1
|
Shen Y, Ding Z, Wang X, Mao Z, Huang Z, Chen B. Biomimetic Hydrofoil Propulsion: Harnessing the Propulsive Capabilities of Sea Turtles and Penguins for Robotics. Biomimetics (Basel) 2025; 10:272. [PMID: 40422102 DOI: 10.3390/biomimetics10050272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
This review synthesizes current research on hydrofoil-propelled robots inspired by the swimming mechanisms of sea turtles and penguins. It begins by summarizing the swimming kinematics of these organisms, highlighting their superior aquatic performance as the primary motivation for biomimetic design. Next, established analytical methods for characterizing hydrofoil locomotion patterns are presented, along with a clear delineation of the decoupled motion components exhibited by sea turtle flippers and penguin wings. Such decoupling provides a systematic framework for guiding the design of driving mechanisms. Building on this biomechanical foundation, the review critically examines recent advances in biomimetic flexible hydrofoils that enhance propulsion efficiency through three synergistic mechanisms to enhance thrust generation, while identifying key challenges in material durability and non-linear fluid-structure interactions. The review then surveys existing hydrofoil actuation systems, which commonly reproduce coupled motions with multiple degrees of freedom (DOFs). Finally, representative biomimetic robots are examined: sea turtle-inspired forelimbs typically incorporate three DOFs, whereas penguin-inspired wings usually offer two DOFs. By aligning robotic designs with the decoupled motion patterns of the source organisms, this review offers critical insights to advance the development of hydrofoil propulsion systems for enhanced aquatic performance.
Collapse
Affiliation(s)
- Yayi Shen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Yangtze River Delta Intelligent Manufacturing Innovation Center, Nanjing 210004, China
| | - Zheming Ding
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xin Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zebing Mao
- Department of Engineering Science and Mechanics, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Zhong Huang
- School of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Bai Chen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
2
|
Schachner ER, Lawson AB, Martinez A, Grand Pre CA, Sabottke C, Abou-Issa F, Echols S, Diaz RE, Moore AJ, Grenier JP, Hedrick BP, Spieler B. Perspectives on lung visualization: Three-dimensional anatomical modeling of computed and micro-computed tomographic data in comparative evolutionary morphology and medicine with applications for COVID-19. Anat Rec (Hoboken) 2025; 308:1118-1143. [PMID: 37528640 DOI: 10.1002/ar.25300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
The vertebrate respiratory system is challenging to study. The complex relationship between the lungs and adjacent tissues, the vast structural diversity of the respiratory system both within individuals and between taxa, its mobility (or immobility) and distensibility, and the difficulty of quantifying and visualizing functionally important internal negative spaces have all impeded descriptive, functional, and comparative research. As a result, there is a relative paucity of three-dimensional anatomical information on this organ system in all vertebrate groups (including humans) relative to other regions of the body. We present some of the challenges associated with evaluating and visualizing the vertebrate respiratory system using computed and micro-computed tomography and its subsequent digital segmentation. We discuss common mistakes to avoid when imaging deceased and live specimens and various methods for merging manual and threshold-based segmentation approaches to visualize pulmonary tissues across a broad range of vertebrate taxa, with a particular focus on sauropsids (reptiles and birds). We also address some of the recent work in comparative evolutionary morphology and medicine that have used these techniques to visualize respiratory tissues. Finally, we provide a clinical study on COVID-19 in humans in which we apply modeling methods to visualize and quantify pulmonary infection in the lungs of human patients.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Adam B Lawson
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Aracely Martinez
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Clinton A Grand Pre
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Carl Sabottke
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Farid Abou-Issa
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Scott Echols
- The Medical Center for birds, Oakley, California, USA
| | - Raul E Diaz
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - Andrew J Moore
- Department of Anatomical Sciences, Renaissance School of Medicine, Stony Brook University, New York, New York, USA
| | - John-Paul Grenier
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brandon P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Bradley Spieler
- Department of Radiology, University Medical Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Ponganis PJ, Williams CL, Scadeng M. Respiratory anatomy and physiology in diving penguins. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230422. [PMID: 40010382 PMCID: PMC11864836 DOI: 10.1098/rstb.2023.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 02/28/2025] Open
Abstract
The anatomy and function of the respiratory systems of penguins are reviewed in relation to gas exchange and minimization of the risks of pulmonary barotrauma, decompression sickness and nitrogen narcosis during dives. Topics include available lung morphology and morphometry, respiratory air volumes determined with different techniques, review of possible physiological and biomechanical mechanisms of baroprotection, calculations of baroprotection limits and review of air sac and arterial partial pressure of oxygen (PO2) profiles in relation to movement of air during breathing and during dives. Limits for baroprotection to 200, 400 and 600 m in Adélie, king and emperor penguins, respectively, would require complete transfer of air sac air and reductions in the combined tracheobronchial tree-parabronchial volume of 24% in Adélie, 53% in king penguins and 76% in emperor penguins. Air sac and arterial PO2 profiles at rest and during surface activity were consistent with unidirectional air flow through the lungs. During dives, PO2 profiles were more complex, but were consistent with compression of air sac air into the parabronchi and air capillaries with or without additional air mixing induced by potential differential air sac pressures generated by wing movements.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- P. J. Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - C. L. Williams
