1
|
Lalouette A, Chaumot A, Lepeule L, Gaget K, Delorme N, Garnero L, Calevro F, Esposti DD. Cadmium tolerance is associated with tissue-specific plasticity of metallothionein gene expression in Gammarus fossarum field populations. Sci Rep 2025; 15:13913. [PMID: 40263372 PMCID: PMC12015274 DOI: 10.1038/s41598-025-98937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
The metallothionein gene family codes for proteins involved in metal homeostasis and acute detoxification of non-essential toxic metal ions across the tree of life. We have previously documented increased cadmium (Cd) tolerance in field populations of the crustacean Gammarus fossarum exposed to chronic metallic contamination of geochemical origin. This tolerance is lost during maintenance of organisms in the laboratory, and is transmitted to offspring via parental effects. This study investigated whether the expression of the Cd-responsive metallothionein gene mt1 could be related to Cd-tolerance plasticity in G. fossarum. In eleven populations with different chronic Cd exposure history, we simultaneously assessed Cd-tolerance (mortality tests) and G. fossarum mt1 expression levels by RT-qPCR in the gills and caeca of adult males and in neonates. mt1 expression levels in the two organs were correlated to Cd-tolerance in field organisms and a loss of tolerance was observed in parallel with a decreased expression of mt1 in the caeca after maintenance in uncontaminated water. We also recorded a greater inducibility of mt1 expression in offspring of tolerant populations in the laboratory when re-exposed to Cd along with the bi-parental transmission of Cd-tolerance. These results suggest that the control of mt1 expression is involved in the plasticity of Cd-tolerance in gammarid populations with different histories of Cd exposure.
Collapse
Affiliation(s)
- Auréline Lalouette
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne, 69625, France
| | - Arnaud Chaumot
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne, 69625, France
| | - Louveline Lepeule
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne, 69625, France
| | - Karen Gaget
- INRAE, INSA Lyon, Université de Lyon, BF2i, UMR 203, Villeurbanne, 69621, France
| | - Nicolas Delorme
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne, 69625, France
| | - Laura Garnero
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, Villeurbanne, 69625, France
| | - Federica Calevro
- INRAE, INSA Lyon, Université de Lyon, BF2i, UMR 203, Villeurbanne, 69621, France
| | | |
Collapse
|
2
|
Khan Z, Messiri NE, Iqbal E, Hassan H, Tanweer MS, Sadia SR, Taj M, Zaidi U, Yusuf K, Syed NI, Zaidi M. On the role of epigenetic modifications of HPA axis in posttraumatic stress disorder and resilience. J Neurophysiol 2025; 133:742-759. [PMID: 39842807 DOI: 10.1152/jn.00345.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Stress is a fundamental adaptive response that invokes amygdala and hypothalamus-pituitary-adrenal (HPA) axis along with other brain regions. Extreme or chronic stress, however, can result in a multitude of neuropsychiatric disorders, including anxiety, paranoia, bipolar disorder (BP), major depressive disorder (MDD), and posttraumatic stress disorder (PTSD). Despite widespread exposure to trauma (70.4%), the incidence of PTSD is relatively low (6.8%), suggesting that either individual susceptibility or adaptability driven by epigenetic and genetic mechanisms are likely at play. PTSD takes hold from exposure to traumatic events, such as death threats or severe abuse, with its severity being impacted by the magnitude of trauma, its frequency, and the nature. This comprehensive review examines how traumatic experiences and epigenetic modifications in hypothalamic-pituitary axis (HPA), such as DNA methylation, histone modifications, noncoding RNAs, and chromatin remodeling, are transmitted across generations, and impact genes such as FKBP prolyl isomerase 5 (FKBP5), nuclear receptor subfamily 3 group C member 1 (NR3C1), brain-derived neurotrophic factor (BDNF), and solute carrier family 6 member 4 (SLC6A4). It also provides a comprehensive overview on trauma reversal, resilience mechanisms, and pro-resilience factors such as histone acetyltransferases (HATs)/histone deacetylases (HDACs) ratio, dehydroepiandrosterone (DHEA)/cortisol ratio, testosterone levels, and neuropeptide Y, thus highlighting potential therapeutic approaches for trauma-related disorders. The studies highlighted here underscore the narrative, for the first time, that the examination and treatment of PTSD and other depressive disorders must invoke a multitude of approaches to seek out the most effective and personalized strategies. We also hope that the discussion emanating from this review will also inform government policies directed toward intergenerational trauma and PTSD.
Collapse
Affiliation(s)
- Zainab Khan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nour El Messiri
- Department of Epidemiology, The University of Texas Health Science Center at Houston, Houston, Texas, United States
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
| | - Emann Iqbal
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
| | - Hadi Hassan
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Mohammad S Tanweer
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
| | - Syeda R Sadia
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
| | - Moizzuddin Taj
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
| | - Umar Zaidi
- Intergenerational Trauma Research Unit, Think for Actions, Calgary, Alberta, Canada
- Department of Natural Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kamran Yusuf
- Section of Neonatology, Department of Pediatrics, School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Mukarram Zaidi
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Chai Y, Wang H, Lv M, Yang J. Carryover effects of tire wear particle leachate threaten the reproduction of a model zooplankton across multiple generations. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:52-60. [PMID: 39387968 DOI: 10.1007/s10646-024-02809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
The toxic additives that leach from tire wear particles (TWPs) cause mass die-offs in fish and impact zooplankton as secondary consumers in the aquatic food web. In addition to the direct impacts of TWP leachate on a single generation, there may be potential delayed carryover effects across multiple generations from parental exposure, which may amplify the adverse effects of the leachate on individual reproduction and, consequently, on the entire population. In this study, the single, multiple, and transgenerational effects of TWP leachate at various concentrations on the reproduction and lifespan of the rotifer Brachionus calyciflorus were investigated. The results indicated that the lifespan and reproductive output of rotifers exposed to TWP leachate (0-1500 mg/L) decreased as the concentration increased above 250 mg/L. There was a clear multigenerational effect of TWP leachate on rotifer reproduction. The inhibition rates were consistently greater at 500 mg/L than at 250 mg/L leachate. Although the reproduction of rotifers exposed to 250 mg/L TWP leachate increased in the first two generations (P and F1), it was inhibited in subsequent generations. The inhibitory effect of 500 mg/L TWP leachate persisted across all generations, leading to population extinction by the F4 generation. A significant transgenerational effect of TWP leachate was found on reproduction. The adverse impact of exposure to 250 mg/L leachate for fewer than three generations could be reversed when offspring were transferred to clean media. However, this recovery was not observed after continuous exposure for more than four generations. Exposure to high-dose TWP leachate also caused irreversible damage to reproduction. Therefore, TWP leachate can result in cascading toxicity on zooplankton populations through carryover and cumulative effects on reproduction.
Collapse
Affiliation(s)
- Yanchao Chai
- Marine Science and Engineering College, Nanjing Normal University, Nanjing, China
| | - Haiqing Wang
- School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Mengru Lv
- Marine Science and Engineering College, Nanjing Normal University, Nanjing, China
| | - Jiaxin Yang
- Marine Science and Engineering College, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
4
|
Ren J, Wu W, Li J, Hu Q, Zhang M, Wang J, Li X, Li Y, Huang B. Association of metalloestrogens exposure with depression in women across reproductive lifespan. Front Psychiatry 2024; 15:1486402. [PMID: 39691784 PMCID: PMC11649658 DOI: 10.3389/fpsyt.2024.1486402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Exposure to metal could impact women's depression risk. However, the connection and mechanisms between metalloestrogens exposure and depression are still not fully understood. We aim to explore the associations between metalloestrogens and the risk of depression in women across reproductive lifespan. METHODS Using data from NHANES 2011-2018, we employed logistic regression and baknernel machine regression (BKMR) to study links between metalloestrogen exposure and depression in US women. We analyzed how contraceptive use affects this relationship. RESULTS The study involved 3,374 adult women, with 345 of them experiencing depression. Our research revealed that certain metalloestrogens like Ba, Ca, Pb, Sb, and Sn were linked to higher depression risk in women, while Hg was associated with lower depression risk in older women. For women aged 18-44, a blend of metalloestrogens showed a significant positive correlation with depression risk, and the likelihood of depression in later years notably rose when the metal mixture concentration reached or exceeded the 60th percentile. Oral contraceptives would have an effect on the impact of metalloestrogen mixture exposure on depression in women during the reproductive stage. CONCLUSIONS Our study indicates a significant link between metalloestrogen exposure and a higher risk of depression in adult women in the United States. This finding can aid in identifying the connection and enhancing women's mental well-being.
Collapse
Affiliation(s)
- Junjie Ren
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Wanxin Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jia Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qifang Hu
- Shenzhen Hospital of Southern Medical University, Shenzhen Clinical Medical School, Shenzhen, China
| | - Mi Zhang
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Jing Wang
- Department of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Xiaoming Li
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, Anhui, China
| | - Yanwen Li
- Department of Clinical Laboratory, Clinical Laboratory Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Foo SA, Byrne M. Reprint: Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean. ADVANCES IN MARINE BIOLOGY 2024; 97:11-58. [PMID: 39307554 DOI: 10.1016/bs.amb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
To persist in an ocean changing in temperature, pH and other stressors related to climate change, many marine species will likely need to acclimatize or adapt to avoid extinction. If marine populations possess adequate genetic variation in tolerance to climate change stressors, species might be able to adapt to environmental change. Marine climate change research is moving away from single life stage studies where individuals are directly placed into projected scenarios ('future shock' approach), to focus on the adaptive potential of populations in an ocean that will gradually change over coming decades. This review summarizes studies that consider the adaptive potential of marine invertebrates to climate change stressors and the methods that have been applied to this research, including quantitative genetics, laboratory selection studies and trans- and multigenerational experiments. Phenotypic plasticity is likely to contribute to population persistence providing time for genetic adaptation to occur. Transgenerational and epigenetic effects indicate that the environmental and physiological history of the parents can affect offspring performance. There is a need for long-term, multigenerational experiments to determine the influence of phenotypic plasticity, genetic variation and transgenerational effects on species' capacity to persist in a changing ocean. However, multigenerational studies are only practicable for short generation species. Consideration of multiple morphological and physiological traits, including changes in molecular processes (eg, DNA methylation) and long-term studies that facilitate acclimatization will be essential in making informed predictions of how the seascape and marine communities will be altered by climate change.
Collapse
Affiliation(s)
- Shawna A Foo
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Mojica EA, Petcu KA, Kültz D. Environmental conditions elicit a slow but enduring response of histone post-translational modifications in Mozambique tilapia. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae013. [PMID: 39372708 PMCID: PMC11452309 DOI: 10.1093/eep/dvae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024]
Abstract
This study sheds new light on the timescale through which histone post-translational modifications (PTMs) respond to environmental stimuli, demonstrating that the histone PTM response does not necessarily precede the proteomic response or acclimation. After a variety of salinity treatments were administered to Mozambique tilapia (Oreochromis mossambicus) throughout their lifetimes, we quantified 343 histone PTMs in the gills of each fish. We show here that histone PTMs differ dramatically between fish exposed to distinct environmental conditions for 18 months, and that the majority of these histone PTM alterations persist for at least 4 weeks, irrespective of further salinity changes. However, histone PTMs respond minimally to 4-week-long periods of salinity acclimation during adulthood. The results of this study altogether signify that patterns of histone PTMs in individuals reflect their prolonged exposure to environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Kathleen A Petcu
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Dietmar Kültz
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| |
Collapse
|
7
|
Lehmann U. Epigenetic Therapies in Triple-Negative Breast Cancer: Concepts, Visions, and Challenges. Cancers (Basel) 2024; 16:2164. [PMID: 38927870 PMCID: PMC11202282 DOI: 10.3390/cancers16122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer, the most frequent malignancy in women worldwide, is a molecularly and clinically very heterogeneous disease. Triple-negative breast cancer is defined by the absence of hormone receptor and growth factor receptor ERBB2/HER2 expression. It is characterized by a more aggressive course of disease and a shortage of effective therapeutic approaches. Hallmarks of cancer cells are not only genetic alterations, but also epigenetic aberrations. The most studied and best understood alterations are methylation of the DNA base cytosine and the covalent modification of histone proteins. The reversibility of these covalent modifications make them attractive targets for therapeutic intervention, as documented in numerous ongoing clinical trials. Epidrugs, targeting DNA methylation and histone modifications, might offer attractive new options in treating triple-negative breast cancer. Currently, the most promising options are combination therapies in which the epidrug increases the efficiency of immuncheckpoint inhibitors. This review focusses exclusively on DNA methylation and histone modifications. In reviewing the knowledge about epigenetic therapies in breast cancer, and especially triple-negative breast cancer, the focus is on explaining concepts and raising awareness of what is not yet known and what has to be clarified in the future.
