1
|
Reed CG, Swartz SM, Littleford-Colquhoun BL, Florida M, Torres L, Roberts TJ, Kartzinel TR. Distinct morphological drivers of jumping and maneuvering performance in gerbils. J Exp Biol 2025; 228:JEB250091. [PMID: 39791246 PMCID: PMC11883271 DOI: 10.1242/jeb.250091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Theoretically, animals with longer hindlimbs are better jumpers, while those with shorter hindlimbs are better maneuverers. Yet, experimental evidence of this relationship in mammals is lacking. We compared jump force and maneuverability in a lab population of Mongolian gerbils (Meriones unguiculatus). We hypothesized that gerbils with long legs (ankle to knee) and thighs (knee to hip) would produce the greatest jump forces, while gerbils with short legs and thighs would be able to run most rapidly around turns. Consistent with these hypotheses, gerbils with longer legs produced greater jump forces after accounting for sex and body mass: a 1 mm greater leg length provided 1 body weight unit greater jump force on average. Furthermore, gerbils with shorter thighs were more maneuverable: a 1 mm greater thigh length reduced turn speed by 5%. Rather than a trade-off, however, there was no significant correlation between jump force and turn speed. There was also no correlation between jump force and total hindlimb length, and a weak positive correlation between corner-turning speed and total hindlimb length. These experiments revealed how distinct hindlimb segments contributed in different ways to each performance measure: legs to jumping and thighs to maneuvering. Understanding how variations in limb morphology contribute to overall gerbil locomotor performance may have important impacts on fitness in natural habitats.
Collapse
Affiliation(s)
- Courtney G. Reed
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
- Institute at Brown for Environment and Society, Providence, RI 02912, USA
| | - Sharon M. Swartz
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Bethan L. Littleford-Colquhoun
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
- Institute at Brown for Environment and Society, Providence, RI 02912, USA
| | - Madeleine Florida
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
- Institute at Brown for Environment and Society, Providence, RI 02912, USA
| | - Logan Torres
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
- Institute at Brown for Environment and Society, Providence, RI 02912, USA
| | - Thomas J. Roberts
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Tyler R. Kartzinel
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
- Institute at Brown for Environment and Society, Providence, RI 02912, USA
| |
Collapse
|
2
|
Young MW, Webster C, Tanis D, Schurr AF, Hanna CS, Lynch SK, Ratkiewicz AS, Dickinson E, Kong FH, Granatosky MC. What does climbing mean exactly? Assessing spatiotemporal gait characteristics of inclined locomotion in parrots. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:19-33. [PMID: 37140643 DOI: 10.1007/s00359-023-01630-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
At what inclination does climbing begin? In this paper, we investigate the transition from walking to climbing in two species of parrot (Agapornis roseicollis and Nymphicus hollandicus) that are known to incorporate both their tail and their craniocervical system into the gait cycle during vertical climbing. Locomotor behaviors ranging in inclination were observed at angles between 0° and 90° for A. roseicollis, and 45°-85° degrees for N. hollandicus. Use of the tail in both species was observed at 45° inclination, and was joined at higher inclinations (> 65°) by use of the craniocervical system. Additionally, as inclination approached (but remained below) 90°, locomotor speeds were reduced while gaits were characterized by higher duty factors and lower stride frequency. These gait changes are consistent with those thought to increase stability. At 90°, A. roseicollis significantly increased its stride length, resulting in higher overall locomotor speed. Collectively these data demonstrate that the transition between horizontal walking and vertical climbing is gradual, incrementally altering several components of gait as inclinations increase. Such data underscore the need for further investigation into how exactly "climbing" is defined and the specific locomotor characteristics that differentiate this behavior from level walking.
Collapse
Affiliation(s)
- Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Clyde Webster
- School of Mechanical and Mechatronic Engineering, The University of Technology Sydney (UTS), Sydney, Australia
| | - Daniel Tanis
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Alissa F Schurr
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Christopher S Hanna
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Samantha K Lynch
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Aleksandra S Ratkiewicz
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Felix H Kong
- School of Mechanical and Mechatronic Engineering, The University of Technology Sydney (UTS), Sydney, Australia
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
| |
Collapse
|
3
|
Schultz JT, Labonte D, Clemente CJ. Multilevel dynamic adjustments of geckos ( Hemidactylus frenatus) climbing vertically: head-up versus head-down. J R Soc Interface 2023; 20:20220840. [PMID: 37015264 PMCID: PMC10072943 DOI: 10.1098/rsif.2022.0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Many climbing animals use direction-dependent adhesives to attach to vertical or inclined surfaces. These structures adhere when activated via a pull but detach when pushed. Therefore, a challenge arises when a change in climbing direction causes external forces such as gravity to change its acting orientation upon the lizard. To investigate how specialized climbers adjust, we studied kinematics and dynamics of six Hemidactylus frenatus geckos climbing head-up and head-down a vertical racetrack. We found that limbs functionally swap their adhesive role: feet above the centre of mass (COM) generated adhesive forces, feet below the COM compressive forces, both equal in magnitude across directions. To investigate how lizards perform this swap, despite the constraint of their direction-dependent adhesives, we analysed kinematic adjustments across multiple smaller levels of hierarchy: limbs, feet and toes. All levels contributed: the hindfoot angle was reoriented realigning the adhesive structure, the hindlimb centre range of motion was further protracted and the hindfoot toe spreading was reduced. Notably, all three variables were adjustments of hindlimbs, suggesting that they make a more flexible contribution in upward versus downward climbing, while forelimbs may be anatomically or functionally constrained. The relevance of multilevel dynamic adjustments might inform the development of performant gaits for legged climbing robots.