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, CA92106, USA
| | - M. Scadeng
- Department of Anatomy and Medical Imaging, Faculty of Health and Medical Sciences, University of Auckland, Auckland1142, New Zealand
- Center for Functional Magnetic Resonance Imaging, University of California, San Diego, La Jolla, CA92093, USA
| |
Collapse
|
4
|
Martinez A, Diaz Jr RE, Grand Pre CA, Hedrick BP, Schachner ER. The lungs of the finch: three-dimensional pulmonary anatomy of the zebra finch ( Taeniopygia castanotis). Philos Trans R Soc Lond B Biol Sci 2025; 380:20230420. [PMID: 40010384 PMCID: PMC12077219 DOI: 10.1098/rstb.2023.0420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 02/28/2025] Open
Abstract
The avian respiratory system has been an area of biological interest for centuries, with zebra finches (Taeniopygia castanotis) emerging in recent decades as a primary avian model organism popularized across numerous disciplines. The pulmonary system of birds is unique in that air moves unidirectionally through the gas-exchanging lung, and previous works have suggested anatomical constraints within the bronchial network that may be coupled to the inspiratory valving mechanism in Aves. We used µCT-based segmented models to visualize and describe the morphology of the zebra finch lower respiratory system and to examine intra- and interspecific differences of the bronchial tree with the phylogenetically and ecologically different African grey parrot (Psittacus erithacus). Here, we show that zebra finches have highly variable lung and air sac morphology within individuals but generally do not diverge from the anatomical bauplan previously described for passerines. Additionally the parabronchi in the zebra finch lung are arranged into isolated segments between secondary bronchi, which has not been described and may be coupled with airflow patterns in this species. Both zebra finches and African grey parrots show constrained interostial distances and robust, caudally directed third ventrobronchi that may play an unexplored role in the unidirectional airflow patterns of birds.This article is part of the theme issue 'Biology of the avian respiratory system: development, evolutionary morphology, function and clinical considerations'.
Collapse
Affiliation(s)
- Aracely Martinez
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Raul E. Diaz Jr
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA90032, USA
| | - Clinton A. Grand Pre
- Department of Anatomical Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY11794, USA
| | - Brandon P. Hedrick
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY14853, USA
| | - Emma R. Schachner
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL32608, USA
| |
Collapse
|
5
|
Abstract
Among vertebrates, birds undertake the longest, fastest and highest migrations of any taxonomic group, largely due to their unique cardiorespiratory system, which permits for very large rates of gas exchange. Managing resultant elevated production of reactive oxygen species, and thus oxidative stress, has meant that birds can largely avoid pathologies relating to major medical challenges that now probably account for the majority of global healthcare spending. Hypoxia underlies most critical illnesses faced by humans, but the avian cardiorespiratory system can supply far more oxygen per unit of time than any mammal. Birds have high circulating glucose levels, but have adaptations to cope with the elevated production of oxidative stress brought about by hyperglycaemia. Birds also avoid the inflammatory responses brought about by obesity in humans when they seasonally gain huge fat stores. Lastly, birds live four times longer than similarly sized mammals, with seasonal endogenous muscle hypertrophy, and some birds even increase telomere length with age. A new frontier of 'physiologging' is emerging, making use of technologies for medical use, but that provide novel parameters for better understanding the biomechanics, energetics and ecology of a range of species. These physiologging tools are likely to provide insight into avian physiology, biomechanics and ecology including their ability to spread disease, as well as each of the medical challenges detailed in this Commentary. By virtue of their physiological capacity, the study of avian physiology is a critical area for future discovery and research using applied and interdisciplinary areas of biomechanics, ecology and physiology.
Collapse
Affiliation(s)
- Lucy A. Hawkes
- University of Exeter, Faculty of Health and Life Sciences, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK
| |
Collapse
|
6
|
Masud MH, Dabnichki P. Biomechanical analysis of little penguins' underwater locomotion from the free-ranging dive data. Biol Open 2024; 13:bio060244. [PMID: 38639412 PMCID: PMC11139039 DOI: 10.1242/bio.060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Penguins are proficient swimmers, and their survival depends on their ability to catch prey. The diving behaviour of these fascinating birds should then minimize the associated energy cost. For the first time, the energy cost of penguin dives is computed from the free-ranging dive data, on the basis of an existing biomechanical model. Time-resolved acceleration and depth data collected for 300 dives of little penguins (Eudyptula minor) are specifically employed to compute the bird dive angles and swimming speeds, which are needed for the energy estimate. We find that the numerically obtained energy cost by using the free-ranging dive data is not far from the minimum cost predicted by the model. The outcome, therefore, supports the physical soundness of the chosen model; however, it also suggests that, for closer agreement, one should consider previously neglected effects, such as those due to water currents and those associated with motion unsteadiness. Additionally, from the free-ranging dive data, we calculate hydrodynamic forces and non-dimensional indicators of propulsion performance - Strouhal and Reynolds numbers. The obtained values further confirm that little penguins employ efficient propulsion mechanisms, in agreement with previous investigations.