Collapse
Affiliation(s)
- Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
8
|
Akyüz B, Sohel MMH, Konca Y, Arslan K, Gürbulak K, Abay M, Kaliber M, White SN, Cinar MU. Effects of Low and High Maternal Protein Intake on Fetal Skeletal Muscle miRNAome in Sheep. Animals (Basel) 2024; 14:1594. [PMID: 38891641 PMCID: PMC11171157 DOI: 10.3390/ani14111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Prenatal maternal feeding plays an important role in fetal development and has the potential to induce long-lasting epigenetic modifications. MicroRNAs (miRNAs) are non-coding, single-stranded RNAs that serve as one epigenetic mechanism. Though miRNAs have crucial roles in fetal programming, growth, and development, there is limited data regarding the maternal diet and miRNA expression in sheep. Therefore, we analyzed high and low maternal dietary protein for miRNA expression in fetal longissimus dorsi. Pregnant ewes were fed an isoenergetic high-protein (HP, 160-270 g/day), low-protein (LP, 73-112 g/day), or standard-protein diet (SP, 119-198 g/day) during pregnancy. miRNA expression profiles were evaluated using the Affymetrix GeneChip miRNA 4.0 Array. Twelve up-regulated, differentially expressed miRNAs (DE miRNAs) were identified which are targeting 65 genes. The oar-3957-5p miRNA was highly up-regulated in the LP and SP compared to the HP. Previous transcriptome analysis identified that integrin and non-receptor protein tyrosine phosphatase genes targeted by miRNAs were detected in the current experiment. A total of 28 GO terms and 10 pathway-based gene sets were significantly (padj < 0.05) enriched in the target genes. Most genes targeted by the identified miRNAs are involved in immune and muscle disease pathways. Our study demonstrated that dietary protein intake during pregnancy affected fetal skeletal muscle epigenetics via miRNA expression.
Collapse
Affiliation(s)
- Bilal Akyüz
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (B.A.); (M.M.H.S.); (K.A.)
| | - Md Mahmodul Hasan Sohel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (B.A.); (M.M.H.S.); (K.A.)
- Genome and Stem Cell Centre, Erciyes University, Kayseri 38039, Türkiye
| | - Yusuf Konca
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri 38039, Türkiye; (Y.K.); (M.K.)
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (B.A.); (M.M.H.S.); (K.A.)
| | - Kutlay Gürbulak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (K.G.); (M.A.)
| | - Murat Abay
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38039, Türkiye; (K.G.); (M.A.)
| | - Mahmut Kaliber
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri 38039, Türkiye; (Y.K.); (M.K.)
| | - Stephen N. White
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA 99164, USA;
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri 38039, Türkiye; (Y.K.); (M.K.)
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
9
|
Wu W, Ren J, Wang J, Wang J, Yu D, Zhang Y, Zeng F, Huang B. Metalloestrogens exposure and risk of gestational diabetes mellitus: Evidence emerging from the systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 248:118321. [PMID: 38307186 DOI: 10.1016/j.envres.2024.118321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Metalloestrogens are metals and metalloid elements with estrogenic activity found everywhere. Their impact on human health is becoming more apparent as human activities increase. OBJECTIVE Our aim is to conduct a comprehensive systematic review and meta-analysis of observational studies exploring the correlation between metalloestrogens (specifically As, Sb, Cr, Cd, Cu, Se, Hg) and Gestational Diabetes Mellitus (GDM). METHODS PubMed, Web of Science, and Embase were searched to examine the link between metalloestrogens (As, Sb, Cr, Cd, Cu, Se, and Hg) and GDM until December 2023. Risk estimates were derived using random effects models. Subgroup analyses were conducted based on study countries, exposure sample, exposure assessment method, and detection methods. Sensitivity analyses and adjustments for publication bias were carried out to assess the strength of the findings. RESULTS Out of the 389 articles identified initially, 350 met our criteria and 33 were included in the meta-analysis, involving 141,175 subjects (9450 cases, 131,725 controls). Arsenic, antimony, and copper exposure exhibited a potential increase in GDM risk to some extent (As: OR = 1.28, 95 % CI [1.08, 1.52]; Sb: OR = 1.73, 95 % CI [1.13, 2.65]; Cu: OR = 1.29, 95 % CI [1.02, 1.63]), although there is a high degree of heterogeneity (As: Q = 52.93, p < 0.05, I2 = 64.1 %; Sb: Q = 31.40, p < 0.05, I2 = 80.9 %; Cu: Q = 21.14, p < 0.05, I2 = 71.6 %). Conversely, selenium, cadmium, chromium, and mercury exposure did not exhibit any association with the risk of GDM in our study. DISCUSSION Our research indicates that the existence of harmful metalloestrogens in the surroundings has a notable effect on the likelihood of GDM. Hence, we stress the significance of environmental elements in the development of GDM and the pressing need for relevant policies and measures.
Collapse
Affiliation(s)
- Wanxin Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junjie Ren
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Juan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiamei Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Deshui Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Zhang
- School of Biology and Food Engineering, Hefei Normal University, Hefei, 230092, Anhui, China.
| | - Fa Zeng
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, Guangdong, China.
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
10
|
Lalouette A, Degli Esposti D, Garnero L, Allibert M, Dherret L, Dabrin A, Delorme N, Recoura-Massaquant R, Chaumot A. Acclimation and transgenerational plasticity support increased cadmium tolerance in Gammarus populations exposed to natural metal contamination in headwater streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166216. [PMID: 37567286 DOI: 10.1016/j.scitotenv.2023.166216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Considering long-term population effects of chronic exposure to contaminants remains limited in ecological risk assessment. Field evidence that multigenerational exposure influences organisms' sensitivity is still scarce, and mechanisms have yet to be elucidated in the environmental context. This study focuses on the crustacean Gammarus fossarum, for which an increased tolerance to cadmium (Cd) has previously been reported in a naturally low-contaminated headwater stream. Our objectives were to investigate whether Cd tolerance is a common phenomenon in headwater populations, and to elucidate the nature of the tolerance and its intergenerational transmission. For this, we carried out an in-depth in situ characterization of Cd exposure (gammarids' caging) and levels of tolerance in nine populations on a regional scale, as well as laboratory maintenance and cross-breeding of contaminated and uncontaminated populations. Acute tolerance levels correlate positively with bioavailable Cd contamination levels among streams. The contaminated and non-contaminated populations differ about two-fold in sensitivity to Cd. Tolerance was found in all age classes of contaminated populations, it can be transiently lost during the year, and it was transmissible to offspring. In addition, tolerance levels dropped significantly when organisms were transferred to a Cd-free environment for two months. These organisms also ceased producing tolerant offspring, confirming a non-genetic transmission of Cd tolerance between generations. These findings support that Cd tolerance corresponds to non-genetic acclimation combined with transgenerational plasticity. Moreover, cross-breeding revealed that tolerance transmission to offspring is not limited to maternal effect. We suggest epigenetics as a plausible mechanism for the plasticity of Cd sensitivity observed in the field. Our results therefore highlight the neglected role of plasticity and non-genetic transmission of modified sensitivities during the long-term exposure of natural populations to environmental contamination.
Collapse
Affiliation(s)
- Auréline Lalouette
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | | | - Laura Garnero
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | - Maxime Allibert
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | - Lysiane Dherret
- INRAE, UR RiverLy, Laboratoire de chimie des milieux aquatiques, Villeurbanne F-69625, France
| | - Aymeric Dabrin
- INRAE, UR RiverLy, Laboratoire de chimie des milieux aquatiques, Villeurbanne F-69625, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | | | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France.
| |
Collapse
|
11
|
Fallet M, Wilson R, Sarkies P. Cisplatin exposure alters tRNA-derived small RNAs but does not affect epimutations in C. elegans. BMC Biol 2023; 21:276. [PMID: 38031056 PMCID: PMC10688063 DOI: 10.1186/s12915-023-01767-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The individual lifestyle and environment of an organism can influence its phenotype and potentially the phenotype of its offspring. The different genetic and non-genetic components of the inheritance system and their mutual interactions are key mechanisms to generate inherited phenotypic changes. Epigenetic changes can be transmitted between generations independently from changes in DNA sequence. In Caenorhabditis elegans, epigenetic differences, i.e. epimutations, mediated by small non-coding RNAs, particularly 22G-RNAs, as well as chromatin have been identified, and their average persistence is three to five generations. In addition, previous research showed that some epimutations had a longer duration and concerned genes that were enriched for multiple components of xenobiotic response pathways. These results raise the possibility that environmental stresses might change the rate at which epimutations occur, with potential significance for adaptation. RESULTS In this work, we explore this question by propagating C. elegans lines either in control conditions or in moderate or high doses of cisplatin, which introduces genotoxic stress by damaging DNA. Our results show that cisplatin has a limited effect on global small non-coding RNA epimutations and epimutations in gene expression levels. However, cisplatin exposure leads to increased fluctuations in the levels of small non-coding RNAs derived from tRNA cleavage. We show that changes in tRNA-derived small RNAs may be associated with gene expression changes. CONCLUSIONS Our work shows that epimutations are not substantially altered by cisplatin exposure but identifies transient changes in tRNA-derived small RNAs as a potential source of variation induced by genotoxic stress.
Collapse
Affiliation(s)
- Manon Fallet
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182, Örebro, Sweden.
| | - Rachel Wilson
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Peter Sarkies
- Department of Biochemistry, Evolutionary Epigenetics Group, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd., Oxford, OX1 3QU, UK.
| |
Collapse
|
12
|
Moore DS. On the evolution of epigenetics via exaptation: A developmental systems perspective. Ann N Y Acad Sci 2023; 1529:21-32. [PMID: 37750405 DOI: 10.1111/nyas.15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Evolution and development are interrelated processes influenced by genomic, epigenetic, and environmental factors. Epigenetic processes serve critical roles in development and operate as intermediaries that connect the genome to the rest of the world. Therefore, it is of interest to consider the evolution of epigenetic processes. The developmental systems perspective offers a distinctive, coherent, integrative way to understand the relationships between evolution, epigenetics, development, and the effects of experienced contexts. By adopting this perspective, this paper draws attention to the role of exaptation in the evolution of epigenetics in the RNA world and addresses the role of epigenetics in the later evolution of developmental processes such as cellular differentiation, learning, and memory. In so doing, the paper considers the appearance and functions of epigenetics in evolutionary history-sketching a pathway by which epigenetic processes might have evolved via exaptation and then contributed to the later development and evolution of phenotypes.