Collapse
Affiliation(s)
- Johanna T. Schultz
- School of Science and Engineering, University of the Sunshine Coast, Queensland, Australia
- The Robotics and Autonomous Systems Group, CSIRO Data61, Queensland, Australia
| | - David Labonte
- Department of Bioengineering, Imperial College London, London, UK
| | - Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
4
|
Cieri RL, Dick TJM, Morris JS, Clemente CJ. Scaling of fibre area and fibre glycogen concentration in the hindlimb musculature of monitor lizards: implications for locomotor performance with increasing body size. J Exp Biol 2022; 225:274383. [PMID: 35258618 DOI: 10.1242/jeb.243380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
A considerable biomechanical challenge faces larger terrestrial animals as the demands of body support scale with body mass (Mb), while muscle force capacity is proportional to muscle cross-sectional area, which scales with Mb2/3. How muscles adjust to this challenge might be best understood by examining varanids, which vary by five orders of magnitude in size without substantial changes in posture or body proportions. Muscle mass, fascicle length and physiological cross-sectional area all scale with positive allometry, but it remains unclear, however, how muscles become larger in this clade. Do larger varanids have more muscle fibres, or does individual fibre cross-sectional area (fCSA) increase? It is also unknown if larger animals compensate by increasing the proportion of fast-twitch (higher glycogen concentration) fibres, which can produce higher force per unit area than slow-twitch fibres. We investigated muscle fibre area and glycogen concentration in hindlimb muscles from varanids ranging from 105 g to 40,000 g. We found that fCSA increased with modest positive scaling against body mass (Mb0.197) among all our samples, and ∝Mb0.278 among a subset of our data consisting of never-frozen samples only. The proportion of low-glycogen fibres decreased significantly in some muscles but not others. We compared our results with the scaling of fCSA in different groups. Considering species means, fCSA scaled more steeply in invertebrates (∝Mb0.575), fish (∝Mb0.347) and other reptiles (∝Mb0.308) compared with varanids (∝Mb0.267), which had a slightly higher scaling exponent than birds (∝Mb0.134) and mammals (∝Mb0.122). This suggests that, while fCSA generally increases with body size, the extent of this scaling is taxon specific, and may relate to broad differences in locomotor function, metabolism and habitat between different clades.
Collapse
Affiliation(s)
- Robert L Cieri
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Taylor J M Dick
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jeremy S Morris
- Department of Biology, Wofford College, Spartanburg, SC 29303, USA
| | - Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia.,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
5
|
Beck HK, Schultz JT, Clemente CJ. A bio-inspired robotic climbing robot to understand kinematic and morphological determinants for an optimal climbing gait. BIOINSPIRATION & BIOMIMETICS 2021; 17:016005. [PMID: 34740206 DOI: 10.1088/1748-3190/ac370f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Robotic systems for complex tasks, such as search and rescue or exploration, are limited for wheeled designs, thus the study of legged locomotion for robotic applications has become increasingly important. To successfully navigate in regions with rough terrain, a robot must not only be able to negotiate obstacles, but also climb steep inclines. Following the principles of biomimetics, we developed a modular bio-inspired climbing robot, named X4, which mimics the lizard's bauplan including an actuated spine, shoulders, and feet which interlock with the surface via claws. We included the ability to modify gait and hardware parameters and simultaneously collect data with the robot's sensors on climbed distance, slip occurrence and efficiency. We first explored the speed-stability trade-off and its interaction with limb swing phase dynamics, finding a sigmoidal pattern of limb movement resulted in the greatest distance travelled. By modifying foot orientation, we found two optima for both speed and stability, suggesting multiple stable configurations. We varied spine and limb range of motion, again showing two possible optimum configurations, and finally varied the centre of pro- and retraction on climbing performance, showing an advantage for protracted limbs during the stride. We then stacked optimal regions of performance and show that combining optimal dynamic patterns with either foot angles or ROM configurations have the greatest performance, but further optima stacking resulted in a decrease in performance, suggesting complex interactions between kinematic parameters. The search of optimal parameter configurations might not only be beneficial to improve robotic in-field operations but may also further the study of the locomotive evolution of climbing of animals, like lizards or insects.
Collapse
Affiliation(s)
| | - Johanna T Schultz
- School of Science, Technology and Engineering, University of the Sunshine Coast, QLD, Australia
- The Robotics and Autonomous Systems Group, CSIRO Data61, QLD, Australia
| | - Christofer J Clemente
- School of Science, Technology and Engineering, University of the Sunshine Coast, QLD, Australia
| |
Collapse
|
6
|
Hanna CS, Alihosseini C, Fischer HM, Davoli EC, Granatosky MC. Are they arboreal? Climbing abilities and mechanics in the red-backed salamander (Plethodon cinereus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:238-249. [PMID: 34752693 DOI: 10.1002/jez.2561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022]
Abstract
While red-backed salamanders (Plethodon cinereus) are most often observed in terrestrial forested areas, several studies report arboreal substrate use and climbing behavior. However, salamanders do not have any of the anatomical features commonly observed in specialized climbing species (e.g., claws, setae, suction cups). Instead, salamanders cling to surfaces using the shear and adhesive properties of their mucous layer. In this study, we explore the capabilities and spatiotemporal gait patterns of arboreal locomotion in the red-backed salamander as they move across twelve substrate conditions ranging in diameter, orientation, and roughness. On arboreal substrates, red-backed salamanders decreased locomotor speed, stride frequency, phase and stride length, and increased duty factor and stride duration. Such responses have been observed in other non-salamander species and are posited to increase arboreal stability. Furthermore, these findings indicate that amphibian locomotion, or at least the locomotor behavior of the red-backed salamander, is not stereotyped and that some locomotor plasticity is possible in response to the demands of the external environment. However, red-backed salamanders were unable to locomote on any small-diameter or vertically-oriented coarse substrates. This finding provides strong evidence that the climbing abilities of red-backed salamanders are attributable solely to mucous adhesion and that this species is unable to produce the necessary external "gripping" forces to achieve fine-branch arboreal locomotion or scale substrates where adhesion is not possible. The red-backed salamander provides an ideal model for arboreal locomotor performance of anatomically-unspecialized amphibians and offers insight into transitionary stages in the evolution of arborealism in this lineage.