Collapse
Affiliation(s)
- Mahadi Hasan Masud
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| | - Peter Dabnichki
- School of Engineering, RMIT University, Bundoora Campus, Melbourne, VIC,Australia3083
| |
Collapse
|
7
|
Costa DP, Favilla AB. Field physiology in the aquatic realm: ecological energetics and diving behavior provide context for elucidating patterns and deviations. J Exp Biol 2023; 226:jeb245832. [PMID: 37843467 DOI: 10.1242/jeb.245832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Comparative physiology has developed a rich understanding of the physiological adaptations of organisms, from microbes to megafauna. Despite extreme differences in size and a diversity of habitats, general patterns are observed in their physiological adaptations. Yet, many organisms deviate from the general patterns, providing an opportunity to understand the importance of ecology in determining the evolution of unusual adaptations. Aquatic air-breathing vertebrates provide unique study systems in which the interplay between ecology, physiology and behavior is most evident. They must perform breath-hold dives to obtain food underwater, which imposes a physiological constraint on their foraging time as they must resurface to breathe. This separation of two critical resources has led researchers to investigate these organisms' physiological adaptations and trade-offs. Addressing such questions on large marine animals is best done in the field, given the difficulty of replicating the environment of these animals in the lab. This Review examines the long history of research on diving physiology and behavior. We show how innovative technology and the careful selection of research animals have provided a holistic understanding of diving mammals' physiology, behavior and ecology. We explore the role of the aerobic diving limit, body size, oxygen stores, prey distribution and metabolism. We then identify gaps in our knowledge and suggest areas for future research, pointing out how this research will help conserve these unique animals.
Collapse
Affiliation(s)
- Daniel P Costa
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Arina B Favilla
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
8
|
Cole MR, Ware C, McHuron EA, Costa DP, Ponganis PJ, McDonald BI. Deep dives and high tissue density increase mean dive costs in California sea lions (Zalophus californianus). J Exp Biol 2023; 226:jeb246059. [PMID: 37345474 DOI: 10.1242/jeb.246059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Diving is central to the foraging strategies of many marine mammals and seabirds. Still, the effect of dive depth on foraging cost remains elusive because energy expenditure is difficult to measure at fine temporal scales in wild animals. We used depth and acceleration data from eight lactating California sea lions (Zalophus californianus) to model body density and investigate the effect of dive depth and tissue density on rates of energy expenditure. We calculated body density in 5 s intervals from the rate of gliding descent. We modeled body density across depth in each dive, revealing high tissue densities and diving lung volumes (DLVs). DLV increased with dive depth in four individuals. We used the buoyancy calculated from dive-specific body-density models and drag calculated from swim speed to estimate metabolic power and cost of transport in 5 s intervals during descents and ascents. Deeper dives required greater mean power for round-trip vertical transit, especially in individuals with higher tissue density. These trends likely follow from increased mean swim speed and buoyant hinderance that increasingly outweighs buoyant aid in deeper dives. This suggests that deep diving is either a 'high-cost, high-reward' strategy or an energetically expensive option to access prey when prey in shallow waters are limited, and that poor body condition may increase the energetic costs of deep diving. These results add to our mechanistic understanding of how foraging strategy and body condition affect energy expenditure in wild breath-hold divers.
Collapse
Affiliation(s)
- Mason R Cole
- Moss Landing Marine Laboratories, San Jose State University, 8272 Moss Landing Rd, Moss Landing, CA 95039, USA
| | - Colin Ware
- Center for Coastal and Ocean Mapping, University of New Hampshire, Durham, NH 03924, USA
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA 98105, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Paul J Ponganis
- Scripps Institution of Oceanography, University of California San Diego, Center for Marine Biodiversity and Biomedicine, 8655 Kennel Way, La Jolla, CA 92037, USA
| | - Birgitte I McDonald
- Moss Landing Marine Laboratories, San Jose State University, 8272 Moss Landing Rd, Moss Landing, CA 95039, USA
| |
Collapse
|
9
|
Lawson AB, Hedrick BP, Echols S, Schachner ER. Anatomy, variation, and asymmetry of the bronchial tree in the African grey parrot (Psittacus erithacus). J Morphol 2021; 282:701-719. [PMID: 33629391 DOI: 10.1002/jmor.21340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
The avian bronchial tree has a unique and elaborate architecture for the maintenance of unidirectional airflow. Gross descriptions of this bronchial arrangement have traditionally relied upon dissection and casts of the negative (air-filled) spaces. In this study, the bronchial trees of five deceased African grey parrots (Psittacus erithacus) were segmented from micro-computed tomography (μCT) scans into three-dimensional (3D) surface models, and then compared. Select metrics of the primary bronchi and major secondary branches in the μCT scans of 11 specimens were taken to assess left-right asymmetry and quantify gross lung structure. Analysis of the 3D surface models demonstrates variation in the number and distribution of secondary bronchi with consistent direct connections to specific respiratory air sacs. A single model of the parabronchi further reveals indirect connections to all but two of the nine total air sacs. Statistical analysis of the metrics show significant left-right asymmetry between the primary bronchi and the origins of the first four secondary bronchi (the ventrobronchi), consistently greater mean values for all right primary bronchus length metrics, and relatively high coefficients of variation for cross-sectional area metrics of the primary bronchi and secondary bronchi ostia. These findings suggest that the lengths of the primary bronchi distal to the ventrobronchi do not preserve lung symmetry, and that aerodynamic valving can functionally accommodate a wide range of bronchial proportions.
