1
|
Liu H, Wang X, Liu Z, Li S, Hou Z. Osmoregulatory evolution of gills promoted salinity adaptation following the sea-land transition of crustaceans. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:205-217. [PMID: 40417249 PMCID: PMC12102416 DOI: 10.1007/s42995-025-00298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2025] [Indexed: 05/27/2025]
Abstract
The sea-land transition is one of the most dramatic evolutionary changes and requires an adaptive genetic response to salinity changes and osmotic stress. Here, we used multi-species genomes and multi-tissue transcriptomes of the talitrid crustaceans, a living sea-land transition model, to investigate the adaptive genetic changes and osmoregulatory organs that facilitated their salinity adaptation. Genomic analyses detected numerous osmoregulatory genes in terrestrial talitrids undergoing gene family expansions and positive selection. Gene expression comparisons among species and tissues confirmed the gill being the primary organ responsible for ion transport and identified the genetic expression variation that enable talitrids to adapt to marine and land habitats. V-type H+-ATPases related to H+ transport play a crucial role in land adaptations, while genes related to the transport of inorganic ions (Na+, K+, Cl-) are upregulated in marine habitats. Our results demonstrate that talitrids have divergent genetic responses to salinity change that led to the uptake or excretion of ions in the gills and promoted habitat adaptation. These findings suggest that detecting gene expression changes in talitrids presents promising potential as a biomarker for salinity monitoring. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-025-00298-6.
Collapse
Affiliation(s)
- Hongguang Liu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaokun Wang
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- School of Life Sciences, Hebei University, Baoding, 071002 China
| | - Zeyu Liu
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shuqiang Li
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhonge Hou
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
2
|
Maraschi A, Asaro A, Bas CC, Ituarte RB. Assessment of the physiological performance of the invasive oriental shrimp Palaemon macrodactylus from an atypical marine population. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:885-895. [PMID: 38934391 DOI: 10.1002/jez.2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Since 2000, a well-established population of the invasive oriental shrimp Palaemon macrodactylus has been present in fully marine conditions in the southwestern Atlantic Ocean (~38° S). To assess the physiological performance of this atypical population restricted to fully marine conditions, we conducted a laboratory experiment in which individuals were transferred from 35 ‰S (local seawater) to 2 ‰S; 5 ‰S; 10 ‰S; 20 ‰S; 50 ‰S and 60‰ for short (6 h), medium (48 h), and long (>504 h) acclimation periods. We measured the time course response of relevant parameters in the shrimp's hemolymph; activity of Na+, K+-ATPase (NKA), and V-H+-ATPase (VHA); and muscle water content. Shrimp showed great osmoregulatory plasticity, being able to survive for long periods between 5 ‰S and 50 ‰S, whereas no individual survived after transfer to either 2 ‰S or 60 ‰S. Shrimp hyper-regulated hemolymph osmolality at 5 ‰S and 10 ‰S, hypo-regulated at 35 ‰S and 50 ‰S, and isosmoticity was close to 20 ‰S. Compared to 35 ‰S, prolonged acclimation to 5 ‰S caused a decrease in hemolymph osmolality (~34%) along with sodium and chloride concentrations (~24%); the NKA and VHA activities decreased by ~52% and ~88%, respectively, while muscle water content was tightly regulated. Our results showed that the atypical population of P. macrodactylus studied here lives in a chronic hypo-osmo-ion regulatory state and suggest that fully marine conditions contribute to its poor performance at the lower limit of salinity tolerance (<5 ‰S).
Collapse
Affiliation(s)
- Anieli Maraschi
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Antonela Asaro
- Departamento de Biología, Grupo Zoología Invertebrados, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Claudia Cristina Bas
- Departamento de Biología, Grupo Zoología Invertebrados, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Romina Belén Ituarte
- Departamento de Biología, Grupo Zoología Invertebrados, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| |
Collapse
|
3
|
Lucu Č, Turner LM. Ionic regulatory strategies of crabs: the transition from water to land. Front Physiol 2024; 15:1399194. [PMID: 39397859 PMCID: PMC11467477 DOI: 10.3389/fphys.2024.1399194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 10/15/2024] Open
Abstract
Terrestrial crabs (brachyurans and anomurans) have invaded land following a variety of pathways from marine and/or via freshwater environments. This transition from water to land requires physiological, ecological, and behavioral adaptations to allow the exploitation of these new environmental conditions. Arguably, the management of salt and water balance (e.g., osmoregulation) is integral for their survival and success in an environment where predominantly low-salinity aquatic (e.g., freshwater) water sources are found, sometimes in only minimal amounts. This requires a suite of morphological and biochemical modifications, especially at the branchial chamber of semi-terrestrial and terrestrial crabs to allow reprocessing of urine to maximize ion uptake. Using knowledge gained from electrophysiology, biochemistry, and more recent molecular biology techniques, we present summarized updated models for ion transport for all major taxonomic groups of terrestrial crabs. This is an exciting and fast-moving field of research, and we hope that this review will stimulate further study. Terrestrial crabs retain their crown as the ideal model group for studying the evolutionary pathways that facilitated terrestrial invasion.
Collapse
Affiliation(s)
- Čedomil Lucu
- Croatian Academy of Sciences and Arts, Department of Natural Sciences, Zagreb, Croatia
| | - Lucy M. Turner
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
4
|
Boonsanit P, Chanchao C, Pairohakul S. Effects of hypo-osmotic shock on osmoregulatory responses and expression levels of selected ion transport-related genes in the sesarmid crab Episesarma mederi (H. Milne Edwards, 1853). Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111541. [PMID: 37935274 DOI: 10.1016/j.cbpa.2023.111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
This study examined the osmoregulatory responses to hypo-osmotic shock in the commercially and ecologically important crab Episesarma mederi (H. Milne Edwards, 1853). After the acclimation for one week at a salinity of 25 PSU, Adult males E. mederi were immediately exposed to salinities of 5 PSU and 25 PSU (the control group). The time course of changes in haemolymph osmolality, gill Na+/K+ ATPase (NKA) activity, oxygen uptake rates, and mRNA expression levels of ion-transport related genes, including the NKA-α subunit, V-type H+ATPase (VT) and Na+/K+/2Cl-(NKCC), were determined. The results showed that E. mederi was a strong hyperosmoregulator after exposure to 5 PSU, achieved by modulations of NKA activity in their posterior gills rather than the anterior gills. The crabs acclimated to 5 PSU increased oxygen uptake, especially during the initial exposure, reflecting increased energetic costs for osmotic stress responses. In the posterior gills, the NKA activities of the crabs acclimated to 5 PSU at 3, 72 and 168 h were significantly higher than those in the control group. Elevated NKA-α subunit expression levels were detected at 6 h and 12 h. Increased expression levels of VT and NKCC were identified at 6 h and 12 h, respectively. Our results indicate that elevated gill NKA activity at 3 h could result from enzyme activity and kinetic alterations. On the other hand, the gill NKA activity at 72 and 168 h was sustained by elevated NKA-α subunit expression. Hence, these adaptive responses in osmoregulation enable the crabs to withstand hypo-osmotic challenges and thrive in areas of fluctuating salinity in mangroves and estuaries.
Collapse
Affiliation(s)
- Phurich Boonsanit
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supanut Pairohakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Bozza DC, Freire CA, Prodocimo V. A systematic evaluation on the relationship between hypo-osmoregulation and hyper-osmoregulation in decapods of different habitats. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:5-30. [PMID: 37853933 DOI: 10.1002/jez.2757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Decapods occupy all aquatic, and terrestrial and semi-terrestrial environments. According to their osmoregulatory capacity, they can be osmoconformers or osmoregulators (hypo or hyperegulators). The goal of this study is to gather data available in the literature for aquatic decapods and verify if the rare hyporegulatory capacity of decapods is associated with hyper-regulatory capacity. The metric used to quantify osmoregulation was the osmotic capacity (OC), the gradient between external and internal (hemolymph) osmolalities. We employ phylogenetic comparative methods using 83 species of decapods to test the correlation between hyper OC and hypo OC, beyond the ancestral state for osmolality habitat, which was used to reconstruct the colonization route. Our analysis showed a phylogenetic signal for habitat osmolality, hyper OC and hypo OC, suggesting that hyper-hyporegulators decapods occupy similar habitats and show similar hyper and hyporegulatory capacities. Our findings reveal that all hyper-hyporegulators decapods (mainly shrimps and crabs) originated in estuarine waters. Hyper OC and hypo OC are correlated in decapods, suggesting correlated evolution. The analysis showed that species which inhabit environments with intense salinity variation such as estuaries, supratidal and mangrove habitats, all undergo selective pressure to acquire efficient hyper-hyporegulatory mechanisms, aided by low permeabilities. Therefore, hyporegulation can be observed in any colonization route that passes through environments with extreme variations in salinity, such as estuaries or brackish water.
