1
|
Ware-Gilmore F, Jones MJ, Mejia AJ, Dennington NL, Audsley MD, Hall MD, Sgrò CM, Buckley T, Anand GS, Jose J, McGraw EA. Evolution and adaptation of dengue virus in response to high-temperature passaging in mosquito cells. Virus Evol 2025; 11:veaf016. [PMID: 40330315 PMCID: PMC12054504 DOI: 10.1093/ve/veaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/14/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
The incidence of arboviral diseases like dengue, chikungunya, and yellow fever continues to rise in association with the expanding geographic ranges of their vectors, Aedes aegypti and Aedes albopictus. The distribution of these vectors is believed to be driven in part by climate change and increasing urbanization. Arboviruses navigate a wide range of temperatures as they transition from ectothermic vectors (from 15°C to 35°C) to humans (37°C) and back again, but the role that temperature plays in driving the evolution of arboviruses remains largely unknown. Here, we passaged replicate dengue serotype-2 virus populations 10 times at either 26°C (Low) or 37°C (High) in C6/36 Aedes albopictus cells to explore the differences in adaptation to these thermal environments. We then deep-sequenced the resulting passaged dengue virus populations and tested their replicative fitness in an all-cross temperature regime. We also assessed the ability of the passaged viruses to replicate in the insect vector. While viruses from both thermal regimes accumulated substitutions, only those reared in the 37°C treatments exhibited nonsynonymous changes, including several in the E, or envelope protein, and multiple non-structural genes. Passaging at the higher temperature also led to reduced replicative ability at 26°C in both cells and mosquitoes. One of the mutations in the E gene involved the loss of a glycosylation site previously shown to reduce infectivity in the vector. These findings suggest that viruses selected for growth at higher ambient temperatures may experience tradeoffs between thermostability and replication in the vector. Such associations might also have implications for the suitability of virus transmission under a changing climate.
Collapse
Affiliation(s)
- Fhallon Ware-Gilmore
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew J Jones
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Austin J Mejia
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nina L Dennington
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle D Audsley
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Theresa Buckley
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ganesh S Anand
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joyce Jose
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth A McGraw
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Kirkpatrick W, Sauer E, Carroll R, Cohen J, Davis C, Fuhlendorf S, DuRant S. Critical reproductive behaviors in Scaled Quail and Northern Bobwhite are affected by thermal variability and mean temperature. J Therm Biol 2025; 127:104054. [PMID: 39832408 DOI: 10.1016/j.jtherbio.2025.104054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Animals can respond differently to shifting thermal variability versus thermal averages, both of which are changing due to climate warming. How these thermal variables affect parental care behaviors can reveal the ability of parents to modify their behaviors to meet the competing demands of their offspring's thermal needs and self-maintenance, which becomes critical in suboptimal thermal conditions. Further, the time frame used to examine the interplay between temperature and behavioral shifts (e.g., seasonal patterns in care vs. drivers of individual care decisions) can provide different information about the plasticity of parental care behavior. We investigated the relationship between thermal means, thermal variability, and incubation behaviors across multiple timescales in Scaled Quail and Northern Bobwhite. Both species decreased off-bout length during periods of high thermal variability, a novel finding among studies of avian parental behavior. Further relationships between thermal endpoints (mean vs. variation) and behavior differed depending on the temporal scale. For instance, total daily time spent off the nest was not influenced by daily average temperature, yet individual off-bout duration increased with increasing average temperature in the 2 h prior to the off-bout. These results provide evidence that thermal-behavioral relationships differ across scales and likely represent a bird's ability to modify their incubation strategy to rapidly respond to the immediate thermal environment (altering individual off-bout length based on temperature) to meet self-maintenance needs while resulting in a similar outcome for their nest (total daily off-bout time). However, longer off-bout durations during high temperature events can come with reproductive costs, sometimes resulting in acute offspring mortality when eggs or chicks experience lethal temperatures.
Collapse
Affiliation(s)
- William Kirkpatrick
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| | - Erin Sauer
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Rachel Carroll
- Jones College of Science, Engineering, and Technology, Murray State University, Murray, KY, USA
| | - Jeremy Cohen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Craig Davis
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA
| | - Samuel Fuhlendorf
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA
| | - Sarah DuRant
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
3
|
Couper LI, Nalukwago DU, Lyberger KP, Farner JE, Mordecai EA. How Much Warming Can Mosquito Vectors Tolerate? GLOBAL CHANGE BIOLOGY 2024; 30:e17610. [PMID: 39624973 PMCID: PMC11645978 DOI: 10.1111/gcb.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/16/2024]
Abstract
Climate warming is expected to substantially impact the global landscape of mosquito-borne disease, but these impacts will vary across disease systems and regions. Understanding which diseases, and where within their distributions, these impacts are most likely to occur is critical for preparing public health interventions. While research has centered on potential warming-driven expansions in vector transmission, less is known about the potential for vectors to experience warming-driven stress or even local extirpations. In conservation biology, species risk from climate warming is often quantified through vulnerability indices such as thermal safety margins-the difference between an organism's upper thermal limit and its habitat temperature. Here, we estimated thermal safety margins for 8 mosquito species that are the vectors of malaria, dengue, chikungunya, Zika, West Nile and other major arboviruses, across their known ranges to investigate which mosquitoes and regions are most and least vulnerable to climate warming. We find that several of the most medically important mosquito vector species, including Ae. aegypti and An. gambiae, have positive thermal safety margins across the majority of their ranges when realistic assumptions of mosquito behavioral thermoregulation are incorporated. On average, the lowest climate vulnerability, in terms of both the magnitude and duration of thermal safety, was just south of the equator and at northern temperate range edges, and the highest climate vulnerability was in the subtropics. Mosquitoes living in regions including the Middle East, the western Sahara, and southeastern Australia, which are largely comprised of desert and xeric shrubland biomes, have the highest climate vulnerability across vector species.
Collapse
Affiliation(s)
- Lisa I Couper
- Department of Biology, Stanford University, Stanford, California, USA
- Division of Environmental Health Sciences, University of California, Berkeley, California, USA
| | | | - Kelsey P Lyberger
- Department of Biology, Stanford University, Stanford, California, USA
| | - Johannah E Farner
- Department of Biology, Stanford University, Stanford, California, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Rutschmann A, Perry C, Le Galliard JF, Dupoué A, Lourdais O, Guillon M, Brusch G, Cote J, Richard M, Clobert J, Miles DB. Ecological responses of squamate reptiles to nocturnal warming. Biol Rev Camb Philos Soc 2024; 99:598-621. [PMID: 38062628 DOI: 10.1111/brv.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Nocturnal temperatures are increasing at a pace exceeding diurnal temperatures in most parts of the world. The role of warmer nocturnal temperatures in animal ecology has received scant attention and most studies focus on diurnal or daily descriptors of thermal environments' temporal trends. Yet, available evidence from plant and insect studies suggests that organisms can exhibit contrasting physiological responses to diurnal and nocturnal warming. Limiting studies to diurnal trends can thus result in incomplete and misleading interpretations of the ability of species to cope with global warming. Although they are expected to be impacted by warmer nocturnal temperatures, insufficient data are available regarding the night-time ecology of vertebrate ectotherms. Here, we illustrate the complex effects of nocturnal warming on squamate reptiles, a keystone group of vertebrate ectotherms. Our review includes discussion of diurnal and nocturnal ectotherms, but we mainly focus on diurnal species for which nocturnal warming affects a period dedicated to physiological recovery, and thus may perturb activity patterns and energy balance. We first summarise the physical consequences of nocturnal warming on habitats used by squamate reptiles. Second, we describe how such changes can alter the energy balance of diurnal species. We illustrate this with empirical data from the asp viper (Vipera aspis) and common wall lizard (Podarcis muralis), two diurnal species found throughout western Europe. Third, we make use of a mechanistic approach based on an energy-balance model to draw general conclusions about the effects of nocturnal temperatures. Fourth, we examine how warmer nights may affect squamates over their lifetime, with potential consequences on individual fitness and population dynamics. We review quantitative evidence for such lifetime effects using recent data derived from a range of studies on the European common lizard (Zootoca vivipara). Finally, we consider the broader eco-evolutionary ramifications of nocturnal warming and highlight several research questions that require future attention. Our work emphasises the importance of considering the joint influence of diurnal and nocturnal warming on the responses of vertebrate ectotherms to climate warming.