Collapse
Affiliation(s)
- Adam B Lawson
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Brandon P Hedrick
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Scott Echols
- The Medical Center for Birds, Oakley, California, USA
| | - Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
10
|
Williams CL, Czapanskiy MF, John JS, St Leger J, Scadeng M, Ponganis PJ. Cervical air sac oxygen profiles in diving emperor penguins: parabronchial ventilation and the respiratory oxygen store. J Exp Biol 2021; 224:jeb230219. [PMID: 33257430 DOI: 10.1242/jeb.230219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022]
Abstract
Some marine birds and mammals can perform dives of extraordinary duration and depth. Such dive performance is dependent on many factors, including total body oxygen (O2) stores. For diving penguins, the respiratory system (air sacs and lungs) constitutes 30-50% of the total body O2 store. To better understand the role and mechanism of parabronchial ventilation and O2 utilization in penguins both on the surface and during the dive, we examined air sac partial pressures of O2 (PO2 ) in emperor penguins (Aptenodytes forsteri) equipped with backpack PO2 recorders. Cervical air sac PO2 values at rest were lower than in other birds, while the cervical air sac to posterior thoracic air sac PO2 difference was larger. Pre-dive cervical air sac PO2 values were often greater than those at rest, but had a wide range and were not significantly different from those at rest. The maximum respiratory O2 store and total body O2 stores calculated with representative anterior and posterior air sac PO2 data did not differ from prior estimates. The mean calculated anterior air sac O2 depletion rate for dives up to 11 min was approximately one-tenth that of the posterior air sacs. Low cervical air sac PO2 values at rest may be secondary to a low ratio of parabronchial ventilation to parabronchial blood O2 extraction. During dives, overlap of simultaneously recorded cervical and posterior thoracic air sac PO2 profiles supported the concept of maintenance of parabronchial ventilation during a dive by air movement through the lungs.
Collapse
Affiliation(s)
- Cassondra L Williams
- National Marine Mammal Foundation, 2240 Shelter Island Dr. #200, San Diego, CA 92106, USA
| | - Max F Czapanskiy
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| | - Jason S John
- Center for Ocean Health, Long Marine Laboratory, University of California, Santa Cruz, 115 McAlister Way, Santa Cruz, CA 95060, USA
| | - Judy St Leger
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| | - Miriam Scadeng
- Department of Anatomy and Medical Imaging, Faculty of Health and Medical Sciences, University of Auckland, Auckland 1142, New Zealand
- Center for Functional Magnetic Resonance Imaging, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul J Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
11
|
Fahlman A, Sato K, Miller P. Improving estimates of diving lung volume in air-breathing marine vertebrates. ACTA ACUST UNITED AC 2020; 223:223/12/jeb216846. [PMID: 32587107 DOI: 10.1242/jeb.216846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The air volume in the respiratory system of marine tetrapods provides a store of O2 to fuel aerobic metabolism during dives; however, it can also be a liability, as the associated N2 can increase the risk of decompression sickness. In order to more fully understand the physiological limitations of different air-breathing marine vertebrates, it is therefore important to be able to accurately estimate the air volume in the respiratory system during diving. One method that has been used to do so is to calculate the air volume from glide phases - periods of movement during which no thrust is produced by the animal - which many species conduct during ascent periods, when gases are expanding owing to decreasing hydrostatic pressure. This method assumes that there is conservation of mass in the respiratory system, with volume changes only driven by pressure. In this Commentary, we use previously published data to argue that both the respiratory quotient and differences in tissue and blood gas solubility potentially alter the mass balance in the respiratory system throughout a dive. Therefore, near the end of a dive, the measured volume of gas at a given pressure may be 12-50% less than from the start of the dive; the actual difference will depend on the length of the dive, the cardiac output, the pulmonary shunt and the metabolic rate. Novel methods and improved understanding of diving physiology will be required to verify the size of the effects described here and to more accurately estimate the volume of gas inhaled at the start of a dive.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research Inc., Ottawa, ON, Canada, K2J 5E8 .,Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Patrick Miller
- SMRU (Sea Mammal Research Unit), University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
12
|
Scadeng M, McKenzie C, He W, Bartsch H, Dubowitz DJ, Stec D, St. Leger J. Morphology of the Amazonian Teleost Genus Arapaima Using Advanced 3D Imaging. Front Physiol 2020; 11:260. [PMID: 32395105 PMCID: PMC7197331 DOI: 10.3389/fphys.2020.00260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/06/2020] [Indexed: 11/13/2022] Open
Abstract
The arapaima is the largest of the extant air-breathing freshwater fishes. Their respiratory gas bladder is arguably the most striking of all the adaptations to living in the hypoxic waters of the Amazon basin, in which dissolved oxygen can reach 0 ppm (0 mg/l) at night. As obligatory air-breathers, arapaima have undergone extensive anatomical and physiological adaptations in almost every organ system. These changes were evaluated using magnetic resonance and computed tomography imaging, gross necropsy, and histology to create a comprehensive morphological assessment of this unique fish. Segmentation of advanced imaging data allowed for creation of anatomically accurate and quantitative 3D models of organs and their spatial relationships. The deflated gas bladder [1.96% body volume (BV)] runs the length of the coelomic cavity, and encompasses the kidneys (0.35% BV). It is compartmentalized by a highly vascularized webbing comprising of ediculae and inter-edicular septa lined with epithelium acting as a gas exchange surface analogous to a lung. Gills have reduced surface area, with severe blunting and broadening of the lamellae. The kidneys are not divided into separate regions, and have hematopoietic and excretory tissue interspersed throughout. The heart (0.21% BV) is encased in a thick layer of lipid rich tissue. Arapaima have an unusually large telencephalon (28.3% brain volume) for teleosts. The characteristics that allow arapaima to perfectly exploit their native environment also make them easy targets for overfishing. In addition, their habitat is at high risk from climate change and anthropogenic activities which are likely to result is fewer specimens living in the wild, or achieving their growth potential of up to 4.5 m in length.