Collapse
Affiliation(s)
- David S Moore
- Psychology Field Group, Pitzer College, Claremont, California, USA
- Division of Behavioral & Organizational Sciences, Claremont Graduate University, Claremont, California, USA
| |
Collapse
|
13
|
Gryzinska M, Kot B, Dudzinska E, Biernasiuk A, Jakubczak A, Malm A, Andraszek K. Changes in the Level of DNA Methylation in Candida albicans under the Influence of Physical and Chemical Factors. Int J Mol Sci 2023; 24:15873. [PMID: 37958861 PMCID: PMC10647513 DOI: 10.3390/ijms242115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The effects of physical factors such as radiation (electromagnetic, microwave, infrared, laser, UVC, and X-ray) and high temperature, as well as chemical factors (controlled atmosphere) on the level of global DNA cytosine methylation in C. albicans ATCC 10231 cells were investigated. Prolonged exposure to each type of radiation significantly increased the DNA methylation level. In addition, the global methylation level in C. albicans cells increased with the incubation temperature. An increase in the percentage of methylated DNA was also noted in C. albicans cells cultured in an atmosphere with reduced O2. In contrast, in an atmosphere containing more than 3% CO2 and in anaerobic conditions, the DNA methylation level decreased relative to the control. This study showed that prolonged exposure to various types of radiation and high temperature as well as reduced O2 in the atmosphere caused a significant increase in the global DNA methylation level. This is most likely a response protecting DNA against damage, which at the same time can lead to epigenetic disorders, and in consequence can adversely affect the functioning of the organism.
Collapse
Affiliation(s)
- Magdalena Gryzinska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Barbara Kot
- Institute of Biological Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | - Ewa Dudzinska
- Department of Dietetics and Nutrition Education, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Biernasiuk
- Chair and Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Andrzej Jakubczak
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Anna Malm
- Chair and Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Katarzyna Andraszek
- Institute of Animal Science and Fisheries, University of Siedlce, 08–110 Siedlce, Poland;
| |
Collapse
|
14
|
Lundsgaard NU, Hird C, Doody KA, Franklin CE, Cramp RL. Carryover effects from environmental change in early life: An overlooked driver of the amphibian extinction crisis? GLOBAL CHANGE BIOLOGY 2023; 29:3857-3868. [PMID: 37310166 DOI: 10.1111/gcb.16726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 06/14/2023]
Abstract
Ecological carryover effects, or delayed effects of the environment on an organism's phenotype, are central predictors of individual fitness and a key issue in conservation biology. Climate change imposes increasingly variable environmental conditions that may be challenging to early life-history stages in animals with complex life histories, leading to detrimental physiological and fitness effects in later life. Yet, the latent nature of carryover effects, combined with the long temporal scales over which they can manifest, means that this phenomenon remains understudied and is often overlooked in short-term studies limited to single life-history stages. Herein, we review evidence for the physiological carryover effects induced by elevated ultraviolet radiation (UVR; 280-400 nm) as a potential contributor to recent amphibian population declines. UVR exposure causes a suite of molecular, cellular and physiological consequences known to underpin carryover effects in other taxa, but there is a lack of research linking embryonic and larval UVR exposures to fitness consequences post-metamorphosis in amphibians. We propose that the key impacts of UVR on disease-related amphibian declines are facilitated through carryover effects that bridge embryonic and larval UVR exposure with potential increased disease susceptibility post-metamorphosis. We conclude by identifying a practical direction for the study of ecological carryover effects in amphibians that could guide future ecological research in the broader field of conservation physiology. Only by addressing carryover effects can many of the mechanistic links between environmental change and population declines be elucidated.
Collapse
Affiliation(s)
- Niclas U Lundsgaard
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Coen Hird
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Kathleen A Doody
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
15
|
Peterson DR, Seemann F, Wan MT, Ye RR, Chen L, Lai KP, Yu P, Kong RYC, Au DWT. Multigenerational impacts of EE2 on reproductive fitness and immune competence of marine medaka. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106584. [PMID: 37267806 DOI: 10.1016/j.aquatox.2023.106584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/16/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Estrogenic endocrine disrupting chemicals (EEDC) have been suspected to impact offspring in a transgenerational manner via modifications of the germline epigenome in the directly exposed generations. A holistic assessment of the concentration/ exposure duration-response, threshold level, and critical exposure windows (parental gametogenesis and embryogenesis) for the transgenerational evaluation of reproduction and immune compromise concomitantly will inform the overall EEDC exposure risk. We conducted a multigenerational study using the environmental estrogen, 17α-ethinylestradiol (EE2), and the marine laboratory model fish Oryzias melastigma (adult, F0) and their offspring (F1-F4) to identify transgenerationally altered offspring generations and phenotype persistence. Three exposure scenarios were used: short parental exposure, long parental exposure, and a combined parental and embryonic exposure using two concentrations of EE2 (33ng/L, 113ng/L). The reproductive fitness of fish was evaluated by assessing fecundity, fertilization rate, hatching success, and sex ratio. Immune competence was assessed in adults via a host-resistance assay. EE2 exposure during both parental gametogenesis and embryogenesis was found to induce concentration/ exposure duration-dependent transgenerational reproductive effects in the unexposed F4 offspring. Furthermore, embryonic exposure to 113 ng/L EE2 induced feminization of the directly exposed F1 generation, followed by subsequent masculinization of the F2 and F3 generations. A sex difference was found in the transgenerationally impaired reproductive output with F4 females being sensitive to the lowest concentration of EE2 (33 ng/L) upon long-term ancestral parent exposure (21 days). Conversely, F4 males were affected by ancestral embryonic EE2 exposure. No definitive transgenerational impacts on immune competence were identified in male or female offspring. In combination, these results indicate that EEDCs can be transgenerational toxicants that may negatively impact the reproductive success and population sustainability of fish populations.
Collapse
Affiliation(s)
- Drew R Peterson
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Frauke Seemann
- Center for Coastal Studies, Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412-5800, USA.
| | - Miles T Wan
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Roy R Ye
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Lianguo Chen
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Keng P Lai
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR; Guilin Medical University, Guilin, 541004, PR China
| | - Peter Yu
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Richard Y C Kong
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Doris W T Au
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR
| |
Collapse
|
16
|
Kim J, Choi J. Trans- and Multigenerational Effects of Isothiazolinone Biocide CMIT/MIT on Genotoxicity and Epigenotoxicity in Daphnia magna. TOXICS 2023; 11:388. [PMID: 37112615 PMCID: PMC10140887 DOI: 10.3390/toxics11040388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
The mixture of 5-chloro-2-methylisothiazol-3(2H)-one and 2-methylisothiazol-3(2H)-one, CMIT/MIT, is an isothiazolinone biocide that is consistently detected in aquatic environments because of its broad-spectrum usage in industrial fields. Despite concerns about ecotoxicological risks and possible multigenerational exposure, toxicological information on CMIT/MIT is very limited to human health and within-generational toxicity. Furthermore, epigenetic markers altered by chemical exposure can be transmitted over generations, but the role of these changes in phenotypic responses and toxicity with respect to trans- and multigenerational effects is poorly understood. In this study, the toxicity of CMIT/MIT on Daphnia magna was evaluated by measuring various endpoints (mortality, reproduction, body size, swimming behavior, and proteomic expression), and its trans- and multigenerational effects were investigated over four consecutive generations. The genotoxicity and epigenotoxicity of CMIT/MIT were examined using a comet assay and global DNA methylation measurements. The results show deleterious effects on various endpoints and differences in response patterns according to different exposure histories. Parental effects were transgenerational or recovered after exposure termination, while multigenerational exposure led to acclimatory/defensive responses. Changes in DNA damage were closely associated with altered reproduction in daphnids, but their possible relationship with global DNA methylation was not found. Overall, this study provides ecotoxicological information on CMIT/MIT relative to multifaceted endpoints and aids in understanding multigenerational phenomena under CMIT/MIT exposure. It also emphasizes the consideration of exposure duration and multigenerational observations in evaluating ecotoxicity and the risk management of isothiazolinone biocides.
Collapse
|
17
|
Agrelius TC, Altman J, Dudycha JL. The maternal effects of dietary restriction on Dnmt expression and reproduction in two clones of Daphnia pulex. Heredity (Edinb) 2023; 130:73-81. [PMID: 36477021 PMCID: PMC9905607 DOI: 10.1038/s41437-022-00581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The inheritance of epigenetic marks induced by environmental variation in a previous generation is broadly accepted as a mediator of phenotypic plasticity. Transgenerational effects linking maternal experiences to changes in morphology, gene expression, and life history of successive generations are known across many taxa. While the number of studies linking epigenetic variation to ecological maternal effects is increasing rapidly, few if any attempts have been made to investigate molecular mechanisms governing epigenetic functions in the context of ecologically relevant maternal effects. Daphnia make an ideal model for investigating molecular epigenetic mechanisms and ecological maternal effects because they will reproduce asexually in the lab. Daphnia are also known to have strong maternal effects, involving a variety of traits and environmental variables. Using two clones of Daphnia pulex, we investigated the plasticity of life history and DNA methyltransferase (Dnmt) gene expression with respect to food limitation within and across generations. We found strong evidence of genotypic variation of responses of life history and Dnmt expression to low food diets, both within and across generations. In general, effects of offspring diet were larger than either the direct maternal effect or offspring-maternal environment interactions, but the direction of the maternal effect was usually in the opposite direction of the within-generation effect. For both life history and Dnmt expression, we also found that when offspring had low food, effects of the maternal environment were stronger than when offspring had high food.
Collapse
Affiliation(s)
- Trenton C Agrelius
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, USA.
| | - Julia Altman
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
18
|
Akselsson A, Rossen J, Storck-Lindholm E, Rådestad I. Prolonged pregnancy and stillbirth among women with overweight or obesity - a population-based study in Sweden including 64,632 women. BMC Pregnancy Childbirth 2023; 23:21. [PMID: 36635668 PMCID: PMC9835339 DOI: 10.1186/s12884-022-05340-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The proportion of overweight or obese pregnant women is increasing in many countries and babies born to a mother who is overweight or obese are at higher risk for complications. Our primary objective was to describe sociodemographic and obstetric factors across Body Mass Index (BMI) classifications, with secondary objective to investigate stillbirth and other pregnancy outcomes in relation to BMI classifications and gestational week. METHODS This population-based cohort study with data partly based on a cluster-randomized controlled trial includes 64,632 women with singleton pregnancy, giving birth from 28 weeks' gestation. The time period was January 2016 to 30 June 2018 (2.5 years). Women were divided into five groups according to BMI: below 18.5 underweight, 18.5-24.9 normal weight, 25.0-29.9 overweight, 30.0-34.9 obesity, 35.0 and above, severe obesity. RESULTS Data was obtained for 61,800 women. Women who were overweight/obese/severely obese had lower educational levels, were to a lesser extent employed, were more often multiparas, tobacco users and had maternal diseases to a higher extent than women with normal weight. From 40 weeks' gestation, overweight women had a double risk of stillbirth compared to women of normal weight (RR 2.06, CI 1.01-4.21); the risk increased to almost four times higher for obese women (RR 3.97, CI 1.6-9.7). Women who were obese or severely obese had a higher risk of almost all pregnancy outcomes, compared to women of normal weight, such as Apgar score < 7 at 5 min (RR1.54, CI 1.24-1.90), stillbirth (RR 2.16, CI 1.31-3.55), transfer to neonatal care (RR 1.38, CI 1.26-1.50), and instrumental delivery (RR 1.26, CI 1.21-1.31). CONCLUSIONS Women who were obese or severely obese had a higher risk of almost all adverse pregnancy outcomes and from gestational week 40, the risk of stillbirth was doubled. The findings indicate a need for national guidelines and individualized care to prevent and reduce negative pregnancy outcomes in overweight/obese women. Preventive methods including preconception care and public health policies are needed to reduce the number of women being overweight/obese when entering pregnancy.