Collapse
Affiliation(s)
- Alexis Rutschmann
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Constant Perry
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Jean-François Le Galliard
- Sorbonne Université, CNRS, UMR 7618, IRD, INRAE, Institut d'écologie et des sciences de l'environnement (iEES Paris), Tours 44-45, 4 Place Jussieu, Paris, 75005, France
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, CNRS, UMS 3194, Centre de Recherche en écologie expérimentale et Prédictive (CEREEP-Ecotron IleDeFrance), 78 rue du château, Saint-Pierre-Lès-Nemours, 77140, France
| | - Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, 1625 Rte de Sainte-Anne, Plouzané, 29280, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372-Université de La Rochelle, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79630, France
- School of Life Sciences, Arizona State University, Life Sciences Center Building, 427E Tyler Mall, Tempe, AZ, 85281, USA
| | - Michaël Guillon
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372-Université de La Rochelle, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79630, France
- Cistude Nature, Chemin du Moulinat-33185, Le Haillan, France
| | - George Brusch
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA, 92096, USA
| | - Julien Cote
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Université Toulouse 3 Paul Sabatier, CNRS, IRD, 118 Rte de Narbonne, Toulouse, 31077, France
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Donald B Miles
- Department of Biological Sciences, 131 Life Science Building, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
5
|
Álvarez HA, Ruano F. Phenotypic plasticity of a winter-diapause mechanism copes with the effects of summer global warming in an ectothermic predator. Biol Lett 2024; 20:20230481. [PMID: 38229555 PMCID: PMC10792392 DOI: 10.1098/rsbl.2023.0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
To adapt to changes in temperature, animals tend to invest more energy in thermal tolerance to enhance survival, which can have simultaneous costs on plastic traits. Would a decrease in genetic variability, due to global warming, affect the ability of populations with existing metabolic regulatory mechanisms to cope with extreme temperatures? To address this question, we conducted a series of experiments based on the A1B scenario of global warming, assessing within-population genetic variance in (a) morphological traits, (b) metabolic rate allometries, and (c) survival of a winter-diapausing predator ectotherm. Our study focused on the lacewing species Chrysoperla pallida, using both exogamic and endogamic artificial genetic lines. We discovered that both lines use their winter-diapausing phenotype to adapt to summer extreme temperatures caused by extreme heating conditions, but the exogamic line is prone to express phenotypic plasticity in metabolic scaling, with a trade-off between body size and mandible size, i.e. larger individuals tended to develop smaller mandibles to better survive. These findings highlight the significance of substantial phenotypic plasticity and pre-existing metabolic regulatory mechanisms in enabling ectotherms to cope with potential extreme heating occurring in global warming.
Collapse
Affiliation(s)
- Hugo Alejandro Álvarez
- Department of Biogeography and Global Change, CSIC – National Museum of Natural Sciences, Madrid, Comunidad de Madrid, Spain
- Department of Zoology, University of Granada, Granada, Andalucía, Spain
| | - Francisca Ruano
- Department of Zoology, University of Granada, Granada, Andalucía, Spain
| |
Collapse
|
6
|
Chen J, Lewis OT. Experimental heatwaves facilitate invasion and alter species interactions and composition in a tropical host-parasitoid community. GLOBAL CHANGE BIOLOGY 2023; 29:6261-6275. [PMID: 37733768 DOI: 10.1111/gcb.16937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/22/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023]
Abstract
As mean temperatures increase and heatwaves become more frequent, species are expanding their distributions to colonise new habitats. The resulting novel species interactions will simultaneously shape the temperature-driven reorganization of resident communities. The interactive effects of climate change and climate change-facilitated invasion have rarely been studied in multi-trophic communities, and are likely to differ depending on the nature of the climatic driver (i.e., climate extremes or constant warming). We re-created under laboratory conditions a host-parasitoid community typical of high-elevation rainforest sites in Queensland, Australia, comprising four Drosophila species and two associated parasitoid species. We subjected these communities to an equivalent increase in average temperature in the form of periodic heatwaves or constant warming, in combination with an invasion treatment involving a novel host species from lower-elevation habitats. The two parasitoid species were sensitive to both warming and heatwaves, while the demographic responses of Drosophila species were highly idiosyncratic, reflecting the combined effects of thermal tolerance, parasitism, competition, and facilitation. After multiple generations, our heatwave treatment promoted the establishment of low-elevation species in upland communities. Invasion of the low-elevation species correlated negatively with the abundance of one of the parasitoid species, leading to cascading effects on its hosts and their competitors. Our study, therefore, reveals differing, sometimes contrasting, impacts of extreme temperatures and constant warming on community composition. It also highlights how the scale and direction of climate impacts could be further modified by invading species within a bi-trophic community network.
Collapse
Affiliation(s)
- Jinlin Chen
- Department of Biology, University of Oxford, Oxford, UK
| | - Owen T Lewis
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Wang BX, Hof AR, Matson KD, van Langevelde F, Ma CS. Climate change, host plant availability, and irrigation shape future region-specific distributions of the Sitobion grain aphid complex. PEST MANAGEMENT SCIENCE 2023; 79:2311-2324. [PMID: 36792531 DOI: 10.1002/ps.7409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 02/15/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Understanding where species occur using species distribution models has become fundamental to ecology. Although much attention has been paid to invasive species, questions about climate change related range shifts of widespread insect pests remain unanswered. Here, we incorporated bioclimatic factors and host plant availability into CLIMEX models to predict distributions under future climate scenarios of major cereal pests of the Sitobion grain aphid complex (Sitobion avenae, S. miscanthi, and S. akebiae). Additionally, we incorporated the application of irrigation in our models to explore the relevance of a frequently used management practice that may interact with effects of climate change of the pest distributions. RESULTS Our models predicted that the area potentially at high risk of outbreaks of the Sitobion grain aphid complex would increase from 41.3% to 53.3% of the global land mass. This expansion was underlined by regional shifts in both directions: expansion of risk areas in North America, Europe, most of Asia, and Oceania, and contraction of risk areas in South America, Africa, and Australia. In addition, we found that host plant availability limited the potential distribution of pests, while the application of irrigation expanded it. CONCLUSION Our study provides insights into potential risk areas of insect pests and how climate, host plant availability, and irrigation affect the occurrence of the Sitobion grain aphid complex. Our results thereby support agricultural policy makers, farmers, and other stakeholders in their development and application of management practices aimed at maximizing crop yields and minimizing economic losses. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bing-Xin Wang
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Anouschka R Hof
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Kevin D Matson
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Frank van Langevelde
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Chun-Sen Ma
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
| |
Collapse
|
8
|
Renault D, Leclerc C, Colleu M, Boutet A, Hotte H, Colinet H, Chown SL, Convey P. The rising threat of climate change for arthropods from Earth's cold regions: Taxonomic rather than native status drives species sensitivity. GLOBAL CHANGE BIOLOGY 2022; 28:5914-5927. [PMID: 35811569 PMCID: PMC9544941 DOI: 10.1111/gcb.16338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Polar and alpine regions are changing rapidly with global climate change. Yet, the impacts on biodiversity, especially on the invertebrate ectotherms which are dominant in these areas, remain poorly understood. Short-term extreme temperature events, which are growing in frequency, are expected to have profound impacts on high-latitude ectotherms, with native species being less resilient than their alien counterparts. Here, we examined in the laboratory the effects of short periodic exposures to thermal extremes on survival responses of seven native and two non-native invertebrates from the sub-Antarctic Islands. We found that survival of dipterans was significantly reduced under warming exposures, on average having median lethal times (LT50 ) of about 30 days in control conditions, which declined to about 20 days when exposed to daily short-term maxima of 24°C. Conversely, coleopterans were either not, or were less, affected by the climatic scenarios applied, with predicted LT50 as high as 65 days under the warmest condition (daily exposures at 28°C for 2 h). The native spider Myro kerguelensis was characterized by an intermediate sensitivity when subjected to short-term daily heat maxima. Our results unexpectedly revealed a taxonomic influence, with physiological sensitivity to heat differing between higher level taxa, but not between native and non-native species representing the same higher taxon. The survival of a non-native carabid beetle under the experimentally imposed conditions was very high, but similar to that of native beetles, while native and non-native flies also exhibited very similar sensitivity to warming. As dipterans are a major element of diversity of sub-Antarctic, Arctic and other cold ecosystems, such observations suggest that the increased occurrence of extreme, short-term, thermal events could lead to large-scale restructuring of key terrestrial ecosystem components both in ecosystems protected from and those exposed to the additional impacts of biological invasions.