Collapse
Affiliation(s)
- Miriam Scadeng
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | | | - Weston He
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- NOVA Southeastern University, Fort Lauderdale, FL, United States
| | - Hauke Bartsch
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
| | - David J. Dubowitz
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Dominik Stec
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Judy St. Leger
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
13
|
Kriesell HJ, Le Bohec C, Cerwenka AF, Hertel M, Robin JP, Ruthensteiner B, Gahr M, Aubin T, Düring DN. Vocal tract anatomy of king penguins: morphological traits of two-voiced sound production. Front Zool 2020; 17:5. [PMID: 32021638 PMCID: PMC6993382 DOI: 10.1186/s12983-020-0351-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/23/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The astonishing variety of sounds that birds can produce has been the subject of many studies aiming to identify the underlying anatomical and physical mechanisms of sound production. An interesting feature of some bird vocalisations is the simultaneous production of two different frequencies. While most work has been focusing on songbirds, much less is known about dual-sound production in non-passerines, although their sound production organ, the syrinx, would technically allow many of them to produce "two voices". Here, we focus on the king penguin, a colonial seabird whose calls consist of two fundamental frequency bands and their respective harmonics. The calls are produced during courtship and for partner and offspring reunions and encode the birds' identity. We dissected, μCT-scanned and analysed the vocal tracts of six adult king penguins from Possession Island, Crozet Archipelago. RESULTS King penguins possess a bronchial type syrinx that, similarly to the songbird's tracheobronchial syrinx, has two sets of vibratory tissues, and thus two separate sound sources. Left and right medial labium differ consistently in diameter between 0.5 and 3.2%, with no laterality between left and right side. The trachea has a conical shape, increasing in diameter from caudal to cranial by 16%. About 80% of the king penguins' trachea is medially divided by a septum consisting of soft elastic tissue (septum trachealis medialis). CONCLUSIONS The king penguins' vocal tract appears to be mainly adapted to the life in a noisy colony of a species that relies on individual vocal recognition. The extent between the two voices encoding for individuality seems morphologically dictated by the length difference between left and right medial labium. The septum trachealis medialis might support this extent and could therefore be an important anatomical feature that aids in the individual recognition process.
Collapse
Affiliation(s)
- Hannah Joy Kriesell
- Centre Scientifique de Monaco, Département de Biologie Polaire, 98000 Monte Carlo, MC Monaco
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
- Institut des NeuroSciences Paris-Saclay (Neuro-PSI), UMR 9197 (CNRS, Université Paris XI), Orsay, France
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Céline Le Bohec
- Centre Scientifique de Monaco, Département de Biologie Polaire, 98000 Monte Carlo, MC Monaco
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Alexander F. Cerwenka
- SNSB-ZSM Bavarian State Collection of Zoology, Section Evertebrata varia, Münchhausenstraße 21, 81247 Munich, Germany
| | - Moritz Hertel
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Jean-Patrice Robin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Bernhard Ruthensteiner
- SNSB-ZSM Bavarian State Collection of Zoology, Section Evertebrata varia, Münchhausenstraße 21, 81247 Munich, Germany
| | - Manfred Gahr
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Thierry Aubin
- Institut des NeuroSciences Paris-Saclay (Neuro-PSI), UMR 9197 (CNRS, Université Paris XI), Orsay, France
| | - Daniel Normen Düring
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Hermann-Sorensen H, Thometz NM, Woodie K, Dennison-Gibby S, Reichmuth C. In Vivo Measurements of Lung Volumes in Ringed Seals: Insights from Biomedical Imaging. J Exp Biol 2020:jeb.235507. [PMID: 34005800 DOI: 10.1242/jeb.235507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/11/2020] [Indexed: 11/20/2022]
Abstract
Marine mammals rely on oxygen stored in blood, muscle, and lungs to support breath-hold diving and foraging at sea. Here, we used biomedical imaging to examine lung oxygen stores and other key respiratory parameters in living ringed seals (Pusa hispida). Three-dimensional models created from computed tomography (CT) images were used to quantify total lung capacity (TLC), respiratory dead space, minimum air volume, and total body volume to improve assessments of lung oxygen storage capacity, scaling relationships, and buoyant force estimates. Results suggest that lung oxygen stores determined in vivo are smaller than those derived from postmortem measurements. We also demonstrate that-while established allometric relationships hold well for most pinnipeds-these relationships consistently overestimate TLC for the smallest phocid seal. Finally, measures of total body volume reveal differences in body density and net vertical forces in the water column that influence costs associated with diving and foraging in free-ranging seals.