Collapse
Affiliation(s)
- Anna Akselsson
- grid.445308.e0000 0004 0460 3941Department of Health Promoting Science, Sophiahemmet University, 5605, S-114 86 Stockholm, PB Sweden
| | - Jenny Rossen
- grid.445308.e0000 0004 0460 3941Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| | - Elisabeth Storck-Lindholm
- grid.416648.90000 0000 8986 2221Department of Obstetrics and Gynecology, Stockholm South General Hospital, Stockholm, Sweden
| | - Ingela Rådestad
- grid.445308.e0000 0004 0460 3941Sophiahemmet University, Stockholm, Sweden
| |
Collapse
|
19
|
van Veelen HPJ, Salles JF, Matson KD, van Doorn GS, van der Velde M, Tieleman BI. The microbial environment modulates non-genetic maternal effects on egg immunity. Anim Microbiome 2022; 4:44. [PMID: 35902980 PMCID: PMC9331593 DOI: 10.1186/s42523-022-00195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background In a diverse microbial world immune function of animals is essential. Diverse microbial environments may contribute to extensive variation in immunological phenotypes of vertebrates, among and within species and individuals. As maternal effects benefit offspring development and survival, whether females use cues about their microbial environment to prime offspring immune function is unclear. To provide microbial environmental context to maternal effects, we asked if the bacterial diversity of the living environment of female zebra finches Taeniopygia guttata shapes maternal effects on egg immune function. We manipulated environmental bacterial diversity of birds and tested if females increased immunological investment in eggs in an environment with high bacterial diversity (untreated soil) versus low (gamma-sterilized soil). We quantified lysozyme and ovotransferrin in egg albumen and IgY in egg yolk and in female blood, and we used 16S rRNA gene sequencing to profile maternal cloacal and eggshell microbiotas. Results We found a maternal effect on egg IgY concentration that reflected environmental microbial diversity: females who experienced high diversity deposited more IgY in their eggs, but only if maternal plasma IgY levels were relatively high. We found no effects on lysozyme and ovotransferrin concentrations in albumen. Moreover, we uncovered that variation in egg immune traits could be significantly attributed to differences among females: for IgY concentration in yolk repeatability R = 0.80; for lysozyme concentration in albumen R = 0.27. Furthermore, a partial least squares path model (PLS-PM) linking immune parameters of females and eggs, which included maternal and eggshell microbiota structures and female body condition, recapitulated the treatment-dependent yolk IgY response. The PLS-PM additionally suggested that the microbiota and physical condition of females contributed to shaping maternal effects on egg immune function, and that (non-specific) innate egg immunity was prioritized in the environment with low bacterial diversity. Conclusions The microbial environment of birds can shape maternal effects on egg immune function. Since immunological priming of eggs benefits offspring, we highlight that non-genetic maternal effects on yolk IgY levels based on cues from the parental microbial environment may prove important for offspring to thrive in the microbial environment that they are expected to face. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00195-8.
Collapse
|
20
|
Earhart ML, Blanchard TS, Harman AA, Schulte PM. Hypoxia and High Temperature as Interacting Stressors: Will Plasticity Promote Resilience of Fishes in a Changing World? THE BIOLOGICAL BULLETIN 2022; 243:149-170. [PMID: 36548973 DOI: 10.1086/722115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractDetermining the resilience of a species or population to climate change stressors is an important but difficult task because resilience can be affected both by genetically based variation and by various types of phenotypic plasticity. In addition, most of what is known about organismal responses is for single stressors in isolation, but environmental change involves multiple environmental factors acting in combination. Here, our goal is to summarize what is known about phenotypic plasticity in fishes in response to high temperature and low oxygen (hypoxia) in combination across multiple timescales, to ask how much resilience plasticity may provide in the face of climate change. There are relatively few studies investigating plasticity in response to these environmental stressors in combination; but the available data suggest that although fish have some capacity to adjust their phenotype and compensate for the negative effects of acute exposure to high temperature and hypoxia through acclimation or developmental plasticity, compensation is generally only partial. There is very little known about intergenerational and transgenerational effects, although studies on each stressor in isolation suggest that both positive and negative impacts may occur. Overall, the capacity for phenotypic plasticity in response to these two stressors is highly variable among species and extremely dependent on the specific context of the experiment, including the extent and timing of stressor exposure. This variability in the nature and extent of plasticity suggests that existing phenotypic plasticity is unlikely to adequately buffer fishes against the combined stressors of high temperature and hypoxia as our climate warms.
Collapse
|
21
|
Männer L, Mundinger C, Haase M. Stay in shape: Assessing the adaptive potential of shell morphology and its sensitivity to temperature in the invasive New Zealand mud snail Potamopyrgus antipodarum through phenotypic plasticity and natural selection in Europe. Ecol Evol 2022; 12:e9314. [PMID: 36203624 PMCID: PMC9526036 DOI: 10.1002/ece3.9314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Climate change may force organisms to adapt genetically or plastically to new environmental conditions. Invasive species show remarkable potential for rapid adaptation. The ovoviviparous New Zealand mud snail (NZMS), Potamopyrgus antipodarum, has successfully established across Europe with two clonally reproducing mitochondrial lineages since its arrival in the first half of the 19th century. Its remarkable variation in shell morphology was shown to be fitness relevant. We investigated the effects of temperature on shell morphology across 11 populations from Germany and the Iberian Peninsula in a common garden across three temperatures. We analyzed size and shape using geometric morphometrics. For both, we compared reaction norms and estimated heritabilities. For size, the interaction of temperature and haplotype explained about 50% of the total variance. We also observed more genotype by environment interactions indicating a higher degree of population differentiation than in shape. Across the three temperatures, size followed the expectations of the temperature-size rule, with individuals growing larger in cold environments. Changes in shape may have compensated for changes in size affecting space for brooding embryos. Heritability estimates were relatively high. As indicated by the very low coefficients of variation for clonal repeatability (CV A ), they can probably not be compared in absolute terms. However, they showed some sensitivity to temperature, in haplotype t more so than in z, which was only found in Portugal. The low CV A values indicate that genetic variation among European populations is still restricted with a low potential to react to selection. A considerable fraction of the genetic variation was due to differences between the clonal lineages. The NZMS has apparently not been long enough in Europe to accumulate significant genetic variation relevant for morphological adaptation. As temperature is obviously not the sole factor influencing shell morphology, their interaction will probably not be a factor limiting population persistence under a warming climate in Europe.
Collapse
Affiliation(s)
- Lisa Männer
- AG Vogelwarte, Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Carolin Mundinger
- AG Applied Zoology and Nature Conservation, Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Martin Haase
- AG Vogelwarte, Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| |
Collapse
|
22
|
Truong KN, Vu N, Doan NX, Bui CV, Le M, Vu MTT, Dinh KV. Transgenerational exposure to marine heatwaves ameliorates the lethal effect on tropical copepods regardless of predation stress. Ecol Evol 2022; 12:e9149. [PMID: 35949526 PMCID: PMC9350982 DOI: 10.1002/ece3.9149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Marine heatwaves (MHWs) are emerging as a severe stressor in marine ecosystems. Extreme warm sea surface temperatures during MHWs often exceed the optimal thermal range for more than one generation of tropical coastal zooplankton. However, it is relatively unknown whether transgenerational plasticity (TGP) to MHWs may shape the offspring's fitness, particularly in an ecologically relevant context with biotic interactions such as predation stress. We addressed these novel research questions by determining the survival, reproductive success, and grazing rate of the copepod Pseudodiaptomus incisus exposed to MHW and fish predator cues (FPC) for two generations (F1 and F2). The experiment was designed in a full orthogonal manner with 4 treatments in F1 and 16 treatments in F2 generation. In both generations, MHW reduced P. incisus survival, reproductive parameters, and grazing by 10%-62% in MHW, but these parameters increased by 2%-15% with exposure to FPC, particularly at control temperature. F2 reproductive success and grazing rate as indicated by cumulative fecal pellets were reduced by 20%-30% in F1-MHW, but increased by ~2% in F1-FPC. Strikingly, MHW exposure reduced 17%-18% survival, but transgenerational exposure to MHWs fully ameliorated its lethal effect and this transgenerational effect was independent of FPC. Increased survival came with a cost of reduced reproductive success, constrained by reduced grazing. The rapid transgenerational MHW acclimation and its associated costs are likely widespread and crucial mechanisms underlying the resilience of coastal tropical zooplankton to MHWs in tropical coastal marine ecosystems.
Collapse
Affiliation(s)
- Kiem N. Truong
- Department of EcologyUniversity of Science, Vietnam National UniversityHanoiVietnam
| | - Ngoc‐Anh Vu
- Department of EcologyUniversity of Science, Vietnam National UniversityHanoiVietnam
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
| | - Nam X. Doan
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
| | - Canh V. Bui
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
| | - Minh‐Hoang Le
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
| | - Minh T. T. Vu
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| | - Khuong V. Dinh
- Cam Ranh Centre for Tropical Marine Research and Aquaculture, Institute of AquacultureNha Trang UniversityNha Trang CityVietnam
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
23
|
Spinks RK, Donelson JM, Bonzi LC, Ravasi T, Munday PL. Parents exposed to warming produce offspring lower in weight and condition. Ecol Evol 2022; 12:e9044. [PMID: 35866024 PMCID: PMC9288889 DOI: 10.1002/ece3.9044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
The parental environment can alter offspring phenotypes via the transfer of non-genetic information. Parental effects may be viewed as an extension of (within-generation) phenotypic plasticity. Smaller size, poorer physical condition, and skewed sex ratios are common responses of organisms to global warming, yet whether parental effects alleviate, exacerbate, or have no impact on these responses has not been widely tested. Further, the relative non-genetic influence of mothers and fathers and ontogenetic timing of parental exposure to warming on offspring phenotypes is poorly understood. Here, we tested how maternal, paternal, and biparental exposure of a coral reef fish (Acanthochromis polyacanthus) to elevated temperature (+1.5°C) at different ontogenetic stages (development vs reproduction) influences offspring length, weight, condition, and sex. Fish were reared across two generations in present-day and projected ocean warming in a full factorial design. As expected, offspring of parents exposed to present-day control temperature that were reared in warmer water were shorter than their siblings reared in control temperature; however, within-generation plasticity allowed maintenance of weight, resulting in a higher body condition. Parental exposure to warming, irrespective of ontogenetic timing and sex, resulted in decreased weight and condition in all offspring rearing temperatures. By contrast, offspring sex ratios were not strongly influenced by their rearing temperature or that of their parents. Together, our results reveal that phenotypic plasticity may help coral reef fishes maintain performance in a warm ocean within a generation, but could exacerbate the negative effects of warming between generations, regardless of when mothers and fathers are exposed to warming. Alternatively, the multigenerational impact on offspring weight and condition may be a necessary cost to adapt metabolism to increasing temperatures. This research highlights the importance of examining phenotypic plasticity within and between generations across a range of traits to accurately predict how organisms will respond to climate change.
Collapse
Affiliation(s)
- Rachel K. Spinks
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Lucrezia C. Bonzi
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Timothy Ravasi
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
24
|
Terrazas-Salgado L, García-Gasca A, Betancourt-Lozano M, Llera-Herrera R, Alvarado-Cruz I, Yáñez-Rivera B. Epigenetic Transgenerational Modifications Induced by Xenobiotic Exposure in Zebrafish. Front Cell Dev Biol 2022; 10:832982. [PMID: 35281093 PMCID: PMC8914061 DOI: 10.3389/fcell.2022.832982] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Zebrafish (Danio rerio) is a well-established vertebrate model in ecotoxicology research that responds to a wide range of xenobiotics such as pesticides, drugs, and endocrine-disrupting compounds. The epigenome can interact with the environment and transform internal and/or external signals into phenotypic responses through changes in gene transcription. Environmental exposures can also generate epigenetic variations in offspring even by indirect exposure. In this review, we address the advantages of using zebrafish as an experimental animal model to study transgenerational epigenetic processes upon exposure to xenobiotics. We focused mostly on DNA methylation, although studies on post-translational modifications of histones, and non-coding RNAs related to xenobiotic exposure in zebrafish are also discussed. A revision of the methods used to study epigenetic changes in zebrafish revealed the relevance and reproducibility for epigenetics-related research. PubMed and Google Scholar databases were consulted for original research articles published from 2013 to date, by using six keywords: zebrafish, epigenetics, exposure, parental, transgenerational, and F2. From 499 articles identified, 92 were considered, of which 14 were selected as included F2 and epigenetic mechanisms. Current knowledge regarding the effect of xenobiotics on DNA methylation, histone modifications, and changes in non-coding RNAs expressed in F2 is summarized, along with key experimental design considerations to characterize transgenerational effects.
