1
|
Konno N, Togashi A, Miyanishi H, Azuma M, Nakamachi T, Matsuda K. Regulation of Branchial Anoctamin 1 Expression in Freshwater- and Seawater-Acclimated Japanese Medaka, Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:356-372. [PMID: 39718083 DOI: 10.1002/jez.2894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
In euryhaline teleosts, the cystic fibrosis transmembrane conductance regulator (CFTR) in seawater (SW)-type chloride cells facilitates apical Cl- secretion for SW adaptation, while alternative Cl- excretion pathways remain understudied. This study investigates the role of the calcium-activated chloride channel, Anoctamin 1 (ANO1), in the gills of the euryhaline Japanese medaka (Oryzias latipes) under hyperosmolality and cortisol (CORT) influence. Acclimation to artificial SW, NaCl, mannitol, or glucose significantly upregulated ANO1 and CFTR mRNA expression in gills, unlike urea treatment. In situ hybridization revealed ANO1 mRNA in chloride cells co-expressing CFTR and Na+, K+-ATPase under hyperosmotic conditions. ANO1 inhibition elevated plasma Cl- concentration, indicating impaired Cl- excretion. CORT or dexamethasone administration in freshwater (FW) fish significantly increased branchial ANO1 and CFTR mRNA expression, an effect attenuated by the glucocorticoid receptor (GR) antagonist RU486. Hyperosmotic treatment of isolated gill tissues rapidly induced ANO1 mRNA expression independent of CFTR mRNA changes, and this induction was unaffected by RU486. These findings highlight the dual regulation of ANO1 expression via hyperosmolality-induced cellular response and the CORT-GR system. Thus, branchial ANO1 may likely complement CFTR in Cl⁻ excretion, playing a key role in the hyperosmotic adaptation of euryhaline teleosts.
Collapse
Affiliation(s)
- Norifumi Konno
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| | - Ayane Togashi
- Departement of Biology, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tomoya Nakamachi
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| | - Kouhei Matsuda
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| |
Collapse
|
2
|
Grønvold L, van Dalum MJ, Striberny A, Manousi D, Ytrestøyl T, Mørkøre T, Boison S, Gjerde B, Jørgensen E, Sandve SR, Hazlerigg DG. Transcriptomic profiling of gill biopsies to define predictive markers for seawater survival in farmed Atlantic salmon. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39681120 DOI: 10.1111/jfb.16025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Wild Atlantic salmon migrate to sea following completion of a developmental process known as parr-smolt transformation (PST), which establishes a seawater (SW) tolerant phenotype. Effective imitation of this aspect of anadromous life history is a crucial aspect of commercial salmon production, with current industry practice being marred by significant losses during transition from the freshwater (FW) to SW phase of production. The natural photoperiodic control of PST can be mimicked by exposing farmed juvenile fish to a reduced duration photoperiod for at least 6 weeks before increasing the photoperiod in the last 1-2 months before SW transfer. While it is known that variations in this general protocol affect subsequent SW performance, there is no uniformly accepted industry standard; moreover, reliable prediction of SW performance from fish attributes in the FW phase remains a major challenge. Here we describe an experiment in which we took gill biopsies 1 week prior to SW transfer from 3000 individually tagged fish raised on three different photoperiod regimes during the FW phase. Biopsies were subjected to RNA profiling by Illumina sequencing, while individual fish growth and survival was monitored over 300 days in a SW cage environment, run as a common garden experiment. Using a random forest machine learning algorithm, we developed gene expression-based predictive models for initial survival and stunted growth in SW. Stunted growth phenotypes could not be predicted based on gill transcriptomes, but survival the first 40 days in SW could be predicted with moderate accuracy. While several previously identified marker genes contribute to this model, a surprisingly low weighting is ascribed to sodium potassium ATPase subunit genes, contradicting advocacy for their use as SW readiness markers. However, genes with photoperiod-history sensitive regulation were highly enriched among the genes with highest importance in the prediction model. This work opens new avenues for understanding and exploiting developmental changes in gill physiology during smolt development.
Collapse
Affiliation(s)
- Lars Grønvold
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Mattis J van Dalum
- Department of Arctic and Marine Biology, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Anja Striberny
- Department of Production Biology, Nofima, Tromsø, Norway
| | - Domniki Manousi
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Trine Ytrestøyl
- Department of Nutrition and Feed Technology, Nofima, Tromsø, Norway
| | - Turid Mørkøre
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Bjarne Gjerde
- Department of Breeding and Genetics, Nofima, Ås, Norway
| | - Even Jørgensen
- Department of Arctic and Marine Biology, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Simen R Sandve
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - David G Hazlerigg
- Department of Arctic and Marine Biology, UiT - the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Wei F, Zuo X, Jin F, Yang Q, Cui Y, Zhao M, Cui M, Liang J. Integrated miRNA-mRNA analysis uncovers immediate-early response to salinity stress in gill-derived cell line of Gymnocypris przewalskii. BMC Genomics 2024; 25:965. [PMID: 39407113 PMCID: PMC11481739 DOI: 10.1186/s12864-024-10869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Salinity adaptation is an important issue in aquaculture. Understanding the immediate-early response to salinity stress helps in comprehending this process. In vitro experiments using cell lines can explain cell-independent reactions without the involvement of hormones in vivo. In this study, salinity stress experiments were conducted using cell line derived from the gills of Gymnocypris przewalskii (GPG cell line) to isolate immediate-early response-related genes and miRNAs using transcriptomics, followed by bioinformatics analysis. The results showed that intracellular free Ca2+ appeared to be a key factor in cell sensing and initiating downstream cell signaling in response to external salinity. Additionally, cell apoptosis was the most common feature of salinity stress, with multiple signaling pathways involved in salinity-induced cell apoptosis. Furthermore, MiRNAs played a crucial role in the rapid response to salinity stress by selectively inhibiting the expression of specific genes. Additionally, for the first time in the G. przewalskii genome, Tf2 and TY3 families of transposons were found to have responsive roles to the external salinity stress. This study contributes to a better understanding of osmotic sensing in G. przewalskii and provides theoretical assistance for improving salinity adaptation in aquaculture fish species.
Collapse
Affiliation(s)
- Fulei Wei
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, PR China
- State Key Laboratory of Plateau Ecology and Agriculture, College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, PR China
| | - Xianzhi Zuo
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, PR China
| | - Faxin Jin
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, PR China
| | - Qiangdong Yang
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, PR China
| | - Yanrong Cui
- State Key Laboratory of Plateau Ecology and Agriculture, College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, PR China
| | - Mingyang Zhao
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, PR China
| | - Mingming Cui
- Qinghai Academy of Agriculture and Forestry sciences, Qinghai University, Xining, 810016, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, PR China.
| |
Collapse
|
4
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
5
|
Hamed M, Martyniuk CJ, Said REM, Soliman HAM, Badrey AEA, Hassan EA, Abdelhamid HN, Osman AGM, Sayed AEDH. Exposure to pyrogallol impacts the hemato-biochemical endpoints in catfish (Clarias gariepinus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122074. [PMID: 37331582 DOI: 10.1016/j.envpol.2023.122074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Pyrogallol is widely used in several industrial applications and can subsequently contaminate aquatic ecosystems. Here, we report for the first time the presence of pyrogallol in wastewater in Egypt. Currently, there is a complete lack of toxicity and carcinogenicity data for pyrogallol exposure in fish. To address this gap, both acute and sub-acute toxicity experiments were conducted to determine the toxicity of pyrogallol in catfish (Clarias gariepinus). Behavioral and morphological endpoints were evaluated, in addition to blood hematological endpoints, biochemical indices, electrolyte balance, and the erythron profile (poikilocytosis and nuclear abnormalities). In the acute toxicity assay, it was determined that the 96 h median-lethal concentration (96 h-LC50) of pyrogallol for catfish was 40 mg/L. In sub-acute toxicity experiment, fish divided into four groups; Group 1 was the control group. Group 2 was exposed to 1 mg/L of pyrogallol, Group 3 was exposed to 5 mg/L of pyrogallol, and Group 4 was exposed to 10 mg/L of pyrogallol. Fish showed morphological changes such as erosion of the dorsal and caudal fins, skin ulcers, and discoloration following exposure to pyrogallol for 96 h. Exposure to 1, 5, or 10 mg/L pyrogallol caused a significant decrease in hematological indices, including red blood cells (RBCs), hemoglobin, hematocrit, white blood cells (WBC), thrombocytes, and large and small lymphocytes in a dose-dependent manner. Several biochemical parameters (creatinine, uric acid, liver enzymes, lactate dehydrogenase, and glucose) were altered in a concentration dependent manner with short term exposures to pyrogallol. Pyrogallol exposure also caused a significant concentration-dependent rise in the percentage of poikilocytosis and nuclear abnormalities of RBCs in catfish. In conclusion, our data suggest that pyrogallol should be considered further in environmental risk assessments of aquatic species.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | - Ahmed E A Badrey
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Elhagag A Hassan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Hani N Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assuit University, Assuit, 71515, Egypt; Nanotechnology Research Centre (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo 11837, Egypt
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt; Molecular Biology Research & Studies Institute, Assiut University, 71516 Assiut, Egypt.
| |
Collapse
|
6
|
Wong MKS, Tsuneoka Y, Tsukada T. Subcellular localization of Na +/K +-ATPase isoforms resolved by in situ hybridization chain reaction in the gill of chum salmon at freshwater and seawater. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:751-767. [PMID: 37464181 PMCID: PMC10415477 DOI: 10.1007/s10695-023-01212-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
The Na+/K+-ATPase (NKA) α1-isoforms were examined by in situ hybridization chain reaction (ISHCR) using short hairpin DNAs, and we showed triple staining of NKA α1a, α1b, and α1c transcripts in the gill of chum salmon acclimated to freshwater (FW) and seawater (SW). The NKA α1-isoforms have closely resembled nucleotide sequences, which could not be differentiated by conventional in situ hybridization. The ISHCR uses a split probe strategy to allow specific hybridization using regular oligo DNA, resulting in high specificity at low cost. The results showed that NKA α1c was expressed ubiquitously in gill tissue and no salinity effects were observed. FW lamellar ionocytes (type-I ionocytes) expressed cytoplasmic NKA α1a and nuclear NKA α1b transcripts. However, both transcripts of NKA α1a and α1b were present in the cytoplasm of immature type-I ionocytes. The developing type-I ionocytes increased the cytoplasmic volume and migrated to the distal region of the lamellae. SW filament ionocytes (type-II ionocytes) expressed cytoplasmic NKA α1b transcripts as the major isoform. Results from morphometric analysis and nonmetric multidimensional scaling indicated that a large portion of FW ionocytes was NKA α1b-rich, suggesting that isoform identity alone cannot mark the ionocyte types. Both immature or residual type-II ionocytes and type-I ionocytes were found on the FW and SW gills, suggesting that the chum salmon retains the potential to switch the ionocyte population to fit the ion-transporting demands, which contributes to their salinity tolerance and osmoregulatory plasticity.