Collapse
Affiliation(s)
- Holly Hermann-Sorensen
- University of California Santa Cruz. Department of Ocean Sciences, 115 McAllister Way, Santa Cruz CA 95060, USA
| | - Nicole M Thometz
- University of San Francisco, Department of Biology. 2130 Fulton Street, San Francisco, CA 94117, USA
- University of California Santa Cruz. Institute of Marine Sciences, 115 McAllister Way, Santa Cruz CA 95060, USA
| | - Kathleen Woodie
- Alaska SeaLife Center, 301 Railway Ave, Seward, AK 99664, USA
| | | | - Colleen Reichmuth
- Alaska SeaLife Center, 301 Railway Ave, Seward, AK 99664, USA
- University of California Santa Cruz. Institute of Marine Sciences, 115 McAllister Way, Santa Cruz CA 95060, USA
| |
Collapse
|
15
|
Thiebault A, Charrier I, Aubin T, Green DB, Pistorius PA. First evidence of underwater vocalisations in hunting penguins. PeerJ 2019; 7:e8240. [PMID: 31976165 PMCID: PMC6966993 DOI: 10.7717/peerj.8240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/19/2019] [Indexed: 12/02/2022] Open
Abstract
Seabirds are highly vocal on land where acoustic communication plays a crucial role in reproduction. Yet, seabirds spend most of their life at sea. They have developed a number of morphological, physiological and behavioural adaptations to forage in the marine environment. The use of acoustic signals at sea could potentially enhance seabirds’ foraging success, but remains largely unexplored. Penguins emit vocalisations from the sea surface when commuting, a behaviour possibly associated with group formation at sea. Still, they are unique in their exceptional diving abilities and feed entirely underwater. Other air-breathing marine predators that feed under water, like cetaceans, pinnipeds and marine turtles, are known to emit sound underwater, but such behaviour has not yet been described in seabirds. We aimed to assess the potential prevalence and diversity of vocalisations emitted underwater by penguins. We chose three study species from three different genera, and equipped foraging adults with video cameras with built-in microphones. We recorded a total of 203 underwater vocalisation from all three species during 4 h 43 min of underwater footage. Vocalisations were very short in duration (0.06 s on average), with a frequency of maximum amplitude averaging 998 Hz, 1097 Hz and 680 Hz for King, Gentoo and Macaroni penguins, respectively. All vocalisations were emitted during feeding dives and more than 50% of them were directly associated with hunting behaviour, preceeded by an acceleration (by 2.2 s on average) and/or followed by a prey capture attempt (after 0.12 s on average). The function of these vocalisations remain speculative. Although it seems to be related to hunting behaviour, these novel observations warrant further investigation.
Collapse
Affiliation(s)
- Andréa Thiebault
- DST/NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, Institute for Coastal and Marine Research, Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Isabelle Charrier
- CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Université Paris Sud, Orsay, France
| | - Thierry Aubin
- CNRS UMR 9197, Institut des Neurosciences Paris-Saclay, Université Paris Sud, Orsay, France
| | - David B Green
- DST/NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, Institute for Coastal and Marine Research, Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Pierre A Pistorius
- DST/NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, Institute for Coastal and Marine Research, Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
16
|
Enstipp MR, Bost CA, Le Bohec C, Bost C, Laesser R, Le Maho Y, Weimerskirch H, Handrich Y. The dive performance of immature king penguins following their annual molt suggests physiological constraints. J Exp Biol 2019; 222:222/20/jeb208900. [DOI: 10.1242/jeb.208900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Like all birds, penguins undergo periodic molt, during which they replace old feathers. However, unlike other birds, penguins replace their entire plumage within a short period while fasting ashore. During molt, king penguins (Aptenodytes patagonicus) lose half of their initial body mass, most importantly their insulating subcutaneous fat and half of their pectoral muscle mass. The latter might challenge their capacity to generate and sustain a sufficient mechanical power output to swim to distant food sources and propel themselves to great depth for successful prey capture. To investigate the effects of the annual molt fast on their dive/foraging performance, we studied various dive/foraging parameters and peripheral temperature patterns in immature king penguins across two molt cycles, after birds had spent their first and second year at sea, using implanted data-loggers. We found that the dive/foraging performance of immature king penguins was significantly reduced during post-molt foraging trips. Dive and bottom duration for a given depth were shorter during post-molt and post-dive surface interval duration was longer, reducing overall dive efficiency and underwater foraging time. We attribute this decline to the severe physiological changes that birds undergo during their annual molt. Peripheral temperature patterns differed greatly between pre- and post-molt trips, indicating the loss of the insulating subcutaneous fat layer during molt. Peripheral perfusion, as inferred from peripheral temperature, was restricted to short periods at night during pre-molt but occurred throughout extended periods during post-molt, reflecting the need to rapidly deposit an insulating fat layer during the latter period.