Collapse
Affiliation(s)
- Christopher S Hanna
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Christopher Alihosseini
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Hannah M Fischer
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Elizabeth C Davoli
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA.,Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| |
Collapse
|
7
|
Baken EK, Mellenthin LE, Adams DC. Is salamander arboreality limited by broad-scale climatic conditions? PLoS One 2021; 16:e0255393. [PMID: 34407101 PMCID: PMC8372966 DOI: 10.1371/journal.pone.0255393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
Identifying the historical processes that drive microhabitat transitions across deep time is of great interest to evolutionary biologists. Morphological variation can often reveal such mechanisms, but in clades with high microhabitat diversity and no concomitant morphological specialization, the factors influencing animal transitions across microhabitats are more difficult to identify. Lungless salamanders (family: Plethodontidae) have transitioned into and out of the arboreal microhabitat many times throughout their evolutionary history without substantial morphological specialization. In this study, we explore the relationship between microhabitat use and broad-scale climatic patterns across species' ranges to test the role of climate in determining the availability of the arboreal microhabitat. Using phylogenetic comparative methods, we reveal that arboreal species live in warmer, lower elevation regions than terrestrial species. We also employ ecological niche modeling as a complementary approach, quantifying species-level pairwise comparisons of niche overlap. The results of this approach demonstrate that arboreal species on average display more niche overlap with other arboreal species than with terrestrial species after accounting for non-independence of niche model pairs caused by geographic and phylogenetic distances. Our results suggest that occupation of the arboreal microhabitat by salamanders may only be possible in sufficiently warm, low elevation conditions. More broadly, this study indicates that the impact of micro-environmental conditions on temporary microhabitat use, as demonstrated by small-scale ecological studies, may scale up dramatically to shape macroevolutionary patterns.
Collapse
Affiliation(s)
- Erica K. Baken
- Department of Science, Chatham University, Pittsburgh, Pennsylvania, United States of America
| | - Lauren E. Mellenthin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Dean C. Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
8
|
Kozma EE, Pontzer H. Determinants of climbing energetic costs in humans. J Exp Biol 2021; 224:270788. [PMID: 34160049 DOI: 10.1242/jeb.234567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
Previous studies in primates and other animals have shown that mass-specific cost of transport (J kg-1 m-1) for climbing is independent of body size across species, but little is known about within-species allometry of climbing costs or the effects of difficulty and velocity. Here, we assessed the effects of velocity, route difficulty and anatomical variation on the energetic cost of climbing within humans. Twelve experienced rock climbers climbed on an indoor wall over a range of difficulty levels and velocities, with energy expenditure measured via respirometry. We found no effect of body mass or limb proportions on mass-specific cost of transport among subjects. Mass-specific cost of transport was negatively correlated with climbing velocity. Increased route difficulty was associated with slower climbing velocities and thus higher costs, but there was no statistically significant effect of route difficulty on energy expenditure independent of velocity. Finally, human climbing costs measured in this study were similar to published values for other primates, suggesting arboreal adaptations have a negligible effect on climbing efficiency.
Collapse
Affiliation(s)
- Elaine E Kozma
- Department of Development and Regeneration, University of Leuven Kulak, 8500 Kortrijk, Belgium.,Department of Anthropology, City University of New York, Graduate Center, New York, NY 10016, USA.,New York Consortium in Evolutionary Primatology, New York, NY 10016, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27710, USA
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27710, USA.,Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
9
|
Schultz JT, Beck HK, Haagensen T, Proost T, Clemente CJ. Using a biologically mimicking climbing robot to explore the performance landscape of climbing in lizards. Proc Biol Sci 2021; 288:20202576. [PMID: 33784869 DOI: 10.1098/rspb.2020.2576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Locomotion is a key aspect associated with ecologically relevant tasks for many organisms, therefore, survival often depends on their ability to perform well at these tasks. Despite this significance, we have little idea how different performance tasks are weighted when increased performance in one task comes at the cost of decreased performance in another. Additionally, the ability for natural systems to become optimized to perform a specific task can be limited by structural, historic or functional constraints. Climbing lizards provide a good example of these constraints as climbing ability likely requires the optimization of tasks which may conflict with one another such as increasing speed, avoiding falls and reducing the cost of transport (COT). Understanding how modifications to the lizard bauplan can influence these tasks may allow us to understand the relative weighting of different performance objectives among species. Here, we reconstruct multiple performance landscapes of climbing locomotion using a 10 d.f. robot based upon the lizard bauplan, including an actuated spine, shoulders and feet, the latter which interlock with the surface via claws. This design allows us to independently vary speed, foot angles and range of motion (ROM), while simultaneously collecting data on climbed distance, stability and efficiency. We first demonstrate a trade-off between speed and stability, with high speeds resulting in decreased stability and low speeds an increased COT. By varying foot orientation of fore- and hindfeet independently, we found geckos converge on a narrow optimum of foot angles (fore 20°, hind 100°) for both speed and stability, but avoid a secondary wider optimum (fore -20°, hind -50°) highlighting a possible constraint. Modifying the spine and limb ROM revealed a gradient in performance. Evolutionary modifications in movement among extant species over time appear to follow this gradient towards areas which promote speed and efficiency.