Collapse
Affiliation(s)
- Deivyson Cattine Bozza
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Carolina Arruda Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Prodocimo
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
6
|
Fabri LM, Garçon DP, Moraes CM, Pinto MR, McNamara JC, Leone FA. A kinetic characterization of the gill V(H +)-ATPase from two hololimnetic populations of the Amazon River shrimp Macrobrachium amazonicum. Comp Biochem Physiol B Biochem Mol Biol 2023; 268:110880. [PMID: 37517460 DOI: 10.1016/j.cbpb.2023.110880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
This investigation examines the kinetic characteristics and effect of acclimation to a brackish medium (21 ‰S) on gill V(H+)-ATPase activity in two hololimnetic populations of M. amazonicum. We also investigate the cellular immunolocalization of the enzyme. Immunofluorescence findings demonstrate that the V(H+)-ATPase c-subunit is distributed in the apical pillar cells of shrimps in fresh water but is absent after acclimation to 21 ‰S for 10 days. V(H+)-ATPase activity from the Tietê River population is ≈50% greater than the Grande River population, comparable to a wild population from the Santa Elisa Reservoir, but is 2-fold less than in cultivated shrimps. V(H+)-ATPase activity in the Tietê and the Grande River shrimps is abolished after 21 ‰S acclimation. The apparent affinities of the V(H+)-ATPase for ATP (0.27 ± 0.04 and 0.16 ± 0.03 mmol L-1, respectively) and Mg2+ (0.28 ± 0.05 and 0.14 ± 0.02 mmol L-1, respectively) are similar in both populations. The absence of V(H+)-ATPase activity in salinity-acclimated shrimps and its apical distribution in shrimps in fresh water underpins the importance of the crustacean V(H+)-ATPase for ion uptake in fresh water.
Collapse
Affiliation(s)
- Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Daniela P Garçon
- Universidade Federal do Triângulo Mineiro, Campus Universitário de Iturama, 38280-000, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Marcelo R Pinto
- Laboratory of Biopathology and Molecular Biology, University of Uberaba, Uberaba, Minas Gerais, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, 11000-600, Brazil. https://twitter.com/maracoani
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.
| |
Collapse
|
7
|
Tresguerres M, Kwan GT, Weinrauch A. Evolving views of ionic, osmotic and acid-base regulation in aquatic animals. J Exp Biol 2023; 226:jeb245747. [PMID: 37522267 DOI: 10.1242/jeb.245747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The regulation of ionic, osmotic and acid-base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research.
Collapse
Affiliation(s)
- Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Garfield T Kwan
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Alyssa Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| |
Collapse
|
8
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
9
|
Ip YK, Leong CWQ, Boo MV, Wong WP, Lam SH, Chew SF. Evidence for the involvement of branchial Vacuolar-type H +-ATPase in the acidification of the external medium by the West African lungfish, Protopterus annectens, exposed to ammonia-loading conditions. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111297. [PMID: 35987338 DOI: 10.1016/j.cbpa.2022.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
African lungfishes are obligatory air-breathers with exceptionally high environmental ammonia tolerance. They can lower the pH of the external medium during exposure to ammonia-loading conditions. This study aimed to demonstrate the possible involvement of branchial vacuolar-type H+-ATPase (Vha) in the ammonia-induced acidification of the external medium by the West African lungfish, Protopterus annectens, and to examine whether its capacity to acidify the medium could be augmented after exposure to 100 mmol l-1 NH4Cl for six days. Two full coding cDNA sequences of Vha subunit B (atp6v1b), atp6v1b1 and atp6v1b2, were obtained from the internal gills of P. annectens. The sequence of atp6v1b1 comprised 1548 bp, encoding 515 amino acids (57.4 kDa), while that of atp6v1b2 comprised 1536 bp, encoding 511 amino acids (56.6 kDa). Using a custom-made antibody reactive to both isoforms, immunofluorescence microscopy revealed the collective localization of Atp6v1b (atp6v1b1 and atp6v1b2) at the apical or the basolateral membrane of two different types of branchial Na+/K+-ATPase-immunoreactive ionocyte. The ionocytes labelled apically with Atp6v1b presumably expressed Atp6v1b1 containing a PDZ-binding domain, indicating that the apical Vha was positioned to transport H+ to the external medium. The expression of Atp6v1b was regulated post-transcriptionally, as the protein abundance of Atp6v1b and Vha activity increased significantly in the gills of fish exposed to 100 mmol l-1 NH4Cl for six days. Correspondingly, the fish exposed to ammonia had a greater capacity to acidify the external medium, presumably to decrease the ratio of [NH3] to [NH4+] in order to reduce the influx of exogenous NH3.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| | - Charmaine W Q Leong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Siew H Lam
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| |
Collapse
|
10
|
Tseng KY, Tsai JR, Lin HC. A Multi-Species Comparison and Evolutionary Perspectives on Ion Regulation in the Antennal Gland of Brachyurans. Front Physiol 2022; 13:902937. [PMID: 35721559 PMCID: PMC9201427 DOI: 10.3389/fphys.2022.902937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Brachyurans inhabit a variety of habitats and have evolved diverse osmoregulatory patterns. Gills, antennal glands and a lung-like structure are important organs of crabs that maintain their homeostasis in different habitats. Species use different processes to regulate ions in the antennal gland, especially those with high terrestriality such as Grapsoidea and Ocypodoidea. Our phylogenetic generalized least square (PGLS) result also suggested that there is a correlation between antennal gland NKA activity and urine-hemolymph ratio for Na+ concentration in hypo-osmotic environments among crabs. Species with higher antennal gland NKA activity showed a lower urine-hemolymph ratio for Na+ concentration under hypo-osmotic stress. These phenomenon may correlate to the structural and functional differences in gills and lung-like structure among crabs. However, a limited number of studies have focused on the structural and functional differences in the antennal gland among brachyurans. Integrative and systemic methods like next generation sequencing and proteomics method can be useful for investigating the differences in multi-gene expression and sequences among species. These perspectives can be combined to further elucidate the phylogenetic history of crab antennal glands.
Collapse
Affiliation(s)
- Kuang-Yu Tseng
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Jyuan-Ru Tsai
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Hui-Chen Lin
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Center for Ecology and Environment, Tunghai University, Taichung, Taiwan
- *Correspondence: Hui-Chen Lin,
| |
Collapse
|
11
|
Gao J, Xu G, Xu P. Whole-genome resequencing of three Coilia nasus population reveals genetic variations in genes related to immune, vision, migration, and osmoregulation. BMC Genomics 2021; 22:878. [PMID: 34872488 PMCID: PMC8647404 DOI: 10.1186/s12864-021-08182-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background Coilia nasus is an important anadromous fish, widely distributed in China, Japan, and Korea. Based on morphological and ecological researches of C. nasus, two ecotypes were identified. One is the anadromous population (AP). The sexually mature fish run thousands of kilometers from marine to river for spawning. Another one is the resident population which cannot migrate. Based on their different habitats, they were classified into landlocked population (LP) and sea population (SP) which were resident in the freshwater lake and marine during the entire lifetime, respectively. However, they have never been systematically studied. Moreover, C. nasus is declining sharply due to overfishing and pollution recently. Therefore, further understandings of C. nasus populations are needed for germplasm protection. Results Whole-genome resequencing of AP, LP, and SP were performed to enrich the understanding of different populations of C. nasus. At the genome level, 3,176,204, 3,307,069, and 3,207,906 single nucleotide polymorphisms (SNPs) and 1,892,068, 2,002,912, and 1,922,168 insertion/deletion polymorphisms (InDels) were generated in AP, LP, and SP, respectively. Selective sweeping analysis showed that 1022 genes were selected in AP vs LP; 983 genes were selected in LP vs SP; 116 genes were selected in AP vs SP. Among them, selected genes related to immune, vision, migration, and osmoregulation were identified. Furthermore, their expression profiles were detected by quantitative real-time PCR. Expression levels of selected genes related to immune, and vision in LP were significantly lower than AP and SP. Selected genes related to migration in AP were expressed significantly more highly than LP. Expression levels of selected genes related to osmoregulation were also detected. The expression of NKAα and NKCC1 in LP were significantly lower than SP, while expression of NCC, SLC4A4, NHE3, and V-ATPase in LP was significantly higher than SP. Conclusions Combined to life history of C. nasus populations, our results revealed that the molecular mechanisms of their differences of immune, vision, migration, and osmoregulation. Our findings will provide a further understanding of different populations of C. nasus and will be beneficial for wild C. nasus protection. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08182-0.
