1
|
Gao G, Yang D, Hu L, Jia L, Niu D. Molecular and physiological characterizations of razor clam (Sinonovacula constricta) aquaporin genes AQP4 and AQP10 in response to low-salinity tolerance. Comp Biochem Physiol A Mol Integr Physiol 2025; 303:111827. [PMID: 39978751 DOI: 10.1016/j.cbpa.2025.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Aquaporins (AQPs) are a family of membrane proteins responsible for the selective transport of water molecules and other neutral metabolic substances across cell membranes. These proteins play a crucial role in osmoregulation, enabling marine bivalves to accommodate salinity fluctuations. However, the regulatory mechanism of AQPs in the razor clam (Sinonovacula constricta) under salinity stress remain unclear. In this study, we investigated the roles of two classical AQP genes, Classical aquaporins ScAQP4 and aquaglyceroporin ScAQP10, in response to hypotonic stress in S. constricta. ScAQP4 and ScAQP10 are hydrophobic proteins with six transmembrane domains and a highly conserved MIP structural motif. Upon acute hyposaline challenges, the expression of ScAQP4 and ScAQP10 in gills exhibited a significant increase in responses to low-salinity stress initially, followed by a gradual osmotic rebalance. To further investigate their biological functions, we conducted dsRNA interference to knockdown the expression levels of ScAQP4 and ScAQP10 in gill tissues and assessed the following physiological alternations. The knockdown of ScAQP4 and ScAQP10 resulted in a significant increase in heart rate and apoptosis and severe cellular damage of gills. These findings highlighted the critical roles of ScAQP4 and ScAQP10 in maintaining the osmotic balance of S. constricta. Collectively, these results propose a mechanism by which S. constricta regulates the expression of AQPs to accommodate salinity variations in the natural habitat.
Collapse
Affiliation(s)
- Geqi Gao
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Dong Yang
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Linyun Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liang Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Donghong Niu
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Su H, Ma D, Fan J, Zhong Z, Tian Y, Zhu H. A TMT-Based Proteomic Analysis of Osmoregulation in the Gills of Oreochromis mossambicus Exposed to Three Osmotic Stresses. Int J Mol Sci 2025; 26:2791. [PMID: 40141432 PMCID: PMC11943422 DOI: 10.3390/ijms26062791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Salinity and alkalinity are critical environmental factors that affect fish physiology and ability to survive. Oreochromis mossambicus is a euryhaline species that can endure a wide range of salinities and has the potential to serve as a valuable model animal for environmental science. In order to detect the histomorphological changes, antioxidant enzymes, and proteomic responses of O. mossambicus to different osmotic stresses, O. mossambicus was subjected to salinity stress (25 g/L, S_S), alkalinity stress (4 g/L, A_S), saline-alkalinity stress (salinity: 25 g/L, alkalinity: 4 g/L, SA_S), and freshwater (the control group; C_S). The histomorphological and antioxidant enzyme results indicated that salinity, alkalinity, and saline-alkalinity stresses have different degrees of damage and effects on the gills and liver of O. mossambicus. Compared with the control, 83, 187, and 177 differentially expressed proteins (DEPs) were identified in the salinity, alkalinity, and saline-alkalinity stresses, respectively. The obtained DEPs can be summarized into four categories: ion transport channels or proteins, energy synthesis and metabolism, immunity, and apoptosis. The KEGG enrichment results indicated that DNA replication and repair were significantly enriched in the salinity stress group. Lysosomes and oxidative phosphorylation were considerably enriched in the alkalinity stress group. Comparatively, the three most important enriched pathways in the saline-alkalinity stress group were Parkinson's disease, Alzheimer's disease, and Huntington's disease. The findings of this investigation yield robust empirical evidence elucidating osmoregulatory mechanisms and adaptive biological responses in euryhaline teleost, thereby establishing a scientific foundation for the cultivation and genomic exploration of high-salinity-tolerant teleost species. This advancement facilitates the sustainable exploitation of saline-alkaline aquatic ecosystems while contributing to the optimization of piscicultural practices in hypersaline environments.
Collapse
Affiliation(s)
- Huanhuan Su
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Dongmei Ma
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Jiajia Fan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Zaixuan Zhong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| | - Huaping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, No. 1, Xingyu Road, Liwan District, Guangzhou 510380, China; (H.S.); (D.M.); (J.F.); (Z.Z.); (Y.T.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China
| |
Collapse
|
3
|
Zhang Y, Zhang C, Wen H, Qi X, Wang Q, Zhang K, Wang L, Sun D, Dong Y, Li P, Li Y. Genetic Basis and Identification of Candidate Genes for Alkalinity Tolerance Trait in Spotted Sea Bass (Lateolabrax maculatus) by Genome-Wide Association Study (GWAS). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:27. [PMID: 39786505 DOI: 10.1007/s10126-024-10405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
Given the challenges of overcrowded coastal aquaculture spaces and insufficient production, utilizing saline-alkaline water areas represents a vital strategy to alleviate these bottlenecks. Spotted sea bass (Lateolabrax maculatus), with its formidable osmoregulatory capabilities, is an ideal candidate to develop a saline-alkaline tolerant strain. In our study, genotypic and phenotypic data from 287 L. maculatus individuals exposed to carbonate alkaline conditions were collected, and a genome-wide association study (GWAS) conducted to elucidate genetic basis related to carbonate alkalinity tolerance trait. Results showed that 14 SNPs and 8 InDels were markedly related to carbonate alkalinity tolerance trait, and 404 candidate genes were pinpointed within a ± 300-kb region surrounding these variants. Notably, the most significant SNP (SNP_05_17240108), along with two adjacent SNPs (SNP_05_17240102 and SNP_05_17240340) and two InDels (InDel_05_17240228 and InDel_05_17240231), was situated in the intron region of trio gene that could play vital roles in cell remodeling, and cell junction and activity of aquaporins to deal with carbonate alkalinity stress. Furthermore, candidate genes were significantly involved in pathways associated with carbohydrate metabolism, cell remodeling, ion transport, and RNA degradation, which were consistent with RNA-Seq analysis results of gills and kidneys in response to alkalinity stress. Our study will contribute to elucidate the genetic basis of alkalinity tolerance and the identified SNPs and InDels could be used for marker-assisted selection (MAS) and genomic selection (GS) for alkalinity tolerance trait in the breeding programs of spotted sea bass.
Collapse
Affiliation(s)
- Yonghang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Chong Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Qing Wang
- Fujian Minwell Industrial Co., LTD, Fuding, 355200, China
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Lingyu Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Donglei Sun
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yani Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Pengyu Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Morris C, Martins C, Zulian S, Smith DS, Brauner CJ, Wood CM. The effects of dissolved organic carbon and model compounds (DOC analogues) on diffusive water flux, oxygen consumption, nitrogenous waste excretion rates and gill transepithelial potential in Pacific sanddab (Citharichthys sordidus) at two salinities. J Comp Physiol B 2024; 194:805-825. [PMID: 39245661 DOI: 10.1007/s00360-024-01580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Many flatfish species are partially euryhaline, such as the Pacific sanddab which spawn and feed in highly dynamic estuaries ranging from seawater to near freshwater. With the rapid increase in saltwater invasion of freshwater habitats, it is very likely that in these estuaries, flatfish will be exposed to increasing levels of dissolved organic carbon (DOC) of freshwater origin at a range of salinities. As salinity fluctuations often coincide with changes in DOC concentration, two natural freshwater DOCs [Luther Marsh (LM, allochthonous) and Lake Ontario (LO, autochthonous) were investigated at salinities of 30 and 7.5 ppt. Optical characterization of the two natural DOC sources indicate salinity-dependent differences in their physicochemistry. LO and LM DOCs, as well as three model compounds [tannic acid (TA), sodium dodecyl sulfate (SDS) and bovine serum albumin (BSA)] representing key chemical moieties of DOC, were used to evaluate physiological effects on sanddabs. In the absence of added DOC, an acute decrease in salinity resulted in an increase in diffusive water flux (a proxy for transcellular water permeability), ammonia excretion and a change in TEP from positive (inside) to negative (inside). The effects of DOC (10 mg C L-1) were salinity and source-dependent, with generally more pronounced effects at 30 than 7.5 ppt, and greater potency of LM relative to LO. Both LM DOC and SDS increased diffusive water flux at 30 ppt but only SDS had an effect at 7.5 ppt. TA decreased ammonia excretion at 7.5 ppt. LO DOC decreased urea-N excretion at both salinities whereas the stimulatory effect of BSA occurred only at 30 ppt. Likewise, the effects of LM DOC and BSA to reduce TEP were present at 30 ppt but not 7.5 ppt. None of the treatments affected oxygen consumption rates. Our results demonstrate that DOCs and salinity interact to alter key physiological processes in marine flatfish, reflecting changes in both gill function and the physicochemistry of DOCs between 30 and 7.5 ppt.
Collapse
Affiliation(s)
- Carolyn Morris
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada.
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Camila Martins
- Institute of Biological Sciences, Federal University of Rio Grande - FURG, Italia avenue, s/n, Carreiros, Rio Grande, 96203-900, RS, Brazil
| | - Samantha Zulian
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, ON, N2L 3C5, Canada
| | - D Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, ON, N2L 3C5, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Chris M Wood
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
5
|
Woronowicz KC, Esin EV, Markevich GN, Martinez CS, McMenamin SK, Daane JM, Harris MP, Shkil FN. Phylogenomic analysis of the Lake Kronotskoe species flock of Dolly Varden charr reveals genetic and developmental signatures of sympatric radiation. Development 2024; 151:dev203002. [PMID: 39417576 PMCID: PMC11698049 DOI: 10.1242/dev.203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Recent adaptive radiations provide experimental opportunities to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetic analyses as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, charr species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotskoe represent the most extensive radiation described for the genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages within the clade. We find that changes in genes associated with thyroid signaling and craniofacial development provided a foundational shift in evolution to the lake. The thyroid axis is further implicated in subsequent lineage partitioning events. These results delineate a genetic scenario for the diversification of specialized lineages and highlight a common axis of change biasing the generation of specific forms during adaptive radiation.
