time report to our knowledge, DHAV-1 can induce eIF2α phosphorylation and inhibit cellular translation in duck embryo fibroblasts (DEFs). Moreover, the activity of DHAV-1 in the cells caused obvious eIF2α phosphorylation, which has nothing to do with the viral protein. Subsequently, we screened two kinases (PERK and GCN2) that affect eIF2α phosphorylation through inhibitors and shRNA. Notably, the role of GCN2 in other picornaviruses has not been reported. In addition, when the phosphorylation of eIF2α induced by DHAV-1 is inhibited, the translation efficiency of DEFs restores to a normal level, indicating that DHAV-1 induced cellular translation shutoff is dependent on eIF2α phosphorylation.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
First person – Huildore Bommanna Ranjitha. J Cell Sci 2021. [DOI: 10.1242/jcs.258536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal Cell Science, helping early-career researchers promote themselves alongside their papers. Huildore Bommanna Ranjitha is first author on ‘Foot-and-mouth disease virus induces PERK-mediated autophagy to suppress the antiviral interferon response’, published in JCS, and is a PhD Scholar in the lab of Dr Suresh H. Basagoudanavar at ICAR-Indian Veterinarian Research Institute, Bengalur, Karnataka, India, performing in vitro and in vivo analysis of the pathogenesis of animal diseases and working on the development of preventive/diagnostic medicine.
Collapse
|
19
|
Li K, Wang C, Yang F, Cao W, Zhu Z, Zheng H. Virus-Host Interactions in Foot-and-Mouth Disease Virus Infection. Front Immunol 2021; 12:571509. [PMID: 33717061 PMCID: PMC7952751 DOI: 10.3389/fimmu.2021.571509] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/18/2021] [Indexed: 01/12/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals, which has been regarded as a persistent challenge for the livestock industry in many countries. Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD that can spread rapidly by direct and indirect transmission. FMDV is internalized into host cell by the interaction between FMDV capsid proteins and cellular receptors. When the virus invades into the cells, the host antiviral system is quickly activated to suppress the replication of the virus and remove the virus. To retain fitness and host adaptation, various viruses have evolved multiple elegant strategies to manipulate host machine and circumvent the host antiviral responses. Therefore, identification of virus-host interactions is critical for understanding the host defense against virus infections and the pathogenesis of the viral infectious diseases. This review elaborates on the virus-host interactions during FMDV infection to summarize the pathogenic mechanisms of FMD, and we hope it can provide insights for designing effective vaccines or drugs to prevent and control the spread of FMD and other diseases caused by picornaviruses.
Collapse
Affiliation(s)
- Kangli Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
20
|
Goulding LV, Yang J, Jiang Z, Zhang H, Lea D, Emes RD, Dottorini T, Pu J, Liu J, Chang KC. Thapsigargin at Non-Cytotoxic Levels Induces a Potent Host Antiviral Response that Blocks Influenza A Virus Replication. Viruses 2020; 12:v12101093. [PMID: 32992478 PMCID: PMC7600819 DOI: 10.3390/v12101093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Influenza A virus is a major global pathogen of humans, and there is an unmet need for effective antivirals. Current antivirals against influenza A virus directly target the virus and are vulnerable to mutational resistance. Harnessing an effective host antiviral response is an attractive alternative. We show that brief exposure to low, non-toxic doses of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, promptly elicits an extended antiviral state that dramatically blocks influenza A virus production. Crucially, oral administration of TG protected mice against lethal virus infection and reduced virus titres in the lungs of treated mice. TG-induced ER stress unfolded protein response appears as a key driver responsible for activating a spectrum of host antiviral defences that include an enhanced type I/III interferon response. Our findings suggest that TG is potentially a viable host-centric antiviral for the treatment of influenza A virus infection without the inherent problem of drug resistance.
Collapse
Affiliation(s)
- Leah V. Goulding
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK; (L.V.G.); (J.Y.); (R.D.E.); (T.D.)
| | - Jiayun Yang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK; (L.V.G.); (J.Y.); (R.D.E.); (T.D.)
| | - Zhimin Jiang
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (Z.J.); (H.Z.); (J.P.); (J.L.)
| | - Hongyu Zhang
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (Z.J.); (H.Z.); (J.P.); (J.L.)
| | - Daniel Lea
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK;
| | - Richard D. Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK; (L.V.G.); (J.Y.); (R.D.E.); (T.D.)
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK;
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK; (L.V.G.); (J.Y.); (R.D.E.); (T.D.)
| | - Juan Pu
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (Z.J.); (H.Z.); (J.P.); (J.L.)
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (Z.J.); (H.Z.); (J.P.); (J.L.)
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK; (L.V.G.); (J.Y.); (R.D.E.); (T.D.)
- Correspondence:
| |
Collapse
|
21
|
Wang S, Ma X, Wang H, He H. Induction of the Unfolded Protein Response during Bovine Alphaherpesvirus 1 Infection. Viruses 2020; 12:v12090974. [PMID: 32887282 PMCID: PMC7552016 DOI: 10.3390/v12090974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an alphaherpesvirus that causes great economic losses in the cattle industry. Herpesvirus infection generally induces endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) in infected cells. However, it is not clear whether ER stress and UPR can be induced by BoHV-1 infection. Here, we found that ER stress induced by BoHV-1 infection could activate all three UPR sensors (the activating transcription factor 6 (ATF6), the inositol-requiring enzyme 1 (IRE1), and the protein kinase RNA-like ER kinase (PERK)) in MDBK cells. During BoHV-1 infection, the ATF6 pathway of UPR did not affect viral replication. However, both knockdown and specific chemical inhibition of PERK attenuated the BoHV-1 proliferation, and chemical inhibition of PERK significantly reduced the viral replication at the post-entry step of the BoHV-1 life cycle. Furthermore, knockdown of IRE1 inhibits BoHV-1 replication, indicating that the IRE1 pathway may promote viral replication. Further study revealed that BoHV-1 replication was enhanced by IRE1 RNase activity inhibition at the stage of virus post-entry in MDBK cells. Furthermore, IRE1 kinase activity inhibition and RNase activity enhancement decrease BoHV1 replication via affecting the virus post-entry step. Our study revealed that BoHV-1 infection activated all three UPR signaling pathways in MDBK cells, and BoHV-1-induced PERK and IRE1 pathways may promote viral replication. This study provides a new perspective for the interactions of BoHV-1 and UPR, which is helpful to further elucidate the mechanism of BoHV-1 pathogenesis.
Collapse
Affiliation(s)
- Song Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaomei Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.W.); (H.H.)
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (S.W.); (X.M.)
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.W.); (H.H.)
| |
Collapse
|