Collapse
Affiliation(s)
- Jun Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, Jiangsu, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, Jiangsu, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, Jiangsu, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, Jiangsu, China.
| |
Collapse
|
12
|
Lee CE. Ion Transporter Gene Families as Physiological Targets of Natural Selection During Salinity Transitions in a Copepod. Physiology (Bethesda) 2021; 36:335-349. [PMID: 34704854 DOI: 10.1152/physiol.00009.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Salinity is a key factor that structures biodiversity on the planet. With anthropogenic change, such as climate change and species invasions, many populations are facing rapid and dramatic changes in salinity throughout the globe. Studies on the copepod Eurytemora affinis species complex have implicated ion transporter gene families as major loci contributing to salinity adaptation during freshwater invasions. Laboratory experiments and population genomic surveys of wild populations have revealed evolutionary shifts in genome-wide gene expression and parallel genomic signatures of natural selection during independent salinity transitions. Our results suggest that balancing selection in the native range and epistatic interactions among specific ion transporter paralogs could contribute to parallel freshwater adaptation. Overall, these studies provide unprecedented insights into evolutionary mechanisms underlying physiological adaptation during rapid salinity change.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
13
|
Silver S, Donini A. Physiological responses of freshwater insects to salinity: molecular-, cellular- and organ-level studies. J Exp Biol 2021; 224:272480. [PMID: 34652452 DOI: 10.1242/jeb.222190] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Salinization of freshwater is occurring throughout the world, affecting freshwater biota that inhabit rivers, streams, ponds, marshes and lakes. There are many freshwater insects, and these animals are important for ecosystem health. These insects have evolved physiological mechanisms to maintain their internal salt and water balance based on a freshwater environment that has comparatively little salt. In these habitats, insects must counter the loss of salts and dilution of their internal body fluids by sequestering salts and excreting water. Most of these insects can tolerate salinization of their habitats to a certain level; however, when exposed to salinization they often exhibit markers of stress and impaired development. An understanding of the physiological mechanisms for controlling salt and water balance in freshwater insects, and how these are affected by salinization, is needed to predict the consequences of salinization for freshwater ecosystems. Recent research in this area has addressed the whole-organism response, but the purpose of this Review is to summarize the effects of salinization on the osmoregulatory physiology of freshwater insects at the molecular to organ level. Research of this type is limited, and pursuing such lines of inquiry will improve our understanding of the effects of salinization on freshwater insects and the ecosystems they inhabit.
Collapse
Affiliation(s)
- Sydney Silver
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Andrew Donini
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
14
|
Maraschi AC, Faria SC, McNamara JC. Salt transport by the gill Na -K -2Cl symporter in palaemonid shrimps: exploring physiological, molecular and evolutionary landscapes. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110968. [DOI: 10.1016/j.cbpa.2021.110968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
|
15
|
Morris C, O'Donnell MJ. Vacuolar H+-ATPase and Na+/K+-ATPase energize Na+ uptake mechanisms in the nuchal organ of the hyperregulating freshwater crustacean Daphnia magna. J Exp Biol 2021; 224:269112. [PMID: 34115859 DOI: 10.1242/jeb.242205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/06/2021] [Indexed: 11/20/2022]
Abstract
The nuchal organ of the embryos and neonates of the cladoceran, Daphnia magna, has been shown to be a site of Na+ influx and H+, NH4+ and Cl- efflux. This study combines the scanning ion-selective electrode technique with application of inhibitors of specific transporters to assess the mechanisms of Na+ transport across the nuchal organ. Na+ influx across the nuchal organ was inhibited both by inhibitors of the Na+/K+-ATPase (ouabain, bufalin) and by inhibitors of the vacuolar H+-ATPase (bafilomycin, N-ethylmaleimde, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, KM91104, S-nitrosoglutathione). Na+ influx was unaffected by the epithelial Na+ channel blocker benzamil, but was sensitive to ethylisopropyl amiloride and elevated external ammonium concentrations, consistent with roles for Na+/H+ and Na+/NH4+ exchangers in the apical membrane but not Na+ channels. Transport across the basolateral membrane into the haemolymph is proposed to involve the Na+/K+-ATPase and a thiazide-sensitive Na+/Cl- cotransporter.
Collapse
Affiliation(s)
- Carolyn Morris
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | | |
Collapse
|
16
|
Osmoregulatory power influences tissue ionic composition after salinity acclimation in aquatic decapods. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111001. [PMID: 34098129 DOI: 10.1016/j.cbpa.2021.111001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Decapod crustaceans show variable degrees of euryhalinity and osmoregulatory capacity, by responding to salinity changes through anisosmotic extracellular regulation and/or cell volume regulation. Cell volume regulatory mechanisms involve exchange of inorganic ions between extra- and intra-cellular (tissue) compartments. Here, this interplay of inorganic ions between both compartments has been evaluated in four decapod species with distinct habitats and osmoregulatory strategies. The marine/estuarine species Litopenaeus vannamei (Lv) and Callinectes danae (Cd) were submitted to reduced salinity (15‰), after acclimation to 25 and 30‰, respectively. The freshwater Macrobrachium acanthurus (Ma) and Aegla schmitti (As) were submitted to increased salinity (25‰). The four species were salinity-challenged for both 5 and 10 days. Hemolymph osmolality, sodium, chloride, potassium, and magnesium were assayed. The same inorganic ions were quantified in muscle samples. Muscle hydration (MH) and ninhydrin-positive substances (NPS) were also determined. Lv showed slight hemolymph dilution, increased MH and no osmotically-relevant decreases in muscle osmolytes; Cd displayed hemolymph dilution, decreased muscular NaCl and stable MH; Ma showed hypo-regulation and steady MH, with no change in muscle ions; As conformed hemolymph sodium but hypo-regulated chloride, had stable MH and increased muscle NPS and ion levels. Hemolymph and muscle ions (especially chloride) of As were highly correlated (Pearson, +0.83). Significant exchanges between hemolymph and muscle ionic pools were more evident in the two species with comparatively less AER regulatory power, C. danae and A. schmitti. Our findings endorse that the interplay between extracellular and tissue ionic pools is especially detectable in euryhaline species with relatively lower osmoregulatory strength.
Collapse
|
17
|
Morris C, Val AL, Brauner CJ, Wood CM. The physiology of fish in acidic waters rich in dissolved organic carbon, with specific reference to the Amazon basin: Ionoregulation, acid-base regulation, ammonia excretion, and metal toxicity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:843-863. [PMID: 33970558 DOI: 10.1002/jez.2468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/06/2022]
Abstract
Although blackwaters, named for their rich content of dissolved organic carbon (DOC), are often very poor in ions and very acidic, they support great fish biodiversity. Indeed, about 8% of all freshwater fish species live in the blackwaters of the Rio Negro watershed in the Amazon basin. We review how native fish survive these harsh conditions that would kill most freshwater fish, with a particular focus on the role of DOC, a water quality parameter that has been relatively understudied. DOC, which is functionally defined by its ability to pass through a 0.45-µm filter, comprises a diverse range of compounds formed by the breakdown of organic matter and is quantified by its carbon component that is approximately 50% by mass. Adaptations of fish to acidic blackwaters include minimal acid-base disturbances associated with a unique, largely unknown, high-affinity Na+ uptake system that is resistant to inhibition by low pH in members of the Characiformes, and very tight regulation of Na+ efflux at low pH in the Cichliformes. Allochthonous (terrigenous) DOC, which predominates in blackwaters, consists of larger, more highly colored, reactive molecules than autochthonous DOC. The dissociation of protons from allochthonous components such as humic and fulvic acids is largely responsible for the acidity of these blackwaters, yet at the same time, these components may help protect organisms against the damaging effects of low water pH. DOC lowers the transepithelial potential (TEP), mitigates the inhibition of Na+ uptake and ammonia excretion, and protects against the elevation of diffusive Na+ loss in fish exposed to acidic waters. It also reduces the gill binding and toxicity of metals. At least in part, these actions reflect direct biological effects of DOC on the gills that are beneficial to ionoregulation. After chronic exposure to DOC, some of these protective effects persist even in the absence of DOC. Two characteristics of allochthonous DOC, the specific absorbance coefficient at 340 nm (determined optically) and the PBI (determined by titration), are indicative of both the biological effectiveness of DOC and the ability to protect against metal toxicity. Future research needs are highlighted, including a greater mechanistic understanding of the actions of DOCs on gill ionoregulatory function, morphology, TEP, and metal toxicity. These should be investigated in a wider range of native fish Orders that inhabit one of the world's greatest biodiversity hotspots for freshwater fishes.
Collapse
Affiliation(s)
- Carolyn Morris
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| |
Collapse
|
18
|
Arumugam S, Palani S, Subramanian M, Varadharajan G. Ultrastructural alteration in Gill and Hepatopancrease of freshwater prawn Macrobrachium rosenbergii exposed to 60Co gamma radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11348-11356. [PMID: 33123885 DOI: 10.1007/s11356-020-11394-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The present study was designed to evaluate the impact of gamma radiation (60Co) on freshwater prawn Macrobrachium rosenbergii by using electron microscopic (SEM, TEM) studies. One set of prawns (experimental group) was irradiated (3, 30, 300, and 3000 mGy) by Theratron Phoenix TeleCobalt Unit [P-33], while other set of prawns (control group) was maintained (non-irradiated) separately. Scanning electron microscopic observations of gills and hepatopancreas showed fused and swollen lamella, abnormal gill tips, wrinkled lamellar epithelium, and necrotic epithelium surface in irradiated groups, while no such abnormalities were obvious in the control group. Transmission electron microscopic studies showed damaged nucleus, granulated mitochondria, vacuoles with crystalline granular inclusions, destructed membrane, vacuoles filled with granules, rough endoplasmic reticulum with residual bodies, shrunken mitochondria, dilated rough endoplasmic reticulum, and dilated cisternae of the Golgi body in irradiated groups. The structural abnormalities of vital organs could affect physiological functions such as respiration, osmo-ionic regulation and storage, secretion of the gills, and hepatopancreas, which in turn could adversely affect the growth and survivability of M. rosenbergii.