Collapse
Affiliation(s)
- David Renault
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
| | - Camille Leclerc
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
- INRAE, Aix‐Marseille Université, UMR RECOVERAix‐en‐ProvenceFrance
| | - Marc‐Antoine Colleu
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
| | - Aude Boutet
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
| | - Hoel Hotte
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
- Nematology Unit, Plant Health LaboratoryANSESLe Rheu CedexFrance
| | - Hervé Colinet
- UMR 6553Univ Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)RennesFrance
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Peter Convey
- British Antarctic Survey, NERCCambridgeUK
- Department of ZoologyUniversity of JohannesburgAuckland ParkSouth Africa
| |
Collapse
|
9
|
To Every Thing There Is a Season: Phenology and Photoperiodic Control of Seasonal Development in the Invasive Caucasian Population of the Brown Marmorated Stink Bug, Halyomorpha halys (Hemiptera: Heteroptera: Pentatomidae). INSECTS 2022; 13:insects13070580. [PMID: 35886756 PMCID: PMC9323183 DOI: 10.3390/insects13070580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023]
Abstract
Studies on the phenology of local populations of invasive insects are necessary for monitoring and predicting their dispersion. We investigated the phenology of the brown marmorated stink bug, Halyomorpha halys, in the Sochi region (Krasnodar Territory, Russia) from 2018 to 2021 by regular field sampling and dissecting. The results of the sampling suggest that H. halys is at least partially bivoltine in the studied region: the main period of mass oviposition (by the overwintered females) occurs from June to July; the second, much shorter period of egg-laying (by females of the new, i.e., the first generation) occurs in August. Reproductively active individuals (i.e., females with developed ovaries and filled spermatheca and males with filled ectodermal sac) were recorded from the end of May to the beginning of September. Such a seasonal pattern correlated with day length: when the natural photoperiod decreased below the experimentally determined critical day length (15.0−15.5 h), the proportions of females with fully developed ovaries sharply dropped to zero. Both the rate of H. halys pre-adult development and the timing of the induction of winter adult diapause observed under natural conditions fully agreed with the earlier predictions that had been based on the results of laboratory experiments.
Collapse
|
10
|
Tian M, Zhang Y, Liu TX, Zhang SZ. Effects of periodically repeated high-temperature exposure on the immediate and subsequent fitness of different developmental stages of Propylaea japonica. PEST MANAGEMENT SCIENCE 2022; 78:1649-1656. [PMID: 34989107 DOI: 10.1002/ps.6784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Repeated extreme high temperature occurs frequently in summer. Propylaea japonica is a predominant predator in South-East Asia and has been considered as a successful natural enemy to control aphids. However, how repeated extreme high temperature affects the fitness of P. japonica remains unclear. This study evaluated the immediate and subsequent fitness of P. japonica when egg, larva, pupa, and adult were exposed to repeated high temperatures (39, 41, or 43 °C for 3 h exposure duration per day) during several days. RESULTS The effect of repeated high temperatures on P. japonica fitness was stage-specific: the egg stage was the most sensitive, the larval and pupal stages were moderately resistant and the adult stage was the most resistant to heat. Repeated high temperatures extended the immature developmental time and decreased the sex ratio of eggs treated with these temperatures, compared to control eggs. A temperature of 39 °C had no significant effect on the pre-oviposition period, oviposition period, fecundity (except stress pupa), or longevity compared with the control, but negative carry-over effects above 39 °C on subsequent stages were found. CONCLUSION Repeated high temperature for consecutive days not only had a significant effect on the immediate survival and developmental time, but also had deleterious effects on the subsequent development and performance of P. japonica. The present study provides valuable information for understanding and utilizing P. japonica to control aphids in challenging environments. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mi Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Yi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Acclimation Effects of Natural Daily Temperature Variation on Longevity, Fecundity, and Thermal Tolerance of the Diamondback Moth (Plutella xylostella). INSECTS 2022; 13:insects13040309. [PMID: 35447751 PMCID: PMC9025151 DOI: 10.3390/insects13040309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Diurnal, monthly, or seasonal temperatures can fluctuate substantially. Daily temperature amplitudes (DTAs) can significantly impact the traits of insects but there is limited evidence from the natural environment. Therefore, we studied the acclimation effects of DTA on the longevity, total fecundity, early fecundity, and thermal tolerance of adult diamondback moths (Plutella xylostella) under environmental conditions. The longevity, total fecundity, early fecundity, and heat thermal tolerance of adults significantly changed under different DTAs. These findings highlight the effects of DTA on the acclimation response in the P.xylostella phenotype, and DTA should be incorporated into prediction models for assessing insect populations and the effects of climate change. Abstract Daily temperature amplitudes (DTAs) significantly affect the ecological and physiological traits of insects. Most studies in this field are based on laboratory experiments, while there is limited research on the effects of changes in DTA on insect phenotypic plasticity under natural conditions. Therefore, we studied the acclimation effects of DTA on the longevity, total fecundity, early fecundity, and the thermal tolerance of adult diamondback moths (Plutella xylostella L.) under naturally occurring environmental conditions. As DTAs increased, male longevity and total fecundity decreased, and early fecundity increased. An increase in DTA was significantly associated with the increased heat coma temperature (CTmax) of both males and females, but had no significant effect on their cold coma temperature (CTmin). Our findings highlight the effects of DTA on the acclimation response of P. xylostella and emphasize the importance of considering DTA in predicting models for assessing insect populations and the effects of climate change.
Collapse
|
12
|
Moore ME, Hill CA, Kingsolver JG. Developmental timing of extreme temperature events (heat waves) disrupts host-parasitoid interactions. Ecol Evol 2022; 12:e8618. [PMID: 35342573 PMCID: PMC8932226 DOI: 10.1002/ece3.8618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/26/2021] [Indexed: 12/24/2022] Open
Abstract
When thermal tolerances differ between interacting species, extreme temperature events (heat waves) will alter the ecological outcomes. The parasitoid wasp Cotesia congregata suffers high mortality when reared throughout development at temperatures that are nonstressful for its host, Manduca sexta. However, the effects of short-term heat stress during parasitoid development are unknown in this host-parasitoid system.Here, we investigate how duration of exposure, daily maximum temperature, and the developmental timing of heat waves impact the performance of C. congregata and its host¸ M. sexta. We find that the developmental timing of short-term heat waves strongly determines parasitoid and host outcomes.Heat waves during parasitoid embryonic development resulted in complete wasp mortality and the production of giant, long-lived hosts. Heat waves during the 1st-instar had little effect on wasp success, whereas heat waves during the parasitoid's nutritionally and hormonally critical 2nd instar greatly reduced wasp emergence and eclosion. The temperature and duration of heat waves experienced early in development determined what proportion of hosts had complete parasitoid mortality and abnormal phenotypes.Our results suggest that the timing of extreme temperature events will be crucial to determining the ecological impacts on this host-parasitoid system. Discrepancies in thermal tolerance between interacting species and across development will have important ramifications on ecosystem responses to climate change.