Collapse
Affiliation(s)
- Katherine C. Woronowicz
- Department of Orthopedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Evgeny V. Esin
- Laboratory of Lower Vertebrate Ecology, Severtsov Institute, Moscow 119071, Russian Federation
| | - Grigorii N. Markevich
- Laboratory of Lower Vertebrate Ecology, Severtsov Institute, Moscow 119071, Russian Federation
| | | | | | - Jacob M. Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Matthew P. Harris
- Department of Orthopedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Fedor N. Shkil
- Laboratory of Evolutionary Morphology, Severtsov Institute, Moscow 119071, Russian Federation
- Laboratory of Postembryonic Development, Koltzov Institute, Moscow 119071, Russian Federation
| |
Collapse
|
6
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
7
|
Woronowicz KC, Esin EV, Markevich GN, Martinez CS, McMenamin SK, Daane JM, Harris MP, Shkil FN. Phylogenomic analysis of the Lake Kronotskoe species flock of Dolly Varden charr reveals genetic and developmental signatures of sympatric radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.24.529919. [PMID: 38712299 PMCID: PMC11071292 DOI: 10.1101/2023.02.24.529919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Recent adaptive radiations provide evolutionary case studies, which provide the context to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetics as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotske represent the most extensive radiation described for the charr genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages with little evidence of hybridization. We also find that specific selection on thyroid signaling and craniofacial genes forms a genomic basis for the radiation. Thyroid hormone is further implicated in subsequent lineage partitioning events. These results delineate a clear genetic basis for the diversification of specialized lineages, and highlight the role of developmental mechanisms in shaping the forms generated during adaptive radiation.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- Department of Orthopaedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Evgeny V Esin
- AN Severtsov Institute of Ecology and Evolution, RAS; Leninskiy-33, 119071 Moscow, Russian Federation
| | - Grigorii N Markevich
- Kronotsky Nature Biosphere Reserve; Ryabikova-48, 68400 Yelizovo, Russian Federation
| | | | | | - Jacob M Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204
| | - Matthew P Harris
- Department of Orthopaedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Fedor N Shkil
- AN Severtsov Institute of Ecology and Evolution, RAS; Leninskiy-33, 119071 Moscow, Russian Federation
- NK Koltzov Institute of Developmental Biology, RAS; Vavilova-26, 119334 Moscow, Russian Federation
| |
Collapse
|
8
|
Breves JP, Runiewicz ER, Richardson SG, Bradley SE, Hall DJ, McCormick SD. Transcriptional regulation of esophageal, intestinal, and branchial solute transporters by salinity, growth hormone, and cortisol in Atlantic salmon. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:107-117. [PMID: 38010889 DOI: 10.1002/jez.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
In marine habitats, Atlantic salmon (Salmo salar) imbibe seawater (SW) to replace body water that is passively lost to the ambient environment. By desalinating consumed SW, the esophagus enables solute-linked water absorption across the intestinal epithelium. The processes underlying esophageal desalination in salmon and their hormonal regulation during smoltification and following SW exposure are unresolved. To address this, we considered whether two Na+ /H+ exchangers (Nhe2 and -3) expressed in the esophagus contribute to the uptake of Na+ from lumenal SW. There were no seasonal changes in esophageal nhe2 or -3 expression during smoltification; however, nhe3 increased following 48 h of SW exposure in May. Esophageal nhe2, -3, and growth hormone receptor b1 were elevated in smolts acclimated to SW for 2.5 weeks. Treatment with cortisol stimulated branchial Na+ /K+ -ATPase (Nka) activity, and Na+ /K+ /2Cl- cotransporter 1 (nkcc1), cystic fibrosis transmembrane regulator 1 (cftr1), and nka-α1b expression. Esophageal nhe2, but not nhe3 expression, was stimulated by cortisol. In anterior intestine, cortisol stimulated nkcc2, cftr2, and nka-α1b. Our findings indicate that salinity stimulates esophageal nhe2 and -3, and that cortisol coordinates the expression of esophageal, intestinal, and branchial solute transporters to support the SW adaptability of Atlantic salmon.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, New York, USA
| | - Ellie R Runiewicz
- Department of Biology, Skidmore College, Saratoga Springs, New York, USA
| | | | - Serena E Bradley
- Department of Biology, Skidmore College, Saratoga Springs, New York, USA
| | - Daniel J Hall
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Stephen D McCormick
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Lin YT, Wu SY, Lee TH. Salinity effects on expression and localization of aquaporin 3 in gills of the euryhaline milkfish (Chanos chanos). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:951-960. [PMID: 37574887 DOI: 10.1002/jez.2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/28/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Milkfish (Chanos chanos) are important euryhaline fish in Southeast Asian countries that can tolerate a wide range of salinity changes. Previous studies have revealed that milkfish have strong ion regulation and survival abilities under osmotic stress. In addition to ion regulation, water homeostasis in euryhaline teleosts is important during environmental salinity shifts. Aquaporins (AQP) are vital water channels in fish, and different AQPs can transport water influx or outflux from the body. AQP3 is one of the AQP channels, and the function of AQP3 in the gills of euryhaline milkfish is still unknown. The aim of this study was to investigate the expression and localization of AQP3 in the gills of euryhaline milkfish to contribute to our understanding of the physiological role and localization of AQP3 in fish. The AQP3 sequence was found in the milkfish next-generation sequencing (NGS) database and is mainly distributed in the gills of freshwater (FW)-acclimated milkfish. Under hypoosmotic and hyperosmotic stress, the osmolality of milkfish immediately shifted, similar to the aqp3 gene expression. Moreover, the abundance of AQP3 protein significantly decreased 3 h after transferring milkfish from FW to seawater (SW). However, there was no change within 7 days when the milkfish experienced hypoosmotic stress. Moreover, double immunofluorescence staining of milkfish gills showed that AQP3 colocalized with Na+ /K+ ATPase at the basolateral membrane of ionocytes. These results combined indicate that milkfish have a strong osmoregulation ability under acute osmotic stress because of the quick shift in the gene and protein expression of AQP3 in their gills.
Collapse
Affiliation(s)
- Yu-Ting Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Shao-Ying Wu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Ciji A, Tripathi PH, Pandey A, Akhtar MS. Expression of genes encoding non-specific immunity, anti-oxidative status and aquaporins in β-glucan-fed golden mahseer ( Tor putitora) juveniles under ammonia stress. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100100. [PMID: 37397802 PMCID: PMC10313902 DOI: 10.1016/j.fsirep.2023.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
The study investigated the effects of dietary administration of β-glucan on aquaporins and antioxidative & immune gene expression in endangered golden mahseer, Tor putitora juveniles, exposed to ammonia stress. For that, fish were fed experimental diets having 0 (control/basal), 0.25, 0.5, and 0.75% β-d-glucan for five weeks and then exposed to ammonia (10 mgL-1 total ammonia nitrogen) for 96 h. Administration of β-glucan differentially influenced the mRNA expression of aquaporins, anti-oxidative, and immune genes in ammonia-exposed fish. For instance, the transcript abundance of catalase and glutathione-s-transferase in gill varied significantly among the treatment groups, with the lowest levels in 0.75% β-glucan fed groups. At the same time, their hepatic mRNA expression was similar. Congruently, transcript abundance of inducible nitric oxide synthase considerably decreased in the β-glucan fed ammonia-challenged fish. Conversely, the relative mRNA expression of various immune genes viz., major histocompatibility complex, immunoglobulin light chain, interleukin 1-beta, toll-like receptors (tlr4 and tlr5) and complement component 3 remained largely unchanged in ammonia-exposed mahseer juveniles that were fed with graded levels of β-glucan. On the other hand, a significantly lower transcript level of aquaporins 1a and 3a was noticed in the gill of glucan-fed fish compared to ammonia-exposed fish that received the basal diet. However, branchial aquaporin 3b remained unaltered. Altogether, this study showed that dietary intake of 0.75% β-glucan improved resistance to ammonia stress to a certain degree, probably through activating anti-oxidative system and reducing brachial ammonia uptake.
Collapse
|
11
|
Tian F, Zhou B, Li X, Zhang Y, Qi D, Qi H, Jiang H, Zhao K, Liu S. Population genomics analysis to identify ion and water transporter genes involved in the adaptation of Tibetan naked carps to brackish water. Int J Biol Macromol 2023; 247:125605. [PMID: 37392922 DOI: 10.1016/j.ijbiomac.2023.125605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Understanding how evolutionary processes shape the genetic variations and influence the response of species to environmental alterations is critical for biodiversity conservation and molecular breeding. Gymnocypris przewalskii przewalskii is the only known cyprinid fish that dwells in the brackish water of Lake Qinghai on the Qinghai-Tibetan Plateau. To reveal the genetic basis of its adaptation to high salinity and alkalinity, whole-genome sequencing was performed in G. p. przewalskii and its freshwater relatives Gymnocypris eckloni and Gymnocypris przewalskii ganzihonensis. Compared with freshwater species, lower genetic diversity and higher linkage disequilibrium were observed in G. p. przewalskii. Selective sweep analysis identified 424 core-selective genes enriched in transport activities. Transfection analysis showed that genetic changes in the positively selected gene aquaporin 3 (AQP3) improved cell viability after salt treatment, suggesting its involvement in brackish water adaptation. Our analysis indicates that ion and water transporter genes experienced intensive selection, which might have contributed to the maintenance of high osmolality and ion content in G. p. przewalskii. The current study identified key molecules involved in the adaptation of fish to brackish water, providing valuable genomic resources for the molecular breeding of salt-tolerant fish.
Collapse
Affiliation(s)
- Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bingzheng Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohuan Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Yu Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris przewalskii, The rescue center of Qinghai Lake Naked Carp, Xining, Qinghai, China
| | - Huamin Jiang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris przewalskii, The rescue center of Qinghai Lake Naked Carp, Xining, Qinghai, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
| |
Collapse
|
12
|
Yang S, Li D, Feng L, Zhang C, Xi D, Liu H, Yan C, Xu Z, Zhang Y, Li Y, Yan T, He Z, Wu J, Gong Q, Du J, Huang X, Du X. Transcriptome analysis reveals the high temperature induced damage is a significant factor affecting the osmotic function of gill tissue in Siberian sturgeon (Acipenser baerii). BMC Genomics 2023; 24:2. [PMID: 36597034 PMCID: PMC9809011 DOI: 10.1186/s12864-022-08969-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Maintaining osmotic equilibrium plays an important role in the survival of cold-water fishes. Heat stress has been proven to reduce the activity of Na+/K+-ATPase in the gill tissue, leading to destruction of the osmotic equilibrium. However, the mechanism of megatemperature affecting gill osmoregulation has not been fully elucidated. RESULTS In this study, Siberian sturgeon (Acipenser baerii) was used to analyze histopathological change, plasma ion level, and transcriptome of gill tissue subjected to 20℃, 24℃and 28℃. The results showed that ROS level and damage were increased in gill tissue with the increasing of heat stress temperature. Plasma Cl- level at 28℃ was distinctly lower than that at 20℃ and 24℃, while no significant difference was found in Na+ and K+ ion levels among different groups. Transcriptome analysis displayed that osmoregulation-, DNA-repair- and apoptosis-related terms or pathways were enriched in GO and KEGG analysis. Moreover, 194 osmoregulation-related genes were identified. Amongst, the expression of genes limiting ion outflow, occluding (OCLN), and ion absorption, solute carrier family 4, member 2 (AE2) solute carrier family 9, member 3 (NHE3) chloride channel 2 (CLC-2) were increased, while Na+/K+-ATPase alpha (NKA-a) expression was decreased after heat stress. CONCLUSIONS This study reveals for the first time that the effect of heat stress on damage and osmotic regulation in gill tissue of cold-water fishes. Heat stress increases the permeability of fish's gill tissue, and induces the gill tissue to keep ion balance through active ion absorption and passive ion outflow. Our study will contribute to research of global-warming-caused effects on cold-water fishes.
Collapse
Affiliation(s)
- Shiyong Yang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Datian Li
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Langkun Feng
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Chaoyang Zhang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Dandan Xi
- grid.80510.3c0000 0001 0185 3134College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Hongli Liu
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Chaozhan Yan
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zihan Xu
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yujie Zhang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yunkun Li
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Taiming Yan
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zhi He
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jiayun Wu
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Quan Gong
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
| | - Jun Du
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
| | - Xiaoli Huang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xiaogang Du
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| |
Collapse
|
13
|
Chutia P, Saha N, Das M, Goswami LM. Differential expression of aquaporin genes and the influence of environmental hypertonicity on their expression in juveniles of air-breathing stinging catfish (Heteropneustes fossilis). Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111314. [PMID: 36096299 DOI: 10.1016/j.cbpa.2022.111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
Abstract
Aquaporins (AQPs) are a superfamily of transmembrane channel proteins that are responsible for the transport of water and some other molecules to and from the cell, mainly for osmoregulation under anisotonicity. We investigated here the expression patterns of different AQP isoforms and also during exposure to hypertonicity (300 mOsmol/L) for 48 h in juvenile stages of air-breathing stinging catfish (Heteropneustes fossilis). A total of 8 mRNA transcripts for different isoforms of AQPs and their translated proteins could be detected in the anterior and posterior regions of S1, S2, and S3 stages of juveniles of stinging catfish at variable levels. In general, more expression of mRNAs for different aqp genes was seen in the S2 and S3 juveniles than in the S1 juveniles. Most interestingly, exposure to hypertonicity of S2 juveniles for a period of 48 h led to increased expression of most of the aqp genes both at transcriptional and translational levels, except for aqp3 in the anterior and posterior regions and aqp1 in the anterior region, showing maximum expression at later stages of hypertonic exposure. Thus, it is evident that AQPs play crucial roles in maintaining the water and ionic balances under anisotonic conditions even at the early developmental stages of stinging catfish as a biochemical adaptational strategy to survive and grow in anisotonic environment.