Collapse
Affiliation(s)
- Stalin Arumugam
- P.G. and Research Department of Zoology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620001, India.
| | - Suganthi Palani
- P.G. and Research Department of Zoology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620001, India
| | - Mathivani Subramanian
- P.G. and Research Department of Zoology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620001, India
| | - Gokula Varadharajan
- P.G. and Research Department of Zoology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620001, India
| |
Collapse
|
19
|
Mantovani M, McNamara JC. Contrasting strategies of osmotic and ionic regulation in freshwater crabs and shrimps: gene expression of gill ion transporters. J Exp Biol 2021; 224:jeb233890. [PMID: 33443071 DOI: 10.1242/jeb.233890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Owing to their extraordinary niche diversity, the Crustacea are ideal for comprehending the evolution of osmoregulation. The processes that effect systemic hydro-electrolytic homeostasis maintain hemolymph ionic composition via membrane transporters located in highly specialized gill ionocytes. We evaluated physiological and molecular hyper- and hypo-osmoregulatory mechanisms in two phylogenetically distant, freshwater crustaceans, the crab Dilocarcinus pagei and the shrimp Macrobrachium jelskii, when osmotically challenged for up to 10 days. When in distilled water, D. pagei survived without mortality, hemolymph osmolality and [Cl-] increased briefly, stabilizing at initial values, while [Na+] decreased continually. Expression of gill V-type H+-ATPase (V-ATPase), Na+/K+-ATPase and Na+/K+/2Cl- symporter genes was unchanged. In M. jelskii, hemolymph osmolality, [Cl-] and [Na+] decreased continually for 12 h, the shrimps surviving only around 15-24 h exposure. Gill transporter gene expression increased 2- to 5-fold. After 10 days exposure to brackish water (25‰S), D. pagei was isosmotic, iso-chloremic and iso-natriuremic. Gill V-ATPase expression decreased while Na+/K+-ATPase and Na+/K+/2Cl- symporter expression was unchanged. In M. jelskii (20‰S), hemolymph was hypo-regulated, particularly [Cl-]. Transporter expression initially increased 3- to 12-fold, declining to control values. Gill V-ATPase expression underlies the ability of D. pagei to survive in fresh water while V-ATPase, Na+/K+-ATPase and Na+/K+/2Cl- symporter expression enables M. jelskii to confront hyper/hypo-osmotic challenges. These findings reveal divergent responses in two unrelated crustaceans inhabiting a similar osmotic niche. While D. pagei does not secrete salt, tolerating elevated cellular isosmoticity, M. jelskii exhibits clear hypo-osmoregulatory ability. Each species has evolved distinct strategies at the transcriptional and systemic levels during its adaptation to fresh water.
Collapse
Affiliation(s)
- Milene Mantovani
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - John Campbell McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| |
Collapse
|
20
|
Osmotic and ionic regulation, and modulation by protein kinases, FXYD2 peptide and ATP of gill (Na+, K+)-ATPase activity, in the swamp ghost crab Ucides cordatus (Brachyura, Ocypodidae). Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110507. [DOI: 10.1016/j.cbpb.2020.110507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022]
|
21
|
Kennard AS, Theriot JA. Osmolarity-independent electrical cues guide rapid response to injury in zebrafish epidermis. eLife 2020; 9:e62386. [PMID: 33225997 PMCID: PMC7721437 DOI: 10.7554/elife.62386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/17/2020] [Indexed: 01/02/2023] Open
Abstract
The ability of epithelial tissues to heal after injury is essential for animal life, yet the mechanisms by which epithelial cells sense tissue damage are incompletely understood. In aquatic organisms such as zebrafish, osmotic shock following injury is believed to be an early and potent activator of a wound response. We find that, in addition to sensing osmolarity, basal skin cells in zebrafish larvae are also sensitive to changes in the particular ionic composition of their surroundings after wounding, specifically the concentration of sodium chloride in the immediate vicinity of the wound. This sodium chloride-specific wound detection mechanism is independent of cell swelling, and instead is suggestive of a mechanism by which cells sense changes in the transepithelial electrical potential generated by the transport of sodium and chloride ions across the skin. Consistent with this hypothesis, we show that electric fields directly applied within the skin are sufficient to initiate actin polarization and migration of basal cells in their native epithelial context in vivo, even overriding endogenous wound signaling. This suggests that, in order to mount a robust wound response, skin cells respond to both osmotic and electrical perturbations arising from tissue injury.
Collapse
Affiliation(s)
- Andrew S Kennard
- Biophysics Program, Stanford UniversityStanfordUnited States
- Department of Biology and Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
22
|
Freire CA, Cuenca AL, Leite RD, Prado AC, Rios LP, Stakowian N, Sampaio FD. Biomarkers of homeostasis, allostasis, and allostatic overload in decapod crustaceans of distinct habitats and osmoregulatory strategies: an empirical approach. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110750. [DOI: 10.1016/j.cbpa.2020.110750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
|
23
|
Ion regulation in the antennal glands differs among Ocypodoidea and Grapsoidea crab species. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110753. [PMID: 32653510 DOI: 10.1016/j.cbpa.2020.110753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/21/2022]
Abstract
Gills and the antennal gland are ion-regulatory organs in crabs. Previous studies have suggested that the differences in the morphology and ion regulation of gills and accessory respiratory organs between ocypodid and grapsid species are related to their distinct evolutionary transition to land habitats. In addition, Na+, K+-ATPase (NKA) activity and Na+ and NH4+ regulation in the antennal gland differ between ocypodid and grapsid species, which had different terrestrial adaptation trajectories. This study used five Ocypodoidea species and three Grapsoidea species from the intertidal and supratidal zones to further investigate the differences in ion regulation and NKA activity in the antennal gland between these crab families in different habitats. Crabs were transferred to 5 practical salinity unit (PSU) water, and osmolality, Na+ and Cl- concentrations in the urine and hemolymph, and NKA activity in the antennal gland were examined. Phylogenetic ANOVA results showed that the NKA activity in the antennal gland was higher in the ocypodid than grapsid groups, and Moran's I autocorrelation analysis also indicated that NKA activity in the antennal gland was phylogenetically correlated among crabs. K-means clustering showed a difference among the crabs in the crabs' Na+ and Cl- concentrations in the urine/hemolymph, NKA activities in the antennal gland and gill 6, and number of pairs of gills. Crabs with relatively high antennal gland NKA activity were found not only in the Ocypode species, which are better adapted to terrestrial environments, but also in two intertidal species of Gelasiminae. In conclusion, part of the Ocypodidae lineage may have a) the ability to reabsorb Na+ and b) higher NKA activity in the antennal gland than other families, and this phenomenon is phylogenetically correlated in Ocypodoidea and Grapsoidea. The physiological diversity in osmoregulation among intertidal and costal species provides a base to further investigate their ecological niches and guilds.
Collapse
|
24
|
Esbaugh AJ, Brix KV, Grosell M. Na + K + ATPase isoform switching in zebrafish during transition to dilute freshwater habitats. Proc Biol Sci 2020; 286:20190630. [PMID: 31113326 DOI: 10.1098/rspb.2019.0630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Na+ K+ ATPase (NKA) is crucial to branchial ion transport as it uses the energy from ATP to move Na+ against its electrochemical gradient. When fish encounter extremely dilute environments the energy available from ATP hydrolysis may not be sufficient to overcome thermodynamic constraints on ion transport. Yet many fish species-including zebrafish-are capable of surviving in dilute environments. Despite much study, the physiological mechanisms by which this occurs remain poorly understood. Here, we demonstrate that zebrafish acclimated to less than 10 µM Na+ water exhibit upregulation of a specific NKA α subunit ( zatp1a1a.5) that, unlike most NKA heterotrimers, would result in transfer of only a single Na+ and K+ per ATP hydrolysis reaction. Thermodynamic models demonstrate that this change is sufficient to reduce the activation energy of NKA, allowing it to overcome the adverse electrochemical gradient imposed by dilute freshwater. Importantly, upregulation of zatp1a1a.5 also coincides with the recovery of whole body Na+ post-transfer, which occurs within 24 h. While these structural modifications are crucial for allowing zebrafish to survive in ion-poor environments, phylogenetic and structural analysis of available α subunits from a range of teleosts suggests this adaptation is not widely distributed.
Collapse
Affiliation(s)
- Andrew J Esbaugh
- 1 Department of Marine Science, University of Texas Marine Science Institute, University of Texas at Austin , Austin, TX , USA
| | - Kevin V Brix
- 2 Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami , Coral Gables, FL , USA
| | - Martin Grosell
- 2 Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami , Coral Gables, FL , USA
| |
Collapse
|
25
|
Ho PT, Rhee H, Kim J, Seo C, Park JK, Young CR, Won YJ. Impacts of Salt Stress on Locomotor and Transcriptomic Responses in the Intertidal Gastropod Batillaria attramentaria. THE BIOLOGICAL BULLETIN 2019; 236:224-241. [PMID: 31167089 DOI: 10.1086/703186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Salinity is one of the most crucial environmental factors that structures biogeographic boundaries of aquatic organisms, affecting distribution, abundance, and behavior. However, the association between behavior and gene regulation underlying acclimation to changes in salinity remains poorly understood. In this study, we investigated the effects of salinity stress on behavior (movement distance) and patterns of gene expression (using RNA sequencing) of the intertidal gastropod Batillaria attramentaria. We examined responses to short-term (1-hour) and long-term (30-day) acclimation to a range of salinities (43, 33 [control], 23, 13, and 3 psu). We found that the intertidal B. attramentaria is able to tolerate a broad range of salinity from 13 to 43 psu but not the acute low salinity of 3 psu. Behavioral experiments showed that salt stress significantly influenced snails' movement, with lower salinity resulting in shorter movement distance. Transcriptomic analyses revealed critical metabolic pathways and genes potentially involved in acclimation to salinity stress, including ionic and osmotic regulation, signal and hormonal transduction pathways, water exchange, cell protection, and gene regulation or epigenetic modification. In general, our study presents a robust, integrative laboratory-based approach to investigate the effects of salt stress on a nonmodel gastropod facing detrimental consequences of environmental change. The current genetic results provide a wealth of reference data for further research on mechanisms of ionic and osmotic regulation and adaptive evolution of this coastal gastropod.