Collapse
|
13
|
Majeed MZ, Sayed S, Bo Z, Raza A, Ma CS. Bacterial Symbionts Confer Thermal Tolerance to Cereal Aphids Rhopalosiphum padi and Sitobion avenae. INSECTS 2022; 13:insects13030231. [PMID: 35323529 PMCID: PMC8949882 DOI: 10.3390/insects13030231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary This study assesses the putative association between the chronic and acute thermal tolerance of cereal aphids Rhopalosiphum padi (L.) and Sitobion avenae (F.) and the abundance of their bacterial symbionts. Thermal tolerance indices were determined for 5-day-old apterous aphid individuals and were associated with the aphid-specific and total bacterial symbionts’ gene abundance (copy numbers). The results show a significantly higher bacterial symbionts’ gene abundance in temperature-tolerant aphid individuals than the susceptible ones for both aphid species. Moreover, the gene abundance of total (16S rRNA) bacteria and most of the aphid-specific bacterial symbionts for both cereal aphid species were significantly and positively associated with their critical thermal maxima values. Overall, the findings of the study suggest the potential role of the bacterial symbionts of aphids in conferring thermal tolerance to their hosts. Abstract High-temperature events are evidenced to exert significant influence on the population performance and thermal biology of insects, such as aphids. However, it is not yet clear whether the bacterial symbionts of insects mediate the thermal tolerance traits of their hosts. This study is intended to assess the putative association among the chronic and acute thermal tolerance of two cereal aphid species, Rhopalosiphum padi (L.) and Sitobion avenae (F.), and the abundance of their bacterial symbionts. The clones of aphids were collected randomly from different fields of wheat crops and were maintained under laboratory conditions. Basal and acclimated CTmax and chronic thermal tolerance indices were measured for 5-day-old apterous aphid individuals and the abundance (gene copy numbers) of aphid-specific and total (16S rRNA) bacterial symbionts were determined using real-time RT-qPCR. The results reveal that R. padi individuals were more temperature tolerant under chronic exposure to 31 °C and also exhibited about 1.0 °C higher acclimated and basal CTmax values than those of S. avenae. Moreover, a significantly higher bacterial symbionts’ gene abundance was recorded in temperature-tolerant aphid individuals than the susceptible ones for both aphid species. Although total bacterial (16S rRNA) abundance per aphid was higher in S. avenae than R. padi, the gene abundance of aphid-specific bacterial symbionts was nearly alike for both of the aphid species. Nevertheless, basal and acclimated CTmax values were positively and significantly associated with the gene abundance of total symbiont density, Buchnera aphidicola, Serratia symbiotica, Hamilton defensa, Regiella insecticola and Spiroplasma spp. for R. padi, and with the total symbiont density, total bacteria (16S rRNA) and with all aphid-specific bacterial symbionts (except Spiroplasma spp.) for S. avenae. The overall study results corroborate the potential role of the bacterial symbionts of aphids in conferring thermal tolerance to their hosts.
Collapse
Affiliation(s)
- Muhammad Zeeshan Majeed
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Climate Change Biology Research Group, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (M.Z.M.); (C.-S.M.)
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Zhang Bo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Climate Change Biology Research Group, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Ahmed Raza
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Cereal Fungal Diseases Research Group, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Plant Pathology, Sub-Campus Depalpur, University of Agriculture, Okara 56300, Pakistan
| | - Chun-Sen Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Climate Change Biology Research Group, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (M.Z.M.); (C.-S.M.)
| |
Collapse
|
14
|
Gajewski Z, Stevenson LA, Pike DA, Roznik EA, Alford RA, Johnson LR. Predicting the growth of the amphibian chytrid fungus in varying temperature environments. Ecol Evol 2021; 11:17920-17931. [PMID: 35003647 PMCID: PMC8717292 DOI: 10.1002/ece3.8379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022] Open
Abstract
Environmental temperature is a crucial abiotic factor that influences the success of ectothermic organisms, including hosts and pathogens in disease systems. One example is the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), which has led to widespread amphibian population declines. Understanding its thermal ecology is essential to effectively predict outbreaks. Studies that examine the impact of temperature on hosts and pathogens often do so in controlled constant temperatures. Although varying temperature experiments are becoming increasingly common, it is unrealistic to test every temperature scenario. Thus, reliable methods that use constant temperature data to predict performance in varying temperatures are needed. In this study, we tested whether we could accurately predict Bd growth in three varying temperature regimes, using a Bayesian hierarchical model fit with constant temperature Bd growth data. We fit the Bayesian hierarchical model five times, each time changing the thermal performance curve (TPC) used to constrain the logistic growth rate to determine how TPCs influence the predictions. We then validated the model predictions using Bd growth data collected from the three tested varying temperature regimes. Although all TPCs overpredicted Bd growth in the varying temperature regimes, some functional forms performed better than others. Varying temperature impacts on disease systems are still not well understood and improving our understanding and methodologies to predict these effects could provide insights into disease systems and help conservation efforts.
Collapse
Affiliation(s)
- Zachary Gajewski
- Department of Biological ScienceVirginia TechBlacksburgVirginiaUSA
- Department of StatisticsVirginia TechBlacksburgVirginiaUSA
| | - Lisa A. Stevenson
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - David A. Pike
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - Elizabeth A. Roznik
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
- North Carolina ZooAsheboroNorth CarolinaUSA
| | - Ross A. Alford
- College of Science and EngineeringJames Cook UniversityTownsvilleQldAustralia
| | - Leah R. Johnson
- Department of Biological ScienceVirginia TechBlacksburgVirginiaUSA
- Department of StatisticsVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
15
|
Iltis C, Tougeron K, Hance T, Louâpre P, Foray V. A perspective on insect-microbe holobionts facing thermal fluctuations in a climate-change context. Environ Microbiol 2021; 24:18-29. [PMID: 34713541 DOI: 10.1111/1462-2920.15826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Temperature influences the ecology and evolution of insects and their symbionts by impacting each partner independently and their interactions, considering the holobiont as a primary unit of selection. There are sound data about the responses of these partnerships to constant temperatures and sporadic thermal stress (mostly heat shock). However, the current understanding of the thermal ecology of insect-microbe holobionts remains patchy because the complex thermal fluctuations (at different spatial and temporal scales) experienced by these organisms in nature have often been overlooked experimentally. This may drastically constrain our ability to predict the fate of mutualistic interactions under climate change, which will alter both mean temperatures and thermal variability. Here, we tackle down these issues by focusing on the effects of temperature fluctuations on the evolutionary ecology of insect-microbe holobionts. We propose potentially worth-investigating research avenues to (i) evaluate the relevance of theoretical concepts used to predict the biological impacts of temperature fluctuations when applied to holobionts; (ii) acknowledge the plastic (behavioural thermoregulation, physiological acclimation) and genetic responses (evolution) expressed by holobionts in fluctuating thermal environments; and (iii) explore the potential impacts of previously unconsidered patterns of temperature fluctuations on the outcomes and the dynamic of these insect-microbe associations.
Collapse
Affiliation(s)
- Corentin Iltis
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium
| | - Kévin Tougeron
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium.,UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, Amiens, 80039, France
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Center, Université catholique de Louvain, Croix du Sud 4-5, Louvain-la-Neuve, 1348, Belgium
| | - Philippe Louâpre
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, Dijon, 21000, France
| | - Vincent Foray
- UMR CNRS 7261 Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc Grandmont, Tours, 37200, France
| |
Collapse
|
16
|
Cao JY, Xing K, Zhao F. Complex delayed and transgenerational effects driven by the interaction of heat and insecticide in the maternal generation of the wheat aphid, Sitobion avenae. PEST MANAGEMENT SCIENCE 2021; 77:4453-4461. [PMID: 34002463 DOI: 10.1002/ps.6480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Experience of an earlier environment plays an important role in the induction of delayed and even intergenerational phenotypes of an organism. Evidence suggests that rapid adaptation to an environmental stressor can change the performance of organisms, and even enable them to deal with other stressors. The goal of this study was to determine the effects of adult imidacloprid exposure on life-history traits within and between generations of the cereal aphid, Sitobion avenae, under three developmental conditions: constant temperature, 22°C; a low-intensity thermal condition, 22 + 34°C for 2 h per day; and a high-intensity thermal condition, 22 + 38°C for 2 h per day. RESULTS Early thermal experience not only changed the tolerance of S. avenae to the insecticide, imidacloprid, but also caused adults to incur fitness costs: the higher the heat intensity, the higher the costs. Negative transgenerational impacts of combined heat and insecticide stressors were limited to the developmental stage, whereas positive stimulation of heat intensity was observed during the adult stage. Overall, nymphal thermal experience exacerbated the detrimental effects of adult insecticidal exposure on the intrinsic rate of population increase in the maternal generation, but stimulated a net reproductive rate in the succeeding offspring generation. CONCLUSION These findings underpin the importance of considering the experience of the early developmental environment, but also enhance our understanding of the transgenerational effects of combined thermal and insecticide stressors on the population fate of S. avenae. They also help to assess the efficacy of chemical control in a warming world. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun-Yu Cao
- Department of Life Science, Lvliang University, Lvliang, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Agroecosystem National Observation and Research Station, Taiyuan, China
| | - Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Agroecosystem National Observation and Research Station, Taiyuan, China
| |
Collapse
|
17
|
Ma G, Bai C, Rudolf VHW, Ma C. Night warming alters mean warming effects on predator–prey interactions by modifying predator demographics and interaction strengths. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gang Ma
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| | - Chun‐Ming Bai
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
18
|
Rutschmann A, Dupoué A, Miles DB, Megía-Palma R, Lauden C, Richard M, Badiane A, Rozen-Rechels D, Brevet M, Blaimont P, Meylan S, Clobert J, Le Galliard JF. Intense nocturnal warming alters growth strategies, colouration and parasite load in a diurnal lizard. J Anim Ecol 2021; 90:1864-1877. [PMID: 33884616 DOI: 10.1111/1365-2656.13502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
In the past decades, nocturnal temperatures have been playing a disproportionate role in the global warming of the planet. Yet, they remain a neglected factor in studies assessing the impact of global warming on natural populations. Here, we question whether an intense augmentation of nocturnal temperatures is beneficial or deleterious to ectotherms. Physiological performance is influenced by thermal conditions in ectotherms and an increase in temperature by only 2°C is sufficient to induce a disproportionate increase in metabolic expenditure. Warmer nights may expand ectotherms' species thermal niche and open new opportunities for prolonged activities and improve foraging efficiency. However, increased activity may also have deleterious effects on energy balance if exposure to warmer nights reduces resting periods and elevates resting metabolic rate. We assessed whether warmer nights affected an individual's growth, dorsal skin colouration, thermoregulation behaviour, oxidative stress status and parasite load by exposing yearling common lizards (Zootoca vivipara) from four populations to either ambient or high nocturnal temperatures for approximately 5 weeks. Warmer nocturnal temperatures increased the prevalence of ectoparasitic infestation and altered allocation of resources towards structural growth rather than storage. We found no change in markers for oxidative stress. The thermal treatment did not influence thermal preferences, but influenced dorsal skin brightness and luminance, in line with a predicted acclimation response in colder environments to enhance heat gain from solar radiation. Altogether, our results highlight the importance of considering nocturnal warming as an independent factor affecting ectotherms' life history in the context of global climate change. .