Collapse
Affiliation(s)
- Marty Kwok Shing Wong
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510 Japan
- Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564 Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota, Tokyo, 143-8540 Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510 Japan
| |
Collapse
|
7
|
Tresguerres M, Kwan GT, Weinrauch A. Evolving views of ionic, osmotic and acid-base regulation in aquatic animals. J Exp Biol 2023; 226:jeb245747. [PMID: 37522267 DOI: 10.1242/jeb.245747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The regulation of ionic, osmotic and acid-base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research.
Collapse
Affiliation(s)
- Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Garfield T Kwan
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Alyssa Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| |
Collapse
|
8
|
Shwe A, Krasnov A, Visnovska T, Ramberg S, Østbye TKK, Andreassen R. Differential Expression of miRNAs and Their Predicted Target Genes Indicates That Gene Expression in Atlantic Salmon Gill Is Post-Transcriptionally Regulated by miRNAs in the Parr-Smolt Transformation and Adaptation to Sea Water. Int J Mol Sci 2022; 23:ijms23158831. [PMID: 35955964 PMCID: PMC9369087 DOI: 10.3390/ijms23158831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Smoltification (parr-smolt transformation) is a complex developmental process consisting of developmental changes that lead to remodeling of the Atlantic salmon gill. Here, the expression changes of miRNAs and mRNAs were studied by small-RNA sequencing and microarray analysis, respectively, to identify miRNAs and their predicted targets associated with smoltification and subsequent sea water adaptation (SWA). In total, 18 guide miRNAs were identified as differentially expressed (gDE miRNAs). Hierarchical clustering analysis of expression changes divided these into one cluster of 13 gDE miRNAs with decreasing expression during smoltification and SWA that included the miRNA-146, miRNA-30 and miRNA-7132 families. Another smaller cluster that showed increasing expression consisted of miR-101a-3p, miR-193b-5p, miR-499a-5p, miR-727a-3p and miR-8159-5p. The gDE miRNAs were predicted to target 747 of the genes (DE mRNAs), showing expression changes in the microarray analysis. The predicted targets included genes encoding NKA-subunits, aquaporin-subunits, cystic fibrosis transmembrane conductance regulator and the solute carrier family. Furthermore, the predicted target genes were enriched in biological processes associated with smoltification and SWA (e.g., immune system, reactive oxygen species, stress response and extracellular matrix organization). Collectively, the results indicate that remodeling of the gill involves the post-transcriptional regulation of gene expression by the characterized gDE miRNAs.
Collapse
Affiliation(s)
- Alice Shwe
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Aleksei Krasnov
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway
| | - Sigmund Ramberg
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Tone-Kari K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Rune Andreassen
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
- Correspondence:
| |
Collapse
|
9
|
Nobata S, Iino Y, Kawakami T, Sasaki K, Kitagawa T, Hyodo S. Significance of sea entry pathway of chum salmon Oncorhynchus keta fry, inferred from the differential expressions of Na +,K +-ATPase α-subunit genes in the gills. Comp Biochem Physiol A Mol Integr Physiol 2022; 269:111224. [PMID: 35460896 DOI: 10.1016/j.cbpa.2022.111224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Na+,K+-ATPase (NKA) α-subunit 1a (α1a) and 1b (α1b) gene expressions in the gills are changeable in response to ambient salinity in a few salmonids. In this study, the expressions were compared among ambient salinities and used to infer sea entry migration of chum salmon Oncorhynchus keta fry. The expression of α1a decreased from the 2 days after seawater (SW) transfer from freshwater (FW) and was significantly lower in SW-acclimated fry than that in FW-fry. On the other hand, the expression of α1b peaked on the first to second day after SW transfer and then settled to a level 2-fold higher than in FW-fry. In fry caught in the waterfronts of the beaches, the expression levels were quite similar to those on the first and second days after SW transfer, whereas, in fry caught off beach, the expressions were identical to those of SW-acclimated fry. These suggest that fry adapt to SW with moving along the shoal in the bay, and move to off beach after completing SW adaptation. One of the physiological significances in a usage of waterfront may be to transform the gills to SW type. Only fry on the 2 days after SW transfer failed to exhibit condition factor-dependency of burst swimming, probably due to physiological perturbation, which may be related to poor predation avoidance. The physiological approach used in this study inferred sea entry migration of fry; furthermore, it shows the possible significance of adaptation to SW in the shoal is to reduce predation risk.
Collapse
Affiliation(s)
- Shigenori Nobata
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; International Coastal Research Center, Atmosphere and Ocean Research Institute, University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan.
| | - Yuki Iino
- International Coastal Research Center, Atmosphere and Ocean Research Institute, University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan.
| | - Tatsuya Kawakami
- International Coastal Research Center, Atmosphere and Ocean Research Institute, University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan.
| | - Kei Sasaki
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 4-9-1, Sakiyama, Miyako, Iwate 027-0097, Japan.
| | - Takashi Kitagawa
- International Coastal Research Center, Atmosphere and Ocean Research Institute, University of Tokyo, 1-19-8, Akahama, Otsuchi, Kamihei, Iwate 028-1102, Japan.
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
10
|
McGowan M, MacKenzie S, Steiropoulos N, Weidmann M. Testing of NKA expression by mobile real time PCR is an efficient indicator of smoltification status of farmed Atlantic salmon. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 544:737085. [PMID: 34789951 PMCID: PMC8386247 DOI: 10.1016/j.aquaculture.2021.737085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Assessment of seawater readiness of freshwater salmon smolts is a crucial husbandry step with economic implications in salmon aquaculture but current methods rely on delayed centralised enzymic activity measurement. The efficiency of a qRT-PCR assay for sodium potassium ATPase (NKA) α1a mRNA was tested in a 3-year study on 19 hatcheries across Scotland incorporating environmental factors such as temperature and metal contamination. The NKA qRT-PCR assay was transferred to a mobile laboratory and on-site testing was carried out at 3 hatchery sites. For the first two years standard enzymatic and gene expression assays had similar success rates in detecting smoltification (NKA activity 60%, qRT-PCR 57%). In the third year, all but one site were determined as sea water ready by qRT-PCR but only at 4 by enzymatic testing. On site testing with mobile qRT-PCR was successfully performed on four farm sites. Altogether, high sensitivity was shown for the in lab (98.9%, SE 0.24) and mobile (93.43%, SE 0.119) assays when tested using a quantitative RNA standard. Some indication for obscured smoltification assay results due to environmental increased heavy metal contamination was observed. Our results prove it is possible to test a smoltification marker on site and provide results on the day of testing during the smolt period allowing for informed decisions on seawater transfer.
Collapse
Affiliation(s)
- Michael McGowan
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | | | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
- Medizinische Hochschule Brandenburg Theodor Fontane, Senftenberg, Germany
| |
Collapse
|
11
|
Kaivarainen EI, Rendakov NL, Efremov DA, Nemova NN. Na +/K +-ATPase Activity in Smolts of Pink Salmon Oncorhynchus gorbuscha (Walbaum, 1792) from the White Sea Exposed to Fresh, Estuarine, and Sea Water. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2021; 501:201-205. [PMID: 34962607 DOI: 10.1134/s0012496621060041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 06/14/2023]
Abstract
The Na+/K+-ATPase (NKA) activity in smolts of pink salmon Oncorhynchus gorbuscha (a salmon species introduced in 1959 into the rivers of the Kola Peninsula) was studied in a ten-day cage experiment with fresh, estuarine, and sea water; the fish were caught during seaward migration in the Indera River of the White Sea basin. The development of tolerance to increased salinity in pink salmon smolts was accompanied by NKA activation. In estuarine water characterized by salinity fluctuations (from fresh to sea water) and in the marine environment (28‰), the NKA activity in pink salmon smolts was significantly higher than in the individuals kept in the cages installed in fresh water. The hypoosmoregulatory ability of pink salmon fry was registered, these data indicated that smoltification in this fish species took place in early ontogenesis. The changes in NKA activity evidenced the readiness of migrating pink salmon fry for the marine phase of their life cycle.
Collapse
Affiliation(s)
- E I Kaivarainen
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, 185000, Petrozavodsk, Russia
| | - N L Rendakov
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, 185000, Petrozavodsk, Russia.
| | - D A Efremov
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, 185000, Petrozavodsk, Russia
| | - N N Nemova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, 185000, Petrozavodsk, Russia
| |
Collapse
|
12
|
Iversen M, Mulugeta T, West AC, Jørgensen EH, Martin SAM, Sandve SR, Hazlerigg D. Photoperiod-dependent developmental reprogramming of the transcriptional response to seawater entry in Atlantic salmon (Salmo salar). G3-GENES GENOMES GENETICS 2021; 11:6169000. [PMID: 33710311 PMCID: PMC8049429 DOI: 10.1093/g3journal/jkab072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/28/2021] [Indexed: 01/22/2023]
Abstract
The developmental transition of juvenile salmon from a freshwater resident morph (parr) to a seawater (SW) migratory morph (smolt), known as smoltification, entails a reorganization of gill function to cope with the altered water environment. Recently, we used RNAseq to characterize the breadth of transcriptional change which takes place in the gill in the FW phase of smoltification. This highlighted the importance of extended exposure to short, winter-like photoperiods (SP) followed by a subsequent increase in photoperiod for completion of transcriptional reprogramming in FW and efficient growth following transfer to SW. Here, we extend this analysis to examine the consequences of this photoperiodic history-dependent reprogramming for subsequent gill responses upon exposure to SW. We use RNAseq to analyze gill samples taken from fish raised on the photoperiod regimes we used previously and then challenged by SW exposure for 24 hours. While fish held on constant light (LL) throughout were able to hypo-osmoregulate during a 24 hours SW challenge, the associated gill transcriptional response was highly distinctive from that in fish which had experienced a 7-week period of exposure to SP followed by a return to LL (SPLL) and had consequently acquired the characteristics of fully developed smolts. Fish transferred from LL to SP, and then held on SP for the remainder of the study was unable to hypo-osmoregulate, and the associated gill transcriptional response to SW exposure featured many transcripts apparently regulated by the glucocorticoid stress axis and by the osmo-sensing transcription factor NFAT5. The importance of these pathways for the gill transcriptional response to SW exposure appears to diminish as a consequence of photoperiod mediated induction of the smolt phenotype, presumably reflecting preparatory developmental changes taking place during this process.