Collapse
Affiliation(s)
| | | | | | - Raúl Llera-Herrera
- Instituto de Ciencias del Mar y Limnología—Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Mazatlán, Mexico
| | - Isabel Alvarado-Cruz
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, AZ, United States
| | - Beatriz Yáñez-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A. C., Mazatlán, Mexico
- Consejo Nacional de Ciencia y Tecnología, México, Mexico
- *Correspondence: Beatriz Yáñez-Rivera,
| |
Collapse
|
25
|
Bhuiyan MKA, Rodríguez BM, Billah MM, Pires A, Freitas R, Conradi M. Effects of ocean acidification on the biochemistry, physiology and parental transfer of Ampelisca brevicornis (Costa, 1853). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118549. [PMID: 34813884 DOI: 10.1016/j.envpol.2021.118549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Ocean acidification (OA) has received more attention in the marine research community in recent years than any other topic. Excess carbon dioxide makes the ocean more acidic, threatening marine ecosystems. There has been little research on the impact of OA on crustaceans, particularly on their physiological and potential ecosystem-level consequences. Thus, we investigated the impacts of OA on the physiological and biochemical characteristics of the estuarine amphipod Ampelisca brevicornis. Ovigerous amphipods were harvested from nature and maintained in the laboratory to produce juveniles, which were then further reared to obtain the mature adults (F0) and successive offspring (F1). For this study, four pH treatments (pH 8.1, 7.5, 7.0, and 6.5) mimicking future OA were evaluated to understand the physiological and biochemical effects on the organisms. The findings of this study suggest that A. brevicornis is more vulnerable to OA than was previously established in short-term trials. The survival was significantly reduced as pH decreased over time and a significant interaction between pH and time was observed. Survival was higher in F1 than in F0 juveniles and vice versa in terms of growth. Animal's physiological responses such as growth, burrowing behavior, locomotor activity, swimming speed, ventilation rate and reproductive performance were negatively influenced by acidification. These physiological characteristics can be linked to the oxidative stress induced by global change conditions because excess of free radicals degrade cell functioning, affecting species' biochemical and physiological performance. These alterations may have long-term negative impacts, with ecological consequences. The results of this study provide baseline information regarding the effect of OA on this keystone crustacean that may be useful in simulating the impacts of OA to develop different conceptual models for a better understanding of the consequences and implications of climate change in the future for managing marine ecosystems.
Collapse
Affiliation(s)
- Md Khurshid Alam Bhuiyan
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cádiz, Polígono Río San Pedro s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Belén Marín Rodríguez
- Department of Zoology, Faculty of Biology, University of Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science-CIRSA, University of Bologna, Ravenna Campus, Italy
| | - Adilia Pires
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mercedes Conradi
- Department of Zoology, Faculty of Biology, University of Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla, Spain
| |
Collapse
|
26
|
Jirinec V, Burner RC, Amaral BR, Bierregaard RO, Fernández-Arellano G, Hernández-Palma A, Johnson EI, Lovejoy TE, Powell LL, Rutt CL, Wolfe JD, Stouffer PC. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. SCIENCE ADVANCES 2021; 7:eabk1743. [PMID: 34767440 PMCID: PMC8589309 DOI: 10.1126/sciadv.abk1743] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/16/2021] [Indexed: 06/01/2023]
Abstract
Warming from climate change is expected to reduce body size of endotherms, but studies from temperate systems have produced equivocal results. Over four decades, we collected morphometric data on a nonmigratory understory bird community within Amazonian primary rainforest that is experiencing increasingly extreme climate. All 77 species showed lower mean mass since the early 1980s—nearly half with 95% confidence. A third of species concomitantly increased wing length, driving a decrease in mass:wing ratio for 69% of species. Seasonal precipitation patterns were generally better than temperature at explaining morphological variation. Short-term climatic conditions affected all metrics, but time trends in wing and mass:wing remained robust even after controlling for annual seasonal conditions. We attribute these results to pressures to increase resource economy under warming. Both seasonal and long-term morphological shifts suggest response to climate change and highlight its pervasive consequences, even in the heart of the world’s largest rainforest.
Collapse
Affiliation(s)
- Vitek Jirinec
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Ryan C. Burner
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1435 Aas, Norway
| | - Bruna R. Amaral
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- Department of Ecology, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Richard O. Bierregaard
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Gilberto Fernández-Arellano
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- Department of Ecology, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Angélica Hernández-Palma
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá, Colombia
| | - Erik I. Johnson
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- National Audubon Society, 5615 Corporate Blvd., Baton Rouge, LA 70808, USA
| | - Thomas E. Lovejoy
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA
| | - Luke L. Powell
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Campus de Vairão, 4485-661 Vairão, Portugal
- Biodiversity Initiative, Houghton, MI 49931, USA
| | - Cameron L. Rutt
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
| | - Jared D. Wolfe
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
- Biodiversity Initiative, Houghton, MI 49931, USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Philip C Stouffer
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA 70803, USA
- Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| |
Collapse
|
27
|
Hayes T, López-Martínez G. Resistance and survival to extreme heat shows circadian and sex-specific patterns in A cavity nesting bee. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100020. [PMID: 36003599 PMCID: PMC9387514 DOI: 10.1016/j.cris.2021.100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
The pollination services provided by insects have been a crucial part of evolution and survival for many species, including humans. For bees to be efficient pollinators they must survive the environmental insults they face daily. Thus, looking into the short- and long-term effects of heat exposure on bee performance provides us with a foundation for investigating how stress can affect insect pollination. Solitary bees are a great model for investigating the effects of environmental stress on pollinators because the vast majority of insect pollinator species are solitary rather than social. One of the most pervasive environmental stressors to insects is temperature. Here we investigated how a one-hour heat shock affected multiple metrics of performance in the alfalfa leafcutting bee, Megachile rotundata. We found that a short heat shock (1hr at 45°C) can delay adult emergence in males but not females. Bee pupae were rather resilient to a range of high temperature exposures that larvae did not survive. Following heat shock (1hr at 50°C), adult bees were drastically less active than untreated bees, and this reduction in activity was evident over several days. Heat shock also led to a decrease in bee survival and longevity. Additionally, we found a connection between starvation survival after heat shock and time of exposure, where bees exposed in the morning survived longer than those exposed in the afternoon, when they would normally experience heat shock in the field. These data suggest that there is an unexplored daily/circadian component to the stress response in bees likely similar to that seen in flies, nematodes, and plants which is constitutive or preemptive rather than restorative. Taken together our data indicate that single heat shock events have strong potential to negatively impact multiple life history traits correlated with reproduction and fitness.
Collapse
Affiliation(s)
- Tayia Hayes
- Department of Natural Sciences and Environmental Health, Mississippi Valley State University, Itta Bena, MS 38941
| | | |
Collapse
|
28
|
Riyahi J, Abdoli B, Gelfo F, Petrosini L, Rezaei R, Haghparast A. Maternal spatial training before fertilization improves the spatial learning process in female offspring. Neuroreport 2021; 32:1106-1112. [PMID: 34284449 DOI: 10.1097/wnr.0000000000001699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent results of our team showed that parental spatial training before fertilization improves the offspring's spatial memory. However, the process of spatial learning (short-term/working and long-term memories, mnesic consolidation and procedures) in the offspring has not been fully clarified yet. Therefore, this study aimed at specifically analyzing whether maternal learning of a spatial task before fertilization can impact on the process of spatial learning in the female offspring. In the present study, 8-week-old female Wistar rats that had been spatially trained (or not) in the Morris Water Maze (MWM) were mated with conspecific standard-reared male rats, and their 4-week-old female offspring were spatially tested in the same MWM to evaluate their learning and memory processes. Results showed that the female offspring of trained mothers significantly displayed lower escape latencies, higher swimming speed, shorter total distance swum, longer percentage of time spent in the target quadrant and better localization memory in comparison to the female offspring of not trained mothers. Further, MWM performances of mothers trained and their female offspring significantly correlated. These findings indicate that the maternal spatial training before fertilization improves the spatial learning and memory consolidation process of the female offspring.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Behrouz Abdoli
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Francesca Gelfo
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | - Laura Petrosini
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation
| | - Rasoul Rezaei
- Department of Sport Sciences, Faculty of Educational Sciences and Psychology, Shiraz University, Shiraz, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| |
Collapse
|
29
|
Lite C, Sridhar VV, Sriram S, Juliet M, Arshad A, Arockiaraj J. Functional role of piRNAs in animal models and its prospects in aquaculture. REVIEWS IN AQUACULTURE 2021; 13:2038-2052. [DOI: 10.1111/raq.12557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/01/2021] [Indexed: 10/16/2023]
Abstract
AbstractThe recent advances in the field of aquaculture over the last decade has helped the cultured‐fish industry production sector to identify problems and choose the best approaches to achieve high‐volume production. Understanding the emerging roles of non‐coding RNA (ncRNA) in the regulation of fish physiology and health will assist in gaining knowledge on the possible applications of ncRNAs for the advancement of aquaculture. There is information available on the practical considerations of epigenetic mechanisms like DNA methylation, histone modification and ncRNAs, such as microRNA in aquaculture, for both fish and shellfish. Among the non‐coding RNAs, PIWI‐interacting RNA (piRNA) is 24–31 bp long transcripts, which is primarily involved in silencing the germline transposons. Besides, the burgeoning reports and studies establish piRNAs' role in various aspects of biology. Till date, there are no reviews that summarize the recent findings available on piRNAs in animal models, especially on piRNAs biogenesis and biological action. To gain a better understanding and get an overview on the process of piRNA genesis among the different animals, this work reviews the literature available on the processes of piRNA biogenesis in animal models with special reference to aquatic animal model zebrafish. This review also presents a short discussion and prospects of piRNA’s application in relevance to the aquaculture industry.
Collapse
Affiliation(s)
- Christy Lite
- Endocrine and Exposome (E2) Laboratory Department of Zoology Madras Christian College Chennai India
| | - Vasisht Varsh Sridhar
- Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Chennai India
| | - Swati Sriram
- Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Chennai India
| | - Melita Juliet
- Department of Oral and Maxillofacial Surgery SRM Dental College and Hospital, SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Serdang Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai India
- Department of Biotechnology, Faculty of Science and Humanities SRM Institute of Science and Technology Chennai India
| |
Collapse
|
30
|
Lavergne SG, Krebs CJ, Kenney AJ, Boutin S, Murray D, Palme R, Boonstra R. The impact of variable predation risk on stress in snowshoe hares over the cycle in North America's boreal forest: adjusting to change. Oecologia 2021; 197:71-88. [PMID: 34435235 DOI: 10.1007/s00442-021-05019-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022]
Abstract
The boreal forest is one of the world's ecosystems most affected by global climate warming. The snowshoe hare, its predators, and their population dynamics dominate the mammalian component of the North American boreal forest. Our past research has shown the 9-11-year hare cycle to be predator driven, both directly as virtually all hares that die are killed by their predators, and indirectly through sublethal risk effects on hare stress physiology, behavior, and reproduction. We replicated this research over the entire cycle by measuring changes in predation risk expected to drive changes in chronic stress. We examined changes in hare condition and stress axis function using a hormonal challenge protocol in the late winter of 7 years-spanning all phases of the cycle from the increase through to the low (2014-2020). We simultaneously monitored changes in hare abundance as well as those of their primary predators, lynx and coyotes. Despite observing the expected changes in hare-predator numbers over the cycle, we did not see the predicted changes in chronic stress metrics in the peak and decline phases. Thus, the comprehensive physiological signature indicative of chronic predator-induced stress seen from our previous work was not present in this current cycle. We postulate that hares may now be increasingly showing behavior-mediated rather than stress-mediated responses to their predators. We present evidence that increases in primary productivity have affected boreal community structure and function. We speculate that climate change has caused this major shift in the indirect effects of predation on hares.