Collapse
Affiliation(s)
- Johanna T Schultz
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia.,The Robotics and Autonomous Systems Group, CSIRO Data61, Pullenvale, Queensland, Australia
| | - Hendrik K Beck
- Biological Structures and Biomimetics, Bremen University of Applied Sciences, Hochschule Bremen, Germany
| | - Tina Haagensen
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Tasmin Proost
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| |
Collapse
|
10
|
Grinham LR, Norman DB. The pelvis as an anatomical indicator for facultative bipedality and substrate use in lepidosaurs. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Facultative bipedality is regarded as an enigmatic middle ground in the evolution of obligate bipedality and is associated with high mechanical demands in extant lepidosaurs. Traits linked with this phenomenon are largely associated with the caudal end of the animal: hindlimbs and tail. The articulation of the pelvis with both of these structures suggests a morphofunctional role in the use of a facultative locomotor mode. Using a three-dimensional geometric morphometric approach, we examine the pelvic osteology and associated functional implications for 34 species of extant lepidosaur. Anatomical trends associated with the use of a bipedal locomotor mode and substrate preferences are correlated and functionally interpreted based on musculoskeletal descriptions. Changes in pelvic osteology associated with a facultatively bipedal locomotor mode are similar to those observed in species preferring arboreal substrates, indicating shared functionality between these ecologies.
Collapse
Affiliation(s)
- Luke R Grinham
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - David B Norman
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
- Christ’s College, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Gaschk JL, Frère CH, Clemente CJ. Quantifying koala locomotion strategies: implications for the evolution of arborealism in marsupials. J Exp Biol 2019; 222:222/24/jeb207506. [PMID: 31848216 DOI: 10.1242/jeb.207506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022]
Abstract
The morphology and locomotor performance of a species can determine their inherent fitness within a habitat type. Koalas have an unusual morphology for marsupials, with several key adaptations suggested to increase stability in arboreal environments. We quantified the kinematics of their movement over ground and along narrow arboreal trackways to determine the extent to which their locomotion resembled that of primates, occupying similar niches, or basal marsupials from which they evolved. On the ground, the locomotion of koalas resembled a combination of marsupial behaviours and primate-like mechanics. For example, their fastest strides were bounding type gaits with a top speed of 2.78 m s-1 (mean 1.20 m s-1), resembling marsupials, while the relatively longer stride length was reflective of primate locomotion. Speed was increased using equal modification of stride length and frequency. On narrow substrates, koalas took longer but slower strides (mean 0.42 m s-1), adopting diagonally coupled gaits including both lateral and diagonal sequence gaits, the latter being a strategy distinctive among arboreal primates. The use of diagonally coupled gaits in the arboreal environment is likely only possible because of the unique gripping hand morphology of both the fore and hind feet of koalas. These results suggest that during ground locomotion, they use marsupial-like strategies but alternate to primate-like strategies when moving amongst branches, maximising stability in these environments. The locomotion strategies of koalas provide key insights into an independent evolutionary branch for an arboreal specialist, highlighting how locomotor strategies can convergently evolve between distant lineages.
Collapse
Affiliation(s)
- Joshua L Gaschk
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Celine H Frère
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| |
Collapse
|
12
|
Druelle F, Goyens J, Vasilopoulou-Kampitsi M, Aerts P. Small vertebrates running on uneven terrain: a biomechanical study of two differently specialised lacertid lizards. Sci Rep 2019; 9:16858. [PMID: 31727966 PMCID: PMC6856151 DOI: 10.1038/s41598-019-53329-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/29/2019] [Indexed: 01/31/2023] Open
Abstract
While running, small animals frequently encounter large terrain variations relative to their body size, therefore, terrain variations impose important functional demands on small animals. Nonetheless, we have previously observed in lizards that running specialists can maintain a surprisingly good running performance on very uneven terrains. The relatively large terrain variations are offset by their capacity for leg adjustability that ensures a 'smooth ride' of the centre of mass (CoM). The question as to how the effect of an uneven terrain on running performance and locomotor costs differs between species exhibiting diverse body build and locomotor specializations remains. We hypothesise that specialized runners with long hind limbs can cross uneven terrain more efficiently than specialized climbers with a dorso-ventrally flattened body and equally short fore and hind limbs. This study reports 3D kinematics using high-speed videos (325 Hz) to investigate leg adjustability and CoM movements in two lacertid lizards (Acanthodactylus boskianus, running specialist; Podarcis muralis, climbing specialist). We investigated these parameters while the animals were running on a level surface and over a custom-made uneven terrain. We analysed the CoM dynamics, we evaluated the fluctuations of the positive and negative mechanical energy, and we estimated the overall cost of transport. Firstly, the results reveal that the climbers ran at lower speeds on flat level terrain but had the same cost of transport as the runners. Secondly, contrary to the running specialists, the speed was lower and the energy expenditure higher in the climbing specialists while running on uneven terrain. While leg movements adjust to the substrates' variations and enhance the stability of the CoM in the running specialist, this is not the case in the climbing specialist. Although their legs are kept more extended, the amplitude of movement does not change, resulting in an increase of the movement of the CoM and a decrease in locomotor efficiency. These results are discussed in light of the respective (micro-)habitat of these species and suggest that energy economy can also be an important factor for small vertebrates.