Collapse
Affiliation(s)
- Marianne Iversen
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Teshome Mulugeta
- Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - Alexander C West
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Samuel A M Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Simen Rød Sandve
- Centre for Integrative Genetics, Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - David Hazlerigg
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø NO-9037, Norway
| |
Collapse
|
13
|
Madsen SS, Bollinger RJ, Brauckhoff M, Engelund MB. Gene expression profiling of proximal and distal renal tubules in Atlantic salmon ( Salmo salar) acclimated to fresh water and seawater. Am J Physiol Renal Physiol 2020; 319:F380-F393. [PMID: 32628538 DOI: 10.1152/ajprenal.00557.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Euryhaline teleost kidneys undergo a major functional switch from being filtratory in freshwater (FW) to being predominantly secretory in seawater (SW) conditions. The transition involves both vascular and tubular effects. There is consensus that the glomerular filtration rate is greatly reduced upon exposure to hyperosmotic conditions. Yet, regulation at the tubular level has only been examined sporadically in a few different species. This study aimed to obtain a broader understanding of transcriptional regulation in proximal versus distal tubular segments during osmotic transitions. Proximal and distal tubule cells were dissected separately by laser capture microdissection, RNA was extracted, and relative mRNA expression levels of >30 targets involved in solute and water transport were quantified by quantitative PCR in relation to segment type in fish acclimated to FW or SW. The gene categories were aquaporins, solute transporters, fxyd proteins, and tight junction proteins. aqp8bb1, aqp10b1, nhe3, sglt1, slc41a1, cnnm3, fxyd12a, cldn3b, cldn10b, cldn15a, and cldn12 were expressed at a higher level in proximal compared with distal tubules. aqp1aa, aqp1ab, nka-a1a, nka-a1b, nkcc1a, nkcc2, ncc, clc-k, slc26a6C, sglt2, fxyd2, cldn3a, and occln were expressed at a higher level in distal compared with proximal tubules. Expression of aqp1aa, aqp3a1, aqp10b1, ncc, nhe3, cftr, sglt1, slc41a1, fxyd12a, cldn3a, cldn3b, cldn3c, cldn10b, cldn10e, cldn28a, and cldn30c was higher in SW- than in FW-acclimated salmon, whereas the opposite was the case for aqp1ab, slc26a6C, and fxyd2. The data show distinct segmental distribution of transport genes and a significant regulation of tubular transcripts when kidney function is modulated during salinity transitions.
Collapse
Affiliation(s)
- Steffen S Madsen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | | - Melanie Brauckhoff
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
14
|
Iversen M, Mulugeta T, Gellein Blikeng B, West AC, Jørgensen EH, Rød Sandven S, Hazlerigg D. RNA profiling identifies novel, photoperiod-history dependent markers associated with enhanced saltwater performance in juvenile Atlantic salmon. PLoS One 2020; 15:e0227496. [PMID: 32267864 PMCID: PMC7141700 DOI: 10.1371/journal.pone.0227496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Atlantic salmon migrate to sea following completion of a developmental process known as smolting, which establishes a seawater (SW) tolerant phenotype. Smolting is stimulated by exposure to long photoperiod or continuous light (LL) following a period of exposure to short photoperiod (SP), and this leads to major changes in gill ion exchange and osmoregulatory function. Here, we performed an RNAseq experiment to discover novel genes involved in photoperiod-dependent remodeling of the gill. This revealed a novel cohort of genes whose expression rises dramatically in fish transferred to LL following SP exposure, but not in control fish maintained continuously on LL or on SP. A follow-up experiment revealed that the SP-history dependence of LL induction of gene expression varies considerably between genes. Some genes were inducible by LL exposure after only 2 weeks exposure to SP, while others required 8 weeks prior SP exposure for maximum responsiveness to LL. Since subsequent SW growth performance is also markedly improved following 8 weeks SP exposure, these photoperiodic history-dependent genes may be useful predictive markers for full smolt development.
Collapse
Affiliation(s)
- Marianne Iversen
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø, Norway
| | - Teshome Mulugeta
- Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Børge Gellein Blikeng
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø, Norway
| | | | - Even Hjalmar Jørgensen
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø, Norway
| | - Simen Rød Sandven
- Centre for Integrative Genetics, Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - David Hazlerigg
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Madsen SS, Winther SST, Bollinger RJ, Steiner U, Larsen MH. Differential expression of olfactory genes in Atlantic salmon ( Salmo salar) during the parr-smolt transformation. Ecol Evol 2019; 9:14085-14100. [PMID: 31938505 PMCID: PMC6953650 DOI: 10.1002/ece3.5845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
The anadromous salmon life cycle includes two migratory events, downstream smolt migration and adult homing migration, during which they must navigate with high precision. During homing migration, olfactory cues are used for navigation in coastal and freshwater areas, and studies have suggested that the parr-smolt transformation has a sensitive period for imprinting. Accordingly, we hypothesized that there would be significant changes in gene expression in the olfactory epithelium specifically related to smoltification and sampled olfactory rosettes from hatchery-reared upper growth modal juvenile Atlantic salmon at 3-week intervals from January to June, using lower growth modal nonsmolting siblings as controls. A suite of olfactory receptors and receptor-specific proteins involved in functional aspects of olfaction and peripheral odor memorization was analyzed by qPCR. Gene expression in juveniles was compared with mature adult salmon of the same genetic strain caught in the river Gudenaa. All mRNAs displayed significant variation over time in both modal groups. Furthermore, five receptor genes (olfc13.1, olfc15.1, sorb, ora2, and asor1) and four olfactory-specific genes (soig, ependymin, gst, and omp2) were differentially regulated between modal groups, suggesting altered olfactory function during smoltification. Several genes were differentially regulated in mature salmon compared with juveniles, suggesting that homing and odor recollection involve a different set of genes than during imprinting. Thyroid hormone receptors thrα and thrβ mRNAs were elevated during smolting, suggesting increased sensitivity to thyroid hormones. Treatment of presmolts with triiodothyronine in vivo and ex vivo had, however, only subtle effects on the investigated olfactory targets, questioning the hypothesis that thyroid hormones directly regulate gene expression in the olfactory epithelium.
Collapse
Affiliation(s)
| | | | | | - Ulrich Steiner
- Department of BiologyUniversity of Southern DenmarkOdenseDenmark
| | | |
Collapse
|
16
|
Chang YC, Hamlin-Wright H, Monaghan S, Herath T, Baily J, Del Pozo J, Downes J, Preston A, Chalmers L, Jayasuriya N, Bron JE, Adams A, Fridman S. Changes in distribution, morphology and ultrastructure of chloride cell in Atlantic salmon during an AGD infection. JOURNAL OF FISH DISEASES 2019; 42:1433-1446. [PMID: 31429104 DOI: 10.1111/jfd.13073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Amoebic gill disease (AGD) is emerging as one of the most significant health challenges affecting farmed Atlantic salmon in the marine environment. It is caused by the amphizoic amoeba Neoparamoeba perurans, with infestation of gills causing severe hyperplastic lesions, compromising overall gill integrity and function. This study used histology, transmission electron microscopy (TEM), immunohistochemistry and transcript expression to relate AGD-associated pathological changes to changes in the morphology and distribution of chloride cells (CCs) in the gills of Atlantic salmon (Salmo salar L.) showing the progression of an AGD infection. A marked reduction in numbers of immunolabelled CCs was detected, and a changing pattern in distribution and morphology was closely linked with the level of basal epithelial hyperplasia in the gill. In addition, acute degenerative ultrastructural changes to CCs at the lesion site were observed with TEM. These findings were supported by the early-onset downregulation of Na+ /K+ -ATPase transcript expression. This study provides supportive evidence that histological AGD lesion assessment was a good qualitative tool for AGD scoring and corresponded well with qPCR genomic Paramoeba perurans quantification. Ultrastructural changes induced in salmon CCs as a result of AGD are reported here for the first time.
Collapse
Affiliation(s)
- Yao-Chung Chang
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - Harry Hamlin-Wright
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - Sean Monaghan
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - Tharangani Herath
- Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, UK
| | - Johanna Baily
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - Jorge Del Pozo
- The Royal (Dick) School of Veterinary Studies, Midlothian, UK
| | - Jamie Downes
- Fish Health Unit, Marine Institute, Oranmore, Ireland
| | - Andrew Preston
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - Lynn Chalmers
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | | | - James E Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - Alexandra Adams
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| | - Sophie Fridman
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
17
|
El-Leithy AAA, Hemeda SA, El Naby WSHA, El Nahas AF, Hassan SAH, Awad ST, El-Deeb SI, Helmy ZA. Optimum salinity for Nile tilapia (Oreochromis niloticus) growth and mRNA transcripts of ion-regulation, inflammatory, stress- and immune-related genes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1217-1232. [PMID: 31069608 DOI: 10.1007/s10695-019-00640-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
We aim to study the optimum salinity concentration for Nile tilapia, through the assessment of its growth performance and the expression of its related genes (Gh and Igf-1), as well as its salinity adaptation and immune status through the assessment of the gene expression of ion-regulation genes (Na+/K+-ATPase α-1a and α-1b), stress-related genes (GST, HSP27, and HSP70), inflammatory-related genes (IL1, IL8, CC, and CXC chemokine), and immune-related genes (IgMH TLR7, MHC, and MX) at the osmoregulatory organs (gills, liver, and kidney). Based on the least mortality percentage and the physical appearance of the fish, three salt concentrations (6, 16, and 20 ppt) were chosen following a 6-month preliminary study using serial salt concentrations ranged from 6 to 36 ppt, which were obtained by rearing the fish in gradual elevated pond salinity through daily addition of 0.5 ppt saline water. The fish size was 10.2-12 cm and weight was 25.5-26.15 g. No significant differences in the fish weight gain were observed among the studied groups. The group reared at 16-ppt salt showed better performance than that of 20 ppt, as they have lower morality % and higher expression of ion-regulated gene (Na+/K+-ATPase α1-b), stress-related genes (GST, HSP27, and HSP70) of the gills and also GST, inflammatory-related genes (IL-1β and IL8), and TLR in the liver tissue. Higher expression of kidney-immune-related genes at 20-ppt salt may indicate that higher salinity predispose to fish infection and increased mortality. We concluded that 16-ppt salinity concentration is suitable for rearing O. niloticus as the fish are more adaptive to salinity condition without changes in their growth rate. Also, we indicate the use of immune stimulant feed additive to overcome the immune suppressive effect of hyper-salinity. Additionally, the survival of some fish at higher salinity concentrations (30-34 ppt) increase the chance for selection for salinity resistance in the Nile tilapia.
Collapse
Affiliation(s)
- Ahmed A A El-Leithy
- National Institute of Oceanography and Fisheries (NIOF), Qaitbay, Alexandria, Egypt
| | - Shaaban A Hemeda
- Genetics and Genetic Engineering, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Walaa S H Abd El Naby
- Genetics and Genetic Engineering, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Abeer F El Nahas
- Genetics and Genetic Engineering, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| | - Seham A H Hassan
- National Institute of Oceanography and Fisheries (NIOF), Qaitbay, Alexandria, Egypt
| | - Simone T Awad
- National Institute of Oceanography and Fisheries (NIOF), Qaitbay, Alexandria, Egypt
| | - Safaa I El-Deeb
- National Institute of Oceanography and Fisheries (NIOF), Qaitbay, Alexandria, Egypt
| | - Zeinab A Helmy
- National Institute of Oceanography and Fisheries (NIOF), Qaitbay, Alexandria, Egypt
| |
Collapse
|
18
|
Maugars G, Manirafasha MC, Grousset E, Boulo V, Lignot JH. The effects of acute transfer to freshwater on ion transporters of the pharyngeal cavity in European seabass (Dicentrarchus labrax). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1393-1408. [PMID: 29923042 DOI: 10.1007/s10695-018-0529-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Gene expression of key ion transporters (the Na+/K+-ATPase NKA, the Na+, K+-2Cl- cotransporter NKCC1, and CFTR) in the gills, opercular inner epithelium, and pseudobranch of European seabass juveniles (Dicentrarchus labrax) were studied after acute transfer up to 4 days from seawater (SW) to freshwater (FW). The functional remodeling of these organs was also studied. Handling stress (SW to SW transfer) rapidly induced a transcript level decrease for the three ion transporters in the gills and operculum. NKA and CFTR relative expression level were stable, but in the pseudobranch, NKCC1 transcript levels increased (up to 2.4-fold). Transfer to FW induced even more organ-specific responses. In the gills, a 1.8-fold increase for NKA transcript levels occurs within 4 days post transfer with also a general decrease for CFTR and NKCC1. In the operculum, transcript levels are only slightly modified. In the pseudobranch, there is a transient NKCC1 increase followed by 0.6-fold decrease and 0.8-fold CFTR decrease. FW transfer also induced a density decrease for the opercular ionocytes and goblet cells. Therefore, gills and operculum display similar trends in SW-fish but have different responses in FW-transferred fish. Also, the pseudobranch presents contrasting response both in SW and in FW, most probably due to the high density of a cell type that is morphologically and functionally different compared to the typical gill-type ionocyte. This pseudobranch-type ionocyte could be involved in blood acid-base regulation masking a minor osmotic regulatory capacity of this organ compared to the gills.