Collapse
Affiliation(s)
- Sophia G Lavergne
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Alice J Kenney
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dennis Murray
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| |
Collapse
|
31
|
Gerdol M, La Vecchia C, Strazzullo M, De Luca P, Gorbi S, Regoli F, Pallavicini A, D’Aniello E. Evolutionary History of DNA Methylation Related Genes in Bivalvia: New Insights From Mytilus galloprovincialis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.698561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is an essential epigenetic mechanism influencing gene expression in all organisms. In metazoans, the pattern of DNA methylation changes during embryogenesis and adult life. Consequently, differentiated cells develop a stable and unique DNA methylation pattern that finely regulates mRNA transcription during development and determines tissue-specific gene expression. Currently, DNA methylation remains poorly investigated in mollusks and completely unexplored in Mytilus galloprovincialis. To shed light on this process in this ecologically and economically important bivalve, we screened its genome, detecting sequences homologous to DNA methyltransferases (DNMTs), methyl-CpG-binding domain (MBD) proteins and Ten-eleven translocation methylcytosine dioxygenase (TET) previously described in other organisms. We characterized the gene architecture and protein domains of the mussel sequences and studied their phylogenetic relationships with the ortholog sequences from other bivalve species. We then comparatively investigated their expression levels across different adult tissues in mussel and other bivalves, using previously published transcriptome datasets. This study provides the first insights on DNA methylation regulators in M. galloprovincialis, which may provide fundamental information to better understand the complex role played by this mechanism in regulating genome activity in bivalves.
Collapse
|
32
|
Wong KH, Goodbody-Gringley G, de Putron SJ, Becker DM, Chequer A, Putnam HM. Brooded coral offspring physiology depends on the combined effects of parental press and pulse thermal history. GLOBAL CHANGE BIOLOGY 2021; 27:3179-3195. [PMID: 33914388 DOI: 10.1111/gcb.15629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Reef-building corals respond to the temporal integration of both pulse events (i.e., heat waves) and press thermal history (i.e., local environment) via physiological changes, with ecological consequences. We used a "press-pulse-press" experimental framework to expose the brooding coral Porites astreoides to various thermal histories to understand the physiological response of temporal dynamics within and across generations. We collected adult colonies from two reefs (outer Rim reef and inner Patch reef) in Bermuda with naturally contrasting thermal regimes as our initial "press" scenario, followed by a 21-day ex situ "pulse" thermal stress of 30.4°C during larval brooding, and a "press" year-long adult reciprocal transplant between the original sites. Higher endosymbiont density and holobiont protein was found in corals originating from the lower thermal variability site (Rim) compared to the higher thermal variability site (Patch). The thermal pulse event drove significant declines in photosynthesis, endosymbiont density, and chlorophyll a, with bleaching phenotype convergence for adults from both histories. Following the reciprocal transplant, photosynthesis was higher in previously heated corals, indicating recovery from the thermal pulse. The effect of origin (initial press) modulated the response to transplant site for endosymbiont density and chlorophyll a, suggesting contrasting acclimation strategies. Higher respiration and photosynthetic rates were found in corals originating from the Rim site, indicating greater energy available for reproduction, supported by larger larvae released from Rim corals post-transplantation. Notably, parental exposure to the pulse thermal event resulted in increased offspring plasticity when parents were transplanted to foreign sites, highlighting the legacy of the pulse event and the importance of the environment during recovery in contributing to cross-generational or developmental plasticity. Together, these findings provide novel insight into the role of historical disturbance events in driving differential outcomes within and across generations, which is of critical importance in forecasting reef futures.
Collapse
Affiliation(s)
- Kevin H Wong
- Department of Biology, University of Rhode Island, Kingston, RI, USA
| | - Gretchen Goodbody-Gringley
- Bermuda Institute of Ocean Sciences, St. George's, Bermuda
- Central Caribbean Marine Institute, Little Cayman Island, Cayman Islands
| | | | - Danielle M Becker
- Department of Biology, University of Rhode Island, Kingston, RI, USA
| | - Alex Chequer
- Bermuda Institute of Ocean Sciences, St. George's, Bermuda
| | - Hollie M Putnam
- Department of Biology, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
33
|
Bautista NM, do Amaral-Silva L, Dzialowski E, Burggren WW. Dietary Exposure to Low Levels of Crude Oil Affects Physiological and Morphological Phenotype in Adults and Their Eggs and Hatchlings of the King Quail ( Coturnix chinensis). Front Physiol 2021; 12:661943. [PMID: 33897469 PMCID: PMC8063051 DOI: 10.3389/fphys.2021.661943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the current knowledge of the devastating effects of external exposure to crude oil on animal mortality, the study of developmental, transgenerational effects of such exposure has received little attention. We used the king quail as an animal model to determine if chronic dietary exposure to crude oil in a parental population would affect morpho-physiological phenotypic variables in their immediate offspring generation. Adult quail were separated into three groups: (1) Control, and two experimental groups dietarily exposed for at least 3 weeks to (2) Low (800 PAH ng/g food), or (3) High (2,400 PAH ng/g food) levels of crude oil. To determine the parental influence on their offspring, we measured metabolic and respiratory physiology in exposed parents and in their non-exposed eggs and hatchlings. Body mass and numerous metabolic (e.g., O2 consumption, CO2 production) and respiratory (e.g., ventilation frequency and volume) variables did not vary between control and oil exposed parental groups. In contrast, blood PO2, PCO2, and SO2 varied among parental groups. Notably, water loss though the eggshell was increased in eggs from High oil level exposed parents. Respiratory variables of hatchlings did not vary between populations, but hatchlings obtained from High oil-exposed parents exhibited lower capacities to maintain body temperature while exposed to a cooling protocol in comparison to hatchlings from Low- and Control-derived parents. The present study demonstrates that parental exposure to crude oil via diet impacts some aspects of physiological performance of the subsequent first (F1) generation.
Collapse
Affiliation(s)
- Naim M Bautista
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.,Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Lara do Amaral-Silva
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States.,Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Edward Dzialowski
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
34
|
Männer L, Schell T, Provataris P, Haase M, Greve C. Inference of DNA methylation patterns in molluscs. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200166. [PMID: 33813896 DOI: 10.1098/rstb.2020.0166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mollusca are the second largest and arguably most diverse phylum of the animal kingdom. This is in sharp contrast to our very limited knowledge concerning epigenetic mechanisms including DNA methylation in this invertebrate group. Here, we inferred DNA methylation patterns by analysing the normalized dinucleotide CG content in protein-coding sequences and identified DNA methyltransferases (DNMT1 and 3) in published transcriptomes and genomes of 140 species across all eight classes of molluscs. Given the evolutionary age and morphological diversity of molluscs, we expected to find evidence for diverse methylation patterns. Our inferences suggest that molluscs possess substantial levels of DNA methylation in gene bodies as a rule. Yet, we found deviations from this general picture with regard to (i) the CpG observed/expected distributions indicating a reduction in DNA methylation in certain groups and (ii) the completeness of the DNMT toolkit. Reductions were evident in Caudofoveata, Solenogastres, Polyplacophora, Monoplacophora, as well as Scaphopoda. Heterobranchia and Oegopsida were remarkable as they lacked DNMT3, usually responsible for de novo methylation, yet showed signs of DNA methylation. Our survey may serve as guidance for direct empirical analyses of DNA methylation in molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Lisa Männer
- AG Vogelwarte, Zoological Institute and Museum, University of Greifswald, Soldmannstraße 23, 17489 Greifswald, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Panagiotis Provataris
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany.,Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Martin Haase
- AG Vogelwarte, Zoological Institute and Museum, University of Greifswald, Soldmannstraße 23, 17489 Greifswald, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
35
|
Wagener C, Kruger N, Measey J. Progeny of Xenopus laevis from altitudinal extremes display adaptive physiological performance. J Exp Biol 2021; 224:jeb.233031. [PMID: 34424980 DOI: 10.1242/jeb.233031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022]
Abstract
Environmental temperature variation generates adaptive phenotypic differentiation in widespread populations. We used a common garden experiment to determine whether offspring with varying parental origins display adaptive phenotypic variation related to different thermal conditions experienced in parental environments. We compared burst swimming performance and critical thermal limits of African clawed frog (Xenopus laevis) tadpoles bred from adults captured at high (∼2000 m above sea level) and low (∼ 5 m above sea level) altitudes. Maternal origin significantly affected swimming performance. Optimal swimming performance temperature (Topt) had a >9°C difference between tadpoles with low altitude maternal origins (pure- and cross-bred, 35.0°C) and high-altitude maternal origins (pure-bred, 25.5°C; cross-bred, 25.9°C). Parental origin significantly affected critical thermal (CT) limits. Pure-bred tadpoles with low-altitude parental origins had higher CTmax (37.8±0.8°C) than pure-bred tadpoles with high-altitude parental origins and all cross-bred tadpoles (37.0±0.8 and 37.1±0.8°C). Pure-bred tadpoles with low-altitude parental origins and all cross-bred tadpoles had higher CTmin (4.2±0.7 and 4.2±0.7°C) than pure-bred tadpoles with high-altitude parental origins (2.5±0.6°C). Our study shows that the varying thermal physiological traits of Xenopus laevis tadpoles are the result of adaptive responses to their parental thermal environments. This study is one of few demonstrating potential intraspecific evolution of critical thermal limits in a vertebrate species. Multi-generation common garden experiments and genetic analyses would be required to further tease apart the relative contribution of plastic and genetic effects to the adaptive phenotypic variation observed in these tadpoles.
Collapse
Affiliation(s)
- Carla Wagener
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa
| | - Natasha Kruger
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa.,Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602 South Africa
| |
Collapse
|
36
|
Spinks RK, Bonzi LC, Ravasi T, Munday PL, Donelson JM. Sex- and time-specific parental effects of warming on reproduction and offspring quality in a coral reef fish. Evol Appl 2021; 14:1145-1158. [PMID: 33897826 PMCID: PMC8061261 DOI: 10.1111/eva.13187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 01/24/2023] Open
Abstract
Global warming can disrupt reproduction or lead to fewer and poorer quality offspring, owing to the thermally sensitive nature of reproductive physiology. However, phenotypic plasticity may enable some animals to adjust the thermal sensitivity of reproduction to maintain performance in warmer conditions. Whether elevated temperature affects reproduction may depend on the timing of exposure to warming and the sex of the parent exposed. We exposed male and female coral reef damselfish (Acanthochromis polyacanthus) during development, reproduction or both life stages to an elevated temperature (+1.5°C) consistent with projected ocean warming and measured reproductive output and newly hatched offspring performance relative to pairs reared in a present-day control temperature. We found female development in elevated temperature increased the probability of breeding, but reproduction ceased if warming continued to the reproductive stage, irrespective of the male's developmental experience. Females that developed in warmer conditions, but reproduced in control conditions, also produced larger eggs and hatchlings with greater yolk reserves. By contrast, male development or pairs reproducing in higher temperature produced fewer and poorer quality offspring. Such changes may be due to alterations in sex hormones or an endocrine stress response. In nature, this could mean female fish developing during a marine heatwave may have enhanced reproduction and produce higher quality offspring compared with females developing in a year of usual thermal conditions. However, male development during a heatwave would likely result in reduced reproductive output. Furthermore, the lack of reproduction from an average increase in temperature could lead to population decline. Our results demonstrate how the timing of exposure differentially influences females and males and how this translates to effects on reproduction and population sustainability in a warming world.