Collapse
Affiliation(s)
- Alexis Rutschmann
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Andréaz Dupoué
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France
| | - Donald B Miles
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France.,Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Rodrigo Megía-Palma
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Vairão, Portugal.,School of Pharmacy, Department of Biomedicine and Biotechnology, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Clémence Lauden
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | - Murielle Richard
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | - Arnaud Badiane
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France
| | - David Rozen-Rechels
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France.,Centre d'Études Biologiques de Chizé, CNRS, La Rochelle Université, Villiers-en-Bois, France
| | - Mathieu Brevet
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | | | - Sandrine Meylan
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France
| | - Jean Clobert
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | - Jean-François Le Galliard
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France.,Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron Ile De France), Département de Biologie, Ecole Normale Supérieure, CNRS, PSL University, Saint-Pierre-lès-Nemours, France
| |
Collapse
|
19
|
Ma G, Hoffmann AA, Ma CS. Are extreme high temperatures at low or high latitudes more likely to inhibit the population growth of a globally distributed aphid? J Therm Biol 2021; 98:102936. [PMID: 34016358 DOI: 10.1016/j.jtherbio.2021.102936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/22/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
Although climate warming can increase both mean temperature and its variability, it is often the effects of climate warming on short periods of extreme temperatures that are expected to have particularly large physiological and ecological consequences. Understanding the vulnerability of organisms at various latitudes to climate extremes is thus critical for understanding warming effects on regional biodiversity conservation and ecosystem management. While previous studies have shown that thermal responses depend on temperature regimes that organisms have previously experienced, this issue has not been considered much when comparing the effects of temperature extremes at different latitudes. To fill this gap, here we manipulated different combinations of amplitude and duration of daily high temperature extremes to simulate conditions at different latitudes. We tested the effects of those regimes on life-history traits and fitness of a globally-distributed aphid species, Rhopalosiphum padi. We compared our results with previous studies to better understand the extent to which these regimes affect conclusions based on comparisons under different mean temperatures. As a consequence of asymmetrical thermal performance curves, we hypothesized that the temperature regimes with higher daily maximum temperatures at higher latitudes would cause strong negative effects. Our results showed that these regimes with thermal extremes caused substantial decreases in life-history traits and fitness relative to the predictions from different mean temperatures. Specifically, the regime with higher daily maximum temperature reflecting a higher mid-latitude location had larger impacts on development, reproduction and population fitness than the regime representing a lower mid-latitude location. These findings have implications for understanding the vulnerability of organisms across latitudes to increasingly frequent extreme heat events under ongoing climate warming.
Collapse
Affiliation(s)
- Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria, Australia.
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
20
|
Kingsolver JG, Moore ME, Augustine KE, Hill CA. Responses of Manduca sexta larvae to heat waves. J Exp Biol 2021; 224:238099. [PMID: 34424973 DOI: 10.1242/jeb.236505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/16/2021] [Indexed: 01/01/2023]
Abstract
Climate change is increasing the frequency of heat waves and other extreme weather events experienced by organisms. How does the number and developmental timing of heat waves affect survival, growth and development of insects? Do heat waves early in development alter performance later in development? We addressed these questions using experimental heat waves with larvae of the tobacco hornworm, Manduca sexta. The experiments used diurnally fluctuating temperature treatments differing in the number (0-3) and developmental timing (early, middle and/or late in larval development) of heat waves, in which a single heat wave involved three consecutive days with a daily maximum temperature of 42°C. Survival to pupation declined with increasing number of heat waves. Multiple (but not single) heat waves significantly reduced development time and pupal mass; the best models for the data indicated that both the number and developmental timing of heat waves affected performance. In addition, heat waves earlier in development significantly reduced growth and development rates later in larval development. Our results illustrate how the frequency and developmental timing of sublethal heat waves can have important consequences for life history traits in insects.
Collapse
Affiliation(s)
- Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - M Elizabeth Moore
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kate E Augustine
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christina A Hill
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Ma CS, Ma G, Pincebourde S. Survive a Warming Climate: Insect Responses to Extreme High Temperatures. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:163-184. [PMID: 32870704 DOI: 10.1146/annurev-ento-041520-074454] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Global change includes a substantial increase in the frequency and intensity of extreme high temperatures (EHTs), which influence insects at almost all levels. The number of studies showing the ecological importance of EHTs has risen in recent years, but the knowledge is rather dispersed in the contemporary literature. In this article, we review the biological and ecological effects of EHTs actually experienced in the field, i.e., when coupled to fluctuating thermal regimes. First, we characterize EHTs in the field. Then, we summarize the impacts of EHTs on insects at various levels and the processes allowing insects to buffer EHTs. Finally, we argue that the mechanisms leading to positive or negative impacts of EHTs on insects can only be resolved from integrative approaches considering natural thermal regimes. Thermal extremes, perhaps more than the gradual increase in mean temperature, drive insect responses to climate change, with crucial impacts on pest management and biodiversity conservation.