Collapse
Affiliation(s)
- Gersende Maugars
- University of Montpellier, UMR MARBEC, MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Marie-Chanteuse Manirafasha
- University of Montpellier, UMR MARBEC, MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Evelyse Grousset
- University of Montpellier, UMR MARBEC, MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Viviane Boulo
- Ifremer, UR Lagons, Ecosystèmes et Aquaculture Durable, Nouvelle-Calédonie, France
| | - Jehan-Hervé Lignot
- University of Montpellier, UMR MARBEC, MARBEC (IRD - Ifremer - Univ. Montpellier - CNRS), Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
19
|
Brown MS, Jones PL, Tromp JJ, van Rijn CA, Collins RA, Afonso LOB. The physiology of saltwater acclimation in large juvenile Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2018; 93:540-549. [PMID: 29931747 DOI: 10.1111/jfb.13649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated the effects of transferring freshwater (FW) acclimated S. salar (678 g) that had been maintained under a constant photoperiod and thermal regime, into FW (salinity 0) and salt water (SW; salinity 35) on growth and physiological responses over a 28 day period. There were no mortalities observed throughout the study and no significant differences in mass or fork length between FW and SW groups after 28 days. Compared with fish transferred to FW, plasma osmolality and plasma chloride levels increased significantly in fish in SW by day 1. In the SW group, plasma chloride and osmolality had decreased significantly at day 14 when compared with day 1. Na+ -K+ -ATPase activity was significantly higher in SW compared with the FW group from day 7 and thereafter, but continued to increase until day 22. No differences in plasma cortisol and thyroxine were observed between FW and SW groups throughout the study. Plasma glucose significantly increased from day 1 to day 2 in SW but not in the FW group and levels were significantly reduced in SW compared with the FW group at day 28. Plasma cholesterol and triglyceride levels were significantly higher in FW at day 22 and day 14 to day 22, respectively, when compared with the SW group. In the SW group, plasma cholesterol and triglyceride levels did not change significantly throughout the study. The findings of this study suggest that large S. salar retained in FW maintain a high level of SW tolerance in the absence of photoperiod and thermal regimes necessary for smoltification, as demonstrated by 100% survival, unaffected growth performance, increased Na+ -K+ -ATPase activity and a capacity to regulate plasma chloride and osmolality for 28 days in the SW group.
Collapse
Affiliation(s)
- Morgan S Brown
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Paul L Jones
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Jared J Tromp
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Christian A van Rijn
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Robert A Collins
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Australia
| | - Luis O B Afonso
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Australia
| |
Collapse
|
20
|
Elsner RA, Shrimpton JM. Is the duration of the smolt window related to migration distance in coho salmon Oncorhynchus kisutch? JOURNAL OF FISH BIOLOGY 2018; 93:501-509. [PMID: 29882585 DOI: 10.1111/jfb.13679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Physiological changes during the parr-smolt transformation were investigated in short distance (Chilliwack River) and long-distance (Salmon River) migrating coho salmon Oncorhynchus kisutch populations in British Columbia, Canada. Biochemical and molecular indicators were used to monitor smolt development for fish reared at 10 °C throughout the spring. Fish grew well and developed the physical appearance of competent smolts. Both populations exhibited increases in gill Na+ -K+ -ATPase activity (NKA; an important indicator of seawater tolerance) at the same date and the duration of the increase in enzyme activity did not differ between populations. Gill messenger (m)RNA copies for two isoforms of the NKA α subunit, α1a and α1b, showed significant changes and the pattern was similar between populations. Growth hormone receptor and prolactin receptor mRNA from the gill showed modest changes associated with smolting in the spring for both populations, suggesting that these may not be useful indicators of smolt development in hatchery-reared O. kisutch. Consequently, the duration of the smolt window was not based on the region of origin in the present study.
Collapse
Affiliation(s)
- Rick A Elsner
- Ecosystem Science and Management (Biology) Program, University of Northern British Columbia, Prince George, Canada
| | - J Mark Shrimpton
- Ecosystem Science and Management (Biology) Program, University of Northern British Columbia, Prince George, Canada
| |
Collapse
|
21
|
Inatani Y, Ineno T, Sone S, Matsumoto N, Uchida K, Shimizu M. Assessment of the timing and degree of smolt development in southern populations of masu salmon Oncorhynchus masou. JOURNAL OF FISH BIOLOGY 2018; 93:490-500. [PMID: 29931678 DOI: 10.1111/jfb.13647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/02/2018] [Indexed: 05/25/2023]
Abstract
The present study assessed whether non-anadromous masu salmon Oncorhynchus masou in Miyazaki, southern Japan, smoltify, and if so, at what time of the year. Yearling O. masou of Miyazaki and an anadromous population from Hokkaido, northern Japan, were reared in hatcheries in their respective regions and sampled monthly from February to June to examine the spring smoltification period. The Hokkaido population showed a peak of gill Na+ -K+ -ATPase (NKA) activity in May, which was accompanied with an increase in mRNA levels of the seawater (SW)-type NKA alpha subunit, nkaα1b. Increases in gill NKA activity and nkaa1b levels were not seen in Miyazaki populations. Transferring yearling Miyazaki population to 70% SW (salinity of 23) in mid-April resulted in an increased serum osmolality over 4 days. These results suggest that they do not smoltify in their second spring. Next, profiles of gill NKA activity and its subunit mRNA levels in under-yearling Miyazaki population in the autumn were examined. Two phenotypes differing in body color during this period were categorized as parr and smolt-like fish. Smolt-like fish had higher gill NKA activity than parr in December while there was no significant difference in gill nkaα1b levels. Smolt-like fish acclimated to 70% SW better than parr as judged by lower serum osmolality. However, serum osmolality in smolt-like fish did not return to the basal level 7 days after transfer to 70% SW, suggesting that their hypo-osmoregulatory ability was not fully developed to a level comparable to anadromous populations of this species. The present study suggests that, if O. masou in Miyazaki go though a smoltification process, it occurs in its first autumn instead of the second spring and is less pronounced compared with anadromous populations.
Collapse
Affiliation(s)
- Yu Inatani
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Toshinao Ineno
- Kobayashi Branch, Miyazaki Prefectural Fisheries Research Institute, Miyazaki, Japan
| | - Shiori Sone
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Naoto Matsumoto
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| |
Collapse
|
22
|
Shifts in the relationship between mRNA and protein abundance of gill ion-transporters during smolt development and seawater acclimation in Atlantic salmon (Salmo salar). Comp Biochem Physiol A Mol Integr Physiol 2018; 221:63-73. [DOI: 10.1016/j.cbpa.2018.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 11/24/2022]
|
23
|
Callaghan NI, Williams KJ, Bennett JC, MacCormack TJ. Nanoparticulate-specific effects of silver on teleost cardiac contractility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:721-730. [PMID: 29129433 DOI: 10.1016/j.envpol.2017.10.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/15/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (nAg), due to their biocidal properties, are common in medical applications and are used in more consumer products than any other engineered nanomaterial. This growing abundance, combined with their ability to translocate across the epithelium and bioaccumulate, suggests that internalized nAg may present a risk of toxicity to many organisms in the future. However, little experimentation has been devoted to cardiac responses to acute nAg exposure, even though nAg is known to disrupt ion channels even when ionic Ag+ does not. In this study, we examined the cardiac response to nAg exposure relative to a sham and an ionic AgNO3 control across cardiomyocyte survival and homeostasis, ventricular contractility, and intrinsic pacing rates of whole hearts. Our results suggest that nAg, but not Ag+ alone, inhibits force production by the myocardium, that Ag in any form disrupts normal pacing of cardiac contractions, and that these responses are likely not due to cytotoxicity. This evidence of nanoparticle-specific effects on physiology should encourage further research into nAg cardiotoxicity and other potential sublethal effects.
Collapse
Affiliation(s)
- Neal Ingraham Callaghan
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, E4L 1G8, Canada.
| | - Kenneth Javier Williams
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, E4L 1G8, Canada.
| | - J Craig Bennett
- Department of Physics, Acadia University, Wolfville, NS, B4P 2R6, Canada.
| | - Tyson James MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, E4L 1G8, Canada.
| |
Collapse
|
24
|
Rind K, Beyrend D, Blondeau-Bidet E, Charmantier G, Cucchi P, Lignot JH. Effects of different salinities on the osmoregulatory capacity of Mediterranean sticklebacks living in freshwater. J Zool (1987) 2017. [DOI: 10.1111/jzo.12491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- K. Rind
- Shaheed Benazir Bhutto University; Shaheed benazirabad Pakistan
| | - D. Beyrend
- MARBEC; MARine Biodiversity, Exploitation and Conservation; University of Montpellier; Montpellier France
| | - E. Blondeau-Bidet
- MARBEC; MARine Biodiversity, Exploitation and Conservation; University of Montpellier; Montpellier France
| | - G. Charmantier
- MARBEC; MARine Biodiversity, Exploitation and Conservation; University of Montpellier; Montpellier France
| | - P. Cucchi
- MARBEC; MARine Biodiversity, Exploitation and Conservation; University of Montpellier; Montpellier France
| | - J.-H. Lignot
- MARBEC; MARine Biodiversity, Exploitation and Conservation; University of Montpellier; Montpellier France
| |
Collapse
|
25
|
Na +, K +-ATPase β1 subunit associates with α1 subunit modulating a "higher-NKA-in-hyposmotic media" response in gills of euryhaline milkfish, Chanos chanos. J Comp Physiol B 2017; 187:995-1007. [PMID: 28283795 DOI: 10.1007/s00360-017-1066-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 01/06/2017] [Accepted: 02/09/2017] [Indexed: 12/17/2022]
Abstract
The euryhaline milkfish (Chanos chanos) is a popular aquaculture species that can be cultured in fresh water, brackish water, or seawater in Southeast Asia. In gills of the milkfish, Na+, K+-ATPase (i.e., NKA; sodium pump) responds to salinity challenges including changes in mRNA abundance, protein amount, and activity. The functional pump is composed of a heterodimeric protein complex composed of α- and β-subunits. Among the NKA genes, α1-β1 isozyme comprises the major form of NKA subunits in mammalian osmoregulatory organs; however, most studies on fish gills have focused on the α1 subunit and did not verify the α1-β1 isozyme. Based on the sequenced milkfish transcriptome, an NKA β1 subunit gene was identified that had the highest amino acid homology to β233, a NKA β1 subunit paralog originally identified in the eel. Despite this high level of homology to β233, phylogenetic analysis and the fact that only a single NKA β1 subunit gene exists in the milkfish suggest that the milkfish gene should be referred to as the NKA β1 subunit gene. The results of accurate domain prediction of the β1 subunit, co-localization of α1 and β1 subunits in epithelial ionocytes, and co-immunoprecipitation of α1 and β1 subunits, indicated the formation of a α1-β1 complex in milkfish gills. Moreover, when transferred to hyposmotic media (fresh water) from seawater, parallel increases in branchial mRNA and protein expression of NKA α1 and β1 subunits suggested their roles in hypo-osmoregulation of euryhaline milkfish. This study molecularly characterized the NKA β1 subunit and provided the first evidence for an NKA α1-β1 association in gill ionocytes of euryhaline teleosts.