Collapse
Affiliation(s)
- Rachel K. Spinks
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Lucrezia C. Bonzi
- Red Sea Research CenterDivision of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Timothy Ravasi
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami‐gunJapan
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
37
|
Akselsson A, Lindgren H, Georgsson S, Pettersson K, Skokic V, Rådestad I. Pregnancy outcomes among women born in Somalia and Sweden giving birth in the Stockholm area - a population-based study. Glob Health Action 2021; 13:1794107. [PMID: 32744184 PMCID: PMC7480426 DOI: 10.1080/16549716.2020.1794107] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Studies report that women born in some African countries, after migrating to the Nordic countries, have worse pregnancy outcomes than women born in the receiving countries. With the aim of identifying unmet needs among Somali-born women, we here study this subgroup. Objective We compared pregnancy outcomes among women born in Somalia to women born in Sweden. Further, we investigated whether the proactive maternal observation of fetal movements has effects on birth outcomes among women born in Somalia. Methods In Stockholm, half of the maternity clinics were randomized to intervention, in which midwives were instructed to be proactive towards women by promoting daily self-monitoring of fetal movements. Data for 623 women born in Somalia and 26 485 born in Sweden were collected from a population-based register. Results An Apgar score below 7 (with stillbirth counting as 0) at 5 minutes was more frequent in babies of women born in Somalia as compared to babies of women born in Sweden (RR 2.17, 95% CI 1.25–3.77). Babies born small for gestational age were more common among women born in Somalia (RR 2.22, CI 1.88–2.61), as were babies born after 41 + 6 gestational weeks (RR 1.65, CI 1.29–2.12). Somali-born women less often contacted obstetric care for decreased fetal movements than did Swedish-born women (RR 0.19, CI 0.08–0.36). The differences between women born in Somalia and women born in Sweden were somewhat lower (not statistically significant) among women allocated to proactivity as compared to the Routine-care group. Conclusions A higher risk of a negative outcome for mother and baby is seen among women born in Somalia compared to women born in Sweden. We suggest it may be worthwhile to investigate whether a Somali-adapted intervention with proactivity concerning self-monitoring of fetal movements may improve pregnancy outcomes in this migrant population.
Collapse
Affiliation(s)
- Anna Akselsson
- Department of Health Promoting Science, Sophiahemmet University , Stockholm, Sweden
| | - Helena Lindgren
- Department of Women and Children's Health, Karolinska Institutet , Stockholm, Sweden
| | - Susanne Georgsson
- The Swedish Red Cross University College , Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet , Stockholm, Sweden
| | - Karin Pettersson
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet , Stockholm, Sweden
| | - Viktor Skokic
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Ingela Rådestad
- Department of Health Promoting Science, Sophiahemmet University , Stockholm, Sweden
| |
Collapse
|
38
|
McRae CJ, Huang WB, Fan TY, Côté IM. Effects of thermal conditioning on the performance of Pocillopora acuta adult coral colonies and their offspring. CORAL REEFS (ONLINE) 2021; 40:1491-1503. [PMID: 34720373 PMCID: PMC8550305 DOI: 10.1007/s00338-021-02123-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 05/25/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Ocean warming induced by climate change is the greatest threat to the persistence of coral reefs globally. Given the current rate of ocean warming, there may not be sufficient time for natural acclimation or adaptation by corals. This urgency has led to the exploration of active management techniques aimed at enhancing thermal tolerance in corals. Here, we test the capacity for transgenerational acclimation in the reef-building coral Pocillopora acuta as a means of increasing offspring performance in warmer waters. We exposed coral colonies from a reef influenced by intermittent upwelling and constant warm-water effluent from a nuclear power plant to temperatures that matched (26 °C) or exceeded (29.5 °C) season-specific mean temperatures for three reproductive cycles; offspring were allowed to settle and grow at both temperatures. Heated colonies reproduced significantly earlier in the lunar cycle and produced fewer and smaller planulae. Recruitment was lower at the heated recruitment temperature regardless of parent treatment. Recruit survival did not differ based on parent or recruitment temperature. Recruits from heated parents were smaller and had lower maximum quantum yield (Fv/Fm), a measurement of symbiont photochemical performance. We found no direct evidence that thermal conditioning of adult P. acuta corals improves offspring performance in warmer water; however, chronic exposure of parent colonies to warmer temperatures at the source reef site may have limited transgenerational acclimation capacity. The extent to which coral response to this active management approach might vary across species and sites remains unclear and merits further investigation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00338-021-02123-9.
Collapse
Affiliation(s)
- Crystal J. McRae
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
- Department of Biological Sciences, Simon Fraser University, British Columbia, Canada
| | - Wen-Bin Huang
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
| | - Tung-Yung Fan
- Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Isabelle M. Côté
- Department of Biological Sciences, Simon Fraser University, British Columbia, Canada
| |
Collapse
|
39
|
Torson AS, Dong YW, Sinclair BJ. Help, there are ‘omics’ in my comparative physiology! J Exp Biol 2020; 223:223/24/jeb191262. [DOI: 10.1242/jeb.191262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
‘Omics’ methods, such as transcriptomics, proteomics, lipidomics or metabolomics, yield simultaneous measurements of many related molecules in a sample. These approaches have opened new opportunities to generate and test hypotheses about the mechanisms underlying biochemical and physiological phenotypes. In this Commentary, we discuss general approaches and considerations for successfully integrating omics into comparative physiology. The choice of omics approach will be guided by the availability of existing resources and the time scale of the process being studied. We discuss the use of whole-organism extracts (common in omics experiments on small invertebrates) because such an approach may mask underlying physiological mechanisms, and we consider the advantages and disadvantages of pooling samples within biological replicates. These methods can bring analytical challenges, so we describe the most easily analyzed omics experimental designs. We address the propensity of omics studies to digress into ‘fishing expeditions’ and show how omics can be used within the hypothetico-deductive framework. With this Commentary, we hope to provide a roadmap that will help newcomers approach omics in comparative physiology while avoiding some of the potential pitfalls, which include ambiguous experiments, long lists of candidate molecules and vague conclusions.
Collapse
Affiliation(s)
- Alex S. Torson
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Yun-wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, PR China
| | - Brent J. Sinclair
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
40
|
Augustyniak M, Tarnawska M, Dziewięcka M, Kafel A, Rost-Roszkowska M, Babczyńska A. DNA damage in Spodoptera exigua after multigenerational cadmium exposure - A trade-off between genome stability and adaptation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141048. [PMID: 32758757 DOI: 10.1016/j.scitotenv.2020.141048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Human activity is a serious cause of extensive changes in the environment and a constant reason for the emergence of new stress factors. Thus, to survive and reproduce, organisms must constantly implement a program of adaptation to continuously changing conditions. The research presented here is focused on tracking slow changes occurring in Spodoptera exigua (Lepidoptera: Noctuidae) caused by multigenerational exposure to sub-lethal cadmium doses. The insects received food containing cadmium at concentrations of 5, 11, 22 and 44 μg per g of dry mass of food. The level of DNA stability was monitored by a comet assay in subsequent generations up to the 36th generation. In the first three generations, the level of DNA damage was high, especially in the groups receiving higher doses of cadmium in the diet. In the fourth generation, a significant reduction in the level of DNA damage was observed, which could indicate that the desired stability of the genome was achieved. Surprisingly, however, in subsequent generations, an alternating increase and decrease was found in DNA stability. The observed cycles of changing DNA stability were longer lasting in insects consuming food with a lower Cd content. Thus, a transient reduction in genome stability can be perceived as an opportunity to increase the number of genotypes that undergo selection. This phenomenon occurs faster if the severity of the stress factor is high but is low enough to allow the population to survive.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland.
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Alina Kafel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
41
|
Lee W, Salinas S, Lee Y, Siskidis JA, Mangel M, Munch SB. Thermal transgenerational effects remain after two generations. Ecol Evol 2020; 10:11296-11303. [PMID: 33144965 PMCID: PMC7593139 DOI: 10.1002/ece3.6767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022] Open
Abstract
Transgenerational plasticity (TGP) is increasingly recognized as a mechanism by which organisms can respond to environments that change across generations. Although recent empirical and theoretical studies have explored conditions under which TGP is predicted to evolve, it is still unclear whether the effects of the parental environment will remain beyond the offspring generation. Using a small cyprinodontid fish, we explored multigenerational thermal TGP to address two related questions. First (experiment 1), does the strength of TGP decline or accumulate across multiple generations? Second (experiment 2), how does the experience of a temperature novel to both parents and offspring affect the strength of TGP? In the first experiment, we found a significant interaction between F1 and F2 temperatures and juvenile growth, but no effect of egg diameter. The strength of TGP between F0 and F1 generations was similar in both experiments but declined in subsequent generations. Further, experience of a novel temperature accelerated the decline. This pattern, although similar to that found in other species, is certainly not universally observed, suggesting that theoretical and empirical effort is needed to understand the multigenerational dynamics of TGP.
Collapse
Affiliation(s)
- Who‐Seung Lee
- Center for Stock Assessment ResearchUniversity of CaliforniaSanta CruzCAUSA
- NOAA National Marine Fisheries ServiceSanta CruzCAUSA
- Environmental Assessment GroupKorea Environment InstituteSejongKorea
| | | | - Young‐Rog Lee
- NOAA National Marine Fisheries ServiceSanta CruzCAUSA
| | | | - Marc Mangel
- Center for Stock Assessment ResearchUniversity of CaliforniaSanta CruzCAUSA
- Department of BiologyUniversity of BergenBergenNorway
| | - Stephan B. Munch
- Center for Stock Assessment ResearchUniversity of CaliforniaSanta CruzCAUSA
- NOAA National Marine Fisheries ServiceSanta CruzCAUSA
| |
Collapse
|
42
|
Matsuda N, Numata H, Udaka H. Transcriptomic changes in the pea aphid, Acyrthosiphon pisum: Effects of the seasonal timer and photoperiod. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100740. [PMID: 32906053 DOI: 10.1016/j.cbd.2020.100740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Many insect species use photoperiod as a cue for induction of seasonal responses, including seasonal polyphenism. Although most aphid species viviparously produce parthenogenetic and sexual morphs under long and short days, respectively, a seasonal timer suppresses the sexual morph production over several successive generations during a few months following hatching of a sexually produced diapause egg. To reveal the relative influences of photoperiod and the seasonal timer on the reproductive polyphenism at the gene expression level, we performed RNA sequencing-based transcriptome analyses in the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae). Under short days, aphids with an expired seasonal timer showed a higher expression level in hundreds of genes than those with an operative seasonal timer. In contrast, aphids with an operative seasonal timer did not show upregulation in most of these genes. Functional annotations based on gene ontology showed that histone modifications and small non-coding RNA pathways were enriched in aphids with an expired seasonal timer under short-day conditions, suggesting that these epigenetic regulations on gene expression might be involved in a mechanism of maternal switching from the parthenogenetic to sexual morph production.