Collapse
Affiliation(s)
- Priyambada Chutia
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati 781014, India; Department of Zoology, S.B. Deorah College, Ulubari, Guwahati 781007, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| | - Manas Das
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati 781014, India.
| | | |
Collapse
|
14
|
Breves JP, Puterbaugh KM, Bradley SE, Hageman AE, Verspyck AJ, Shaw LH, Danielson EC, Hou Y. Molecular targets of prolactin in mummichogs (Fundulus heteroclitus): Ion transporters/channels, aquaporins, and claudins. Gen Comp Endocrinol 2022; 325:114051. [PMID: 35533740 DOI: 10.1016/j.ygcen.2022.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Prolactin (Prl) was identified over 60 years ago in mummichogs (Fundulus heteroclitus) as a "freshwater (FW)-adapting hormone", yet the cellular and molecular targets of Prl in this model teleost have remained unknown. Here, we conducted a phylogenetic analysis of two mummichog Prl receptors (Prlrs), designated Prlra and Prlrb, prior to describing the tissue- and salinity-dependent expression of their associated mRNAs. We then administered ovine Prl (oPrl) to mummichogs held in brackish water and characterized the expression of genes associated with FW- and seawater (SW)-type ionocytes. Within FW-type ionocytes, oPrl stimulated the expression of Na+/Cl- cotransporter 2 (ncc2) and aquaporin 3 (aqp3). Alternatively, branchial Na+/H+ exchanger 2 and -3 (nhe2 and -3) expression did not respond to oPrl. Gene transcripts associated with SW-type ionocytes, including Na+/K+/2Cl- cotransporter 1 (nkcc1), cystic fibrosis transmembrane regulator 1 (cftr1), and claudin 10f (cldn10f) were reduced by oPrl. Isolated gill filaments incubated with oPrl in vitro exhibited elevated ncc2 and prlra expression. Given the role of Aqps in supporting gastrointestinal fluid absorption, we assessed whether several intestinal aqp transcripts were responsive to oPrl and found that aqp1a and -8 levels were reduced by oPrl. Our collective data indicate that Prl promotes FW-acclimation in mummichogs by orchestrating the expression of solute transporters/channels, water channels, and tight-junction proteins across multiple osmoregulatory organs.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Katie M Puterbaugh
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Serena E Bradley
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Annie E Hageman
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Adrian J Verspyck
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Lydia H Shaw
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Elizabeth C Danielson
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Yubo Hou
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
15
|
Sundell K, Berge GM, Ruyter B, Sundh H. Low Omega-3 Levels in the Diet Disturbs Intestinal Barrier and Transporting Functions of Atlantic Salmon Freshwater and Seawater Smolts. Front Physiol 2022; 13:883621. [PMID: 35574453 PMCID: PMC9095827 DOI: 10.3389/fphys.2022.883621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Due to a limited access to marine raw materials from capture fisheries, Atlantic salmon feeds are currently based on mainly plant ingredients (75%) while only 25% come from traditional marine ingredients including marine fish meal and fish oil. Thus, current feeds contain less of the essential omega-3 fatty acids. The aim of the study was to assess the impact of different omega-3 levels in fish feed on intestinal barrier and transporting functions of Atlantic salmon freshwater and seawater smolts. Atlantic salmon were fed three levels of omega-3 (2, 1 and 0.5%) and fish performance was followed through smoltification and the subsequent seawater acclimation. Intestinal barrier and transporting functions were assessed using Ussing chamber methodology and combined with transcript analysis of tight junction related proteins and ion transporters. A linear decrease in growth was observed with decreasing omega-3 levels. Low (0.5%) inclusion of omega-3 impaired the barrier function of the proximal intestine compared to 2% inclusion. Further, low levels of omega-3 decrease the transepithelial electrical potential across the epithelium indicating disturbed ion transport. It can be concluded that low dietary levels of omega-3 impair somatic growth and intestinal function of Atlantic salmon.
Collapse
Affiliation(s)
- Kristina Sundell
- Swedish Mariculture Research Center, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Gerd Marit Berge
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), Nofima, Sjølsengen, Sunndalsøra, Norway
| | - Bente Ruyter
- Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), Nofima, Sjølsengen, Sunndalsøra, Norway
- Nofima, Ås, Norway
| | - Henrik Sundh
- Swedish Mariculture Research Center, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Henrik Sundh,
| |
Collapse
|
16
|
Molecular Characterization of Aquaporins Genes from the Razor Clam Sinonovacula constricta and Their Potential Role in Salinity Tolerance. FISHES 2022. [DOI: 10.3390/fishes7020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aquaporins (AQPs) play crucial roles in osmoregulation, but the knowledge about the functions of AQPs in Sinonovacula constricta is unclear. In this study, Sc-AQP1, Sc-AQP8, and Sc-AQP11 were identified from S. constricta, and the three Sc-AQPs are highly conserved compared to the known AQPs. The qRT-PCR analysis revealed that the highest mRNA expressions of Sc-AQP1, Sc-AQP8, and Sc-AQP11 were detected in the gill, digestive gland, and adductor muscle, respectively. In addition, the highest mRNA expression of Sc-AQP1 and Sc-AQP11 was detected in the D-shaped larvae stage, whereas that of SC-AQP8 was observed in the umbo larvae stage. The mRNA expression of Sc-AQP1, Sc-AQP8, and Sc-AQP11 significantly increased to 12.45-, 12.36-, and 27.44-folds post-exposure of low salinity (3.5 psu), while only Sc-AQP1 and Sc-AQP11 significantly increased post-exposure of high salinity (35 psu) (p < 0.01). The fluorescence in situ hybridization also showed that the salinity shift led to the boost of Sc-AQP1, Sc-AQP8, and Sc-AQP11 mRNA expression in gill filament, digestive gland, and adductor muscle, respectively. Knockdown of the Sc-AQP1 and Sc-AQP8 led to the decreased osmotic pressure in the hemolymph. Overall, these findings would contribute to the comprehension of the osmoregulation pattern of AQPs in S. constricta.
Collapse
|
17
|
Foguesatto K, Lopes FM, Boyle RT, Nery LEM, Souza MM. Can hypoosmotic shock and calcium influx lead to translocation of Aquaporin-1 in shrimp muscle cells? Cell Biol Int 2022; 46:976-985. [PMID: 35257436 DOI: 10.1002/cbin.11788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022]
Abstract
The physiological variations during the crustacean molting cycle have intrigued researchers for many years. Maintaining osmotic homeostasis in the face of hemolymph dilution and dealing with dynamic intracellular and extracellular calcium fluctuations are challenges these animals continuously confront. It has recently been shown that water channels present in the cell membrane (aquaporins) are essential for water uptake during pre-molt and post-molt. This study aims to investigate whether hypoosmotic shock and intracellular and extracellular calcium variations can lead to translocation of aquaporin 1 (AQP-1) from the intracellular region to the plasma membrane during pre-molt and post-molt, thus allowing increased water flow in these stages. For this, we investigate in vitro the rapid change of AQP-1 positions in the abdominal muscle cells in the freshwater shrimp, P. argentinus. Using cell volume analysis and immunohistochemistry, we show that hypoosmotic conditions and an elevation of the intracellular and extracellular calcium concentrations are concurrent with the translocation of AQP-1 to the plasma membrane. These results indicate that calcium flux and hypoosmotic shock may be regulators of aquaporin 1 in the translocation process. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kamila Foguesatto
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, 96.203-900, Rio Grande, Rio Grande do Sul, Brasil
| | - Fernanda Moreira Lopes
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, 96.203-900, Rio Grande, Rio Grande do Sul, Brasil
| | - Robert Tew Boyle
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, 96.203-900, Rio Grande, Rio Grande do Sul, Brasil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande- FURG, Av. Itália km 8, 96.203-900, Rio Grande, RS, Brasil
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, 96.203-900, Rio Grande, Rio Grande do Sul, Brasil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande- FURG, Av. Itália km 8, 96.203-900, Rio Grande, RS, Brasil
| | - Marta Marques Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, 96.203-900, Rio Grande, Rio Grande do Sul, Brasil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande- FURG, Av. Itália km 8, 96.203-900, Rio Grande, RS, Brasil
| |
Collapse
|
18
|
Drechsel V, Schneebauer G, Fiechtner B, Cutler CP, Pelster B. Aquaporin expression and cholesterol content in eel swimbladder tissue. JOURNAL OF FISH BIOLOGY 2022; 100:609-618. [PMID: 34882794 PMCID: PMC9302985 DOI: 10.1111/jfb.14973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 05/08/2023]
Abstract
Leakiness of the swimbladder wall of teleost fishes must be prevented to avoid diffusional loss of gases out of the swimbladder. Guanine incrustation as well as high concentrations of cholesterol in swimbladder membranes in midwater and deep-sea fish has been connected to a reduced gas permeability of the swimbladder wall. On the contrary, the swimbladder is filled by diffusion of gases, mainly oxygen and CO2 , from the blood and the gas gland cells into the swimbladder lumen. In swimbladder tissue of the zebrafish and the Japanese eel, aquaporin mRNA has been detected, and the aquaporin protein has been considered important for the diffusion of water, which may accidentally be gulped by physostome fish when taking an air breath. In the present study, the expression of two aquaporin 1 genes (Aqp1aa and Aqp1ab) in the swimbladder tissue of the European eel, a functional physoclist fish, was assessed using immunohistochemistry, and the expression of both genes was detected in endothelial cells of swimbladder capillaries as well as in basolateral membranes of gas gland cells. In addition, Aqp1ab was present in apical membranes of swimbladder gas gland cells. The authors also found high concentrations of cholesterol in these membranes, which were several fold higher than in muscle tissue membranes. In yellow eels the cholesterol concentration exceeded the concentration detected in silver eel swimbladder membranes. The authors suggest that aquaporin 1 in swimbladder gas gland cells and endothelial cells facilitates CO2 diffusion into the blood, enhancing the switch-on of the Root effect, which is essential for the secretion of oxygen into the swimbladder. It may also facilitate CO2 diffusion into the swimbladder lumen along the partial gradient established by CO2 production in gas gland cells. Cholesterol has been shown to reduce the gas permeability of membranes and thus could contribute to the gas tightness of swimbladder membranes, which is essential to avoid diffusional loss of gas out of the swimbladder.