Collapse
|
26
|
Velotta JP, Wegrzyn JL, Ginzburg S, Kang L, Czesny S, O'Neill RJ, McCormick SD, Michalak P, Schultz ET. Transcriptomic imprints of adaptation to fresh water: parallel evolution of osmoregulatory gene expression in the Alewife. Mol Ecol 2017; 26:831-848. [DOI: 10.1111/mec.13983] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Jonathan P. Velotta
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| | - Samuel Ginzburg
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| | - Lin Kang
- Department of Biological Sciences; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Sergiusz Czesny
- Lake Michigan Biological Station; Illinois Natural History Survey; University of Illinois; Zion IL 60099 USA
| | - Rachel J. O'Neill
- Department of Molecular and Cell Biology; University of Connecticut; Storrs CT 06269-3125 USA
| | - Stephen D. McCormick
- Conte Anadromous Fish Research Center; U.S. Geological Survey; Turners Falls MA 01376 USA
| | - Pawel Michalak
- Department of Biological Sciences; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Eric T. Schultz
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06269-3043 USA
| |
Collapse
|
27
|
Blondeau-Bidet E, Bossus M, Maugars G, Farcy E, Lignot JH, Lorin-Nebel C. Molecular characterization and expression of Na +/K +-ATPase α1 isoforms in the European sea bass Dicentrarchus labrax osmoregulatory tissues following salinity transfer. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1647-1664. [PMID: 27289588 DOI: 10.1007/s10695-016-0247-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/01/2016] [Indexed: 05/14/2023]
Abstract
The Na+/K+-ATPase (NKA) is considered as the main pump involved in active ion transport. In the European sea bass, Dicentrarchus labrax, we found two genes encoding for the alpha 1 subunit isoforms (NKA α1a and NKA α1b). NKA α1a and NKA α1b isoform amino acid (aa) sequences were compared through phylogeny and regarding key functional motifs between salmonids and other acanthomorph species. Analysis of aa sequences of both isoforms revealed a high degree of conservation across teleosts. The expression pattern of both nka α1a and nka α1b was measured in the gill, kidney and posterior intestine of fish in seawater (SW) and transferred to fresh water (FW) at different exposure times. Nka α1a was more expressed than nka α1b whatever the condition and the tissue analyzed. After long-term salinity acclimation (2.5 years) either in FW or SW, transcript levels of nka α1a were higher in the kidney followed by the posterior intestine and the gill. Compared to SW conditions, expression of nka α1a in FW was significantly increased or decreased, respectively, in gill and posterior intestine. In contrast, branchial nka α1b was significantly decreased in FW-acclimated fish. Short-term FW acclimation seems to rapidly increase nka α1a transcript levels in the kidney unlike in gill tissues where different gene expression levels are detected only after long-term acclimation.
Collapse
Affiliation(s)
- Eva Blondeau-Bidet
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France
| | - Maryline Bossus
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France
| | - Gersende Maugars
- Unité Biologie des Organismes et écosystèmes aquatiques (BOREA, UMR 7208), CNRS, IRD 207, Sorbonne Universités, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, Université de Caen Basse Normandie, CP32, 7 rue Cuvier, 75005, Paris, France
| | - Emilie Farcy
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France
| | - Jehan-Hervé Lignot
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France
| | - Catherine Lorin-Nebel
- Adaptation Ecophysiologique et Ontogenèse (AEO, UMR 9190 MARBEC), Université de Montpellier, Place Eugène Bataillon - CC092, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
28
|
Hu H, Kortner TM, Gajardo K, Chikwati E, Tinsley J, Krogdahl Å. Intestinal Fluid Permeability in Atlantic Salmon (Salmo salar L.) Is Affected by Dietary Protein Source. PLoS One 2016; 11:e0167515. [PMID: 27907206 PMCID: PMC5132168 DOI: 10.1371/journal.pone.0167515] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/15/2016] [Indexed: 12/05/2022] Open
Abstract
In Atlantic salmon (Salmo salar L.), and also in other fish species, certain plant protein ingredients can increase fecal water content creating a diarrhea-like condition which may impair gut function and reduce fish growth. The present study aimed to strengthen understanding of the underlying mechanisms by observing effects of various alternative plant protein sources when replacing fish meal on expression of genes encoding proteins playing key roles in regulation of water transport across the mucosa of the distal intestine (DI). A 48-day feeding trial was conducted with five diets: A reference diet (FM) in which fish meal (72%) was the only protein source; Diet SBMWG with a mix of soybean meal (30%) and wheat gluten (22%); Diet SPCPM with a mix of soy protein concentrate (30%) and poultry meal (6%); Diet GMWG with guar meal (30%) and wheat gluten (14.5%); Diet PM with 58% poultry meal. Compared to fish fed the FM reference diet, fish fed the soybean meal containing diet (SBMWG) showed signs of enteritis in the DI, increased fecal water content of DI chyme and higher plasma osmolality. Altered DI expression of a battery of genes encoding aquaporins, ion transporters, tight junction and adherens junction proteins suggested reduced transcellular transport of water as well as a tightening of the junction barrier in fish fed the SBMWG diet, which may explain the observed higher fecal water content and plasma osmolality. DI structure was not altered for fish fed the other experimental diets but alterations in target gene expression and fecal water content were observed, indicating that alterations in water transport components may take place without clear effects on intestinal structure.
Collapse
Affiliation(s)
- Haibin Hu
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, P. R. China
| | - Trond M. Kortner
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Karina Gajardo
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Elvis Chikwati
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - John Tinsley
- BioMar Ltd., Grangemouth Docks, Grangemouth, United Kingdom
| | - Åshild Krogdahl
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
29
|
Watanabe S, Itoh K, Kaneko T. Prolactin and cortisol mediate the maintenance of hyperosmoregulatory ionocytes in gills of Mozambique tilapia: Exploring with an improved gill incubation system. Gen Comp Endocrinol 2016; 232:151-9. [PMID: 27118703 DOI: 10.1016/j.ygcen.2016.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/23/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
Endocrine control of osmoregulation is essential for teleosts to adapt to various aquatic environments. Prolactin (PRL) is known as a fundamental endocrine factor for hyperosmoregulation in teleost fishes, acting on ionocytes in the gills to maintain ion concentrations of body fluid within narrow physiological ranges in freshwater conditions. Cortisol is also known as an osmoregulation-related steroid in teleosts; however, its precise function is still controversial. Here, we investigated more detailed effects of PRL and roles of cortisol on ionocytes of Mozambique tilapia (Oreochromis mossambicus) in freshwater, using an improved gill filament incubation system. This incubation system resulted in enhanced cell viability, as evaluated using the dead cell marker propidium iodide. PRL was shown to maintain the density of freshwater-type ionocytes in isolated gill filaments; this effect of PRL is not achieved by the activation of cell proliferation, but by the maintenance of existing ionocytes. Cortisol alone did not show any distinct effect on ionocyte density in isolated gill filaments. We also assessed effects of PRL and cortisol on relative mRNA levels of NCC2, NHE3, NKAa1a, and NKAa1b. PRL maintained relative NCC2 and NKAa1a mRNA abundance, and cortisol showed a stimulatory effect on relative NCC2 and NKAa1a mRNA levels in combination with PRL, though cortisol alone exerted no effect on these genes. An increase in NKAa1b mRNA abundance was detected in cortisol-treated groups. PRL treatment also maintained normal NCC2 localization at the apical membrane of the ionocytes. These results indicate that PRL maintains freshwater-type ionocytes, and that cortisol stimulates the function of ionocytes maintained by PRL.
Collapse
Affiliation(s)
- Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | - Kohei Itoh
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
30
|
Michael K, Kreiss CM, Hu MY, Koschnick N, Bickmeyer U, Dupont S, Pörtner HO, Lucassen M. Adjustments of molecular key components of branchial ion and pH regulation in Atlantic cod (Gadus morhua) in response to ocean acidification and warming. Comp Biochem Physiol B Biochem Mol Biol 2016; 193:33-46. [DOI: 10.1016/j.cbpb.2015.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
31
|
Bollinger RJ, Madsen SS, Bossus MC, Tipsmark CK. Does Japanese medaka (Oryzias latipes) exhibit a gill Na(+)/K(+)-ATPase isoform switch during salinity change? J Comp Physiol B 2016; 186:485-501. [PMID: 26920794 DOI: 10.1007/s00360-016-0972-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/02/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022]
Abstract
Some euryhaline teleosts exhibit a switch in gill Na(+)/K(+)-ATPase (Nka) α isoform when moving between fresh water (FW) and seawater (SW). The present study tested the hypothesis that a similar mechanism is present in Japanese medaka and whether salinity affects ouabain, Mg(2+), Na(+) and K(+) affinity of the gill enzyme. Phylogenetic analysis classified six separate medaka Nka α isoforms (α1a, α1b, α1c, α2, α3a and α3b). Medaka acclimated long-term (>30 days) to either FW or SW had similar gill expression of α1c, α2, α3a and α3b, while both α1a and α1b were elevated in SW. Since a potential isoform shift may rely on early changes in transcript abundance, we conducted two short-term (1-3 days) salinity transfer experiments. FW to SW acclimation induced an elevation of α1b and α1a after 1 and 3 days. SW to FW acclimation reduced α1b after 3 days with no other α isoforms affected. To verify that the responses were typical, additional transport proteins were examined. Gill ncc and nhe3 expression were elevated in FW, while cftr and nkcc1a were up-regulated in SW. This is in accordance with putative roles in ion-uptake and secretion. SW-acclimated medaka had higher gill Nka V max and lower apparent K m for Na(+) compared to FW fish, while apparent affinities for K(+), Mg(2+) and ouabain were unchanged. The present study showed that the Japanese medaka does not exhibit a salinity-induced α isoform switch and therefore suggests that Na(+) affinity changes involve altered posttranslational modification or intermolecular interactions.