Collapse
Affiliation(s)
- Manfred R. Enstipp
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Charles-André Bost
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
- Centre Scientifique de Monaco, Département de Biologie Polaire, MC 98000, Monaco
| | - Caroline Bost
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Robin Laesser
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Yvon Le Maho
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
- Centre Scientifique de Monaco, Département de Biologie Polaire, MC 98000, Monaco
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé, CNRS, UMR 7372, 79360 Villiers en Bois, France
| | - Yves Handrich
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
17
|
Cieri RL. Pulmonary Smooth Muscle in Vertebrates: A Comparative Review of Structure and Function. Integr Comp Biol 2019; 59:10-28. [DOI: 10.1093/icb/icz002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Although the airways of vertebrates are diverse in shape, complexity, and function, they all contain visceral smooth muscle. The morphology, function, and innervation of this tissue in airways is reviewed in actinopterygians, lungfish, amphibians, non-avian reptiles, birds, and mammals. Smooth muscle was likely involved in tension regulation ancestrally, and may serve to assist lung emptying in fishes and aquatic amphibians, as well as maintain internal lung structure. In certain non-avian reptiles and anurans antagonistic smooth muscle fibers may contribute to intrapulmonary gas mixing. In mammals and birds, smooth muscle regulates airway caliber, and may be important in controlling the distribution of ventilation at rest and exercise, or during thermoregulatory and vocal hyperventilation. Airway smooth muscle is controlled by the autonomic nervous system: cranial cholinergic innervation generally causes excitation, cranial non-adrenergic, non-cholinergic innervation causes inhibition, and spinal adrenergic (SA) input causes species-specific, often heterogeneous contractions and relaxations.
Collapse
Affiliation(s)
- Robert L Cieri
- School of Biological Sciences, The University of Utah, 247 South 1400 East, 201 South Biology, Salt Lake City, UT 84112, USA
| |
Collapse
|
18
|
Mattern T, McPherson MD, Ellenberg U, van Heezik Y, Seddon PJ. High definition video loggers provide new insights into behaviour, physiology, and the oceanic habitat of a marine predator, the yellow-eyed penguin. PeerJ 2018; 6:e5459. [PMID: 30258706 PMCID: PMC6151119 DOI: 10.7717/peerj.5459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/24/2018] [Indexed: 11/24/2022] Open
Abstract
Camera loggers are increasingly used to examine behavioural aspects of free-ranging animals. However, often video loggers are deployed with a focus on specific behavioural traits utilizing small cameras with a limited field of view, poor light performance and video quality. Yet rapid developments in consumer electronics provide new devices with much improved visual data allowing a wider scope for studies employing this novel methodology. We developed a camera logger that records full HD video through a wide-angle lens, providing high resolution footage with a greater field of view than other camera loggers. The main goal was to assess the suitability of this type of camera for the analysis of various aspects of the foraging ecology of a marine predator, the yellow-eyed penguin in New Zealand. Frame-by-frame analysis allowed accurate timing of prey pursuits and time spent over certain seafloor types. The recorded video footage showed that prey species were associated with certain seafloor types, revealed different predator evasion strategies by benthic fishes, and highlighted varying energetic consequences for penguins pursuing certain types of prey. Other aspects that could be analysed were the timing of breathing intervals between dives and observe exhalation events during prey pursuits, a previously undescribed behaviour. Screen overlays facilitated analysis of flipper angles and beat frequencies throughout various stages of the dive cycle. Flipper movement analysis confirmed decreasing effort during descent phases as the bird gained depth, and that ascent was principally passive. Breathing episodes between dives were short (<1 s) while the majority of the time was devoted to subsurface scanning with a submerged head. Video data recorded on free-ranging animals not only provide a wealth of information recorded from a single deployment but also necessitate new approaches with regards to analysis of visual data. Here, we demonstrate the diversity of information that can be gleaned from video logger data, if devices with high video resolution and wide field of view are utilized.
Collapse
Affiliation(s)
- Thomas Mattern
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand.,Global Penguin Society, Puerto Madryn, Chubut, Argentina
| | | | - Ursula Ellenberg
- Global Penguin Society, Puerto Madryn, Chubut, Argentina.,Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | | | - Philipp J Seddon
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
19
|
Mattern T, McPherson MD, Ellenberg U, van Heezik Y, Seddon PJ. High definition video loggers provide new insights into behaviour, physiology, and the oceanic habitat of a marine predator, the yellow-eyed penguin. PeerJ 2018; 6:e5459. [PMID: 30258706 DOI: 10.7287/peerj.preprints.2765v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/24/2018] [Indexed: 05/27/2023] Open
Abstract
Camera loggers are increasingly used to examine behavioural aspects of free-ranging animals. However, often video loggers are deployed with a focus on specific behavioural traits utilizing small cameras with a limited field of view, poor light performance and video quality. Yet rapid developments in consumer electronics provide new devices with much improved visual data allowing a wider scope for studies employing this novel methodology. We developed a camera logger that records full HD video through a wide-angle lens, providing high resolution footage with a greater field of view than other camera loggers. The main goal was to assess the suitability of this type of camera for the analysis of various aspects of the foraging ecology of a marine predator, the yellow-eyed penguin in New Zealand. Frame-by-frame analysis allowed accurate timing of prey pursuits and time spent over certain seafloor types. The recorded video footage showed that prey species were associated with certain seafloor types, revealed different predator evasion strategies by benthic fishes, and highlighted varying energetic consequences for penguins pursuing certain types of prey. Other aspects that could be analysed were the timing of breathing intervals between dives and observe exhalation events during prey pursuits, a previously undescribed behaviour. Screen overlays facilitated analysis of flipper angles and beat frequencies throughout various stages of the dive cycle. Flipper movement analysis confirmed decreasing effort during descent phases as the bird gained depth, and that ascent was principally passive. Breathing episodes between dives were short (<1 s) while the majority of the time was devoted to subsurface scanning with a submerged head. Video data recorded on free-ranging animals not only provide a wealth of information recorded from a single deployment but also necessitate new approaches with regards to analysis of visual data. Here, we demonstrate the diversity of information that can be gleaned from video logger data, if devices with high video resolution and wide field of view are utilized.