Collapse
Key Words
- AICC, corrected Akaike Information Criterion
- ATP, adenosine triphosphate
- DEG, differentially expressed gene
- FAA, free amino acid
- FDR, false discovery rate
- GABA, gamma-aminobutyric acid
- Hsp, heat shock protein
- LMM, linear mixed-effects model
- MDS, multidimensional scaling
- RNA-Seq, RNA sequencing.
- fc, fold change
Collapse
|
26
|
Fabri LM, Lucena MN, Garçon DP, Moraes CM, McNamara JC, Leone FA. Kinetic characterization of the gill (Na+, K+)-ATPase in a hololimnetic population of the diadromous Amazon River shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). Comp Biochem Physiol B Biochem Mol Biol 2019; 227:64-74. [DOI: 10.1016/j.cbpb.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
|
27
|
dos Santos CCM, da Costa JFM, dos Santos CRM, Amado LL. Influence of seasonality on the natural modulation of oxidative stress biomarkers in mangrove crab Ucides cordatus (Brachyura, Ucididae). Comp Biochem Physiol A Mol Integr Physiol 2019; 227:146-153. [DOI: 10.1016/j.cbpa.2018.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
|
28
|
Nogueira LS, Bianchini A. Disturbance in Na + regulation in cells rich in mitochondria isolated from gills of the yellow clam Mesodesma mactroides exposed to copper under different osmotic conditions. MARINE ENVIRONMENTAL RESEARCH 2018; 140:152-159. [PMID: 29929735 DOI: 10.1016/j.marenvres.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Cells rich in mitochondria were isolated from gills of the seawater clam Mesodesma mactroides, incubated in isosmotic saline solution (840 mOsmol/kg H2O), and exposed (3 h) to environmentally realistic Cu concentrations (nominally: 0, 5, 9 and 20 μg/L). In cells exposed to 20 μg Cu/L, Cu accumulation, Na+ content reduction and carbonic anhydrase (CA) activity inhibition were observed, without significant changes in cell viability and Na+,K+-ATPase (NKA) activity. In the absence of Cu, cell viability and Cu content were reduced in hyposmotic media respect with the control, without changes in Na+ content and enzyme (CA and NKA) activities. In the presence of 5 or 9 μg/L Cu, cell Cu content was increased, especially at 670 mOsmol/kg H2O. Cell Na+ content and NKA activity were reduced after exposure to 20 μg/L Cu at 670 mOsmol/kg H2O. In turn, CA activity was dependent on Cu concentration, being significantly reduced in cells exposed to 9 and 20 μg/L Cu in both hyposmotic conditions. These findings indicate that Cu also negatively affects Na+ regulation in gill cells of the seawater clam M. mactroides, with Cu toxicity increasing at hyposmotic conditions. Also, they indicate that physiology is more important than water chemistry in predicting Cu toxicity in environments of changing salinity, pointing out CA activity as a potential biomarker of Cu exposure.
Collapse
Affiliation(s)
- Lygia S Nogueira
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil.
| | - Adalto Bianchini
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Faleiros RO, Garçon DP, Lucena MN, McNamara JC, Leone FA. Short- and long-term salinity challenge, osmoregulatory ability, and (Na +, K +)-ATPase kinetics and α-subunit mRNA expression in the gills of the thinstripe hermit crab Clibanarius symmetricus (Anomura, Diogenidae). Comp Biochem Physiol A Mol Integr Physiol 2018; 225:16-25. [PMID: 29932975 DOI: 10.1016/j.cbpa.2018.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022]
Abstract
The evolutionary history of the Crustacea reveals ample adaptive radiation and the subsequent occupation of many osmotic niches resulting from physiological plasticity in their osmoregulatory mechanisms. We evaluate osmoregulatory ability in the intertidal, thinstripe hermit crab Clibanarius symmetricus after short-term exposure (6 h) or long-term acclimation (10 days) to a wide salinity range, also analyzing kinetic behavior and α-subunit mRNA expression of the gill (Na+, K+)-ATPase. The crab strongly hyper-regulates its hemolymph at 5 and 15‰S (Salinity, g L-1) but weakly hyper-regulates up to ≈27‰S. After 6 h exposure to 35‰S and 45‰S, C. symmetricus slightly hypo-regulates its hemolymph, becoming isosmotic after 10 days acclimation to these salinities. (Na+, K+)-ATPase specific activity decreases with increasing salinity for both exposure periods, reflecting physiological adjustment to isosmoticity. At low salinities, the gill enzyme exhibits a single, low affinity ATP binding site. However, at elevated salinities, a second, high affinity, ATP binding site appears, independently of exposure time. (Na+, K+)-ATPase α-subunit mRNA expression increases only after 10 days acclimation to 5‰S. Our findings suggest that hemolymph hyper-regulation is effected by alterations in enzyme activity during short-term exposure, but is sustained by increased mRNA expression during long-term acclimation. The decrease in gill (Na+, K+)-ATPase activity seen as a consequence of increasing salinity appears to underlie biochemical adjustments to hemolymph isosmoticity as hypo-regulatory ability diminishes.
Collapse
Affiliation(s)
- Rogério O Faleiros
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Unidade Acadêmica Especial de Ciências Biológicas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | - Daniela P Garçon
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Universidade Federal do Triângulo Mineiro, Iturama 38280-000, MG, Brazil
| | - Malson N Lucena
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião 11000-600, SP, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| |
Collapse
|
30
|
Gene silencing reveals multiple functions of Na +/K +-ATPase in the salmon louse (Lepeophtheirus salmonis). Exp Parasitol 2018; 185:79-91. [PMID: 29339143 DOI: 10.1016/j.exppara.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/23/2017] [Accepted: 01/03/2018] [Indexed: 11/20/2022]
Abstract
Na+/K+-ATPase has a key function in a variety of physiological processes including membrane excitability, osmoregulation, regulation of cell volume, and transport of nutrients. While knowledge about Na+/K+-ATPase function in osmoregulation in crustaceans is extensive, the role of this enzyme in other physiological and developmental processes is scarce. Here, we report characterization, transcriptional distribution and likely functions of the newly identified L. salmonis Na+/K+-ATPase (LsalNa+/K+-ATPase) α subunit in various developmental stages. The complete mRNA sequence was identified, with 3003 bp open reading frame encoding a putative protein of 1001 amino acids. Putative protein sequence of LsalNa+/K+-ATPase revealed all typical features of Na+/K+-ATPase and demonstrated high sequence identity to other invertebrate and vertebrate species. Quantitative RT-PCR analysis revealed higher LsalNa+/K+-ATPase transcript level in free-living stages in comparison to parasitic stages. In situ hybridization analysis of copepodids and adult lice revealed LsalNa+/K+-ATPase transcript localization in a wide variety of tissues such as nervous system, intestine, reproductive system, and subcuticular and glandular tissue. RNAi mediated knock-down of LsalNa+/K+-ATPase caused locomotion impairment, and affected reproduction and feeding. Morphological analysis of dsRNA treated animals revealed muscle degeneration in larval stages, severe changes in the oocyte formation and maturation in females and abnormalities in tegmental glands. Thus, the study represents an important foundation for further functional investigation and identification of physiological pathways in which Na+/K+-ATPase is directly or indirectly involved.
Collapse
|
31
|
Wood CM, Gonzalez RJ, Ferreira MS, Braz-Mota S, Val AL. The physiology of the Tambaqui (Colossoma macropomum) at pH 8.0. J Comp Physiol B 2017; 188:393-408. [DOI: 10.1007/s00360-017-1137-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/05/2017] [Accepted: 11/17/2017] [Indexed: 12/20/2022]
|
32
|
Faleiros RO, Furriel RP, McNamara JC. Transcriptional, translational and systemic alterations during the time course of osmoregulatory acclimation in two palaemonid shrimps from distinct osmotic niches. Comp Biochem Physiol A Mol Integr Physiol 2017; 212:97-106. [DOI: 10.1016/j.cbpa.2017.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022]
|
33
|
Lucu Č, Ziegler A. The effects of hypoxia on active ionic transport processes in the gill epithelium of hyperregulating crab, Carcinus maneas. Comp Biochem Physiol A Mol Integr Physiol 2017. [PMID: 28629793 DOI: 10.1016/j.cbpa.2017.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Effects of hypoxia on the osmorespiratory functions of the posterior gills of the shore crab Carcinus maenas acclimated to 12ppt seawater (DSW) were studied. Short-circuit current (Isc) across the hemilamella (one epithelium layer supported by cuticle) was substantially reduced under exposure to 1.6, 2.0, or 2.5mg O2/L hypoxic saline (both sides of epithelium) and fully recovered after reoxygenation. Isc was reduced equally in the epithelium exposed to 1.6mg O2/L on both sides and when the apical side was oxygenated and the basolateral side solely exposed to hypoxia. Under 1.6mg O2/L, at the level of maximum inhibition of Isc, conductance was decreased from 40.0mScm-2 to 34.7mScm-2 and fully recovered after reoxygenation. Isc inhibition under hypoxia and reduced 86Rb+ (K+) fluxes across apically located K+ channels were caused preferentially by reversible inhibition of basolaterally located and ouabain sensitive Na+,K+-ATPase mediated electrogenic transport. Reversible inhibition of Isc is discussed as decline in active transport energy supply down regulating metabolic processes and saving energy during oxygen deprivation. In response to a 4day exposure of Carcinus to 2.0mg O2/L, hemolymph Na+ and Cl- concentration decreased, i.e. hyperosmoregulation was weakened. Variations of the oxygen concentration level and exposure time to hypoxia lead to an increase of the surface of mitochondria per epithelium area and might in part compensate for the decrease in oxygen availability under hypoxic conditions.