Collapse
Affiliation(s)
- Rebecca J Bollinger
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| | - Steffen S Madsen
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Maryline C Bossus
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA.
| |
Collapse
|
32
|
Wong MKS, Pipil S, Ozaki H, Suzuki Y, Iwasaki W, Takei Y. Flexible selection of diversified Na(+)/K(+)-ATPase α-subunit isoforms for osmoregulation in teleosts. ZOOLOGICAL LETTERS 2016; 2:15. [PMID: 27489726 PMCID: PMC4971688 DOI: 10.1186/s40851-016-0050-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/18/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND METHODS Multiple Na+/K+-ATPase (NKA) α-subunit isoforms express differentially in response to salinity transfer in teleosts but we observed that the isoform nomenclature is inconsistent with the phylogenetic relationship of NKA α-genes. We cloned the catalytic NKA α-subunit isoforms in eels and medaka, analyzed the time course of their expressions in osmoregulatory tissues after transfer from freshwater (FW) to seawater (SW), and performed phylogenetic analyses to deduce an evolutionary scenario that illustrates how various duplication events have led to the current genomic arrangement of NKA α-genes in teleosts. RESULTS AND DISCUSSION Five and six α-subunits were cloned in eels and medaka respectively. In eels, the commonly-reported α1a and α1b isoforms were absent while the α1c isoform was diversified instead (α1c-1, α1c-2, α1c-3, α2, and α3 in eels). Phylogenetic estimation indicated that the α1a and α1b isoforms from salmon, tilapia, and medaka were generated by independent duplication events and thus they are paralogous isoforms. Re-examination of expression changes of known isoforms after salinity challenge revealed that the isoforms selected as predominant SW-types varied among teleost lineages. Diversification of α1 isoforms occurred by various types of gene duplication, or by alternative transcription among tandem genes to form chimeric transcripts, but there is no trend for more α1 copies in euryhaline species. Our data suggest that the isoform switching between FW (α1a predominates) and SW (α1b predominates) that occurs in salmonids is not universal in teleosts. Instead, in eels, α1c-1 was the major α-subunit upregulated gill, intestine, and kidney in SW. Localization of both NKA mRNA and protein showed consistent upregulation in gill and intestine in SW eels, but not in renal distal and collecting tubules, where low transcript expression levels were accompanied by high protein levels, suggesting a tissue-specific translational regulation that determines and fine-tunes the NKA expression. In medaka, α1b was upregulated in SW in anterior intestine while most other α-subunit isoforms were less responsive to salinity changes. CONCLUSION By integrating gene expression and phylogenetic results, we propose that the major NKA α-subunits for SW acclimation were not ancestrally selected, but rather were flexibly determined in lineage-specific fashion in teleosts.
Collapse
Affiliation(s)
- Marty Kwok-Shing Wong
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba Japan
| | - Supriya Pipil
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba Japan
| | - Haruka Ozaki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Iwasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshio Takei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba Japan
| |
Collapse
|
33
|
|
34
|
Yao Z, Lai Q, Hao Z, Chen L, Lin T, Zhou K, Wang H. Carbonic anhydrase 2-like and Na⁺-K⁺-ATPase α gene expression in medaka (Oryzias latipes) under carbonate alkalinity stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1491-1500. [PMID: 26183260 DOI: 10.1007/s10695-015-0101-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/09/2015] [Indexed: 06/04/2023]
Abstract
High carbonate alkalinity is one of the major stress factors for living organisms in saline-alkaline water areas. Acute and chronic effects of carbonate alkalinity on expression of two genes, carbonic anhydrase 2-like (CA2-like) and Na(+)-K(+)-ATPase α subunit (NKA-α) mRNA in medaka (Oryzias latipes) were evaluated to better understand the responses important for coping with a carbonate alkalinity stress. In the acute exposure experiment, the expression of CA2-like and NKA-α mRNA in the gill and kidney of medaka were examined from 0 h to 7 days exposed to 30.4 mM carbonate alkalinity water. Exposure to high carbonate alkalinity resulted in a transitory alkalosis, followed by a transient increase in gill and kidney CA2-like and NKA-α mRNA expression. In the chronic exposure experiment, the expression of these two genes was examined in the gill and kidney at 50 days post-exposure to six different carbonate alkalinity concentrations ranging from 1.5 to 30.4 mM. Gill and kidney CA2-like mRNA levels in 30.4 mM were approximately 10 and 30 times higher than that of the control (1.5 mM), respectively. Less differences were found in NKA-α expression in the 50-days exposure. The results indicate that when transferred to high carbonate alkalinity water, a transitory alkalosis may occur in medaka, followed by compensatory acid-base and ion regulatory responses. Thus, CA2-like and NKA-α are at least two of the important factors that contribute to the regulation of alkalinity stress.
Collapse
Affiliation(s)
- Zongli Yao
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture of China, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 20090, China.
| | - Qifang Lai
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture of China, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 20090, China.
| | - Zhuoran Hao
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture of China, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 20090, China.
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Tingting Lin
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture of China, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 20090, China.
| | - Kai Zhou
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture of China, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 20090, China.
| | - Hui Wang
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture of China, East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 20090, China.
| |
Collapse
|
35
|
Leguen I, Le Cam A, Montfort J, Peron S, Fautrel A. Transcriptomic Analysis of Trout Gill Ionocytes in Fresh Water and Sea Water Using Laser Capture Microdissection Combined with Microarray Analysis. PLoS One 2015; 10:e0139938. [PMID: 26439495 PMCID: PMC4595143 DOI: 10.1371/journal.pone.0139938] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
Fish gills represent a complex organ composed of several cell types that perform multiple physiological functions. Among these cells, ionocytes are implicated in the maintenance of ion homeostasis. However, because the ionocyte represents only a small percent of whole gill tissue, its specific transcriptome can be overlooked among the numerous cell types included in the gill. The objective of this study is to better understand ionocyte functions by comparing the RNA expression of this cell type in freshwater and seawater acclimated rainbow trout. To realize this objective, ionocytes were captured from gill cryosections using laser capture microdissection after immunohistochemistry. Then, transcriptome analyses were performed on an Agilent trout oligonucleotide microarray. Gene expression analysis identified 108 unique annotated genes differentially expressed between freshwater and seawater ionocytes, with a fold change higher than 3. Most of these genes were up-regulated in freshwater cells. Interestingly, several genes implicated in ion transport, extracellular matrix and structural cellular proteins appeared up-regulated in freshwater ionocytes. Among them, several ion transporters, such as CIC2, SLC26A6, and NBC, were validated by qPCR and/or in situ hybridization. The latter technique allowed us to localize the transcripts of these ion transporters in only ionocytes and more particularly in the freshwater cells. Genes involved in metabolism and also several genes implicated in transcriptional regulation, cell signaling and the cell cycle were also enhanced in freshwater ionocytes. In conclusion, laser capture microdissection combined with microarray analysis allowed for the determination of the transcriptional signature of scarce cells in fish gills, such as ionocytes, and aided characterization of the transcriptome of these cells in freshwater and seawater acclimated trout.
Collapse
Affiliation(s)
- Isabelle Leguen
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
- * E-mail:
| | - Aurélie Le Cam
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | - Sandrine Peron
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | - Alain Fautrel
- INSERM UMR991, Rennes, France
- Université de Rennes 1 Plateforme H2P2, Biosit, Rennes, France
| |
Collapse
|
36
|
Inokuchi M, Breves JP, Moriyama S, Watanabe S, Kaneko T, Lerner DT, Grau EG, Seale AP. Prolactin 177, prolactin 188, and extracellular osmolality independently regulate the gene expression of ion transport effectors in gill of Mozambique tilapia. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1251-63. [PMID: 26377558 DOI: 10.1152/ajpregu.00168.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/11/2015] [Indexed: 02/03/2023]
Abstract
This study characterized the local effects of extracellular osmolality and prolactin (PRL) on branchial ionoregulatory function of a euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). First, gill filaments were dissected from freshwater (FW)-acclimated tilapia and incubated in four different osmolalities, 280, 330, 380, and 450 mosmol/kg H2O. The mRNA expression of Na(+)/K(+)-ATPase α1a (NKA α1a) and Na(+)/Cl(-) cotransporter (NCC) showed higher expression with decreasing media osmolalities, while Na(+)/K(+)/2Cl(-) cotransporter 1a (NKCC1a) and PRL receptor 2 (PRLR2) mRNA levels were upregulated by increases in media osmolality. We then incubated gill filaments in media containing ovine PRL (oPRL) and native tilapia PRLs (tPRL177 and tPRL188). oPRL and the two native tPRLs showed concentration-dependent effects on NCC, NKAα1a, and PRLR1 expression; Na(+)/H(+) exchanger 3 (NHE3) expression was increased by 24 h of incubation with tPRLs. Immunohistochemical observation showed that oPRL and both tPRLs maintained a high density of NCC- and NKA-immunoreactive ionocytes in cultured filaments. Furthermore, we found that tPRL177 and tPRL188 differentially induce expression of these ion transporters, according to incubation time. Together, these results provide evidence that ionocytes of Mozambique tilapia may function as osmoreceptors, as well as directly respond to PRL to modulate branchial ionoregulatory functions.
Collapse
Affiliation(s)
- Mayu Inokuchi
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii; Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, New York
| | - Shunsuke Moriyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii; University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii; University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii
| |
Collapse
|
37
|
Molecular and functional characterization of seven Na+/K+-ATPase β subunit paralogs in Senegalese sole (Solea senegalensis Kaup, 1858). Comp Biochem Physiol B Biochem Mol Biol 2015; 182:14-26. [DOI: 10.1016/j.cbpb.2014.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/24/2014] [Accepted: 11/29/2014] [Indexed: 11/22/2022]
|
38
|
Moorman BP, Lerner DT, Grau EG, Seale AP. The effects of acute salinity challenges on osmoregulation in Mozambique tilapia reared in a tidally changing salinity. ACTA ACUST UNITED AC 2015; 218:731-9. [PMID: 25617466 DOI: 10.1242/jeb.112664] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study characterizes the differences in osmoregulatory capacity among Mozambique tilapia, Oreochromis mossambicus, reared in freshwater (FW), in seawater (SW) or under tidally driven changes in salinity. This was addressed through the use of an abrupt exposure to a change in salinity. We measured changes in: (1) plasma osmolality and prolactin (PRL) levels; (2) pituitary expression of prolactin (PRL) and its receptors, PRLR1 and PRLR2; (3) branchial expression of PRLR1, PRLR2, Na(+)/Cl(-) co-transporter (NCC), Na(+)/K(+)/2Cl(-) co-transporter (NKCC), α1a and α1b isoforms of Na(+)/K(+)-ATPase (NKA), cystic fibrosis transmembrane conductance regulator (CFTR), aquaporin 3 (AQP3) and Na(+)/H(+) exchanger 3 (NHE3). Mozambique tilapia reared in a tidal environment successfully adapted to SW while fish reared in FW did not survive a transfer to SW beyond the 6 h sampling. With the exception of CFTR, the change in the expression of ion pumps, transporters and channels was more gradual in fish transferred from tidally changing salinities to SW than in fish transferred from FW to SW. Upon transfer to SW, the increase in CFTR expression was more robust in tidal fish than in FW fish. Tidal and SW fish successfully adapted when transferred to FW. These results suggest that Mozambique tilapia reared in a tidally changing salinity, a condition that more closely represents their natural history, gain an adaptive advantage compared with fish reared in FW when facing a hyperosmotic challenge.