Collapse
Affiliation(s)
- Victoria Drechsel
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Gabriel Schneebauer
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Birgit Fiechtner
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | | | - Bernd Pelster
- Institute of ZoologyUniversity of InnsbruckInnsbruckAustria
- Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
19
|
Qin H, Yu Z, Zhu Z, Lin Y, Xia J, Jia Y. The integrated analyses of metabolomics and transcriptomics in gill of GIFT tilapia in response to long term salinity challenge. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Chutia P, Das M, Goswami N, Choudhury M, Saha N, Sarma K. Deciphering the role of aquaporin 1 in the adaptation of the stinging catfish Heteropneustes fossilis to environmental hypertonicity by molecular dynamics simulation studies. J Biomol Struct Dyn 2022; 41:2075-2089. [PMID: 35040369 DOI: 10.1080/07391102.2022.2027272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A thorough investigation of the water permeability of H. fossilis aquaporin 1 (hfAQP1) in a hypertonic environment can provide a useful insight into the understanding of the underlying molecular mechanism of its high tolerance to salinity. Here, we constructed a 3 D homology model of hfAQP1 by taking Bos taurus AQP1, AQP0, and human AQP2 as templates using I-TASSER. The model obtained has similar structural organizations with mammalian AQP1s in all aspects. We investigated the water permeability of the modeled hfAQP1 in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane under neutral and 100 mM hypersalinity by subjecting each system to a 100 ns molecular dynamics simulation. Our results show that hypersalinity hinders water permeation across the membrane through the hfAQP1 channel. A change in the intermolecular distance between key residues of the ar/R selectivity filter along with charge redistribution resulted in the accommodation of only 2-6 water molecules inside the channel at once under hypersaline conditions. We investigated the mRNA expression pattern of hfaqp1 in osmoregulatory organs of H. fossilis in response to 100 mM hypertonicity by using qPCR analysis. The transcript was downregulated in kidney and GI tract, but upregulated in the Gills. Thus, the catfish survive in a hypertonic environment by reducing the transport of water in its cellular systems and downregulating the expression of the hfaqp1 gene. The results observed in our study can shed more light on the functionality of AQP1 in catfishes under salinity stress and aid in future researches on solving more gating mechanisms involved in its regulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyambada Chutia
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, Assam, India
| | - Manas Das
- Animal Physiology and Biochemistry Laboratory, Department of Zoology, Gauhati University, Guwahati, Assam, India.,Bioinformatics Infrastructure Facility, Gauhati University, Guwahati, Assam, India
| | - Nabajyoti Goswami
- Bioinformatics Infrastructure Facility, Assam Agriculture University, College of Veterinary Science, Khanapara, Guwahati, Assam, India
| | - Manisha Choudhury
- Bioinformatics Infrastructure Facility, Gauhati University, Guwahati, Assam, India.,Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North Eastern Hill University, Meghalaya, Shillong, India
| | - Kishore Sarma
- Bioinformatics Infrastructure Facility, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
21
|
Cao Q, Blondeau-Bidet E, Lorin-Nebel C. Intestinal osmoregulatory mechanisms differ in Mediterranean and Atlantic European sea bass: A focus on hypersalinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150208. [PMID: 34798741 DOI: 10.1016/j.scitotenv.2021.150208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
European sea bass (Dicentrarchus labrax) migrate towards habitats where salinity can reach levels over 60‰, notably in Mediterranean lagoons. D. labrax are genetically subdivided in Atlantic and Mediterranean lineages and have evolved in slightly different salinities. We compared Atlantic and West-Mediterranean populations regarding their capacity to tolerate hypersalinity with a focus on the involvement of the intestine in solute-driven water reabsorption. Fish were analyzed following a two-week transfer from seawater (SW, 36‰) to either SW or hypersaline water (HW, 55‰). Differences among lineages were observed in posterior intestines of fish maintained in SW regarding NKA activities and mRNA expressions of nkaα1a, aqp8b, aqp1a and aqp1b with systematic higher levels in Mediterranean sea bass. High salinity transfer triggered similar responses in both lineages but at different magnitudes which may indicate slight different physiological strategies between lineages. High salinity transfer did not significantly affect the phenotypic traits measured in the anterior intestine. In the posterior intestine however, the size of enterocytes and NKA activity were higher in HW compared to SW. In this tissue, nka-α1a, nkcc2, aqp8ab and aqp8aa mRNA levels were higher in HW compared to SW as well as relative protein expression of AQP8ab. For aqp1a, 1b, 8aa and 8b, an opposite trend was observed. The sub-apical localization of AQP8ab in enterocytes suggests its role in transepithelial water reabsorption. Strong apical NKCC2/NCC staining indicates an increased Na+ and Cl- reuptake by enterocytes which could contribute to solute-coupled water reuptake in cells where AQP8ab is expressed.
Collapse
Affiliation(s)
- Quanquan Cao
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), 34095 Montpellier, France
| | - Eva Blondeau-Bidet
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), 34095 Montpellier, France
| | | |
Collapse
|
22
|
Barany A, Oliva M, Gregório SF, Martínez-Rodríguez G, Mancera JM, Fuentes J. Dysregulation of Intestinal Physiology by Aflatoxicosis in the Gilthead Seabream ( Sparus aurata). Front Physiol 2022; 12:741192. [PMID: 34987413 PMCID: PMC8722709 DOI: 10.3389/fphys.2021.741192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin often present in food. This study aimed to understand the physiological effects of AFB1 on the seabream (Sparus aurata) gastrointestinal system. In a first in vitro approach, we investigated ion transport using the short-circuit current (Isc) technique in Ussing chambers in the anterior intestine (AI). Application of apical/luminal AFB1 concentrations of 8 and 16 μM to healthy tissues was without effect on tissue transepithelial electrical resistance (TER), and apparent tissue permeability (Papp) was measured using fluorescein FITC (4 kD). However, it resulted in dose-related effects on Isc. In a second approach, seabream juveniles fed with different AFB1 concentrations (1 and 2 mg AFB1 kg−1 fish feed) for 85 days showed significantly reduced gill Na+/K+-ATPase (NKA) and H+-ATPase (HA) activities in the posterior intestine (PI). Moreover, dietary AFB1 modified Isc in the AI and PI, significantly affecting TER in the AI. To understand this effect on TER, we analyzed the expression of nine claudins and three occludins as markers of intestinal architecture and permeability using qPCR. Around 80% of the genes presented significantly different relative mRNA expression between AI and PI and had concomitant sensitivity to dietary AFB1. Based on the results of our in vitro, in vivo, and molecular approaches, we conclude that the effects of dietary AFB1 in the gastrointestinal system are at the base of the previously reported growth impairment caused by AFB1 in fish.
Collapse
Affiliation(s)
- Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Cádiz, Spain
| | - Milagrosa Oliva
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Cádiz, Spain
| | - Silvia Filipa Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Cádiz, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Cádiz, Spain
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
23
|
Zhang X, Yu P, Wen H, Qi X, Tian Y, Zhang K, Fu Q, Li Y, Li C. Genome-Wide Characterization of Aquaporins (aqps) in Lateolabrax maculatus: Evolution and Expression Patterns During Freshwater Acclimation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:696-709. [PMID: 34595589 DOI: 10.1007/s10126-021-10057-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Aquaporin (aqp) proteins are a group of small integral membrane proteins that play crucial roles as pore channels for the transport of water and other small solutes across the cell membrane. In our study, we identified 17 aqp genes from the spotted sea bass (Lateolabrax maculatus) genomic database. Gene organization, motif distribution, and selection pressure analyses were performed to investigate their evolutionary characteristics. The aqp mRNA displayed tissue-specific expression pattern in ten selected tissues of healthy spotted sea bass. To investigate the potential involvement of spotted sea bass aqps in osmoregulation, the expression profiles of aqp genes in gills were examined during freshwater (FW) acclimation using qRT-PCR. The mRNA level of aqp3a was dramatically induced during 1-3 day of the FW transition period (77-fold and 15-fold upregulated on 1 day and 3 day than in the control group), indicating that aqp3a may play an important hypo-osmoregulatory role in spotted sea bass. In addition, the expression levels of aqp1aa, aqp1ab, aqp3b, aqp7, and aqp9b increased to various degrees at 1 day after transferring to FW, suggesting their potential involvement in the FW acclimation process. Our study provides a valuable foundation for future studies aimed at uncovering the specific roles of aqp genes during salinity acclimation in spotted sea bass and other teleost species.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Peng Yu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Ocean University of China, Qingdao, 266003, China
| | - Yuan Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Ocean University of China, Qingdao, 266003, China
| | - Kaiqiang Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Ocean University of China, Qingdao, 266003, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yun Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Ocean University of China, Qingdao, 266003, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
24
|
Takvam M, Denker E, Gharbi N, Kryvi H, Nilsen TO. Sulfate homeostasis in Atlantic salmon is associated with differential regulation of salmonid-specific paralogs in gill and kidney. Physiol Rep 2021; 9:e15059. [PMID: 34617680 PMCID: PMC8495805 DOI: 10.14814/phy2.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022] Open
Abstract
Sulfate ( SO 4 2 - ) regulation is challenging for euryhaline species as they deal with large fluctuations of SO 4 2 - during migratory transitions between freshwater (FW) and seawater (SW), while maintaining a stable plasma SO 4 2 - concentration. Here, we investigated the regulation and potential role of sulfate transporters in Atlantic salmon during the preparative switch from SO 4 2 - uptake to secretion. A preparatory increase in kidney and gill sodium/potassium ATPase (Nka) enzyme activity during smolt development indicate preparative osmoregulatory changes. In contrast to gill Nka activity a transient decrease in kidney Nka after direct SW exposure was observed and may be a result of reduced glomerular filtration rates and tubular flow through the kidney. In silico analyses revealed that Atlantic salmon genome comprises a single slc13a1 gene and additional salmonid-specific duplications of slc26a1 and slc26a6a, leading to new paralogs, namely the slc26a1a and -b, and slc26a6a1 and -a2. A kidney-specific increase in slc26a6a1 and slc26a1a during smoltification and SW transfer, suggests an important role of these sulfate transporters in the regulatory shift from absorption to secretion in the kidney. Plasma SO 4 2 - in FW smolts was 0.70 mM, followed by a transient increase to 1.14 ± 0.33 mM 2 days post-SW transfer, further decreasing to 0.69 ± 0.041 mM after 1 month in SW. Our findings support the vital role of the kidney in SO 4 2 - excretion through the upregulated slc26a6a1, the most likely secretory transport candidate in fish, which together with the slc26a1a transporter likely removes excess SO 4 2 - , and ultimately enable the regulation of normal plasma SO 4 2 - levels in SW.
Collapse
Affiliation(s)
- Marius Takvam
- NORCENorwegian Research CenterNORCE EnvironmentBergenNorway
- Department of Biological ScienceUniversity of BergenBergenNorway
| | - Elsa Denker
- Department of Biological ScienceUniversity of BergenBergenNorway
| | - Naouel Gharbi
- NORCENorwegian Research CenterNORCE EnvironmentBergenNorway
| | - Harald Kryvi
- Department of Biological ScienceUniversity of BergenBergenNorway
| | - Tom O. Nilsen
- NORCENorwegian Research CenterNORCE EnvironmentBergenNorway
- Department of Biological ScienceUniversity of BergenBergenNorway
| |
Collapse
|
25
|
Zhou W, Krogdahl Å, Sæle Ø, Chikwati E, Løkka G, Kortner TM. Digestive and immune functions in the intestine of wild Ballan wrasse (Labrus bergylta). Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111011. [PMID: 34174428 DOI: 10.1016/j.cbpa.2021.111011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
This study was carried out to profile key characteristics of intestinal functions and health in wild-caught Ballan wrasse. To describe functional variation along the intestine, samples were collected from four intestinal segments, named from the proximal to the distal segment: IN1, IN2, IN3 and IN4. The sections showed quite similar structure, i.e. regarding mucosal fold height and branching, lamina propria and submucosal width and cellular composition and thickness of the muscle layers. Leucine aminopeptidase and maltase capacity decreased from IN1 to IN4, suggesting a predominant role of IN1 in digestion. Gene expression levels of vitamin C transporter (slc23a1) and fatty acid transporters (cd36 and fabp2) were higher in IN1 than in IN4, indicating a more important role of the proximal intestine regarding transport of vitamins and fatty acids. Higher expression of the gene coding for IgM heavy chain constant region (ighm) was found in IN4 than in IN1, suggesting an important immune function of the distal intestine. Other immune related genes il1b, il6, cd40, showed similar expression in the proximal and the distal part of the intestine. Parasite infection, especially the myxozoan parasite Enteromyxum leei, coincided with infiltration of lymphocytic and eosinophilic granular cells in the submucosa and lamina propria. The present study established reference information necessary for interpretation of results of studies of intestinal functions and health in cultured Ballan wrasse.