Collapse
Affiliation(s)
- François Druelle
- Laboratory for Functional Morphology, University of Antwerp, Antwerp, Belgium.
| | - Jana Goyens
- Laboratory for Functional Morphology, University of Antwerp, Antwerp, Belgium
| | | | - Peter Aerts
- Laboratory for Functional Morphology, University of Antwerp, Antwerp, Belgium
- Department of Sport Sciences, University of Ghent, Ghent, Belgium
| |
Collapse
|
13
|
Bishop PJ, Hocknull SA, Clemente CJ, Hutchinson JR, Farke AA, Beck BR, Barrett RS, Lloyd DG. Cancellous bone and theropod dinosaur locomotion. Part I-an examination of cancellous bone architecture in the hindlimb bones of theropods. PeerJ 2018; 6:e5778. [PMID: 30402347 PMCID: PMC6215452 DOI: 10.7717/peerj.5778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
This paper is the first of a three-part series that investigates the architecture of cancellous ('spongy') bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is widely known to be highly sensitive to its mechanical environment, and has previously been used to infer locomotor biomechanics in extinct tetrapod vertebrates, especially primates. Despite great promise, cancellous bone architecture has remained little utilized for investigating locomotion in many other extinct vertebrate groups, such as dinosaurs. Documentation and quantification of architectural patterns across a whole bone, and across multiple bones, can provide much information on cancellous bone architectural patterns and variation across species. Additionally, this also lends itself to analysis of the musculoskeletal biomechanical factors involved in a direct, mechanistic fashion. On this premise, computed tomographic and image analysis techniques were used to describe and analyse the three-dimensional architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs for the first time. A comprehensive survey across many extant and extinct species is produced, identifying several patterns of similarity and contrast between groups. For instance, more stemward non-avian theropods (e.g. ceratosaurs and tyrannosaurids) exhibit cancellous bone architectures more comparable to that present in humans, whereas species more closely related to birds (e.g. paravians) exhibit architectural patterns bearing greater similarity to those of extant birds. Many of the observed patterns may be linked to particular aspects of locomotor biomechanics, such as the degree of hip or knee flexion during stance and gait. A further important observation is the abundance of markedly oblique trabeculae in the diaphyses of the femur and tibia of birds, which in large species produces spiralling patterns along the endosteal surface. Not only do these observations provide new insight into theropod anatomy and behaviour, they also provide the foundation for mechanistic testing of locomotor hypotheses via musculoskeletal biomechanical modelling.
Collapse
Affiliation(s)
- Peter J. Bishop
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
- Current affiliation: Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Scott A. Hocknull
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Andrew A. Farke
- Raymond M. Alf Museum of Paleontology at The Webb Schools, Claremont, CA, USA
| | - Belinda R. Beck
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Exercise and Human Performance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| | - Rod S. Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| | - David G. Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| |
Collapse
|
14
|
Hagey TJ, Harte S, Vickers M, Harmon LJ, Schwarzkopf L. There's more than one way to climb a tree: Limb length and microhabitat use in lizards with toe pads. PLoS One 2017; 12:e0184641. [PMID: 28953920 PMCID: PMC5617165 DOI: 10.1371/journal.pone.0184641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 08/28/2017] [Indexed: 11/29/2022] Open
Abstract
Ecomorphology links microhabitat and morphology. By comparing ecomorphological associations across clades, we can investigate the extent to which evolution can produce similar solutions in response to similar challenges. While Anolis lizards represent a well-studied example of repeated convergent evolution, very few studies have investigated the ecomorphology of geckos. Similar to anoles, gekkonid lizards have independently evolved adhesive toe pads and many species are scansorial. We quantified gecko and anole limb length and microhabitat use, finding that geckos tend to have shorter limbs than anoles. Combining these measurements with microhabitat observations of geckos in Queensland, Australia, we observed geckos using similar microhabitats as reported for anoles, but geckos with relatively longer limbs were using narrower perches, differing from patterns observed in anoles and other lizards. We also observed arboreal geckos with relatively shorter proximal limb segments as compared to rock-dwelling and terrestrial geckos, similar to patterns observed for other lizards. We conclude that although both geckos and anoles have adhesive pads and use similar microhabitats, their locomotor systems likely complement their adhesive pads in unique ways and result in different ecomorphological patterns, reinforcing the idea that species with convergent morphologies still have idiosyncratic characteristics due to their own separate evolutionary histories.