Collapse
Affiliation(s)
- Benjamin P Moorman
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
39
|
Trubitt RT, Rabeneck DB, Bujak JK, Bossus MC, Madsen SS, Tipsmark CK. Transepithelial resistance and claudin expression in trout RTgill-W1 cell line: effects of osmoregulatory hormones. Comp Biochem Physiol A Mol Integr Physiol 2014; 182:45-52. [PMID: 25490293 DOI: 10.1016/j.cbpa.2014.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 01/12/2023]
Abstract
In the present study, we examined the trout gill cell line RTgill-W1 as a possible tool for in vitro investigation of epithelial gill function in fish. After seeding in transwells, transepithelial resistance (TER) increased until reaching a plateau after 1-2 days (20-80Ω⋅cm(2)), which was then maintained for more than 6 days. Tetrabromocinnamic acid, a known stimulator of TER via casein kinase II inhibition, elevated TER in the cell line to 125% of control values after 2 and 6h. Treatment with ethylenediaminetetraacetic acid induced a decrease in TER to <15% of pre-treatment level. Cortisol elevated TER after 12-72 h in a concentration-dependent manner, and this increase was antagonized by growth hormone (Gh). The effects of three osmoregulatory hormones, Gh, prolactin, and cortisol, on the mRNA expression of three tight junction proteins were examined: claudin-10e (Cldn-10e), Cldn-30, and zonula occludens-1 (Zo-1). The expression of cldn-10e was stimulated by all three hormones but with the strongest effect of Gh (50-fold). cldn-30 expression was stimulated especially by cortisol (20-fold) and also by Gh (4-fold). Finally, zo-1 was unresponsive to hormone treatment. Western blot analysis detected Cldn-10e and Cldn-30 immunoreactive proteins of expected molecular weight in samples from rainbow trout gills but not from RTgill-W1 cultures, possibly due to low expression levels. Collectively, these results show that the RTgill-W1 cell layers have tight junctions between cells, are sensitive to hormone treatments, and may provide a useful model for in vitro study of some in vivo gill phenomena.
Collapse
Affiliation(s)
- Rebecca T Trubitt
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - D Brett Rabeneck
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Joanna K Bujak
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Maryline C Bossus
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Steffen S Madsen
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA; Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
40
|
Esbaugh AJ, Kristensen T, Takle H, Grosell M. The effects of sustained aerobic swimming on osmoregulatory pathways in Atlantic salmon Salmo salar smolts. JOURNAL OF FISH BIOLOGY 2014; 85:1355-1368. [PMID: 25315882 DOI: 10.1111/jfb.12475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/18/2014] [Indexed: 06/04/2023]
Abstract
Atlantic salmon Salmo salar smolts were exposed to one of the four different aerobic exercise regimens for 10 weeks followed by a 1 week final smoltification period in fresh water and a subsequent eight-day seawater transfer period. Samples of gill and intestinal tissue were taken at each time point and gene expression was used to assess the effects of exercise training on both branchial and intestinal osmoregulatory pathways. Real-time polymerase chain reaction (PCR) analysis revealed that exercise training up-regulated the expression of seawater relevant genes in the gills of S. salar smolts, including Na(+) , K(+) ATPase (nka) subunit α1b, the Na(+) , K(+) , 2 Cl(-) co-transporter (nkcc1) and cftr channel. These findings suggest that aerobic exercise stimulates expression of seawater ion transport pathways that may act to shift the seawater transfer window for S. salar smolts. Aerobic exercise also appeared to stimulate freshwater ion uptake mechanisms probably associated with an osmorespiratory compromise related to increased exercise. No differences were observed in plasma Na(+) and Cl(-) concentrations as a consequence of exercise treatment, but plasma Na(+) was lower during the final smoltification period in all treatments. No effects of exercise were observed for intestinal nkcc2, nor the Mg(2+) transporters slc41a2 and transient receptor protein M7 (trpm7); however, expression of both Mg(2+) transporters was affected by salinity transfer suggesting a dynamic role in Mg(2+) homeostasis in fishes.
Collapse
Affiliation(s)
- A J Esbaugh
- University of Texas at Austin, Marine Science Institute, Austin, TX 78373, U.S.A
| | | | | | | |
Collapse
|
41
|
Handeland SO, Imsland AK, Nilsen TO, Ebbesson LOE, Hosfeld CD, Pedrosa C, Toften H, Stefansson SO. Osmoregulation in Atlantic salmon Salmo salar smolts transferred to seawater at different temperatures. JOURNAL OF FISH BIOLOGY 2014; 85:1163-1176. [PMID: 25098608 DOI: 10.1111/jfb.12481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
In order to investigate how changes in gill Na(+) , K(+) -ATPase (NKA) α1a and α1b subunits, Na(+) , K(+) , 2Cl(-) co-transporter (NKCC1) and the apical cystic fibrosis trans-membrane conductance regulator-I (CFTR-I) transcripts in wild strain of Atlantic salmon, Salmo salar, smolts are affected by temperature during spring, hatchery-reared parr (mean ± s.e. fork length = 14·1 ± 0·5; mean ± s.e. body mass = 28·5 ± 4·5 g) originating from broodstock from the Vosso river (western Norway) were acclimated to three temperature regimes (4·1, 8·1 and 12·9° C) in May and reared under gradually increasing salinity between May and June. Changes in plasma Na(+) , haematocrit (Hct) and PCO2 were monitored in order to assess and compare key physiological changes with the transcriptional changes in key ion transporters. The temperatures reflect the natural temperature range in the River Vosso during late spring. Overall, higher gill NKA α1b mRNA levels, gill NKCC1a levels and CFTR-I levels were observed in the 4·1° C group compared to the 11·9° C group. This coincided with a 2-3 week period with decreased Hct and PCO2 and may indicate a critical window when smolts suffer from reduced physical performance during migration. Further research is needed to confirm the potential interaction between ecological and physiological conditions on mortality of hatchery-reared smolts from River Vosso during their natural migration.
Collapse
Affiliation(s)
- S O Handeland
- Uni Research AS, 5020 Bergen, Norway; Bergen University College, 5020 Bergen Norway
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Dalziel AC, Bittman J, Mandic M, Ou M, Schulte PM. Origins and functional diversification of salinity-responsive Na(+) , K(+) ATPase α1 paralogs in salmonids. Mol Ecol 2014; 23:3483-503. [PMID: 24917532 DOI: 10.1111/mec.12828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/17/2023]
Abstract
The Salmoniform whole-genome duplication is hypothesized to have facilitated the evolution of anadromy, but little is known about the contribution of paralogs from this event to the physiological performance traits required for anadromy, such as salinity tolerance. Here, we determined when two candidate, salinity-responsive paralogs of the Na(+) , K(+) ATPase α subunit (α1a and α1b) evolved and studied their evolutionary trajectories and tissue-specific expression patterns. We found that these paralogs arose during a small-scale duplication event prior to the Salmoniform, but after the teleost, whole-genome duplication. The 'freshwater paralog' (α1a) is primarily expressed in the gills of Salmoniformes and an unduplicated freshwater sister species (Esox lucius) and experienced positive selection in the freshwater ancestor of Salmoniformes and Esociformes. Contrary to our predictions, the 'saltwater paralog' (α1b), which is more widely expressed than α1a, did not experience positive selection during the evolution of anadromy in the Coregoninae and Salmonine. To determine whether parallel mutations in Na(+) , K(+) ATPase α1 may contribute to salinity tolerance in other fishes, we studied independently evolved salinity-responsive Na(+) , K(+) ATPase α1 paralogs in Anabas testudineus and Oreochromis mossambicus. We found that a quarter of the mutations occurring between salmonid α1a and α1b in functionally important sites also evolved in parallel in at least one of these species. Together, these data argue that paralogs contributing to salinity tolerance evolved prior to the Salmoniform whole-genome duplication and that strong selection and/or functional constraints have led to parallel evolution in salinity-responsive Na(+) , K(+) ATPase α1 paralogs in fishes.
Collapse
Affiliation(s)
- Anne C Dalziel
- Department of Zoology, Biodiversity Research Center, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada, V6T 1Z4; Department of Biology, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 Avenue de la Médecine, Québec City, Québec, Canada, G1V 0A6
| | | | | | | | | |
Collapse
|
43
|
Watson CJ, Nordi WM, Esbaugh AJ. Osmoregulation and branchial plasticity after acute freshwater transfer in red drum, Sciaenops ocellatus. Comp Biochem Physiol A Mol Integr Physiol 2014; 178:82-9. [PMID: 25152533 DOI: 10.1016/j.cbpa.2014.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/21/2014] [Accepted: 08/13/2014] [Indexed: 11/27/2022]
Abstract
Red drum, Sciaenops ocellatus, is an estuarine-dependent fish species commonly found in the Gulf of Mexico and along the coast of the southeastern United States. This economically important species has demonstrated freshwater tolerance; however, the physiological mechanisms and costs related to freshwater exposure remain poorly understood. The current study therefore investigated the physiological response of red drum using an acute freshwater transfer protocol. Plasma osmolality, Cl⁻, Mg²⁺ and Ca²⁺ were all significantly reduced by 24h post-transfer; Cl⁻ and Mg²⁺ recovered to control levels by 7days post-transfer. No effect of transfer was observed on muscle water content; however, muscle Cl⁻ was significantly reduced. Interestingly, plasma and muscle Na⁺ content was unaffected by freshwater transfer. Intestinal fluid was absent by 24h post-transfer indicating cessation of drinking. Branchial gene expression analysis showed that both CFTR and NKCC1 exhibited significant down-regulation at 8 and 24h post-transfer, respectively, although transfer had no impact on NHE2, NHE3 or Na⁺, K⁺ ATPase (NKA) activity. These general findings are supported by immunohistochemical analysis, which revealed no apparent NKCC containing cells in the gills at 7days post transfer while NKA cells localization was unaffected. The results of the current study suggest that red drum can effectively regulate Na⁺ balance upon freshwater exposure using already present Na⁺ uptake pathways while also down-regulating ion excretion mechanisms.