Collapse
Affiliation(s)
- Weiwen Zhou
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Øystein Sæle
- Feed and Nutrition, Institute of Marine Research, Bergen, Norway.
| | - Elvis Chikwati
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Guro Løkka
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
26
|
Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. ZOOLOGICAL LETTERS 2021; 7:10. [PMID: 34154668 PMCID: PMC8215749 DOI: 10.1186/s40851-021-00175-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
Adaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3- secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70-85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
27
|
Vargas-Chacoff L, Dann F, Paschke K, Oyarzún-Salazar R, Nualart D, Martínez D, Wilson JM, Guerreiro PM, Navarro JM. Freshening effect on the osmotic response of the Antarctic spiny plunderfish Harpagifer antarcticus. JOURNAL OF FISH BIOLOGY 2021; 98:1558-1571. [PMID: 33452810 DOI: 10.1111/jfb.14676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Global warming is having a significant impact around the world, modifying environmental conditions in many areas, including in zones that have been thermally stable for thousands of years, such as Antarctica. Stenothermal sedentary intertidal fish species may suffer due to warming, notably if this causes water freshening from increased freshwater inputs. Acute decreases in salinity, from 33 down to 5, were used to assess osmotic responses to environmental salinity fluctuations in Antarctic spiny plunderfish Harpagifer antarcticus, in particular to evaluate if H. antarcticus is able to cope with freshening and to describe osmoregulatory responses at different levels (haematological variables, muscle water content, gene expression, NKA activity). H. antarcticus were acclimated to a range of salinities (33 as control, 20, 15, 10 and 5) for 1 week. At 5, plasma osmolality and calcium concentration were both at their lowest, while plasma cortisol and percentage muscle water content were at their highest. At the same salinity, gill and intestine Na+ -K+ -ATPase (NKA) activities were at their lowest and highest, respectively. In kidney, NKA activity was highest at intermediate salinities (15 and 10). The salinity-dependent NKA mRNA expression patterns differed depending on the tissue. Marked changes were also observed in the expression of genes coding membrane proteins associated with ion and water transport, such as NKCC2, CFTR and AQP8, and in the expression of mRNA for the regulatory hormone prolactin (PRL) and its receptor (PRLr). Our results demonstrate that freshening causes osmotic imbalances in H. antarcticus, apparently due to reduced capacity of both transport and regulatory mechanisms of key organs to maintain homeostasis. This has implications for fish species that have evolved in stable environmental conditions in the Antarctic, now threatened by climate change.
Collapse
Affiliation(s)
- Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco Dann
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
| | - Kurt Paschke
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Ricardo Oyarzún-Salazar
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Daniela Nualart
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Danixa Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Jonathan M Wilson
- Wilfrid Laurier University, Waterloo, Ontario, Canada
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal
| | | | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
28
|
Shen Y, Li H, Zhao J, Tang S, Zhao Y, Gu Y, Chen X. Genomic and expression characterization of aquaporin genes from Siniperca chuatsi. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 38:100819. [PMID: 33652294 DOI: 10.1016/j.cbd.2021.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 02/21/2021] [Indexed: 01/07/2023]
Abstract
Aquaporins (AQPs) are major intrinsic proteins that form pores in the membranes of biological cells. We first cloned the full-length sequences of aqp0, 1, 3, 4, 7, 8, 9, 10, 11, and 12 genes in Siniperca chuatsi. The 10 S. chuatsi aqp (Sc-aqp) genes included complete open reading frames and exhibited different exon-intron organizations. Sc-aqp1, 3, 8, 9, 10, and 11 were mostly expressed in the gallbladder, gills, gastric cecum, liver, ovaries, and spleen, respectively; Sc-aqp0 and 4 were mostly expressed in larvae at 1 day after hatching and in gastrula; Sc-aqp7 and 12 were mostly expressed in 2K-cell embryos. The expression levels of Sc-aqp1, 3, 7, 8, 9, and 10 after 10 part per thousand (ppt) salt treatment had significantly changed compared with those after 0 ppt salt treatment. Real-time quantitative PCR analysis further showed that in the intestines, the mRNA levels of Sc-aqp1 and 10 significantly decreased by approximately 2.07- and 2.85-fold, respectively, whereas those of Sc-aqp8 and 9 significantly increased by approximately 7.08- and 4.14-fold, respectively. Sc-aqp1, 8, 9, and 10 showed no significant differences in the gills. Sc-aqp3 significantly decreased by approximately 1.51- and 1.67-fold in the gills and intestines, respectively. Sc-aqp7 significantly increased by approximately 4.18- and 7.04-fold in the gills and intestines, respectively. This study was the first to investigate the tissue expression profiles and response to salt stress of aqp genes in S. chuatsi. Moreover, altering diet and suffering from immune stress could cause changes in the expression level of aqps. This study provided valuable reference information for AQPs' roles in osmoregulation in freshwater fish.
Collapse
Affiliation(s)
- Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Huiyang Li
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Shoujie Tang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yifeng Gu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
29
|
Takvam M, Wood CM, Kryvi H, Nilsen TO. Ion Transporters and Osmoregulation in the Kidney of Teleost Fishes as a Function of Salinity. Front Physiol 2021; 12:664588. [PMID: 33967835 PMCID: PMC8098666 DOI: 10.3389/fphys.2021.664588] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Euryhaline teleosts exhibit major changes in renal function as they move between freshwater (FW) and seawater (SW) environments, thus tolerating large fluctuations in salinity. In FW, the kidney excretes large volumes of water through high glomerular filtration rates (GFR) and low tubular reabsorption rates, while actively reabsorbing most ions at high rates. The excreted product has a high urine flow rate (UFR) with a dilute composition. In SW, GFR is greatly reduced, and the tubules reabsorb as much water as possible, while actively secreting divalent ions. The excreted product has a low UFR, and is almost isosmotic to the blood plasma, with Mg2+, SO42–, and Cl– as the major ionic components. Early studies at the organismal level have described these basic patterns, while in the last two decades, studies of regulation at the cell and molecular level have been implemented, though only in a few euryhaline groups (salmonids, eels, tilapias, and fugus). There have been few studies combining the two approaches. The aim of the review is to integrate known aspects of renal physiology (reabsorption and secretion) with more recent advances in molecular water and solute physiology (gene and protein function of transporters). The renal transporters addressed include the subunits of the Na+, K+- ATPase (NKA) enzyme, monovalent ion transporters for Na+, Cl–, and K+ (NKCC1, NKCC2, CLC-K, NCC, ROMK2), water transport pathways [aquaporins (AQP), claudins (CLDN)], and divalent ion transporters for SO42–, Mg2+, and Ca2+ (SLC26A6, SLC26A1, SLC13A1, SLC41A1, CNNM2, CNNM3, NCX1, NCX2, PMCA). For each transport category, we address the current understanding at the molecular level, try to synthesize it with classical knowledge of overall renal function, and highlight knowledge gaps. Future research on the kidney of euryhaline fishes should focus on integrating changes in kidney reabsorption and secretion of ions with changes in transporter function at the cellular and molecular level (gene and protein verification) in different regions of the nephrons. An increased focus on the kidney individually and its functional integration with the other osmoregulatory organs (gills, skin and intestine) in maintaining overall homeostasis will have applied relevance for aquaculture.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tom O Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| |
Collapse
|
30
|
Valenzuela-Muñoz V, Váldes JA, Gallardo-Escárate C. Transcriptome Profiling of Long Non-coding RNAs During the Atlantic Salmon Smoltification Process. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:308-320. [PMID: 33638736 DOI: 10.1007/s10126-021-10024-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
For salmon aquaculture, one of the most critical phase is the parr-smolt transformation. Studies around this process have mainly focused on physiological changes and the Na+/K+-ATPase activity during the osmoregulatory activity. However, understanding how the salmon genome regulates the parr-smolt transformation, specifically the molecular mechanisms involved, remains uncovered. This study aimed to explore the transcriptional modulation of long non-coding RNAs (lncRNAs), as key molecular regulators, during the freshwater (FW) to seawater (SW) transfer in Atlantic salmon. Transcriptome sequencing was performed from gill samples of Atlantic salmon adapted from FW to SW through gradual salinity changes from 0 to 30 PSU. The results showed that most transcripts differently modulated were downregulated in all salinity conditions. Relevant biological processes were associated with growth, collagen formation, immune response, metabolism, and heme transport. Notably, 2864 putative lncRNAs were identified in Atlantic salmon gills differently expressed during fish smoltification. The highest number of lncRNAs differently modulated was observed at 30 PSU. Correlation expression analysis suggests putative regulatory roles of lncRNAs with smoltification-related genes. Herein, co-localization of Na+/K+-ATPase, growth hormone receptor, and thyroid hormone receptor genes with lncRNAs differentially expressed suggest putative regulatory mechanisms in the Atlantic salmon genome. The lncRNAs can be used as novel biomarkers for the fish smoltification process. Here, the lncRNA_145326 and lncRNA_18762 are putatively related to the parr-smolt transfer in Atlantic salmon. This study is the first description of lncRNAs with putative regulatory roles in Atlantic salmon during the SW adaptation.
Collapse
Affiliation(s)
- Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile.
- Laboratorio de Biotecnología Molecular, Universidad Andrés Bello, Facultad de Ciencias de la Vida, Santiago, Chile.
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile.
| | - Juan Antonio Váldes
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
- Laboratorio de Biotecnología Molecular, Universidad Andrés Bello, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepción, Chile
| |
Collapse
|
31
|
Cloning and Expression of Four Aquaporin Homologs from the Chinese Black Sleeper (Bostrychus sinensis): The Effects of Salinity Acclimation. Biochem Genet 2021; 59:837-855. [PMID: 33544299 DOI: 10.1007/s10528-021-10033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Several fish species are known to possess mechanisms that allow them to adapt to environments with different salinities. The aim of this study was to investigate the effects of salinity on the expression of aquaporins (aqp1a, aqp3a, aqp8a, and aqp9a) in the gills and intestines of Chinese black sleeper. After 30 days of acclimation, the expression of aqp1a, aqp3a, and aqp9a in the gills was significantly higher in fish transferred to 5 ppt than in those transferred to 40 ppt seawater, whereas aqp8 expression was lower. In contrast, aqp1a, aqp3a, and aqp8a expression in the intestines was higher in fish acclimated in 40 ppt than in those acclimated in 5 ppt. During abrupt salinity acclimation, the levels of aqp1a and aqp9a in the gills varied over time in fish acclimated in 5 ppt, but not in 40 ppt. The aqp3a levels in gills were higher in the 5 ppt group after 24 h than in the 40 ppt. The expression level of aqp8a in gills was higher in 40 ppt than in 5 ppt, except for that at 12 h. In the intestines, expression level of aqp1a and aqp8a were significantly upregulated from 12 to 48 h following acclimation in 40 ppt and aqp3a was higher in 40 ppt group than in 5 ppt, while aqp9a expression exhibited an opposite trend. These findings suggest that aqp1a, aqp3a, aqp8a and aqp9a may play a major osmoregulatory role in water transport in the gills and intestines during acclimation to different salinity environment.