Collapse
Affiliation(s)
- Travis J. Hagey
- BEACON Center for Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - Scott Harte
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Mathew Vickers
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Biology and Climate Change, Commonwealth Scientific and Industrial Research Organization, Townsville, Queensland, Australia
| | - Luke J. Harmon
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Lin Schwarzkopf
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
15
|
Pelegrin N, Mesquita DO, Albinati P, Caldas FLS, de Queiroga Cavalcanti LB, Costa TB, Falico DA, Galdino JYA, Tucker DB, Garda AA. Extreme specialization to rocky habitats inTropiduruslizards from Brazil: Trade-offs between a fitted ecomorph and autoecology in a harsh environment. AUSTRAL ECOL 2017. [DOI: 10.1111/aec.12486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicolás Pelegrin
- Laboratorio de Ecología y Conservación de la Herpetofauna; Instituto de Diversidad y Ecología Animal (IDEA); CONICET-UNC and Centro de Zoología Aplicada; Facultad de Ciencias Exactas; Físicas y Naturales; Universidad Nacional de Córdoba; Rondeau 798 X5000AVP Córdoba Argentina
| | - Daniel Oliveira Mesquita
- Laboratório de Herpetologia; Departamento de Sistemática e Ecologia; Centro de Ciências Exatas e da Natureza; Universidade Federal da Paraíba Campus I; João Pessoa Paraiba Brazil
| | - Pâmela Albinati
- Laboratório de Herpetologia; Departamento de Sistemática e Ecologia; Centro de Ciências Exatas e da Natureza; Universidade Federal da Paraíba Campus I; João Pessoa Paraiba Brazil
| | - Francis Luiz Santos Caldas
- Laboratório de Herpetologia; Departamento de Sistemática e Ecologia; Centro de Ciências Exatas e da Natureza; Universidade Federal da Paraíba Campus I; João Pessoa Paraiba Brazil
| | - Lucas Barbosa de Queiroga Cavalcanti
- Laboratório de Herpetologia; Departamento de Sistemática e Ecologia; Centro de Ciências Exatas e da Natureza; Universidade Federal da Paraíba Campus I; João Pessoa Paraiba Brazil
| | - Tais Borges Costa
- Laboratório de Herpetologia; Departamento de Sistemática e Ecologia; Centro de Ciências Exatas e da Natureza; Universidade Federal da Paraíba Campus I; João Pessoa Paraiba Brazil
| | - Diego Alejandro Falico
- Centre for Proteome Analysis & Mass Spectrometry (CeProMa); University of Antwerp; Antwerpen Belgium
| | - Jéssica Yara A. Galdino
- Laboratório de Herpetologia; Departamento de Sistemática e Ecologia; Centro de Ciências Exatas e da Natureza; Universidade Federal da Paraíba Campus I; João Pessoa Paraiba Brazil
| | - Derek B. Tucker
- Department of Biology; University of West Florida; Pensacola Florida USA
| | - Adrian Antonio Garda
- Laboratório de Anfíbios e Répteis-LAR; Departamento de Botânica, Ecologia e Zoologia; Centro de Biociências; Universidade Federal do Rio Grande do Norte; Natal Rio Grande do Norte Brazil
| |
Collapse
|
16
|
Clemente CJ, Cooper CE, Withers PC, Freakley C, Singh S, Terrill P. The private life of echidnas: using accelerometry and GPS to examine field biomechanics and assess the ecological impact of a widespread, semi-fossorial monotreme. J Exp Biol 2016; 219:3271-3283. [DOI: 10.1242/jeb.143867] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/05/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The short-beaked echidna (Tachyglossus aculeatus) is a monotreme and therefore provides a unique combination of phylogenetic history, morphological differentiation and ecological specialisation for a mammal. The echidna has a unique appendicular skeleton, a highly specialised myrmecophagous lifestyle and a mode of locomotion that is neither typically mammalian nor reptilian, but has aspects of both lineages. We therefore were interested in the interactions of locomotor biomechanics, ecology and movements for wild, free-living short-beaked echidnas. To assess locomotion in its complex natural environment, we attached both GPS and accelerometer loggers to the back of echidnas in both spring and summer. We found that the locomotor biomechanics of echidnas is unique, with lower stride length and stride frequency than reported for similar-sized mammals. Speed modulation is primarily accomplished through changes in stride frequency, with a mean of 1.39 Hz and a maximum of 2.31 Hz. Daily activity period was linked to ambient air temperature, which restricted daytime activity during the hotter summer months. Echidnas had longer activity periods and longer digging bouts in spring compared with summer. In summer, echidnas had higher walking speeds than in spring, perhaps because of the shorter time suitable for activity. Echidnas spent, on average, 12% of their time digging, which indicates their potential to excavate up to 204 m3 of soil a year. This information highlights the important contribution towards ecosystem health, via bioturbation, of this widespread Australian monotreme.
Collapse
Affiliation(s)
- Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Christine E. Cooper
- Department of Environment and Agriculture, Curtin University, Perth, WA 6102, Australia
- Zoology, School of Animal Biology M092, University of Western Australia, Perth, WA 6009, Australia
| | - Philip C. Withers
- Department of Environment and Agriculture, Curtin University, Perth, WA 6102, Australia
- Zoology, School of Animal Biology M092, University of Western Australia, Perth, WA 6009, Australia
| | - Craig Freakley
- School of Information Technology and Electrical Engineering, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Surya Singh
- School of Information Technology and Electrical Engineering, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Philip Terrill
- School of Information Technology and Electrical Engineering, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
17
|