Collapse
Affiliation(s)
| | - Wiolene M Nordi
- University of Texas Marine Science Institute, Austin, TX 78373, USA
| | - Andrew J Esbaugh
- University of Texas Marine Science Institute, Austin, TX 78373, USA.
| |
Collapse
|
44
|
Breves JP, McCormick SD, Karlstrom RO. Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia. Gen Comp Endocrinol 2014; 203:21-8. [PMID: 24434597 PMCID: PMC4096611 DOI: 10.1016/j.ygcen.2013.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 12/29/2013] [Indexed: 11/30/2022]
Abstract
The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identified as the "freshwater-adapting hormone", promoting ion-conserving and water-secreting processes by acting on the gill, kidney, gut and urinary bladder. In mammals, prolactin is known to regulate renal, intestinal, mammary and amniotic epithelia, with dysfunction linked to hypogonadism, infertility, and metabolic disorders. Until recently, our understanding of the cellular mechanisms of prolactin action in fishes has been hampered by a paucity of molecular tools to define and study ionocytes, specialized cells that control active ion transport across branchial and epidermal epithelia. Here we review work in teleost models indicating that prolactin regulates ion balance through action on ion transporters, tight-junction proteins, and water channels in ionocytes, and discuss recent advances in our understanding of ionocyte function in the genetically and embryonically accessible zebrafish (Danio rerio). Given the high degree of evolutionary conservation in endocrine and osmoregulatory systems, these studies in teleost models are contributing novel mechanistic insight into how prolactin participates in the development, function, and dysfunction of osmoregulatory systems across the vertebrate lineage.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| | - Stephen D McCormick
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA; USGS, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA
| | - Rolf O Karlstrom
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
45
|
Nakajima T, Shimura H, Yamazaki M, Fujioka Y, Ura K, Hara A, Shimizu M. Lack of hormonal stimulation prevents the landlocked Biwa salmon (Oncorhynchus masou subspecies) from adapting to seawater. Am J Physiol Regul Integr Comp Physiol 2014; 307:R414-25. [PMID: 24944245 DOI: 10.1152/ajpregu.00474.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Landlocking of salmon relaxes selective pressures on hypoosmoregulatory ability (seawater adaptability) and may lead to the abandonment of its physiological system. However, little is known about the mechanism and consequence of the process. Biwa salmon is a strain/subspecies of Oncorhynchus masou that has been landlocked in Lake Biwa for an exceptionally long period (about 500,000 years) and has low ability to adapt to seawater. We compared activity of gill Na(+),K(+)-ATPase (NKA) of Biwa salmon with those of anadromous strains of the same species (masu and amago salmon) during downstream migration periods and after exogenous hormone treatment. Gill NKA activity in anadromous strains increased during their migration periods, while that in Biwa salmon remained low. However, treatments of Biwa salmon with growth hormone (GH) and cortisol increased gill NKA activity. Cortisol treatment also improved the whole body seawater adaptability of Biwa salmon. Receptors for GH and cortisol responded to hormonal treatments, whereas their mRNA levels during downstream migration period were essentially unchanged in Biwa salmon. Circulating levels of cortisol in masu salmon showed a peak during downstream migration period, while no such increase was seen in Biwa salmon. The present results indicate that Biwa salmon can improve its seawater adaptability by exogenous hormonal treatment, and hormone receptors are capable of responding to the signals. However, secretion of the endogenous hormone (cortisol) was not activated during the downstream migration period, which explains, at least in part, their low ability to adapt to seawater.
Collapse
Affiliation(s)
- Takuro Nakajima
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Haruka Shimura
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Miyuki Yamazaki
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | | | - Kazuhiro Ura
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Akihiko Hara
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Hokkaido, Japan;
| |
Collapse
|
46
|
Molecular characterization and transcriptional regulation of the Na +/K+ ATPase α subunit isoforms during development and salinity challenge in a teleost fish, the Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 2014; 175:23-38. [PMID: 24947209 DOI: 10.1016/j.cbpb.2014.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 01/12/2023]
Abstract
In the present work, five genes encoding different Na(+),K(+) ATPase (NKA) α-isoforms in the teleost Solea senegalensis are described for the first time. Sequence analysis of predicted polypeptides revealed a high degree of conservation across teleosts and mammals. Phylogenetic analysis clustered the five genes into three main clades: α1 (designated atp1a1a and atp1a1b), α2 (designated atp1a2) and α3 (designated atp1a3a and atp1a3b) isoforms. Transcriptional analysis in larvae showed distinct expression profiles during development. In juvenile tissues, the atp1a1a gene was highly expressed in osmoregulatory organs, atp1a2 in skeletal muscle, atp1a1b in brain and heart and atp1a3a and atp1a3b mainly in brain. Quantification of mRNA abundance after a salinity challenge showed that atp1a1a transcript levels increased significantly in the gill of soles transferred to high salinity water (60 ppt). In contrast, atp1a3a transcripts increased at low salinity (5 ppt). In situ hybridization (ISH) analysis revealed that the number of ionocytes expressing atp1a1a transcripts in the primary gill filaments was higher at 35 and 60 ppt than at 5 ppt and remained undetectable or at very low levels in the lamellae at 5 and 35 ppt but increased at 60 ppt. Immunohistochemistry showed a higher number of positive cells in the lamellae. Whole-mount analysis of atp1a1a mRNA in young sole larvae revealed that it was localized in gut, pronephric tubule, gill, otic vesicle, yolk sac ionocytes and chordacentrum. Moreover, atp1a1a mRNAs increased at mouth opening (3 DPH) in larvae incubated at 36 ppt with a greater signal in gills.
Collapse
|
47
|
Chandrasekar S, Nich T, Tripathi G, Sahu NP, Pal AK, Dasgupta S. Acclimation of brackish water pearl spot (Etroplus suratensis) to various salinities: relative changes in abundance of branchial Na(+)/K (+)-ATPase and Na (+)/K (+)/2Cl (-) co-transporter in relation to osmoregulatory parameters. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:983-996. [PMID: 24482094 DOI: 10.1007/s10695-013-9899-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
The present study was conducted to elucidate the osmoregulatory ability of the fish pearl spot (Etroplus suratensis) to know the scope of this species for aquaculture under various salinities. Juvenile pearl spot were divided into three groups and acclimated to freshwater (FW), brackish water (BW) or seawater (SW) for 15 days. The fish exhibited effective salinity tolerance under osmotic challenges. Although the plasma osmolality and Na(+), K(+) and Cl(-) levels increased with the increasing salinities, the parameters remained within the physiological range. The muscle water contents were constant among FW-, BW- and SW-acclimated fish. Two Na+/K+-ATPase α-isoforms (NKA α) were expressed in gills during acclimation in FW, BW and SW. Abundance of one isoform was up-regulated in response to seawater acclimation, suggesting its role in ion secretion similar to NKA α1b, while expression of another isoform was simultaneously up-regulated in response to both FW and SW acclimation, suggesting the presence of isoforms switching phenomenon during acclimation to different salinities. Nevertheless, NKA enzyme activities in the gills of the SW and FW individuals were higher (p < 0.05) than in BW counterparts. Immunohistochemistry revealed that Na(+)/K(+)-ATPase immunoreactive (NKA-IR) cells were mainly distributed in the interlamellar region of the gill filaments in FW groups and in the apical portion of the filaments in BW and SW groups. The number of NKA-IR cells in the gills of the FW-acclimated fish was almost similar to that of SW individuals, which exceeded that of the BW individuals. The NKA-IR cells of BW and SW were bigger in size than their FW counterparts. Besides, the relative abundance of branchial Na(+)/K(+)/2Cl(-) co-transporter showed stronger evidence in favor of involvement of this protein in hypo-osmoregulation, requiring ion secretion by the chloride cells. To the best of our knowledge, this is the first study reporting the wide salinity tolerance of E. suratensis involving differential activation of ion transporters and thereby suggesting its potential as candidate for fish farming under different external salinities.
Collapse
Affiliation(s)
- S Chandrasekar
- Central Institute of Fisheries Education (Indian Council of Agricultural Research), Versova, Mumbai, 400061, India
| | | | | | | | | | | |
Collapse
|
48
|
Breves JP, Seale AP, Moorman BP, Lerner DT, Moriyama S, Hopkins KD, Grau EG. Pituitary control of branchial NCC, NKCC and Na+, K+-ATPase α-subunit gene expression in Nile tilapia, Oreochromis niloticus. J Comp Physiol B 2014; 184:513-23. [DOI: 10.1007/s00360-014-0817-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
49
|
Gill tissue lipids of salmon (Salmo salar L.) presmolts and smolts from anadromous and landlocked populations. Comp Biochem Physiol A Mol Integr Physiol 2014; 172:39-45. [PMID: 24548908 DOI: 10.1016/j.cbpa.2014.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 11/21/2022]
Abstract
Composition of membrane lipids from the gills of juvenile Atlantic salmon (Salmo salar) in presmolt and smolt phases of development was compared among anadromous and non-anadromous populations. Three stocks migrating from spawning rivers to either lake (landlocked stock), brackish water or full strength sea water were grown under common garden conditions, and gill lipids and their acyl and alkenyl chains were examined in February (presmolts) and at the end of May (smolts) by mass spectrometry and gas-liquid chromatography. The most remarkable changes upon transition from the presmolt phase to the smolt phase were: (i) increase in the cholesterol/phospholipid ratio, (ii) decrease in the abundance of phosphatidylinositol (PI) content, (iii) increase in the amount of sulfatides, (iv) increase in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species with two highly unsaturated acyl chains, and finally (v) convergence of interstock differences in PC and PE species composition towards a similar lipid composition. Increases in the gill membrane content of cholesterol and sulfatides are discussed as pre-adaptation of salmon gills for salt-secretion, which may occur by increases in membrane microdomains (rafts) harboring ion channels and pumps. The decreases of PI were likely related to adjusting the gill membrane permeability to ions by diminishing prostanoid production. The similarity of those changes among three salmon stocks and the convergence of initially (presmolt phase) different PC and PE species profiles between the stocks towards similar lipid composition suggests that smoltification process of the gill epithelium is largely similar in anadromous and landlocked populations.
Collapse
|
50
|
Norman JD, Ferguson MM, Danzmann RG. An integrated transcriptomic and comparative genomic analysis of differential gene expression in Arctic charr (Salvelinus alpinus) following seawater exposure. J Exp Biol 2014; 217:4029-42. [DOI: 10.1242/jeb.107441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Abstract
High-throughput RNA sequencing was employed to compare expression profiles in two Arctic charr (Salvelinus alpinus) families post seawater exposure to identify genes and biological processes involved in hypo-osmoregulation and regulation of salinity tolerance. To further understand the genetic architecture of hypo-osmoregulation, the genomic organization of differentially expressed (DE) genes was also analysed. Using a de novo gill transcriptome assembly we found over 2300 contigs to be DE. Major transporters from the seawater mitochondrion-rich cell (MRC) complex were up-regulated in seawater. Expression ratios for 257 differentially expressed contigs were highly correlated between families, suggesting they are strictly regulated. Based on expression profiles and known molecular pathways we inferred that seawater exposure induced changes in methylation states and elevated peroxynitrite formation in gill. We hypothesized that concomitance between DE immune genes and the transition to a hypo-osmoregulatory state could be related to Cl- sequestration by antimicrobial defence mechanisms. Gene Ontology analysis revealed that cell division genes were up-regulated, which could reflect the proliferation of ATP1α1b-type seawater MRCs. Comparative genomics analyses suggest that hypo-osmoregulation is influenced by the relative proximities among a contingent of genes on Arctic charr linkage groups AC-4 and AC-12 that exhibit homologous affinities with a region on stickleback chromosome Ga-I. This supports the hypothesis that relative gene location along a chromosome is a property of the genetic architecture of hypo-osmoregulation. Evidence of non-random structure between hypo-osmoregulation candidate genes was found on AC-1/11 and AC-28, suggesting that interchromosomal rearrangements played a role in the evolution of hypo-osmoregulation in Arctic charr.
Collapse
|