Collapse
|
32
|
Breves JP, Popp EE, Rothenberg EF, Rosenstein CW, Maffett KM, Guertin RR. Osmoregulatory actions of prolactin in the gastrointestinal tract of fishes. Gen Comp Endocrinol 2020; 298:113589. [PMID: 32827513 DOI: 10.1016/j.ygcen.2020.113589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
In fishes, prolactin (Prl) signaling underlies the homeostatic regulation of hydromineral balance by controlling essential solute and water transporting functions performed by the gill, gastrointestinal tract, kidney, urinary bladder, and integument. Comparative studies spanning over 60 years have firmly established that Prl promotes physiological activities that enable euryhaline and stenohaline teleosts to reside in freshwater environments; nonetheless, the specific molecular and cellular targets of Prl in ion- and water-transporting tissues are still being resolved. In this short review, we discuss how particular targets of Prl (e.g., ion cotransporters, tight-junction proteins, and ion pumps) confer adaptive functions to the esophagus and intestine. Additionally, in some instances, Prl promotes histological and functional transformations within esophageal and intestinal epithelia by regulating cell proliferation. Collectively, the demonstrated actions of Prl in the gastrointestinal tract of teleosts indicate that Prl operates to promote phenotypes supportive of freshwater acclimation and to inhibit phenotypes associated with seawater acclimation. We conclude our review by underscoring that future investigations are warranted to determine how growth hormone/Prl-family signaling evolved in basal fishes to support the gastrointestinal processes underlying hydromineral balance.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Emily E Popp
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Eva F Rothenberg
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Clarence W Rosenstein
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Kaitlyn M Maffett
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Rebecca R Guertin
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
33
|
Wang J, Kortner TM, Chikwati EM, Li Y, Jaramillo-Torres A, Jakobsen JV, Ravndal J, Brevik ØJ, Einen O, Krogdahl Å. Gut immune functions and health in Atlantic salmon (Salmo salar) from late freshwater stage until one year in seawater and effects of functional ingredients: A case study from a commercial sized research site in the Arctic region. FISH & SHELLFISH IMMUNOLOGY 2020; 106:1106-1119. [PMID: 32941976 DOI: 10.1016/j.fsi.2020.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
The present study was conducted to strengthen the knowledge on gut immune functions and health in Atlantic salmon under large scale, commercial conditions in the Arctic region of Norway. Two groups of fish were monitored, one fed a series of diets without functional ingredients (Ref) and the other diets with functional ingredients (Test). The nutritional composition of the two diet series varied in parallel according to the nutrient requirements of the fish during the observation time. The content of functional ingredients in the Test diets, i.e. nucleotides, yeast cell walls, a prebiotic and essential fatty acids, varied in accordance with a strategy developed by the feed company. The fish were observed at four sampling time points, the first (FW) in May 2016 two weeks before seawater transfer, the other three throughout the following seawater period until the fish reached a size of about 2 kg, i.e. in June, four weeks after seawater transfer (SW1); in November (SW2), and in April the following year (SW3). Gut health was assessed based on histopathological indicators of lipid malabsorption and gut inflammation, expression of gut immune, barrier and other health related genes, plasma biomarkers, somatic indices of intestinal sections, as well as biomarkers of digestive functions. Seawater transfer of the fish (SW1 compared to FW) caused a marked lowering of expression of genes related to immune and barrier functions in the distal intestine, i.e. cytokines (il1β, il10, tgfβ, ifnγ), T-cell markers (cd3γδ), myd88 and tight junction proteins (zo-1, claudin-15, claudin-25b), indicating suppressed immune and barrier functions. At SW2 and SW3, most of the immune biomarkers showed values similar to those observed at FW. The development of plasma cholesterol and triglyceride levels showed similar picture, with markedly lower levels after seawater transfer. Lipid malabsorption was observed in particular in fish from SW1 and SW2, as indicated by hyper-vacuolation of the pyloric caeca enterocytes with concurrently increased expression levels of plin2. Regarding effects of functional ingredients, significantly lower condition factor and plasma triglyceride level were observed for Test-fed fish at SW2, indicating a metabolic cost of use of a mixture of nucleotides, yeast cell walls and essential fatty acids. No clear effects of functional ingredients on expression of gut immune genes and other health indexes were observed through the observation period. The great, temporary lowering of expression of gut immune and barrier genes at SW1 is suggested to be an important factor underlying the increased vulnerability of the fish at this time point. Our findings regarding supplementation with functional ingredients raise questions whether some of these ingredients overall are beneficial or might come with a metabolic cost. Our results highlight the need for a better understanding of the cause and consequences of the suppression of gut immune functions of farmed Atlantic salmon just after seawater transfer, and the use of functional ingredients under commercial conditions.
Collapse
Affiliation(s)
- Jie Wang
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway.
| | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Elvis M Chikwati
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Yanxian Li
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Alexander Jaramillo-Torres
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | | | | | | | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| |
Collapse
|
34
|
Unravelling the Complex Duplication History of Deuterostome Glycerol Transporters. Cells 2020; 9:cells9071663. [PMID: 32664262 PMCID: PMC7408487 DOI: 10.3390/cells9071663] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Transmembrane glycerol transport is an ancient biophysical property that evolved in selected subfamilies of water channel (aquaporin) proteins. Here, we conducted broad level genome (>550) and transcriptome (>300) analyses to unravel the duplication history of the glycerol-transporting channels (glps) in Deuterostomia. We found that tandem duplication (TD) was the major mechanism of gene expansion in echinoderms and hemichordates, which, together with whole genome duplications (WGD) in the chordate lineage, continued to shape the genomic repertoires in craniates. Molecular phylogenies indicated that aqp3-like and aqp13-like channels were the probable stem subfamilies in craniates, with WGD generating aqp9 and aqp10 in gnathostomes but aqp7 arising through TD in Osteichthyes. We uncovered separate examples of gene translocations, gene conversion, and concerted evolution in humans, teleosts, and starfishes, with DNA transposons the likely drivers of gene rearrangements in paleotetraploid salmonids. Currently, gene copy numbers and BLAST are poor predictors of orthologous relationships due to asymmetric glp gene evolution in the different lineages. Such asymmetries can impact estimations of divergence times by millions of years. Experimental investigations of the salmonid channels demonstrated that approximately half of the 20 ancestral paralogs are functional, with neofunctionalization occurring at the transcriptional level rather than the protein transport properties. The combined findings resolve the origins and diversification of glps over >800 million years old and thus form the novel basis for proposing a pandeuterostome glp gene nomenclature.
Collapse
|
35
|
Madsen SS, Bollinger RJ, Brauckhoff M, Engelund MB. Gene expression profiling of proximal and distal renal tubules in Atlantic salmon ( Salmo salar) acclimated to fresh water and seawater. Am J Physiol Renal Physiol 2020; 319:F380-F393. [PMID: 32628538 DOI: 10.1152/ajprenal.00557.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Euryhaline teleost kidneys undergo a major functional switch from being filtratory in freshwater (FW) to being predominantly secretory in seawater (SW) conditions. The transition involves both vascular and tubular effects. There is consensus that the glomerular filtration rate is greatly reduced upon exposure to hyperosmotic conditions. Yet, regulation at the tubular level has only been examined sporadically in a few different species. This study aimed to obtain a broader understanding of transcriptional regulation in proximal versus distal tubular segments during osmotic transitions. Proximal and distal tubule cells were dissected separately by laser capture microdissection, RNA was extracted, and relative mRNA expression levels of >30 targets involved in solute and water transport were quantified by quantitative PCR in relation to segment type in fish acclimated to FW or SW. The gene categories were aquaporins, solute transporters, fxyd proteins, and tight junction proteins. aqp8bb1, aqp10b1, nhe3, sglt1, slc41a1, cnnm3, fxyd12a, cldn3b, cldn10b, cldn15a, and cldn12 were expressed at a higher level in proximal compared with distal tubules. aqp1aa, aqp1ab, nka-a1a, nka-a1b, nkcc1a, nkcc2, ncc, clc-k, slc26a6C, sglt2, fxyd2, cldn3a, and occln were expressed at a higher level in distal compared with proximal tubules. Expression of aqp1aa, aqp3a1, aqp10b1, ncc, nhe3, cftr, sglt1, slc41a1, fxyd12a, cldn3a, cldn3b, cldn3c, cldn10b, cldn10e, cldn28a, and cldn30c was higher in SW- than in FW-acclimated salmon, whereas the opposite was the case for aqp1ab, slc26a6C, and fxyd2. The data show distinct segmental distribution of transport genes and a significant regulation of tubular transcripts when kidney function is modulated during salinity transitions.
Collapse
Affiliation(s)
- Steffen S Madsen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | | - Melanie Brauckhoff
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
36
|
Ruhr IM, Wood CM, Schauer KL, Wang Y, Mager EM, Stanton B, Grosell M. Is aquaporin-3 involved in water-permeability changes in the killifish during hypoxia and normoxic recovery, in freshwater or seawater? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:511-525. [PMID: 32548921 DOI: 10.1002/jez.2393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023]
Abstract
Aquaporins are the predominant water-transporting proteins in vertebrates, but only a handful of studies have investigated aquaporin function in fish, particularly in mediating water permeability during salinity challenges. Even less is known about aquaporin function in hypoxia (low oxygen), which can profoundly affect gill function. Fish deprived of oxygen typically enlarge gill surface area and shrink the water-to-blood diffusion distance, to facilitate oxygen uptake into the bloodstream. However, these alterations to gill morphology can result in unfavorable water and ion fluxes. Thus, there exists an osmorespiratory compromise, whereby fish must try to balance high branchial gas exchange with low ion and water permeability. Furthermore, the gills of seawater and freshwater teleosts have substantially different functions with respect to osmotic and ion fluxes; consequently, hypoxia can have very different effects according to the salinity of the environment. The purpose of this study was to determine what role aquaporins play in water permeability in the hypoxia-tolerant euryhaline common killifish (Fundulus heteroclitus), in two important osmoregulatory organs-the gills and intestine. Using immunofluorescence, we localized aquaporin-3 (AQP3) protein to the basolateral and apical membranes of ionocytes and enterocytes, respectively. Although hypoxia increased branchial AQP3 messenger-RNA expression in seawater and freshwater, protein abundance did not correlate. Indeed, hypoxia did not alter AQP3 protein abundance in seawater and reduced it in the cell membranes of freshwater gills. Together, these observations suggest killifish AQP3 contributes to reduced diffusive water flux during hypoxia and normoxic recovery in freshwater and facilitates intestinal permeability in seawater and freshwater.
Collapse
Affiliation(s)
- Ilan M Ruhr
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Chris M Wood
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Kevin L Schauer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Yadong Wang
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Edward M Mager
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - Bruce Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| |
Collapse
|
37
|
Nemova NN, Nefedova ZA, Pekkoeva SN, Voronin VP, Shulgina NS, Churova MV, Murzina SA. The Effect of the Photoperiod on the Fatty Acid Profile and Weight in Hatchery-Reared Underyearlings and Yearlings of Atlantic Salmon Salmo salar L. Biomolecules 2020; 10:biom10060845. [PMID: 32498392 PMCID: PMC7356347 DOI: 10.3390/biom10060845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/17/2020] [Accepted: 05/30/2020] [Indexed: 12/21/2022] Open
Abstract
The influence of two light regimes, 16:8 h light/dark (LD 16:8) and 24:0 h light/dark (LD 24:0), in comparison to a usual hatchery light regime (HL), on the fatty acids content and weight gain in hatchery-reared underyearlings (at 0+ age) and yearlings (at 1+ age) of Atlantic salmon in the summer–autumn period was studied. The total lipids were analyzed by Folch method, the lipid classes using HPTLC, and the fatty acids of total lipids using GC. The increase in EPA and DHA observed in October in underyearlings and yearlings salmon (especially under LD 24:0) suggests they were physiologically preparing for overwintering. The changes in fatty acids and their ratios in juvenile Atlantic salmon can be used as biochemical indicators of the degree to which hatchery-reared fish are ready to smoltify. These associated with an increase in marine-type specific DHA and EPA, an increase in the 16:0/18:1(n-9) ratio, in correlation with a reduction in MUFAs (mainly 18:1(n-9)). These biochemical modifications, accompanied by fish weight gain, were more pronounced in October in yearlings exposed to continuous light (LD 24:0). The mortality rate was lower in experimental groups of underyearliings with additional lighting. Exposure to prolonged and continuous light did not affect yearlings mortality rate.