Collapse
Affiliation(s)
- Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France;
| |
Collapse
|
22
|
Leins JA, Banitz T, Grimm V, Drechsler M. High-resolution PVA along large environmental gradients to model the combined effects of climate change and land use timing: lessons from the large marsh grasshopper. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2020.109355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Cox DTC, Maclean IMD, Gardner AS, Gaston KJ. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. GLOBAL CHANGE BIOLOGY 2020; 26:7099-7111. [PMID: 32998181 DOI: 10.1111/gcb.15336] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The impacts of the changing climate on the biological world vary across latitudes, habitats and spatial scales. By contrast, the time of day at which these changes are occurring has received relatively little attention. As biologically significant organismal activities often occur at particular times of day, any asymmetry in the rate of change between the daytime and night-time will skew the climatic pressures placed on them, and this could have profound impacts on the natural world. Here we determine global spatial variation in the difference in the mean annual rate at which near-surface daytime maximum and night-time minimum temperatures and mean daytime and mean night-time cloud cover, specific humidity and precipitation have changed over land. For the years 1983-2017, we derived hourly climate data and assigned each hour as occurring during daylight or darkness. In regions that showed warming asymmetry of >0.5°C (equivalent to mean surface temperature warming during the 20th century) we investigated corresponding changes in cloud cover, specific humidity and precipitation. We then examined the proportional change in leaf area index (LAI) as one potential biological response to diel warming asymmetry. We demonstrate that where night-time temperatures increased by >0.5°C more than daytime temperatures, cloud cover, specific humidity and precipitation increased. Conversely, where daytime temperatures increased by >0.5°C more than night-time temperatures, cloud cover, specific humidity and precipitation decreased. Driven primarily by increased cloud cover resulting in a dampening of daytime temperatures, over twice the area of land has experienced night-time warming by >0.25°C more than daytime warming, and has become wetter, with important consequences for plant phenology and species interactions. Conversely, greater daytime relative to night-time warming is associated with hotter, drier conditions, increasing species vulnerability to heat stress and water budgets. This was demonstrated by a divergent response of LAI to warming asymmetry.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Ilya M D Maclean
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | | | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| |
Collapse
|
24
|
Sørensen JG, Manenti T, Bechsgaard JS, Schou MF, Kristensen TN, Loeschcke V. Pronounced Plastic and Evolutionary Responses to Unpredictable Thermal Fluctuations in Drosophila simulans. Front Genet 2020; 11:555843. [PMID: 33193631 PMCID: PMC7655653 DOI: 10.3389/fgene.2020.555843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Organisms are exposed to temperatures that vary, for example on diurnal and seasonal time scales. Thus, the ability to behaviorally and/or physiologically respond to variation in temperatures is a fundamental requirement for long-term persistence. Studies on thermal biology in ectotherms are typically performed under constant laboratory conditions, which differ markedly from the variation in temperature across time and space in nature. Here, we investigate evolutionary adaptation and environmentally induced plastic responses of Drosophila simulans to no fluctuations (constant), predictable fluctuations or unpredictable fluctuations in temperature. We whole-genome sequenced populations exposed to 20 generations of experimental evolution under the three thermal regimes and examined the proteome after short-term exposure to the same three regimes. We find that unpredictable fluctuations cause the strongest response at both genome and proteome levels. The loci showing evolutionary responses were generally unique to each thermal regime, but a minor overlap suggests either common laboratory adaptation or that some loci were involved in the adaptation to multiple thermal regimes. The evolutionary response, i.e., loci under selection, did not coincide with induced responses of the proteome. Thus, genes under selection in fluctuating thermal environments are distinct from genes important for the adaptive plastic response observed within a generation. This information is key to obtain a better understanding and prediction of the effects of future increases in both mean and variability of temperatures.
Collapse
Affiliation(s)
| | | | | | - Mads F. Schou
- Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
25
|
Valls A, Kral-O'Brien K, Kopco J, Harmon JP. Timing alters how a heat shock affects a host-parasitoid interaction. J Therm Biol 2020; 90:102596. [PMID: 32479391 DOI: 10.1016/j.jtherbio.2020.102596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/01/2020] [Accepted: 04/11/2020] [Indexed: 11/18/2022]
Abstract
Abiotic factors' effects on species are now well-studied, yet they are still often difficult to predict, especially for strongly interacting species. If these altered abiotic factors and species interactions occur as discrete events in time, such complications may occur because of the events' relative timing. One such discrete abiotic factor is the short-duration, large magnitude increase in temperature called a heat shock. This study investigates how the timing of heat shocks affects the successful attack and reproduction of a parasitoid wasp (Aphidius ervi) attacking its host, the pea aphid (Acyrthosiphon pisum). We tested three relative timings: 1) heat shock before the wasp attacks hosts, 2) heat shock while the wasp is foraging, and 3) heat shock after the wasp has attacked hosts. In each scenario we compared wasp mummy production (pupal stage) with and without a heat shock. Our results showed that a heat shock had the largest effect when it occurred while wasps actively foraged, with fewer mummies produced when exposed to a heat shock compared to the no heat shock control. Follow-up behavioral tests suggest this was caused by wasps becoming inactive during heat shocks. In contrast, when heat shocks were applied three days before or after foraging, we found no difference in mummy production between the heat shock treatment and no heat shock control. These results show the potential importance of timing when considering the ramifications of an altered abiotic factor, especially with relatively discrete abiotic events and interactions.
Collapse
Affiliation(s)
- Aleix Valls
- Department of Entomology, North Dakota State University, Dept. 7650, PO Box 6050, Fargo, ND, 58108-6050, USA.
| | - Katherine Kral-O'Brien
- Department of Entomology, North Dakota State University, Dept. 7650, PO Box 6050, Fargo, ND, 58108-6050, USA.
| | - James Kopco
- Department of Entomology, North Dakota State University, Dept. 7650, PO Box 6050, Fargo, ND, 58108-6050, USA.
| | - Jason P Harmon
- Department of Entomology, North Dakota State University, Dept. 7650, PO Box 6050, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
26
|
Metelmann S, Caminade C, Jones AE, Medlock JM, Baylis M, Morse AP. The UK's suitability for Aedes albopictus in current and future climates. J R Soc Interface 2020; 16:20180761. [PMID: 30862279 PMCID: PMC6451397 DOI: 10.1098/rsif.2018.0761] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Asian tiger mosquito Aedes albopictus is able to transmit various pathogens to humans and animals and it has already caused minor outbreaks of dengue and chikungunya in southern Europe. Alarmingly, it is spreading northwards and its eggs have been found in the UK in 2016 and 2017. Climate-driven models can help to analyse whether this originally subtropical species could become established in northern Europe. But so far, these models have not considered the impact of the diurnal temperature range (DTR) experienced by mosquitoes in the field. Here, we describe a dynamical model for the life cycle of Ae. albopictus, taking into account the DTR, rainfall, photoperiod and human population density. We develop a new metric for habitat suitability and drive our model with different climate data sets to analyse the UK's suitability for this species. For now, most of the UK seems to be rather unsuitable, except for some densely populated and high importation risk areas in southeast England. But this picture changes in the next 50 years: future scenarios suggest that Ae. albopictus could become established over almost all of England and Wales, indicating the need for continued mosquito surveillance.
Collapse
Affiliation(s)
- S Metelmann
- 1 Institute for Infection and Global Health, University of Liverpool Liverpool , UK.,3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK
| | - C Caminade
- 1 Institute for Infection and Global Health, University of Liverpool Liverpool , UK.,3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK
| | - A E Jones
- 1 Institute for Infection and Global Health, University of Liverpool Liverpool , UK
| | - J M Medlock
- 3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK.,4 Medical Entomology Group, Public Health England , London UK
| | - M Baylis
- 1 Institute for Infection and Global Health, University of Liverpool Liverpool , UK.,3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK
| | - A P Morse
- 2 School of Environmental Sciences, University of Liverpool Liverpool , UK.,3 NIHR Health Protection Research Unit in Emerging and Zoonotic Infections , Liverpool , UK
| |
Collapse
|
27
|
Xue Q, Ma CS. Aged virgin adults respond to extreme heat events with phenotypic plasticity in an invasive species, Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY 2020; 121:104016. [PMID: 31930976 DOI: 10.1016/j.jinsphys.2020.104016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Climate warming has increased the frequency of extreme heat events. Alien species usually invade new areas with a low-density population and often have limited mating opportunities due to the unsynchronized emergence of adults. Early-emerging virgin adults often have to wait to mate with later-emerging partners at the cost of aging, which reduces thermal tolerance. To understand the adaptive strategies of virgin males/females versus those of mated males/females in response to heat stress during aging, we conducted a fully factorial experiment to test the basal and plastic heat tolerance (CTmax, critical thermal maximum) of males and females with different mating statuses (virgin and mated) at different ages (5, 10, and 15 days after eclosion) after different acclimation regimes (null, rapid and developmental heat acclimation) in a well-known invasive species, Drosophila suzukii. We found that mating could change the heat tolerance of adults during aging. Mated females had higher basal heat tolerance than virgin females, while mated males had lower tolerance than virgin males. Mating could generally decrease the acclimation capacity (i.e., plasticity of heat tolerance) during aging. Aged virgin adults had a much higher acclimation capacity than aged mated adults. Our findings suggest that phenotypic plasticity of heat tolerance may be a main strategy used by virgin adults to cope with heat events. The phenotypic plasticity of thermal tolerance could increase the invasion success of alien species in new areas by allowing them to rapid respond to local temperature changes.