Collapse
Affiliation(s)
- Čedomil Lucu
- Alfred Wegener- Institute Helmholtz Center for Polar and Marine Research Wadden Sea Station/List/Sylt, Germany; Institute Ruđer Bošković, Center for Marine Research Rovinj, Zagreb, Croatia.
| | - Andreas Ziegler
- Central Facility for Electron Microscopy University of Ulm, A. Einstein Alee 11, 89069 Ulm, Germany
| |
Collapse
|
34
|
Foguesatto K, Boyle RT, Rovani MT, Freire CA, Souza MM. Aquaporin in different moult stages of a freshwater decapod crustacean: Expression and participation in muscle hydration control. Comp Biochem Physiol A Mol Integr Physiol 2017; 208:61-69. [DOI: 10.1016/j.cbpa.2017.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 02/02/2023]
|
35
|
Griffith MB. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: Teleost fish, crustacea, aquatic insects, and Mollusca. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:576-600. [PMID: 27808448 PMCID: PMC6114146 DOI: 10.1002/etc.3676] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/11/2016] [Accepted: 11/01/2016] [Indexed: 05/21/2023]
Abstract
Anthropogenic sources increase freshwater salinity and produce differences in constituent ions compared with natural waters. Moreover, ions differ in physiological roles and concentrations in intracellular and extracellular fluids. Four freshwater taxa groups are compared, to investigate similarities and differences in ion transport processes and what ion transport mechanisms suggest about the toxicity of these or other ions in freshwater. Although differences exist, many ion transporters are functionally similar and may belong to evolutionarily conserved protein families. For example, the Na+ /H+ -exchanger in teleost fish differs from the H+ /2Na+ (or Ca2+ )-exchanger in crustaceans. In osmoregulation, Na+ and Cl- predominate. Stenohaline freshwater animals hyperregulate until they are no longer able to maintain hypertonic extracellular Na+ and Cl- concentrations with increasing salinity and become isotonic. Toxic effects of K+ are related to ionoregulation and volume regulation. The ionic balance between intracellular and extracellular fluids is maintained by Na+ /K+ -adenosine triphosphatase (ATPase), but details are lacking on apical K+ transporters. Elevated H+ affects the maintenance of internal Na+ by Na+ /H+ exchange; elevated HCO3- inhibits Cl- uptake. The uptake of Mg2+ occurs by the gills or intestine, but details are lacking on Mg2+ transporters. In unionid gills, SO42- is actively transported, but most epithelia are generally impermeant to SO42- . Transporters of Ca2+ maintain homeostasis of dissolved Ca2+ . More integration of physiology with toxicology is needed to fully understand freshwater ion effects. Environ Toxicol Chem 2017;36:576-600. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Michael B. Griffith
- Office of Research and Development, National Center for Environmental Assessment, US Environmental Protection Agency, Cincinnati, Ohio, USA
| |
Collapse
|
36
|
Yuan J, Zhang X, Liu C, Duan H, Li F, Xiang J. Convergent Evolution of the Osmoregulation System in Decapod Shrimps. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:76-88. [PMID: 28204969 DOI: 10.1007/s10126-017-9729-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
In adaptating to different aquatic environments, seawater (SW) and freshwater (FW) shrimps have exploited different adaptation strategies, which should generate clusters of genes with different adaptive features. However, little is known about the genetic basis of these physiological adaptations. Thus, in this study, we performed comparative transcriptomics and adaptive evolution analyses on SW and FW shrimps and found that convergent evolution may have happened on osmoregulation system of shrimps. We identified 275 and 234 positively selected genes in SW and FW shrimps, respectively, which enriched in the functions of ion-binding and membrane-bounded organelles. Among them, five (CaCC, BEST2, GPDH, NKA, and Integrin) and four (RasGAP, RhoGDI, CNK3, and ODC) osmoregulation-related genes were detected in SW and FW shrimps, respectively. All five genes in SW shrimps have been reported to have positive effects on ion transportation, whereas RasGAP and RhoGDI in FW shrimps are associated with negative control of ion transportation, and CNK3 and ODC play central roles in cation homeostasis. Besides, the phylogenetic tree reconstructed from the positively selected sites separated the SW and FW shrimps into two groups. Distinct subsets of parallel substitutions also have been found in these osmoregulation-related genes in SW and FW shrimps. Therefore, our results suggest that distinct convergent evolution may have occurred in the osmoregulation systems of SW and FW shrimps. Furthermore, positive selection of osmoregulation-related genes may be beneficial for the regulation of water and salt balance in decapod shrimps.
Collapse
Affiliation(s)
- Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Chengzhang Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hu Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
37
|
Bernatchez S, Laporte M, Perrier C, Sirois P, Bernatchez L. Investigating genomic and phenotypic parallelism between piscivorous and planktivorous lake trout (Salvelinus namaycush) ecotypes by means of RADseq and morphometrics analyses. Mol Ecol 2016; 25:4773-92. [DOI: 10.1111/mec.13795] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/18/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022]
Affiliation(s)
- S. Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Québec Canada G1V 0A6
| | - M. Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Québec Canada G1V 0A6
| | - C. Perrier
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Québec Canada G1V 0A6
- Centre d'Ecologie Fonctionnelle and Evolutive; CNRS; 34293 Montpellier 5 France
| | - P. Sirois
- Chaire de recherche sur les espèces aquatiques exploitées; Université du Québec à Chicoutimi; Chicoutimi Québec Canada G7H 2B1
| | - L. Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec Québec Canada G1V 0A6
| |
Collapse
|
38
|
Chowdhury MJ, Girgis M, Wood CM. Revisiting the mechanisms of copper toxicity to rainbow trout: Time course, influence of calcium, unidirectional Na(+) fluxes, and branchial Na(+), K(+) ATPase and V-type H(+) ATPase activities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:51-62. [PMID: 27262060 DOI: 10.1016/j.aquatox.2016.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/11/2016] [Accepted: 05/15/2016] [Indexed: 06/05/2023]
Abstract
In order to resolve uncertainties as to the mechanisms of toxic action of Cu and the protective effects of water [Ca], juvenile rainbow trout were acclimated to baseline soft water (SW, [Na(+)]=0.07, [Ca(2+)]=0.15, [Mg(2+)]=0.05mmolL(-1)) and then exposed to Cu with or without elevated [Ca] but at constant titratable alkalinity (0.27mmolL(-1)). The 96-h LC50 was 7-fold higher (63.8 versus 9.2μgCuL(-1); 1.00 versus 0.14μmolCuL(-1)) at [Ca]=3.0 versus 0.15mmolL(-1). Gill Cu burden increased with exposure concentration, and higher [Ca] attenuated this accumulation. At 24h, the gill Cu load (LA50≈0.58μgCug(-1); 9.13nmolCug(-1)) predictive of 50% mortality by 96h was independent of [Ca], in accord with Biotic Ligand Model (BLM) theory. Cu exposure induced net Na(+) losses (J(Na)net) by increasing unidirectional Na(+) efflux rates (J(Na)out) and inhibiting unidirectional Na(+) uptake rates (J(Na)in). The effect on J(Na)out was virtually immediate, whereas the effect on J(Na)in developed progressively over 24h and was associated with an inhibition of branchial Na(+), K(+) ATPase activity. The J(Na)in inhibition was eventually significant at a lower Cu threshold concentration (15μgCuL(-1)) than the J(Na)out stimulation (100μg Cu L(-1)). Elevated Ca protected against both effects, as well as against the inhibition of Na(+), K(+) ATPase activity. Branchial V-type H(+) ATPase activity was also inhibited by Cu exposure (100μgCuL(-1)), but only after 24h at high [Ca] (3.0mmolL(-1)). These novel results therefore reinforce the applicability of BLM theory to Cu, clarify that whether Na(+) influx or efflux is more sensitive depends on the duration of Cu exposure, show that elevated water [Ca], independent of alkalinity, is protective against both mechanisms of Cu toxicity, and identify V-type H(+)ATPase as a new Cu target for future investigation.