Collapse
Affiliation(s)
- Nina N. Nemova
- Correspondence: (N.N.N.); (S.A.M.); Tel.: +7-8142769810 (S.A.M.)
| | | | | | | | | | | | | |
Collapse
|
38
|
Alderman SL, Dilkumar CM, Avey SR, Farrell AP, Kennedy CJ, Gillis TE. Effects of diluted bitumen exposure and recovery on the seawater acclimation response of Atlantic salmon smolts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105419. [PMID: 32014643 DOI: 10.1016/j.aquatox.2020.105419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Petrogenic chemicals are common and widespread contaminants in the aquatic environment. In Canada, increased extraction of bitumen from the oil sands and transport of the major crude oil export product, diluted bitumen (dilbit), amplifies the risk of a spill and contamination of Canadian waterways. Fish exposed to sublethal concentrations of crude oil can experience a variety of adverse physiological effects including osmoregulatory dysfunction. As regulation of water and ion balance is crucial during the seawater transition of anadromous fish, the hypothesis that dilbit impairs seawater acclimation in Atlantic salmon smolts (a fish at risk of exposure in Canada) was tested. Smolts were exposed for 24 d to the water-soluble fraction of dilbit in freshwater, and then transferred directly to seawater or allowed a 1 wk depuration period in uncontaminated freshwater prior to seawater transfer. The seawater acclimation response was quantified at 1 and 7 d post-transfer using established hematological, tissue, and molecular endpoints including gill Na+/K+-ATPase gene expression (nka). All smolts, irrespective of dilbit exposure, increased serum Na+ concentrations and osmolality within 1 d of seawater transfer. The recovery of these parameters to freshwater values by 7 d post-transfer was likely driven by the increased expression and activity of Na+/K+-ATPase in the gill. Histopathological changes in the gill were not observed; however, CYP1A-like immunoreactivity was detected in the pillar cells of gill lamellae of fish exposed to 67.9 μg/L PAC. Concentration-specific changes in kidney expression of a transmembrane water channel, aquaporin 3, occurred during seawater acclimation, but were resolved with 1 wk of depuration and were not associated with histopathological changes. In conclusion, apart from a robust CYP response in the gill, dilbit exposure did not greatly impact common measures of seawater acclimation, suggesting that significant osmoregulatory dysfunction is unlikely to occur if Atlantic salmon smolts are exposed sub-chronically to dilbit.
Collapse
Affiliation(s)
- Sarah L Alderman
- Department of Integrative Biology, University of Guelph, Ontario, Canada.
| | | | - Sean R Avey
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, British Columbia, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| |
Collapse
|
39
|
Tipsmark CK, Nielsen AM, Bossus MC, Ellis LV, Baun C, Andersen TL, Dreier J, Brewer JR, Madsen SS. Drinking and Water Handling in the Medaka Intestine: A Possible Role of Claudin-15 in Paracellular Absorption? Int J Mol Sci 2020; 21:ijms21051853. [PMID: 32182691 PMCID: PMC7085193 DOI: 10.3390/ijms21051853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/27/2022] Open
Abstract
When euryhaline fish move between fresh water (FW) and seawater (SW), the intestine undergoes functional changes to handle imbibed SW. In Japanese medaka, the potential transcellular aquaporin-mediated conduits for water are paradoxically downregulated during SW acclimation, suggesting paracellular transport to be of principal importance in hyperosmotic conditions. In mammals, intestinal claudin-15 (CLDN15) forms paracellular channels for small cations and water, which may participate in water transport. Since two cldn15 paralogs, cldn15a and cldn15b, have previously been identified in medaka, we examined the salinity effects on their mRNA expression and immunolocalization in the intestine. In addition, we analyzed the drinking rate and intestinal water handling by adding non-absorbable radiotracers, 51-Cr-EDTA or 99-Tc-DTPA, to the water. The drinking rate was >2-fold higher in SW than FW-acclimated fish, and radiotracer experiments showed anterior accumulation in FW and posterior buildup in SW intestines. Salinity had no effect on expression of cldn15a, while cldn15b was approximately 100-fold higher in FW than SW. Despite differences in transcript dynamics, Cldn15a and Cldn15b proteins were both similarly localized in the apical tight junctions of enterocytes, co-localizing with occludin and with no apparent difference in localization and abundance between FW and SW. The stability of the Cldn15 protein suggests a physiological role in water transport in the medaka intestine.
Collapse
Affiliation(s)
- Christian K. Tipsmark
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA; (M.C.B.); (L.V.E.); (S.S.M.)
- Correspondence: ; Tel.: +1-479-575-8436
| | - Andreas M. Nielsen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark;
| | - Maryline C. Bossus
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA; (M.C.B.); (L.V.E.); (S.S.M.)
- Department of Math and Sciences, Lyon College, 2300 Highland Rd, Batesville, AR 72501, USA
| | - Laura V. Ellis
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA; (M.C.B.); (L.V.E.); (S.S.M.)
| | - Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark; (C.B.); (T.L.A.)
| | - Thomas L. Andersen
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark; (C.B.); (T.L.A.)
| | - Jes Dreier
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (J.D.); (J.R.B.)
| | - Jonathan R. Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (J.D.); (J.R.B.)
| | - Steffen S. Madsen
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA; (M.C.B.); (L.V.E.); (S.S.M.)
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark;
| |
Collapse
|
40
|
Chávez-López R, Rocha-Ramírez A. Composición de la comunidad de peces en el estuario ciego laguna El Llano, Veracruz, México. REV MEX BIODIVERS 2020. [DOI: 10.22201/ib.20078706e.2020.91.2494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Lee SY, Lee HJ, Kim YK. Comparative transcriptome profiling of selected osmotic regulatory proteins in the gill during seawater acclimation of chum salmon (Oncorhynchus keta) fry. Sci Rep 2020; 10:1987. [PMID: 32029805 PMCID: PMC7005315 DOI: 10.1038/s41598-020-58915-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Salmonid fishes, chum salmon (Oncorhynchus keta) have the developed adaptive strategy to withstand wide salinity changes from the early life stage. This study investigated gene expression patterns of cell membrane proteins in the gill of chum salmon fry on the transcriptome level by tracking the salinity acclimation of the fish in changing environments ranging from freshwater (0 ppt) to brackish water (17.5 ppt) to seawater (35 ppt). Using GO analysis of DEGs, the known osmoregulatory genes and their functional groups such as ion transport, transmembrane transporter activity and metal ion binding were identified. The expression patterns of membrane protein genes, including pump-mediated protein (NKA, CFTR), carrier-mediated protein (NKCC, NHE3) and channel-mediated protein (AQP) were similar to those of other salmonid fishes in the smolt or adult stages. Based on the protein-protein interaction analysis between transmembrane proteins and other related genes, we identified osmotic-related genes expressed with salinity changes and analyzed their expression patterns. The findings of this study may facilitate the disentangling of the genetic basis of chum salmon and better able an understanding of the osmophysiology of the species.
Collapse
Affiliation(s)
- Sang Yoon Lee
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Hwa Jin Lee
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Yi Kyung Kim
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 25457, South Korea.
| |
Collapse
|
42
|
Onukwufor JO, Wood CM. Reverse translation: effects of acclimation temperature and acute temperature challenges on oxygen consumption, diffusive water flux, net sodium loss rates, Q 10 values and mass scaling coefficients in the rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 2020; 190:205-217. [PMID: 31965230 DOI: 10.1007/s00360-020-01259-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 01/04/2023]
Abstract
Our understanding is limited on how fish adjust the effective permeability of their branchial epithelium to ions and water while altering O2 uptake rate (MO2) with acute and chronic changes in temperature. We investigated the effects of acclimation temperature (8 °C, 13 °C and 18 °C) and acute temperature challenges [acute rise (acclimated at 8 °C, measured at 13 °C and 18 °C), acute drop (acclimated at 18 °C, measured at 8 °C and 13 °C) and intermediate (acclimated at 13 °C, measured at 8 °C and 18 °C)] on routine MO2, diffusive water flux, and net sodium loss rates in 24-h fasted rainbow trout (Oncorhynchus mykiss). In the temperature challenge tests, measurements were made during the first hour. In acclimated trout at all temperatures, allometric mass scaling coefficients were much higher for diffusive water flux than for MO2. Furthermore, the diffusive water flux rate was more responsive (overall Q10 = 2.75) compared to MO2 (Q10 = 1.80) over the 8-18 °C range, and for both, Q10 values were greater at 8-13 °C than at 13-18 °C. The net Na+ flux rates were highly sensitive to acclimation temperature with an overall Q10 of 3.01 for 8-18 °C. In contrast, very different patterns occurred in trout subjected to acute temperature challenges. The net Na+ flux rate was temperature-insensitive with a Q10 around 1.0. Both MO2 and diffusive water flux rates exhibited lower Q10 values than for the acclimated rates in response to either acute increases or decreases in temperature. These results fit Pattern 5 of Precht (undercompensation, reverse effect) and more precisely Pattern IIB of Prosser (reverse translation). These inverse compensatory patterns suggest that trout do not alter their rates very much when undergoing acute thermal challenges (diurnal fluctuations, migration through the thermocline). The greater changes seen with acclimation may be adaptive to long-term seasonal changes in temperature. We discuss the roles of aquaporins, spontaneous activity, and recent feeding in these responses.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
43
|
Mohindra V, Dangi T, Tripathi RK, Kumar R, Singh RK, Jena JK, Mohapatra T. Draft genome assembly of Tenualosa ilisha, Hilsa shad, provides resource for osmoregulation studies. Sci Rep 2019; 9:16511. [PMID: 31712633 PMCID: PMC6848103 DOI: 10.1038/s41598-019-52603-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/18/2019] [Indexed: 01/23/2023] Open
Abstract
This study provides the first high-quality draft genome assembly (762.5 Mb) of Tenualosa ilisha that is highly contiguous and nearly complete. We observed a total of 2,864 contigs, with 96.4% completeness with N50 of 2.65 Mbp and the largest contig length of 17.4 Mbp, along with a complete mitochondrial genome of 16,745 bases. A total number of 33,042 protein coding genes were predicted, among these, 512 genes were classified under 61 Gene Ontology (GO) terms, associated with various homeostasis processes. Highest number of genes belongs to cellular calcium ion homeostasis, followed by tissue homeostasis. A total of 97 genes were identified, with 16 GO terms related to water homeostasis. Claudins, Aquaporins, Connexins/Gap junctions, Adenylate cyclase, Solute carriers and Voltage gated potassium channel genes were observed to be higher in number in T. ilisha, as compared to that in other teleost species. Seven novel gene variants, in addition to claudin gene (CLDZ), were found in T. ilisha. The present study also identified two putative novel genes, NKAIN3 and L4AM1, for the first time in fish, for which further studies are required for pinpointing their functions in fish. In addition, 1.6 million simple sequence repeats were mined from draft genome assembly. The study provides a valuable genomic resource for the anadromous Hilsa. It will form a basis for future studies, pertaining to its adaptation mechanisms to different salinity levels during migration, which in turn would facilitate in its domestication.