Collapse
Affiliation(s)
- Naoki Matsuda
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hideharu Numata
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroko Udaka
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
43
|
Dziewięcka M, Flasz B, Rost-Roszkowska M, Kędziorski A, Kochanowicz A, Augustyniak M. Graphene oxide as a new anthropogenic stress factor - multigenerational study at the molecular, cellular, individual and population level of Acheta domesticus. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122775. [PMID: 32361302 DOI: 10.1016/j.jhazmat.2020.122775] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 05/14/2023]
Abstract
Although interest in transgenerational phenomena is constantly growing, little is known about the long-term toxicity of nanoparticles. In this study we investigate the multigenerational effects of graphene oxide (GO) which was given to Acheta domesticus in low doses (0.2, 2 and 20 μg·g-1 of food) for three subsequent generations. We assessed the influence of GO nanoparticles in many contexts, basing on parameters which represented different levels of biological organization: activity of antioxidant enzymes, level of apoptosis, DNA damage, histological analysis, hatching abilities, body mass and body length of insects, as well as their survival rate. The results have shown that exposing insects to nanoparticles over an extended period of time causes surprising intergenerational effects, based on significant differences in the life cycle and reproductive processes, which are not always dose-dependent. The second generation of insects appeared as the most unstable among the parameters that were studied, and did not match trends and patterns in the first and third generation categories. An increase of DNA damage was observed, but only in the third generation. This reduction of genome stability can be perceived as an essential element of adaptation, leading to an increase of genotype variants, which then undergo selection.
Collapse
Affiliation(s)
- Marta Dziewięcka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland.
| | - Barbara Flasz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| | - Andrzej Kędziorski
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| | - Anna Kochanowicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, PL, 40-007, Katowice, Poland
| |
Collapse
|
44
|
Cavieres G, Rezende EL, Clavijo‐Baquet S, Alruiz JM, Rivera‐Rebella C, Boher F, Bozinovic F. Rapid within- and transgenerational changes in thermal tolerance and fitness in variable thermal landscapes. Ecol Evol 2020; 10:8105-8113. [PMID: 32788964 PMCID: PMC7417229 DOI: 10.1002/ece3.6496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Phenotypic plasticity may increase the performance and fitness and allow organisms to cope with variable environmental conditions. We studied within-generation plasticity and transgenerational effects of thermal conditions on temperature tolerance and demographic parameters in Drosophila melanogaster. We employed a fully factorial design, in which both parental (P) and offspring generations (F1) were reared in a constant or a variable thermal environment. Thermal variability during ontogeny increased heat tolerance in P, but with demographic cost as this treatment resulted in substantially lower survival, fecundity, and net reproductive rate. The adverse effects of thermal variability (V) on demographic parameters were less drastic in flies from the F1, which exhibited higher net reproductive rates than their parents. These compensatory responses could not totally overcome the challenges of the thermally variable regime, contrasting with the offspring of flies raised in a constant temperature (C) that showed no reduction in fitness with thermal variation. Thus, the parental thermal environment had effects on thermal tolerance and demographic parameters in fruit fly. These results demonstrate how transgenerational effects of environmental conditions on heat tolerance, as well as their potential costs on other fitness components, can have a major impact on populations' resilience to warming temperatures and more frequent thermal extremes.
Collapse
Affiliation(s)
- Grisel Cavieres
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| | - Enrico L. Rezende
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| | | | - José M. Alruiz
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| | - Carla Rivera‐Rebella
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| | - Francisca Boher
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| | - Francisco Bozinovic
- Departamento de EcologíaCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
45
|
Ryan CP, Kuzawa CW. Germline epigenetic inheritance: Challenges and opportunities for linking human paternal experience with offspring biology and health. Evol Anthropol 2020; 29:180-200. [DOI: 10.1002/evan.21828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/30/2019] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Calen P. Ryan
- Department of AnthropologyNorthwestern University Evanston Illinois USA
| | - Christopher W. Kuzawa
- Department of AnthropologyNorthwestern University Evanston Illinois USA
- Institute for Policy Research Northwestern University Evanston Illinois USA
| |
Collapse
|
46
|
Wassink L, Huerta B, Li W, Scribner K. Interaction of egg cortisol and offspring experience influences stress-related behaviour and physiology in lake sturgeon. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Deas JB, Blondel L, Extavour CG. Ancestral and offspring nutrition interact to affect life-history traits in Drosophila melanogaster. Proc Biol Sci 2020; 286:20182778. [PMID: 30963851 DOI: 10.1098/rspb.2018.2778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ancestral environmental conditions can impact descendant phenotypes through a variety of epigenetic mechanisms. Previous studies on transgenerational effects in Drosophila melanogaster suggest that parental nutrition may affect the body size, developmental duration and egg size of the next generation. However, it is unknown whether these effects on phenotype remain stable across generations, or if specific generations have general responses to ancestral diet. In the current study, we examined the effect on multiple life-history phenotypes of changing diet quality across three generations. Our analysis revealed unforeseen patterns in how phenotypes respond to dietary restriction. Our generalized linear model showed that when considering only two generations, offspring phenotypes were primarily affected by their own diet, and to a lesser extent by the diet of their parents or the interaction between the two generations. Surprisingly, however, when considering three generations, offspring phenotypes were primarily impacted by their grandparents' diet and their own diet. Interactions among different generations' diets affected development time, egg volume and pupal mass more than ovariole number or wing length. Furthermore, pairwise comparisons of diet groups from the same generation revealed commonalities in strong responses to rich versus poor diet: ovariole number, pupal mass and wing length responded more strongly to poor diet than to rich diet, while development time responded strongly to both rich and poor diets. To improve investigations into the mechanisms and consequences of transgenerational, epigenetic inheritance, future studies should closely examine how phenotypes change across a higher number of generations, and consider responses to broader variability in diet treatments.
Collapse
Affiliation(s)
- Joseph B Deas
- 1 Department of Organismic and Evolutionary Biology, Harvard University , 16 Divinity Avenue, Cambridge, MA 02134 , USA
| | - Leo Blondel
- 2 Department of Molecular and Cellular Biology, Harvard University , 16 Divinity Avenue, Cambridge, MA 02134 , USA
| | - Cassandra G Extavour
- 1 Department of Organismic and Evolutionary Biology, Harvard University , 16 Divinity Avenue, Cambridge, MA 02134 , USA.,2 Department of Molecular and Cellular Biology, Harvard University , 16 Divinity Avenue, Cambridge, MA 02134 , USA
| |
Collapse
|
48
|
Jeremias G, Gonçalves FJM, Pereira JL, Asselman J. Prospects for incorporation of epigenetic biomarkers in human health and environmental risk assessment of chemicals. Biol Rev Camb Philos Soc 2020; 95:822-846. [PMID: 32045110 DOI: 10.1111/brv.12589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic mechanisms have gained relevance in human health and environmental studies, due to their pivotal role in disease, gene × environment interactions and adaptation to environmental change and/or contamination. Epigenetic mechanisms are highly responsive to external stimuli and a wide range of chemicals has been shown to determine specific epigenetic patterns in several organisms. Furthermore, the mitotic/meiotic inheritance of such epigenetic marks as well as the resulting changes in gene expression and cell/organismal phenotypes has now been demonstrated. Therefore, epigenetic signatures are interesting candidates for linking environmental exposures to disease as well as informing on past exposures to stressors. Accordingly, epigenetic biomarkers could be useful tools in both prospective and retrospective risk assessment but epigenetic endpoints are currently not yet incorporated into risk assessments. Achieving a better understanding on this apparent impasse, as well as identifying routes to promote the application of epigenetic biomarkers within environmental risk assessment frameworks are the objectives of this review. We first compile evidence from human health studies supporting the use of epigenetic exposure-associated changes as reliable biomarkers of exposure. Then, specifically focusing on environmental science, we examine the potential and challenges of developing epigenetic biomarkers for environmental fields, and discuss useful organisms and appropriate sequencing techniques to foster their development in this context. Finally, we discuss the practical incorporation of epigenetic biomarkers in the environmental risk assessment of chemicals, highlighting critical data gaps and making key recommendations for future research within a regulatory context.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit - GhEnToxLab, Ghent University, 9000, Gent, Belgium
| |
Collapse
|
49
|
Amiri E, Le K, Melendez CV, Strand MK, Tarpy DR, Rueppell O. Egg-size plasticity in Apis mellifera: Honey bee queens alter egg size in response to both genetic and environmental factors. J Evol Biol 2020; 33:534-543. [PMID: 31961025 DOI: 10.1111/jeb.13589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Social evolution has led to distinct life-history patterns in social insects, but many colony-level and individual traits, such as egg size, are not sufficiently understood. Thus, a series of experiments was performed to study the effects of genotypes, colony size and colony nutrition on variation in egg size produced by honey bee (Apis mellifera) queens. Queens from different genetic stocks produced significantly different egg sizes under similar environmental conditions, indicating standing genetic variation for egg size that allows for adaptive evolutionary change. Further investigations revealed that eggs produced by queens in large colonies were consistently smaller than eggs produced in small colonies, and queens dynamically adjusted egg size in relation to colony size. Similarly, queens increased egg size in response to food deprivation. These results could not be solely explained by different numbers of eggs produced in the different circumstances but instead seem to reflect an active adjustment of resource allocation by the queen in response to colony conditions. As a result, larger eggs experienced higher subsequent survival than smaller eggs, suggesting that honey bee queens might increase egg size under unfavourable conditions to enhance brood survival and to minimize costly brood care of eggs that fail to successfully develop, and thus conserve energy at the colony level. The extensive plasticity and genetic variation of egg size in honey bees has important implications for understanding life-history evolution in a social context and implies this neglected life-history stage in honey bees may have trans-generational effects.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA.,Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Kevin Le
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Carlos Vega Melendez
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Micheline K Strand
- Life Sciences Division, U.S. Army Research Office, CCDC-ARL, Research Triangle Park, NC, USA
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
50
|
Yuan H, Du S, Chen L, Xu X, Wang Y, Ji F. Hypomethylation of nerve growth factor (NGF) promotes binding of C/EBPα and contributes to inflammatory hyperalgesia in rats. J Neuroinflammation 2020; 17:34. [PMID: 31980031 PMCID: PMC6982391 DOI: 10.1186/s12974-020-1711-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/13/2020] [Indexed: 11/11/2022] Open
Abstract
Background Chronic pain usually accompanied by tissue damage and inflammation. However, the pathogenesis of chronic pain remains unclear. Methods We investigated the role of nerve growth factor (NGF) in chronic inflammatory pain induced by complete Freund’s adjuvant (CFA), explored the methylation status of CpG islands in the promoter region of the NGF gene, and clarified the function and mechanism of C/EBPα-NGF signaling pathway from epigenetic perspective in the chronic inflammatory pain model. Results CFA induced significant hyperalgesia and continuous upregulation of NGF mRNA and protein levels in the L4–6 dorsal root ganglions (DRGs) in rats. Hypomethylation of CpG islands occurred in the NGF gene promoter region after CFA treatment. At the same time, the miR-29b expression level was significantly increased, while the DNA methyltransferase 3b (DNMT3b) level reduced significantly. Moreover, CFA treatment promoted binding of C/EBPα to the NGF gene promoter region and C/EBPα siRNA treatment obviously decreased expression of NGF levels and also alleviate inflammatory hyperalgesia significantly in rats. Conclusion Collectively, the results indicated that CFA leads to the upregulation of miR-29b level, which represses the expression of DNMT3b, enhances the demethylation of the NGF gene promoter region, and promotes the binding of C/EBPα with the NGF gene promoter, thus results in the upregulation of NGF gene expression and maintenance of chronic inflammatory pain.
Collapse
Affiliation(s)
- Hongjie Yuan
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.,Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Shibin Du
- Department of Anesthesiology, Shenzhen University Clinical Medical Academy, Shenzhen University General Hospital, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Liping Chen
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Xiaoqing Xu
- Department of Pain Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yufeng Wang
- Department of Radiology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, Jiangsu, People's Republic of China
| | - Fuhai Ji
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|