Collapse
Affiliation(s)
- M Jasim Chowdhury
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4, Canada
| | - Mina Girgis
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4, Canada
| | - Chris M Wood
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4, Canada.
| |
Collapse
|
39
|
Benze TP, Sakuragui MM, Zago LHDP, Fernandes MN. Subchronic exposure to diflubenzuron causes health disorders in neotropical freshwater fish, Prochilodus lineatus. ENVIRONMENTAL TOXICOLOGY 2016; 31:533-542. [PMID: 25359229 DOI: 10.1002/tox.22065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/13/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
The action of diflubenzuron (DFB) was evaluated in a freshwater fish, Prochilodus lineatus, after exposure to 0.06, 0.12, 0.25, or 0.50 mg L(-1) DFB for 14 days. Erythrocyte nuclear abnormalities (ENA), the gill activity of Na(+)/K(+)-ATPase, H(+)-ATPase and carbonic anhydrase (CA), and lipid peroxidation (LPO) and histopathological changes in the gills and liver were determined. The number of micronuclei increased in fish exposed to 0.25 and 0.50 mg L(-1) DFB. Plasma Cl(-) and the CA activity decreased, while the activity of Na(+)/K(+)-ATPase and of H(+)-ATPase increased in fish exposed to 0.25 and 0.50 mg L(-1) DFB. LPO did not change in the gills but increased in the liver of fish exposed to 0.25 and 0.50 mg L(-1) DFB. In the gills, histopathological changes indicated disperse lesions and slight to moderate damage in fish exposed to 0.50 mg L(-1) DFB, whereas in the liver, these changes were significantly greater in fish exposed to 0.25 and 0.50 mg L(-1) DFB, indicating moderate to severe damage. Continuous exposure to DFB is potentially toxic to P. lineatus, causing heath disorders when the fish is exposed to the two highest DFB concentrations, which are applied to control parasites in aquaculture and to control mosquito populations in the environment.
Collapse
Affiliation(s)
- Tayrine Paschoaletti Benze
- Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington Luiz km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Marise Margareth Sakuragui
- Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington Luiz km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Lucas Henrique de Paula Zago
- Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington Luiz km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington Luiz km 235, 13565-905, São Carlos, São Paulo, Brazil
| |
Collapse
|
40
|
Boudour-Boucheker N, Boulo V, Charmantier-Daures M, Anger K, Charmantier G, Lorin-Nebel C. Osmoregulation in larvae and juveniles of two recently separated Macrobrachium species: Expression patterns of ion transporter genes. Comp Biochem Physiol A Mol Integr Physiol 2016; 195:39-45. [DOI: 10.1016/j.cbpa.2016.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 11/27/2022]
|
41
|
Zhang D, Wang F, Dong S, Lu Y. De novo assembly and transcriptome analysis of osmoregulation in Litopenaeus vannamei under three cultivated conditions with different salinities. Gene 2015; 578:185-93. [PMID: 26691500 DOI: 10.1016/j.gene.2015.12.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 01/13/2023]
Abstract
Litopenaeus vannamei, one of the most important euryhaline crustaceans, is cultured in seawater, brackish water, and freshwater worldwide. We performed Illumina RNA sequencing of L. vannamei gills, generating 124,914,870; 119,250,450; and 105,487,350 raw reads from the shrimps cultured in seawater, brackish water, and freshwater, respectively. From these reads, 466,293 transcripts were de novo assembled and annotated. Comparative genomic analysis showed that 1752 genes were significantly differentially expressed in the freshwater group compared with the seawater group, including 1242 upregulated and 510 downregulated genes. In addition, 1246 genes were differentially expressed in the brackish group vs. the seawater water group, including 659 upregulated and 587 downregulated genes. These differentially expressed genes were mainly involved in energy metabolism, substance metabolism, ion transport and signal transduction, and genetic process. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to analyze the functional significance of the differentially expressed genes, included those responding to salinity through diverse biological functions and processes and numerous potential genes associated with the osmotic response. L. vannamei responses to the three cultivated salinities were analyzed using next-generation sequencing. The transcriptional database established from the current research adds to the information available on L. vannamei and the findings expand our knowledge of the molecular basis of osmoregulation mechanisms in this species.
Collapse
Affiliation(s)
- Dan Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fang Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Shuanglin Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yunliang Lu
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
42
|
Lee CE. Evolutionary mechanisms of habitat invasions, using the copepod Eurytemora affinis as a model system. Evol Appl 2015; 9:248-70. [PMID: 27087851 PMCID: PMC4780390 DOI: 10.1111/eva.12334] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/19/2015] [Indexed: 01/06/2023] Open
Abstract
The study of the copepod Eurytemora affinis has provided unprecedented insights into mechanisms of invasive success. In this invited review, I summarize a subset of work from my laboratory to highlight key insights gained from studying E. affinis as a model system. Invasive species with brackish origins are overrepresented in freshwater habitats. The copepod E. affinis is an example of such a brackish invader, and has invaded freshwater habitats multiple times independently in recent years. These invasions were accompanied by the evolution of physiological tolerance and plasticity, increased body fluid regulation, and evolutionary shifts in ion transporter (V‐type H+ATPase, Na+, K+‐ATPase) activity and expression. These evolutionary changes occurred in parallel across independent invasions in nature and in laboratory selection experiments. Selection appears to act on standing genetic variation during invasions, and maintenance of this variation is likely facilitated through ‘beneficial reversal of dominance’ in salinity tolerance across habitats. Expression of critical ion transporters is localized in newly discovered Crusalis leg organs. Increased freshwater tolerance is accompanied by costs to development time and greater requirements for food. High‐food concentration increases low‐salinity tolerance, allowing saline populations to invade freshwater habitats. Mechanisms observed here likely have relevance for other taxa undergoing fundamental niche expansions.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Center of Rapid Evolution (CORE) University of Wisconsin Madison WI USA
| |
Collapse
|
43
|
Freire CA, Souza-Bastos LR, Chiesse J, Tincani FH, Piancini LDS, Randi MAF, Prodocimo V, Cestari MM, Silva-de-Assis HC, Abilhoa V, Vitule JRS, Bastos LP, de Oliveira-Ribeiro CA. A multibiomarker evaluation of urban, industrial, and agricultural exposure of small characins in a large freshwater basin in southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13263-13277. [PMID: 25940483 DOI: 10.1007/s11356-015-4585-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Iguaçu River is the second most polluted river of Brazil. It receives agrochemicals and contaminants of urban and industrial sources along its course. A multibiomarker approach was employed here to evaluate the health of a small characin (Astyanax spp.) at two sites along the river, sampled during a dry (autumn) and a rainy (spring) season. Biomarkers were condition factor and somatic indices (gonads and liver); genetic damage (comet assay and micronucleus test); enzyme activities such as hepatic catalase (CAT) and glutathione S-transferase (GST), lipoperoxidation (LPO), branchial and renal carbonic anhydrase (CA), acetylcholinesterase (AChE) in the muscle and the brain, histopathology of the liver and gills, and concentrations of polycyclic aromatic hydrocarbons (PAHs) in bile. There were no consistent differences in biomarker responses between the two study sites. Some biomarkers revealed greater potential impact in the rainy season, when increased amounts of contaminants are washed into the river (combined CAT inhibition and LPO increase, CA upregulation). Other biomarkers, however, revealed potential greater impact in the dry season, when contaminants potentially concentrate (GST induction, AChE inhibition, and liver histopathological alterations). Although of a complex nature, field experiments such as this provide rich data for monitoring protocols and assessment of general risk of exposure to pollutants of river systems.
Collapse
Affiliation(s)
- Carolina A Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná, CEP 81531-990, Brazil,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Guh YJ, Lin CH, Hwang PP. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. EXCLI JOURNAL 2015; 14:627-59. [PMID: 26600749 PMCID: PMC4650948 DOI: 10.17179/excli2015-246] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/21/2015] [Indexed: 12/21/2022]
Abstract
Fish, like mammals, have to maintain their body fluid ionic and osmotic homeostasis through sophisticated iono-/osmoregulation mechanisms, which are conducted mainly by ionocytes of the gill (the skin in embryonic stages), instead of the renal tubular cells in mammals. Given the advantages in terms of genetic database availability and manipulation, zebrafish is an emerging model for research into regulatory and integrative physiology. At least five types of ionocytes, HR, NaR, NCC, SLC26, and KS cells, have been identified to carry out Na(+) uptake/H(+) secretion/NH4 (+) excretion, Ca(2+) uptake, Na(+)/Cl(-) uptake, K(+) secretion, and Cl(-) uptake/HCO3 (-) secretion, respectively, through distinct sets of transporters. Several hormones, namely isotocin, prolactin, cortisol, stanniocalcin-1, calcitonin, endothelin-1, vitamin D, parathyorid hormone 1, catecholamines, and the renin-angiotensin-system, have been demonstrated to positively or negatively regulate ion transport through specific receptors at different ionocytes stages, at either the transcriptional/translational or posttranslational level. The knowledge obtained using zebrafish answered many long-term contentious or unknown issues in the field of fish iono-/osmoregulation. The homology of ion transport pathways and hormone systems also means that the zebrafish model informs studies on mammals or other animal species, thereby providing insights into related fields.