Collapse
Affiliation(s)
- Qi Xue
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
28
|
Zhao F, Xing K, Hoffmann AA, Ma CS. The importance of timing of heat events for predicting the dynamics of aphid pest populations. PEST MANAGEMENT SCIENCE 2019; 75:1866-1874. [PMID: 30663223 DOI: 10.1002/ps.5344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Heatwaves are increasing in frequency and there is growing interest in their impact on pest organisms. Previous work indicates that effects depend on the timing of the stress event, whose impact needs to be characterized across the full set of developmental stages and exposure periods of an organism. Here, we undertake such a detailed assessment using heat stress (20-35 °C diurnal cycle) across the nymph and adult stages of the English grain aphid, Sitobion avenae (Fabricius). RESULTS Stress-related mortality increased with stress duration at all stages; effects were less severe at the late nymphal stage. Effects on longevity adults after stress showed a complex pattern with nymphal heat stress, increasing with stress duration at the late nymphal stage, but decreasing with duration at the early nymphal stage. Longevity was also reduced by adult stress although to a lesser extent, and patterns were not connected to duration. Post-stress productivity decreased following adult and nymphal stress and the decrease tended to be correlated with stress duration. The rate of offspring production was more affected by adult stress than nymphal stress. Productivity and longevity effects, when combined, showed that the largest effect of heat stress occurred at the early nymphal stage. CONCLUSION These findings highlight the complex ways in which heat stress at a particular life stage influences later fitness and they also emphasize the importance of considering multiple fitness components when assessing stress effects. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Yang L, Liu Y, Richoux GM, Bernier UR, Linthicum KJ, Bloomquist JR. Induction Coil Heating Improves the Efficiency of Insect Olfactory Studies. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Bai CM, Ma G, Cai WZ, Ma CS. Independent and combined effects of daytime heat stress and night-time recovery determine thermal performance. Biol Open 2019; 8:bio.038141. [PMID: 30837225 PMCID: PMC6451327 DOI: 10.1242/bio.038141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Organisms often experience adverse high temperatures during the daytime, but they may also recover or repair themselves during the night-time when temperatures are more moderate. Thermal effects of daily fluctuating temperatures may thus be divided into two opposite processes (i.e. negative effects of daytime heat stress and positive effects of night-time recovery). Despite recent progress on the consequences of increased daily temperature variability, the independent and combined effects of daytime and night-time temperatures on organism performance remain unclear. By independently manipulating daily maximum and minimum temperatures, we tested how changes in daytime heat stress and night-time recovery affect development, survival and heat tolerance of the lady beetle species Propylea japonica Thermal effects on development and survival differed between daytime and night-time. Daytime high temperatures had negative effects whereas night-time mild temperatures had positive effects. The extent of daytime heat stress and night-time recovery also affected development and critical thermal maximum, which indicates that there were both independent and combined effects of daytime and night-time temperatures on thermal performances. Our findings provide insight into the thermal effect of day-to-night temperature variability and have important implications for predicting the impacts of diel asymmetric warming under climate change.
Collapse
Affiliation(s)
- Chun-Ming Bai
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China.,Department of Entomology, College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Wan-Zhi Cai
- Department of Entomology, College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
31
|
Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2018.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Zhu L, Wang L, Ma CS. Sporadic short temperature events cannot be neglected in predicting impacts of climate change on small insects. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:48-56. [PMID: 30529236 DOI: 10.1016/j.jinsphys.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Climate warming is characterized by increase in extreme heat events (EHEs). EHEs and mild temperature periods alternate with each other and form complex climate scenarios. Among these scenarios, low-frequency and short-duration extreme heat events during long mild periods (sporadic short EHEs) and low-frequency and short-duration mild periods during long extreme heat events (sporadic short mild periods) commonly occur in nature. The biological effects of these two types of temperature events have not been thoroughly elucidated to date. To clarify the biological effects of these temperature events on organisms, we selected the English grain aphid, a globally important cereal pest, as our model system. We exposed aphids to simulated 24-h diurnal fluctuating temperatures, inserted these events during the wheat growing season and then investigated development, adult longevity, fecundity, survival, and demographic parameters. We found that sporadic short mild periods during a long EHE could improve their life history traits. Increasing the duration of mild periods from 1 day to 2 days did not significantly change their demographic performance. Sporadic short EHEs during a long mild period did not significantly affect vital rates, while increasing the duration of EHEs from 1 day to 2 days worsened the aphids' performance. We found that short mild episodes in the hot season may benefit small insects to buffer long duration heatwaves. We discussed how sporadic short mild periods during a long EHE supplied aphids a chance to recover from heat stress. Thus, we suggest that sporadic temperature events should be considered in population prediction of small insects under climate change and should be integrated into pest management.
Collapse
Affiliation(s)
- Liang Zhu
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Inst. of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, CN-100193 Beijing, PR China; Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguanghuayuan Middle Road, Haidian District, CN-100097 Beijing, PR China
| | - Lin Wang
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Inst. of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, CN-100193 Beijing, PR China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Inst. of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, CN-100193 Beijing, PR China.
| |
Collapse
|
33
|
Tougeron K, Damien M, Le Lann C, Brodeur J, van Baaren J. Rapid Responses of Winter Aphid-Parasitoid Communities to Climate Warming. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00173] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Eikenberry SE, Gumel AB. Mathematical modeling of climate change and malaria transmission dynamics: a historical review. J Math Biol 2018; 77:857-933. [PMID: 29691632 DOI: 10.1007/s00285-018-1229-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Malaria, one of the greatest historical killers of mankind, continues to claim around half a million lives annually, with almost all deaths occurring in children under the age of five living in tropical Africa. The range of this disease is limited by climate to the warmer regions of the globe, and so anthropogenic global warming (and climate change more broadly) now threatens to alter the geographic area for potential malaria transmission, as both the Plasmodium malaria parasite and Anopheles mosquito vector have highly temperature-dependent lifecycles, while the aquatic immature Anopheles habitats are also strongly dependent upon rainfall and local hydrodynamics. A wide variety of process-based (or mechanistic) mathematical models have thus been proposed for the complex, highly nonlinear weather-driven Anopheles lifecycle and malaria transmission dynamics, but have reached somewhat disparate conclusions as to optimum temperatures for transmission, and the possible effect of increasing temperatures upon (potential) malaria distribution, with some projecting a large increase in the area at risk for malaria, but others predicting primarily a shift in the disease's geographic range. More generally, both global and local environmental changes drove the initial emergence of P. falciparum as a major human pathogen in tropical Africa some 10,000 years ago, and the disease has a long and deep history through the present. It is the goal of this paper to review major aspects of malaria biology, methods for formalizing these into mathematical forms, uncertainties and controversies in proper modeling methodology, and to provide a timeline of some major modeling efforts from the classical works of Sir Ronald Ross and George Macdonald through recent climate-focused modeling studies. Finally, we attempt to place such mathematical work within a broader historical context for the "million-murdering Death" of malaria.
Collapse
Affiliation(s)
- Steffen E Eikenberry
- Global Security Initiative, Arizona State University, Tempe, AZ, USA.
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA.
| | - Abba B Gumel
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
35
|
Ma CS, Wang L, Zhang W, Rudolf VHW. Resolving biological impacts of multiple heat waves: interaction of hot and recovery days. OIKOS 2018. [DOI: 10.1111/oik.04699] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Inst. of Plant Protection, Chinese Academy of Agricultural Sciences; No 2 Yuanmingyuan West Road Haidian District CN-100193 Beijing PR China
| | - Lin Wang
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Inst. of Plant Protection, Chinese Academy of Agricultural Sciences; No 2 Yuanmingyuan West Road Haidian District CN-100193 Beijing PR China
| | - Wei Zhang
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Inst. of Plant Protection, Chinese Academy of Agricultural Sciences; No 2 Yuanmingyuan West Road Haidian District CN-100193 Beijing PR China
| | | |
Collapse
|
36
|
Bible JM, Cheng BS, Chang AL, Ferner MC, Wasson K, Zabin CJ, Latta M, Sanford E, Deck A, Grosholz ED. Timing of stressors alters interactive effects on a coastal foundation species. Ecology 2017; 98:2468-2478. [PMID: 28653399 DOI: 10.1002/ecy.1943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 11/09/2022]
Abstract
The effects of climate-driven stressors on organismal performance and ecosystem functioning have been investigated across many systems; however, manipulative experiments generally apply stressors as constant and simultaneous treatments, rather than accurately reflecting temporal patterns in the natural environment. Here, we assessed the effects of temporal patterns of high aerial temperature and low salinity on survival of Olympia oysters (Ostrea lurida), a foundation species of conservation and restoration concern. As single stressors, low salinity (5 and 10 psu) and the highest air temperature (40°C) resulted in oyster mortality of 55.8, 11.3, and 23.5%, respectively. When applied on the same day, low salinity and high air temperature had synergistic negative effects that increased oyster mortality. This was true even for stressor levels that were relatively mild when applied alone (10 psu and 35°C). However, recovery times of two or four weeks between stressors eliminated the synergistic effects. Given that most natural systems threatened by climate change are subject to multiple stressors that vary in the timing of their occurrence, our results suggest that it is important to examine temporal variation of stressors in order to more accurately understand the possible biological responses to global change.