Dick TJM, Clemente CJ. How to build your dragon: scaling of muscle architecture from the world's smallest to the world's largest monitor lizard. Front Zool 2016; 13:8. [PMID: 26893606 PMCID: PMC4758084 DOI: 10.1186/s12983-016-0141-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background The functional design of skeletal muscles is shaped by conflicting selective pressures between support and propulsion, which becomes even more important as animals get larger. If larger animals were geometrically scaled up versions of smaller animals, increases in body size would cause an increase in musculoskeletal stress, a result of the greater scaling of mass in comparison to area. In large animals these stresses would come dangerously close to points of failure. By examining the architecture of 22 hindlimb muscles in 27 individuals from 9 species of varanid lizards ranging from the tiny 7.6 g Varanus brevicauda to the giant 40 kg Varanus komodoensis, we present a comprehensive dataset on the scaling of musculoskeletal architecture in monitor lizards (varanids), providing information about the phylogenetic constraints and adaptations of locomotor muscles in sprawling tetrapods. Results Scaling results for muscle mass, pennation and physiological cross-sectional area (PCSA), all suggest that larger varanids increase the relative force-generating capacity of femur adductors, knee flexors and ankle plantarflexors, with scaling exponents greater than geometric similarity predicts. Thus varanids mitigate the size-related increases in stress by increasing muscle mass and PCSA rather than adopting a more upright posture with size as is shown in other animals. As well as the scaling effects of muscle properties with body mass, the variation in muscle architecture with changes in hindlimb posture were also prominent. Within varanids, posture varies with habitat preference. Climbing lizards display a sprawling posture while terrestrial lizards display a more upright posture. Sprawling species required larger PCSAs and muscle masses in femur retractors, knee flexors, and ankle plantarflexors in order to support the body. Conclusions Both size and posture-related muscle changes all suggest an increased role in support over propulsion, leading to a decrease in locomotor performance which has previously been shown with increases in size. These estimates suggest the giant Pleistocene varanid lizard (Varanus megalania priscus) would likely not have been able to outrun early humans with which it co-habitated the Australian landmass with. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0141-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taylor J M Dick
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC Canada
| | - Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Brisbane, QLD Australia
| |
Collapse
|
18
|
Parker SE, McBrayer LD. The effects of multiple obstacles on the locomotor behavior and performance of a terrestrial lizard. J Exp Biol 2016; 219:1004-13. [DOI: 10.1242/jeb.120451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 01/20/2016] [Indexed: 11/20/2022]
Abstract
Negotiation of variable terrain is important for many small terrestrial vertebrates. Variation in the running surface due to obstacles (woody debris, vegetation, rocks) can alter escape paths and running performance. The ability to navigate obstacles likely influences survivorship via predator evasion success, and other key ecological tasks (finding mates, acquiring food). Earlier work established that running posture and sprint performance are altered when organisms face an obstacle, and yet studies involving multiple obstacles are limited. Indeed, some habitats are cluttered with obstacles, while others are not. For many species, obstacle density may be important in predator escape and/or colonization potential by conspecifics. This study examines how multiple obstacles influence running behavior and locomotor posture in lizards. We predict that an increasing number of obstacles will increase the frequency of pausing and decrease sprint velocity. Furthermore, bipedal running over multiple obstacles is predicted to maintain greater mean sprint velocity compared to quadrupedal running, thereby revealing a potential advantage of bipedalism. Lizards were filmed (300 fps) running through a racetrack with zero, one, or two obstacles. Bipedal running posture over one obstacle was significantly faster than quadrupedal posture. Bipedal running trials contained fewer total strides than quadrupedal ones. But as obstacle number increased, the number of bipedal strides decreased. Increasing obstacle number led to slower and more intermittent locomotion. Bipedalism provided clear advantages for one obstacle, but was not associated with further benefits on additional obstacles. Hence, bipedalism helps mitigate obstacle negotiation, but not when numerous obstacles are encountered in succession.
Collapse
Affiliation(s)
- Seth E. Parker
- Collections Manager, Louisiana State University Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge LA 70803, USA
| | - Lance D. McBrayer
- Department of Biology, Georgia Southern University, PO Box 8042-1, Statesboro, GA 30460, USA
| |
Collapse
|
19
|
Gomes V, Carretero MA, Kaliontzopoulou A. The relevance of morphology for habitat use and locomotion in two species of wall lizards. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2016. [DOI: 10.1016/j.actao.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Abstract
There is considerable inter-individual variability in self-selected intensity or running speed. Metabolic cost per distance has been recognized as a determinant of this personal choice. As biomechanical parameters have been connected to metabolic cost, and as different running patterns exist, we can question their possible determinant roles in self-selected speed. We examined the self-selected speed of 15 terrestrial and 16 aerial runners, with comparable characteristics, on a 400 m track and assessed biomechanical parameters and ratings of pleasure/displeasure. The results revealed that aerial runners choose greater speeds associated with shorter contact time, longer flight time, and higher leg stiffness than terrestrial runners. Pleasure was negatively correlated with contact time and positively with leg stiffness in aerial runners and was negatively correlated with flight time in terrestrial runners. We propose the existence of an optimization system allowing the connection of running patterns at running speeds, and feelings of pleasure or displeasure.