Collapse
Affiliation(s)
- Ying-Jey Guh
- Institute of Cellular and Organismic Biology, Academia Sinica, Nakang, Taipei, Taiwan ; Institute of Biological Chemistry, Academia Sinica, Nakang, Taipei, Taiwan
| | - Chia-Hao Lin
- National Institute for Basic Biology, Myodaiji-cho, Okazaki, 444-8787, Japan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nakang, Taipei, Taiwan
| |
Collapse
|
45
|
Nakkrasae LI, Wisetdee K, Charoenphandhu N. Osmoregulatory adaptations of freshwater air-breathing snakehead fish (Channa striata) after exposure to brackish water. J Comp Physiol B 2015; 185:527-37. [PMID: 25899744 DOI: 10.1007/s00360-015-0902-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 11/29/2022]
Abstract
NaCl-rich rock salt dissolved in natural water source leads to salinity fluctuation that profoundly affects freshwater ecosystem and aquatic fauna. The snakehead (Channa striata) can live in saline water, but the osmoregulatory mechanisms underlying this ability remain unclear. Herein, we found that exposure to salinities ≥ 10‰ NaCl markedly elevated plasma cortisol and glucose levels, and caused muscle dehydration. In a study of time-dependent response after being transferred from fresh water (0‰ NaCl, FW) to salt-dissolved brackish water (10‰ NaCl, SW), FW-SW, cortisol increased rapidly along with elevations of plasma glucose and lactate. Interestingly, plasma cortisol returned to baseline after prolonged exposure, followed by a second peak that probably enhanced the branchial Na(+)/K(+)-ATPase activity. Under SW-FW condition, Na(+)/K(+)-ATPase activity was not altered as compared to SW-adapted fish. In conclusion, salinity change, especially FW-SW, induced a stress response and hence cortisol release in C. striata, which might increase plasma glucose and lactate to energize the branchial Na(+)/K(+)-ATPase.
Collapse
Affiliation(s)
- La-iad Nakkrasae
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand,
| | | | | |
Collapse
|
46
|
Analysis, characterisation and expression of gill-expressed carbonic anhydrase genes in the freshwater crayfish Cherax quadricarinatus. Gene 2015; 564:176-87. [PMID: 25863177 DOI: 10.1016/j.gene.2015.03.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/27/2015] [Accepted: 03/19/2015] [Indexed: 12/31/2022]
Abstract
Changes in water quality parameters such as pH and salinity can have a significant effect on productivity of aquaculture species. Similarly, relative osmotic pressure influences various physiological processes and regulates expression of a number of osmoregulatory genes. Among those, carbonic anhydrase (CA) plays a key role in systemic acid-base balance and ion regulation. Redclaw crayfish (Cherax quadricarinatus) are unique in their ability to thrive in environments with naturally varied pH levels, suggesting unique adaptation to pH stress. To date, however, no studies have focused on identification and characterisation of CA or other osmoregulatory genes in C. quadricarinatus. Here, we analysed the redclaw gill transcriptome and characterized CA genes along with a number of other key osmoregulatory genes that were identified in the transcriptome. We also examined patterns of gene expression of these CA genes when exposed to three pH treatments. In total, 72,382,710 paired end Illumina reads were assembled into 36,128 contigs with an average length of 800bp. Approximately 37% of contigs received significant BLAST hits and 22% were assigned gene ontology terms. Three full length CA isoforms; cytoplasmic CA (ChqCAc), glycosyl-phosphatidylinositol-linked CA (ChqCAg), and β-CA (ChqCA-beta) as well as two partial CA gene sequences were identified. Both partial CA genes showed high similarity to ChqCAg and appeared to be duplicated from the ChqCAg. Full length coding sequences of Na(+)/K(+)-ATPase, V-type H(+)-ATPase, sarcoplasmic Ca(+)-ATPase, arginine kinase, calreticulin and Cl(-) channel protein 2 were also identified. Only the ChqCAc gene showed significant differences in expression across the three pH treatments. These data provide valuable information on the gill expressed CA genes and their expression patterns in freshwater crayfish. Overall our data suggest an important role for the ChqCAc gene in response to changes in pH and in systemic acid-base balance in freshwater crayfish.
Collapse
|
47
|
Longo MV, Díaz AO. Histological and Histochemical Study of the Hepatopancreas of Two Estuarine Crab Species,Cyrtograpsus angulatusandNeohelice granulata(Grapsoidea, Varunidae): Influence of Environmental Salinity. Zoolog Sci 2015; 32:163-70. [DOI: 10.2108/zs140133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Lucena MN, Pinto MR, Garçon DP, McNamara JC, Leone FA. A kinetic characterization of the gill V(H+)-ATPase in juvenile and adult Macrobrachium amazonicum, a diadromous palaemonid shrimp. Comp Biochem Physiol B Biochem Mol Biol 2015; 181:15-25. [DOI: 10.1016/j.cbpb.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/05/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
49
|
Zhou J, Li C, Wang L, Ji H, Zhu T. Hepatoprotective effects of a Chinese herbal formulation, Yingchen decoction, on olaquindox-induced hepatopancreas injury in Jian carp (Cyprinus carpio var. Jian). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:153-163. [PMID: 25477196 DOI: 10.1007/s10695-014-0013-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
In order to identify effective hepatoprotective herbs for clinical application in fish farming, 200 mg/kg olaquindox (OLA) was added to a basal diet (group 1, control) to form OLA diet (group 2), then 1.35, 2.7 and 5.4 % (w/w) of a Chinese herbal formulation, Yingchen decoction (YCD), were added to the OLA diet to form three additional diets for groups 3, 4 and 5, respectively. A total of 375 juvenile Jian carp (Cyprinus carpio var. Jian) (52.12 ± 2.95 g/tail) were divided into five groups (triplicates per group) and fed the five diets mentioned above, respectively, for 6 weeks. At the termination of feeding experiment, serum biochemical indexes, viability of hepatocytes and the hepatopancreas microstructure for each group were detected and observed. The results showed that serum ALT and AST in group 2 were significantly higher than the control (P < 0.05). Plasma membranes hepatocyte nuclei in group 2 were found to be mostly indistinct, compared to group 1, and gradually recovered with the increasing supplementation of YCD in group 3, 4 and 5. The viability of isolated hepatocytes in group 2 was the lowest and gradually recovered with the increasing supplementation of YCD in group 3, 4 and 5. The results suggest that YCD protected the Jian carp hepatopancreas against injury from OLA, and that 5.4 % YCD would be the optimum dosage in a Jian carp diet.
Collapse
Affiliation(s)
- Jishu Zhou
- Department of Fisheries Science, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Leone FA, Lucena MN, Rezende LA, Garçon DP, Pinto MR, Mantelatto FL, McNamara JC. A kinetic characterization of (Na+, K+)-ATPase activity in the gills of the pelagic seabob shrimp Xiphopenaeus kroyeri (Decapoda, Penaeidae). J Membr Biol 2014; 248:257-72. [PMID: 25534346 DOI: 10.1007/s00232-014-9765-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
We characterize the kinetic properties of a gill (Na(+), K(+))-ATPase from the pelagic marine seabob Xiphopenaeus kroyeri. Sucrose density gradient centrifugation revealed membrane fractions distributed mainly into a heavy fraction showing considerable (Na(+), K(+))-ATPase activity, but also containing mitochondrial F0F1- and Na(+)- and V-ATPases. Western blot analysis identified a single immunoreactive band against the (Na(+), K(+))-ATPase α-subunit with an Mr of ≈ 110 kDa. The α-subunit was immunolocalized to the intralamellar septum of the gill lamellae. The (Na(+), K(+))-ATPase hydrolyzed ATP obeying Michaelis-Menten kinetics with VM = 109.5 ± 3.2 nmol Pi min(-1) mg(-1) and KM = 0.03 ± 0.003 mmol L(-1). Mg(2+) (VM = 109.8 ± 2.1 nmol Pi min(-1 )mg(-1), K0.5 = 0.60 ± 0.03 mmol L(-1)), Na(+) (VM = 117.6 ± 3.5 nmol Pi min(-1 ) mg(-1), K0.5 = 5.36 ± 0.14 mmol L(-1)), K(+) (VM = 112.9 ± 1.4 nmol Pi min(-1 )mg(-1), K0.5 = 1.32 ± 0.08 mmol L(-1)), and NH4 (+) (VM = 200.8 ± 7.1 nmol Pi min(-1 )mg(-1), K0.5 = 2.70 ± 0.04 mmol L(-1)) stimulated (Na(+), K(+))-ATPase activity following site-site interactions. K(+) plus NH4 (+) does not synergistically stimulate (Na(+), K(+))-ATPase activity, although each ion modulates affinity of the other. The enzyme exhibits a single site for K(+) binding that can be occupied by NH4 (+), stimulating the enzyme. Ouabain (KI = 84.0 ± 2.1 µmol L(-1)) and orthovanadate (KI = 0.157 ± 0.001 µmol L(-1)) inhibited total ATPase activity by ≈ 50 and ≈ 44 %, respectively. Ouabain inhibition increases ≈ 80 % in the presence of NH4 (+) with a threefold lower KI, suggesting that NH4 (+) is likely transported as a K(+) congener.
Collapse
Affiliation(s)
- Francisco Assis Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brasil,
| | | | | | | | | | | | | |
Collapse
|