Collapse
Affiliation(s)
- Thomas Mattern
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
- Global Penguin Society, Puerto Madryn, Chubut, Argentina
| | | | - Ursula Ellenberg
- Global Penguin Society, Puerto Madryn, Chubut, Argentina
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | | | - Philipp J Seddon
- Department of Zoology, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
20
|
Wrenn SM, Griswold ED, Uhl FE, Uriarte JJ, Park HE, Coffey AL, Dearborn JS, Ahlers BA, Deng B, Lam YW, Huston DR, Lee PC, Wagner DE, Weiss DJ. Avian lungs: A novel scaffold for lung bioengineering. PLoS One 2018; 13:e0198956. [PMID: 29949597 PMCID: PMC6021073 DOI: 10.1371/journal.pone.0198956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Allogeneic lung transplant is limited both by the shortage of available donor lungs and by the lack of suitable long-term lung assist devices to bridge patients to lung transplantation. Avian lungs have different structure and mechanics resulting in more efficient gas exchange than mammalian lungs. Decellularized avian lungs, recellularized with human lung cells, could therefore provide a powerful novel gas exchange unit for potential use in pulmonary therapeutics. To initially assess this in both small and large avian lung models, chicken (Gallus gallus domesticus) and emu (Dromaius novaehollandiae) lungs were decellularized using modifications of a detergent-based protocol, previously utilized with mammalian lungs. Light and electron microscopy, vascular and airway resistance, quantitation and gel analyses of residual DNA, and immunohistochemical and mass spectrometric analyses of remaining extracellular matrix (ECM) proteins demonstrated maintenance of lung structure, minimal residual DNA, and retention of major ECM proteins in the decellularized scaffolds. Seeding with human bronchial epithelial cells, human pulmonary vascular endothelial cells, human mesenchymal stromal cells, and human lung fibroblasts demonstrated initial cell attachment on decellularized avian lungs and growth over a 7-day period. These initial studies demonstrate that decellularized avian lungs may be a feasible approach for generating functional lung tissue for clinical therapeutics.
Collapse
Affiliation(s)
- Sean M. Wrenn
- Department of Surgery, University of Vermont, Burlington, VT, United States of America
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Ethan D. Griswold
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Rochester Institute of Technology, Rochester, NY, United States of America
| | - Franziska E. Uhl
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Juan J. Uriarte
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Heon E. Park
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Amy L. Coffey
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Jacob S. Dearborn
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Bethany A. Ahlers
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Bin Deng
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Dryver R. Huston
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Patrick C. Lee
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Darcy E. Wagner
- Comprehensive Pneumology Center, Ludwig Maximilians University Munich, Munich, Germany
- Department of Experimental Medical Science, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- * E-mail:
| |
Collapse
|
21
|
Zhu Y, Imamura M, Nikovski D, Keogh E. Introducing time series chains: a new primitive for time series data mining. Knowl Inf Syst 2018. [DOI: 10.1007/s10115-018-1224-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
York JM, Scadeng M, McCracken KG, Milsom WK. Respiratory mechanics and morphology of Tibetan and Andean high-altitude geese with divergent life histories. ACTA ACUST UNITED AC 2018; 221:jeb.170738. [PMID: 29180602 DOI: 10.1242/jeb.170738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
High-altitude bar-headed geese (Anser indicus) and Andean geese (Chloephaga melanoptera) have been shown to preferentially increase tidal volume over breathing frequency when increasing ventilation during exposure to hypoxia. Increasing tidal volume is a more effective breathing strategy but is also thought to be more mechanically and metabolically expensive. We asked whether there might be differences in the mechanics or morphology of the respiratory systems of high-altitude transient bar-headed geese and high-altitude resident Andean geese that could minimize the cost of breathing more deeply. We compared these two species with a low-altitude migratory species, the barnacle goose (Branta leucopsis). We ventilated anesthetized birds to measure mechanical properties of the respiratory system and used CT scans to quantify respiratory morphology. We found that the respiratory system of Andean geese was disproportionately larger than that of the other two species, allowing use of a deeper breathing strategy for the same energetic cost. The relative size of the respiratory system, especially the caudal air sacs, of bar-headed geese was also larger than that of barnacle geese. However, when normalized to respiratory system size, the mechanical cost of breathing did not differ significantly among these three species, indicating that deeper breathing is enabled by morphological but not mechanical differences between species. The metabolic cost of breathing was estimated to be <1% of basal metabolic rate at rest in normoxia. Because of differences in the magnitude of the ventilatory response, the cost of breathing was estimated to increase 7- to 10-fold in bar-headed and barnacle geese in severe hypoxia, but less than 1-fold in Andean geese exposed to the same low atmospheric PO2.
Collapse
Affiliation(s)
- Julia M York
- University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | - Miriam Scadeng
- University of California San Diego, Department of Radiology, Center for Functional MRI, 9500 Gilman Drive 0677, La Jolla, CA, USA 92093
| | - Kevin G McCracken
- University of Miami, Department of Biology, Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, and Human Genetics and Genomics - Miller School of Medicine, Coral Gables, FL, 33146, USA
| | - William K Milsom
- University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
23
|
Knight K. Air sacs insufficient for penguin pressure protection. J Exp Biol 2015. [DOI: 10.1242/jeb.121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|