Collapse
Affiliation(s)
- Thibault Lussiana
- Research Unit EA4660, Culture Sport Health Society and Exercise Performance Health Innovation Platform, Bourgogne Franche-Comte University, Besançon 25000, France Volodalen Company, Research and Development Department, Chavéria 39270, France
| | - Cyrille Gindre
- Volodalen Company, Research and Development Department, Chavéria 39270, France Volodalen Suisse Company, Research and Development Department, Leysin 1854, Switzerland
| |
Collapse
|
21
|
Olberding JP, Herrel A, Higham TE, Garland T. Limb segment contributions to the evolution of hind limb length in phrynosomatid lizards. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeffrey P. Olberding
- Department of Integrative Biology; University of South Florida, 4202 E. Fowler Avenue; SCA110, Tampa FL 33620 USA
| | - Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité; Muséum National d’ Histoire Naturelle; Paris France
- Evolutionary Morphology of Vertebrates; Ghent University; K.L. Ledeganckstraat 35 B-9000 Gent Belgium
| | - Timothy E. Higham
- Department of Biology; University of California; 900 University Avenue Riverside CA 92521 USA
| | - Theodore Garland
- Department of Biology; University of California; 900 University Avenue Riverside CA 92521 USA
| |
Collapse
|
22
|
Nyakatura JA, Allen VR, Lauströer J, Andikfar A, Danczak M, Ullrich HJ, Hufenbach W, Martens T, Fischer MS. A Three-Dimensional Skeletal Reconstruction of the Stem Amniote Orobates pabsti (Diadectidae): Analyses of Body Mass, Centre of Mass Position, and Joint Mobility. PLoS One 2015; 10:e0137284. [PMID: 26355297 PMCID: PMC4565719 DOI: 10.1371/journal.pone.0137284] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/16/2015] [Indexed: 11/24/2022] Open
Abstract
Orobates pabsti, a basal diadectid from the lower Permian, is a key fossil for the understanding of early amniote evolution. Quantitative analysis of anatomical information suffers from fragmentation of fossil bones, plastic deformation due to diagenetic processes and fragile preservation within surrounding rock matrix, preventing further biomechanical investigation. Here we describe the steps taken to digitally reconstruct MNG 10181, the holotype specimen of Orobates pabsti, and subsequently use the digital reconstruction to assess body mass, position of the centre of mass in individual segments as well as the whole animal, and study joint mobility in the shoulder and hip joints. The shape of most fossil bone fragments could be recovered from micro-focus computed tomography scans. This also revealed structures that were hitherto hidden within the rock matrix. However, parts of the axial skeleton had to be modelled using relevant isolated bones from the same locality as templates. Based on the digital fossil, mass of MNG 10181 was estimated using a model of body shape that was varied within a plausible range to account for uncertainties of the dimension. In the mean estimate model the specimen had an estimated mass of circa 4 kg. Varying of the mass distribution amongst body segments further revealed that Orobates carried most of its weight on the hind limbs. Mostly unrestricted joint morphology further suggested that MNG 10181 was able to effectively generate propulsion with the pelvic limbs. The digital reconstruction is made available for future biomechanical studies.
Collapse
Affiliation(s)
- John A. Nyakatura
- AG Morphologie und Formengeschichte, Bild Wissen Gestaltung–ein interdisziplinäres Labor & Institut für Biologie, Humboldt-Universität, Berlin, Germany
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-University, Jena, Germany
- * E-mail:
| | - Vivian R. Allen
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-University, Jena, Germany
- Structure and Motion Laboratory, Royal Veterinary College, North Mymms, United Kingdom
| | - Jonas Lauströer
- Das Department Design, Hochschule für Angewandte Wissenschaft, Hamburg, Germany
| | - Amir Andikfar
- Das Department Design, Hochschule für Angewandte Wissenschaft, Hamburg, Germany
| | - Marek Danczak
- Institut für Leichtbau und Kunststofftechnik, Technical University, Dresden, Germany
| | - Hans-Jürgen Ullrich
- Institut für Leichtbau und Kunststofftechnik, Technical University, Dresden, Germany
| | - Werner Hufenbach
- Institut für Leichtbau und Kunststofftechnik, Technical University, Dresden, Germany
| | - Thomas Martens
- Museum der Natur, Stiftung Schloss Friedenstein, Gotha, Germany
| | - Martin S. Fischer
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
23
|
Higham TE, Measey GJ, Birn-Jeffery AV, Herrel A, Tolley KA. Functional divergence between morphs of a dwarf chameleon: differential locomotor kinematics in relation to habitat structure. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Timothy E. Higham
- Department of Biology; University of California; 900 University Avenue Riverside CA 92521 USA
| | - G. John Measey
- Centre for Invasion Biology; Department of Botany & Zoology; Stellenbosch University; Merriman Avenue Stellenbosch South Africa
| | | | - Anthony Herrel
- Département d'Ecologie et de Gestion de la Biodiversité; Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle; 55 rue Buffon 75005 Paris France
- Ghent University; Evolutionary Morphology of Vertebrates; K.L. Ledeganckstraat 35 B-9000 Gent Belgium
| | - Krystal A. Tolley
- Applied Biodiversity Research Division; South African National Biodiversity Institute; Claremont 7735 Cape Town South Africa
- Department of Botany & Zoology; Stellenbosch University; Merriman Avenue Stellenbosch South Africa
| |
Collapse
|
24
|
Tsai HP, Holliday CM. Articular soft tissue anatomy of the archosaur hip joint: Structural homology and functional implications. J Morphol 2014; 276:601-30. [DOI: 10.1002/jmor.20360] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/25/2014] [Accepted: 12/05/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Henry P. Tsai
- Department of Pathology and Anatomical Sciences; University of Missouri; Columbia Missouri 65212
| | - Casey M. Holliday
- Department of Pathology and Anatomical Sciences; University of Missouri; Columbia Missouri 65212
| |
Collapse
|
25
|
Baeckens S, Edwards S, Huyghe K, Van Damme R. Chemical signalling in lizards: an interspecific comparison of femoral pore numbers in Lacertidae. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12414] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simon Baeckens
- Department of Biology; Laboratory of Functional Morphology; University of Antwerp; Universiteitsplein 1 2610 Wilrijk Belgium
| | - Shelley Edwards
- Centre for Invasion Biology; Stellenbosch University; Private Bag X1 Matieland 7602 South Africa
- Applied Biodiversity Research Division; South African National Biodiversity Institute; Private Bag X7 Claremont 7735 Cape Town South Africa
| | - Katleen Huyghe
- Department of Biology; Laboratory of Functional Morphology; University of Antwerp; Universiteitsplein 1 2610 Wilrijk Belgium
| | - Raoul Van Damme
- Department of Biology; Laboratory of Functional Morphology; University of Antwerp; Universiteitsplein 1 2610 Wilrijk Belgium
| |
Collapse
|