Collapse
Affiliation(s)
- Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.
| | - Tanushree Dangi
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - Ratnesh K Tripathi
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.,Imperial Life Sciences (P) Limited, Gurgaon, Haryana, 122001, India
| | - Rajesh Kumar
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - Rajeev K Singh
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - J K Jena
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan - II, New Delhi, 110 012, India
| | - T Mohapatra
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan - II, New Delhi, 110 012, India
| |
Collapse
|
44
|
Wang M, Zhu Z. Nrf2 is involved in osmoregulation, antioxidation and immunopotentiation in Coilia nasus under salinity stress. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1673671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P.R. China
- Department of Biotechnology, Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, P.R. China
- Aquatic Animal Genome Center, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P.R. China
| | - Zhixiang Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, P.R. China
| |
Collapse
|
45
|
Wood CM, Ruhr IM, Schauer KL, Wang Y, Mager EM, McDonald MD, Stanton B, Grosell M. The osmorespiratory compromise in the euryhaline killifish: water regulation during hypoxia. ACTA ACUST UNITED AC 2019; 222:jeb.204818. [PMID: 31466998 DOI: 10.1242/jeb.204818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/27/2019] [Indexed: 01/15/2023]
Abstract
Freshwater- and seawater-acclimated Fundulus heteroclitus were exposed to acute hypoxia (10% air saturation, 3 h), followed by normoxic recovery (3 h). In both salinities, ventilation increased and heart rate fell in the classic manner, while Ṁ O2 initially declined by ∼50%, with partial restoration by 3 h of hypoxia, and no O2 debt repayment during recovery. Gill paracellular permeability (measured with [14C] PEG-4000) was 1.4-fold higher in seawater, and declined by 50% during hypoxia with post-exposure overshoot to 188%. A similar pattern with smaller changes occurred in freshwater. Drinking rate (also measured with [14C] PEG-4000) was 8-fold higher in seawater fish, but declined by ∼90% during hypoxia in both groups, with post-exposure overshoots to ∼270%. Gill diffusive water flux (measured with 3H2O) was 1.9-fold higher in freshwater fish, and exhibited a ∼35% decrease during hypoxia, which persisted throughout recovery, but was unchanged during hypoxia in seawater fish. Nevertheless, freshwater killifish gained mass while seawater fish lost mass during hypoxia, and these changes were not corrected during normoxic recovery. We conclude that this hypoxia-tolerant teleost beneficially reduces gill water permeability in a salinity-dependent fashion during hypoxia, despite attempting to simultaneously improve Ṁ O2 , but nevertheless incurs a net water balance penalty in both freshwater and seawater.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA .,Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ilan M Ruhr
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.,Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Kevin L Schauer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Yadong Wang
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Edward M Mager
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.,Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, TX 76203, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Bruce Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
46
|
Seale AP, Pavlosky KK, Celino-Brady FT, Yamaguchi Y, Breves JP, Lerner DT. Systemic versus tissue-level prolactin signaling in a teleost during a tidal cycle. J Comp Physiol B 2019; 189:581-594. [PMID: 31485757 DOI: 10.1007/s00360-019-01233-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Euryhaline Mozambique tilapia (Oreochromis mossambicus) are native to estuaries where they encounter tidal fluctuations in environmental salinity. These fluctuations can be dramatic, subjecting individuals to salinities characteristic of fresh water (FW < 0.5‰) and seawater (SW 35‰) within a single tidal cycle. In the current study, we reared tilapia under a tidal regimen that simulated the dynamic conditions of their native habitat. Tilapia were sampled every 3 h over a 24 h period to temporally resolve how prolactin (PRL) signaling is modulated in parallel with genes encoding branchial effectors of osmoregulation. The following parameters were measured: plasma osmolality, plasma PRL177 and PRL188 concentrations, pituitary prl177 and prl188 gene expression, and branchial prl receptor (prlr1 and prlr2), Na+/Cl--cotransporter (ncc2), Na+/K+/2Cl--cotransporter (nkcc1a), Na+/K+-ATPase (nkaα1a and nkaα1b), cystic fibrosis transmembrane regulator (cftr), and aquaporin 3 (aqp3) gene expression. Throughout the 24 h sampling period, plasma osmolality reflected whether tilapia were sampled during the FW or SW phases of the tidal cycle, whereas pituitary prl gene expression and plasma PRL levels remained stable. Branchial patterns of ncc2, nkcc1a, nkaα1a, nkaα1b, cftr, and aqp3 gene expression indicated that fish exposed to tidally changing salinities regulate the expression of these gene transcripts in a similar fashion as fish held under static SW conditions. By contrast, branchial prlr1 and prlr2 levels were highly labile throughout the tidal cycle. We conclude that local (branchial) regulation of endocrine signaling underlies the capacity of euryhaline fishes, such as Mozambique tilapia, to thrive under dynamic salinity conditions.
Collapse
Affiliation(s)
- Andre P Seale
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI, 96744, USA.
| | - K Keano Pavlosky
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, 690-8504, Japan
| | - Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Darren T Lerner
- University of Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
47
|
Sundell K, Wrange AL, Jonsson PR, Blomberg A. Osmoregulation in Barnacles: An Evolutionary Perspective of Potential Mechanisms and Future Research Directions. Front Physiol 2019; 10:877. [PMID: 31496949 PMCID: PMC6712927 DOI: 10.3389/fphys.2019.00877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
Barnacles form a globally ubiquitous group of sessile crustaceans that are particularly common in the coastal intertidal. Several barnacle species are described as highly euryhaline and a few species even have the ability to colonize estuarine and brackish habitats below 5 PSU. However, the physiological and/or morphological adaptations that allow barnacles to live at low salinities are poorly understood and current knowledge is largely based on classical eco-physiological studies offering limited insight into the molecular mechanisms. This review provides an overview of available knowledge of salinity tolerance in barnacles and what is currently known about their osmoregulatory strategies. To stimulate future studies on barnacle euryhalinity, we briefly review and compare barnacles to other marine invertebrates with known mechanisms of osmoregulation with focus on crustaceans. Different mechanisms are described based on the current understanding of molecular biology and integrative physiology of osmoregulation. We focus on ion and water transport across epithelial cell layers, including transport mechanisms across cell membranes and paracellular transfer across tight junctions as well as on the use of intra- and extracellular osmolytes. Based on this current knowledge, we discuss the osmoregulatory mechanisms possibly present in barnacles. We further discuss evolutionary consequences of barnacle osmoregulation including invasion-success in new habitats and life-history evolution. Tolerance to low salinities may play a crucial role in determining future distributions of barnacles since forthcoming climate-change scenarios predict decreased salinity in shallow coastal areas. Finally, we outline future research directions to identify osmoregulatory tissues, characterize physiological and molecular mechanisms, and explore ecological and evolutionary implications of osmoregulation in barnacles.
Collapse
Affiliation(s)
- Kristina Sundell
- Department of Biological and Environmental Sciences and Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, Gothenburg, Sweden
| | - Anna-Lisa Wrange
- IVL Swedish Environmental Research Institute, Fiskebäckskil, Sweden
| | - Per R Jonsson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
48
|
Tian Y, Shang Y, Guo R, Chang Y, Jiang Y. Salinity stress-induced differentially expressed miRNAs and target genes in sea cucumbers Apostichopus japonicus. Cell Stress Chaperones 2019; 24:719-733. [PMID: 31134533 PMCID: PMC6657415 DOI: 10.1007/s12192-019-00996-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Environmental salinity is an important abiotic factor influencing normal physiological functions and productive performance in the sea cucumber Apostichopus japonicus. It is therefore important to understand how changes in salinity affect sea cucumbers in the face of global climate change. In this study, we investigated the responses to salinity stress in sea cucumbers using mRNA and miRNA sequencing. The regulatory network of mRNAs and miRNAs involved in salinity stress was examined, and the metabolic pathways enriched for differentially expressed miRNAs and target mRNAs were identified. The top 20 pathways were involved in carbohydrate metabolism, fatty acid metabolism, degradation, and elongation, amino acid metabolism, genetic information processing, metabolism of cofactors and vitamins, transport and catabolism, and environmental information processing. A total of 22 miRNAs showed differential expression during salinity acclimation. The predicted 134 target genes were enriched in functions consistent with the results of gene enrichment based on transcriptome analysis. These results suggested that sea cucumbers deal with salinity stress via changes in amino acid metabolism, ion channels, transporters, and aquaporins, under stimulation by environmental signals, and that this process requires energy from carbohydrate and fatty acid metabolism. Salinity challenge also induced miRNA expression. These results provide a valuable genomic resource that extends our understanding of the unique biological characteristics of this economically important species under conditions of salinity stress.
Collapse
Affiliation(s)
- Yi Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China.
| | - Yanpeng Shang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Ran Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| | - Yanan Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Heishijiao Street, No. 52, Dalian, 116023, China
| |
Collapse
|
49
|
Differential Expression and Localization of Branchial AQP1 and AQP3 in Japanese Medaka ( Oryzias latipes). Cells 2019; 8:cells8050422. [PMID: 31072010 PMCID: PMC6562476 DOI: 10.3390/cells8050422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Aquaporins (AQPs) facilitate transmembrane water and solute transport, and in addition to contributing to transepithelial water transport, they safeguard cell volume homeostasis. This study examined the expression and localization of AQP1 and AQP3 in the gills of Japanese medaka (Oryzias latipes) in response to osmotic challenges and osmoregulatory hormones, cortisol, and prolactin (PRL). AQP3 mRNA was inversely regulated in response to salinity with high levels in ion-poor water (IPW), intermediate levels in freshwater (FW), and low levels in seawater (SW). AQP3 protein levels decreased upon SW acclimation. By comparison, AQP1 expression was unaffected by salinity. In ex vivo gill incubation experiments, AQP3 mRNA was stimulated by PRL in a time- and dose-dependent manner but was unaffected by cortisol. In contrast, AQP1 was unaffected by both PRL and cortisol. Confocal microscopy revealed that AQP3 was abundant in the periphery of gill filament epithelial cells and co-localized at low intensity with Na+,K+-ATPase in ionocytes. AQP1 was present at a very low intensity in most filament epithelial cells and red blood cells. No epithelial cells in the gill lamellae showed immunoreactivity to AQP3 or AQP1. We suggest that both AQPs contribute to cellular volume regulation in the gill epithelium and that AQP3 is particularly important under hypo-osmotic conditions, while expression of AQP1 is constitutive.
Collapse
|
50
|
Lema SC, Carvalho PG, Egelston JN, Kelly JT, McCormick SD. Dynamics of Gene Expression Responses for Ion Transport Proteins and Aquaporins in the Gill of a Euryhaline Pupfish during Freshwater and High-Salinity Acclimation. Physiol Biochem Zool 2019; 91:1148-1171. [PMID: 30334669 DOI: 10.1086/700432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pupfishes (genus Cyprinodon) evolved some of the broadest salinity tolerances of teleost fishes, with some taxa surviving in conditions from freshwater to nearly 160 ppt. In this study, we examined transcriptional dynamics of ion transporters and aquaporins in the gill of the desert Amargosa pupfish (Cyprinodon nevadensis amargosae) during rapid salinity change. Pupfish acclimated to 7.5 ppt were exposed to freshwater (0.3 ppt), seawater (35 ppt), or hypersaline (55 ppt) conditions over 4 h and sampled at these salinities over 14 d. Plasma osmolality and Cl- concentration became elevated 8 h after the start of exposure to 35 or 55 ppt but returned to baseline levels after 14 d. Osmolality recovery was paralleled by increased gill Na+/K+-ATPase activity and higher relative levels of messenger RNAs (mRNAs) encoding cystic fibrosis transmembrane conductance regulator (cftr) and Na+/K+/2Cl- cotransporter-1 (nkcc1). Transcripts encoding one Na+-HCO3- cotransporter-1 isoform (nbce1.1) also increased in the gills at higher salinities, while a second isoform (nbce1.2) increased expression in freshwater. Pupfish in freshwater also had lower osmolality and elevated gill mRNAs for Na+/H+ exchanger isoform-2a (nhe2a) and V-type H+-ATPase within 8 h, followed by increases in Na+/H+ exchanger-3 (nhe3), carbonic anhydrase 2 (ca2), and aquaporin-3 (aqp3) within 1 d. Gill mRNAs for Na+/Cl- cotransporter-2 (ncc2) also were elevated 14 d after exposure to 0.3 ppt. These results offer insights into how coordinated transcriptional responses for ion transporters in the gill facilitate reestablishment of osmotic homeostasis after changes in environmental salinity and provide evidence that the teleost gill expresses two Na+-HCO3- cotransporter-1 isoforms with different roles in freshwater and seawater acclimation.
Collapse
|