Collapse
Affiliation(s)
- Jillian M Bible
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, California, 94923, USA.,Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Brian S Cheng
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, California, 94923, USA.,Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| | - Andrew L Chang
- San Francisco Bay National Estuarine Research Reserve, San Francisco State University, 3152 Paradise Drive, Tiburon, California, 94920, USA.,Smithsonian Environmental Research Center, 3152 Paradise Drive, Tiburon, California, 94920, USA
| | - Matthew C Ferner
- San Francisco Bay National Estuarine Research Reserve, San Francisco State University, 3152 Paradise Drive, Tiburon, California, 94920, USA
| | - Kerstin Wasson
- Elkhorn Slough National Estuarine Research Reserve, 1700 Elkhorn Road, Watsonville, California, 95076, USA
| | - Chela J Zabin
- Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA.,Smithsonian Environmental Research Center, 3152 Paradise Drive, Tiburon, California, 94920, USA
| | - Marilyn Latta
- California State Coastal Conservancy, 1515 Clay Street, Oakland, California, 94612, USA
| | - Eric Sanford
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, California, 94923, USA.,Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Anna Deck
- San Francisco Bay National Estuarine Research Reserve, San Francisco State University, 3152 Paradise Drive, Tiburon, California, 94920, USA
| | - Edwin D Grosholz
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, California, 94923, USA.,Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
37
|
Chidawanyika F, Nyamukondiwa C, Strathie L, Fischer K. Effects of Thermal Regimes, Starvation and Age on Heat Tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following Dynamic and Static Protocols. PLoS One 2017; 12:e0169371. [PMID: 28052099 PMCID: PMC5215736 DOI: 10.1371/journal.pone.0169371] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/15/2016] [Indexed: 12/29/2022] Open
Abstract
Temperature and resource availability are key elements known to limit the occurrence and survival of arthropods in the wild. In the current era of climate change, critical thermal limits and the factors affecting these may be of particular importance. We therefore investigated the critical thermal maxima (CTmax) of adult Zygogramma bicolorata beetles, a biological control agent for the invasive plant Parthenium hysterophorus, in relation to thermal acclimation, hardening, age, and food availability using static (constant) and dynamic (ramping) protocols. Increasing temperatures and exposure times reduced heat survival. In general, older age and lack of food reduced heat tolerance, suggesting an important impact of resource availability. Acclimation at constant temperatures did not affect CTmax, while fluctuating thermal conditions resulted in a substantial increase. Hardening at 33°C and 35°C improved heat survival in fed young and mid-aged but only partly in old beetles, while CTmax remained unaffected by hardening throughout. These findings stress the importance of methodology when assessing heat tolerance. Temperature data recorded in the field revealed that upper thermal limits are at least occasionally reached in nature. Our results therefore suggest that the occurrence of heat waves may influence the performance and survival of Z. bicolorata, potentially impacting on its field establishment and effectiveness as a biological control agent.
Collapse
Affiliation(s)
- Frank Chidawanyika
- Agricultural Research Council, Plant Protection Research Institute, Weeds Division, Hilton, South Africa
- * E-mail:
| | - Casper Nyamukondiwa
- Department of Biology and Biotechnological Sciences, College of Science, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - Lorraine Strathie
- Agricultural Research Council, Plant Protection Research Institute, Weeds Division, Hilton, South Africa
| | - Klaus Fischer
- Zoological Institute & Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
38
|
Sørensen JG, Kristensen TN, Overgaard J. Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change? CURRENT OPINION IN INSECT SCIENCE 2016; 17:98-104. [PMID: 27720081 DOI: 10.1016/j.cois.2016.08.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 05/26/2023]
Abstract
Phenotypic plasticity of temperature tolerance (thermal acclimation) is often highlighted as an important component of the acute and evolutionary adaptation to temperatures in insects. For this reason, it is often suggested that thermal acclimation ability could be important for buffering the consequences of climate change. Based on data from Drosophila we discuss if and how phenotypic plasticity is likely to mitigate the effects of climate change. We conclude that plasticity of upper thermal limits is small in magnitude, evolves slowly and that acclimation ability is weakly correlated with latitude and environmental heterogeneity. Accordingly plasticity in upper thermal limits is unlikely to effectively buffer effects of global warming for species already close to their upper thermal boundaries.
Collapse
Affiliation(s)
- Jesper Givskov Sørensen
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.
| | - Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Section for Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Johannes Overgaard
- Department of Bioscience, Section for Zoophysiology, Aarhus University, C.F. Møllers Alle 3, Building 1131, 8000 Aarhus, Denmark
| |
Collapse
|
39
|
Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature. Sci Rep 2016; 6:30975. [PMID: 27487917 PMCID: PMC4973280 DOI: 10.1038/srep30975] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/08/2016] [Indexed: 02/05/2023] Open
Abstract
Terrestrial ectotherms are challenged by variation in both mean and variance of temperature. Phenotypic plasticity (thermal acclimation) might mitigate adverse effects, however, we lack a fundamental understanding of the molecular mechanisms of thermal acclimation and how they are affected by fluctuating temperature. Here we investigated the effect of thermal acclimation in Drosophila melanogaster on critical thermal maxima (CTmax) and associated global gene expression profiles as induced by two constant and two ecologically relevant (non-stressful) diurnally fluctuating temperature regimes. Both mean and fluctuation of temperature contributed to thermal acclimation and affected the transcriptome. The transcriptomic response to mean temperatures comprised modification of a major part of the transcriptome, while the response to fluctuations affected a much smaller set of genes, which was highly independent of both the response to a change in mean temperature and to the classic heat shock response. Although the independent transcriptional effects caused by fluctuations were relatively small, they are likely to contribute to our understanding of thermal adaptation. We provide evidence that environmental sensing, particularly phototransduction, is a central mechanism underlying the regulation of thermal acclimation to fluctuating temperatures. Thus, genes and pathways involved in phototransduction are likely of importance in fluctuating climates.
Collapse
|
40
|
Abstract
Knowledge of how climate change is likely to influence future virus disease epidemics in cultivated plants and natural vegetation is of great importance to both global food security and natural ecosystems. However, obtaining such knowledge is hampered by the complex effects of climate alterations on the behavior of diverse types of vectors and the ease by which previously unknown viruses can emerge. A review written in 2011 provided a comprehensive analysis of available data on the effects of climate change on virus disease epidemics worldwide. This review summarizes its findings and those of two earlier climate change reviews and focuses on describing research published on the subject since 2011. It describes the likely effects of the full range of direct and indirect climate change parameters on hosts, viruses and vectors, virus control prospects, and the many information gaps and deficiencies. Recently, there has been encouraging progress in understanding the likely effects of some climate change parameters, especially over the effects of elevated CO2, temperature, and rainfall-related parameters, upon a small number of important plant viruses and several key insect vectors, especially aphids. However, much more research needs to be done to prepare for an era of (i) increasingly severe virus epidemics and (ii) increasing difficulties in controlling them, so as to mitigate their detrimental effects on future global food security and plant biodiversity.
Collapse
Affiliation(s)
- R A C Jones
- Institute of Agriculture, University of Western Australia, Crawley, WA, Australia; Department of Agriculture and Food Western Australia, South Perth, WA, Australia.
| |
Collapse
|