1
|
van Stokkum IH, Dostal J, Do TN, Fu L, Madej G, Ziegler C, Hegemann P, Kloz M, Broser M, Kennis JTM. Retinal to Retinal Energy Transfer in a Bistable Microbial Rhodopsin Dimer. J Am Chem Soc 2025; 147:14468-14480. [PMID: 40245178 PMCID: PMC12046560 DOI: 10.1021/jacs.5c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Neorhodopsin (NeoR) is a newly discovered fungal bistable rhodopsin that reversibly photoswitches between UV- and near-IR absorbing states denoted NeoR367 and NeoR690, respectively. NeoR367 represents a deprotonated retinal Schiff base (RSB), while NeoR690 represents a protonated RSB. Cryo-EM studies indicate that NeoR forms homodimers with 29 Å center-to-center distance between the retinal chromophores. UV excitation of NeoR367 takes place to an optically allowed S3 state of 1Bu+ symmetry, which rapidly converts to a low-lying optically forbidden S1 state of 2Ag- symmetry in 39 fs, followed by a multiexponential decay to the ground state on the 1-100 ps time scale. A theoretically predicted nπ* (S2) state does not get populated in any appreciable transient concentration during the excited-state relaxation cascade. We observe an intradimer retinal to retinal excitation energy transfer (EET) process from the NeoR367 S1 state to NeoR690, in competition with photoproduct formation. To quantitatively assess the EET mechanism and rate, we experimentally addressed and modeled the EET process under varying NeoR367-NeoR690 photoequilibrium conditions and determined the EET rate at (200 ps)-1. The NeoR367 S1 state shows a weak stimulated emission band in the near-IR around 700 nm, which may result from mixing with an intramolecular charge-transfer (ICT) state, enhancing the transition dipole moment of the S1-S0 transition and possibly facilitating the EET process. We suggest that EET may bear general relevance to the function of bistable multiwavelength rhodopsin oligomers.
Collapse
Affiliation(s)
- Ivo H.
M. van Stokkum
- Department
of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Jakub Dostal
- ELI
Beamlines Facility, The Extreme Light Infrastructure
ERIC, Za Radnicí
835, 25241 Dolní
Břežany, Czech Republic
| | - Thanh Nhut Do
- Department
of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Lifei Fu
- Department
of Structural Biology/Biophysics II, University
of Regensburg, DE-93053 Regensburg, Germany
| | - Gregor Madej
- Department
of Structural Biology/Biophysics II, University
of Regensburg, DE-93053 Regensburg, Germany
| | - Christine Ziegler
- Department
of Structural Biology/Biophysics II, University
of Regensburg, DE-93053 Regensburg, Germany
| | - Peter Hegemann
- Institut
für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Miroslav Kloz
- ELI
Beamlines Facility, The Extreme Light Infrastructure
ERIC, Za Radnicí
835, 25241 Dolní
Břežany, Czech Republic
| | - Matthias Broser
- Institut
für Biologie, Experimentelle Biophysik, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany
| | - John T. M. Kennis
- Department
of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Guo Z, Kan H, Zhang J, Li Y. Neuromorphic Visual Computing with ZnMgO QDs-Based UV-Responsive Optoelectronic Synaptic Devices for Image Encryption and Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412531. [PMID: 40033905 DOI: 10.1002/smll.202412531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Retina-inspired optoelectronic neuromorphic devices integrating optical sensing and computation are the key components in realizing neuromorphic visual computing. In particular, UV-responsive optoelectronic synaptic devices hold significant value for advanced neuromorphic vision systems, as they can expand human visual perception. Herein, we demonstrate a UV-responsive optoelectronic synaptic device based on ZnMgO quantum dots (QDs) designed for in-sensor computing in neuromorphic vision applications. The device demonstrates voltage-driven short-term and long-term synaptic plasticity, as well as multiple photoinduced synaptic functions. Based on this device, an in-sensor image-blending encryption method has been designed, which can effectively reduce the risk of data leakage during transmission. Furthermore, an in-sensor reservoir computing (RC) system with image processing functions is constructed, which integrates a photonic reservoir layer (PRL) for image preprocessing and a multilayer perceptron (MLP) capable of image recognition. The system achieves 98.6% accuracy in recognizing Fashion-MNIST images and maintains 83% accuracy under 60% random noise, showcasing its robustness. This work introduces a novel approach for developing UV-responsive optoelectronic synaptic devices equipped with dual-mode modulation of both electrical and optical signals, offering new perspectives and solutions for integrated applications in neuromorphic vision systems.
Collapse
Affiliation(s)
- Zilong Guo
- Shandong Provincial Key Laboratory of Ubiquitous Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Hao Kan
- Shandong Provincial Key Laboratory of Ubiquitous Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Jiaqi Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yang Li
- School of Integrated Circuits, Shandong University, Jinan, 250101, China
| |
Collapse
|
3
|
Wu J, Lu K, Xie R, Zhu C, Luo Q, Liang XF. The Beneficial Role of the Thyroid Hormone Receptor Beta 2 ( thrb2) in Facilitating the First Feeding and Subsequent Growth in Medaka as Fish Larval Model. Cells 2025; 14:386. [PMID: 40072114 PMCID: PMC11898640 DOI: 10.3390/cells14050386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
During the early growth stages of fish larvae, there are significant challenges to their viability, so improving their visual environment is essential to promoting their growth and survival. Following the successful knockout of thyroid hormone receptor beta 2 (thrb2) using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology, there was an increase in the expression of UV opsin (short-wave-sensitive 1, sws1), while the expression of other cone opsins was significantly decreased. Further analysis of the retinal structure demonstrated that the thrb2 knockout resulted in an increased lens thickness and a decreased thickness of the ganglion cell layer (GCL), outer plexiform layer (OPL), and outer nuclear layer (ONL) in the retina. The slowing down of swimming speed under light conditions in thrb2-/- may be related to the decreased expression of phototransduction-related genes such as G protein-coupled receptor kinase 7a (grk7a), G protein-coupled receptor kinase 7b (grk7b), and phosphodiesterase 6c (pde6c). Notably, thrb2-/- larvae exhibited a significant increase in the amount and proportion of first feeding, and their growth rate significantly exceeded that of wild-type controls during the week after feeding. This observation suggests that although the development of the retina may be somewhat affected, thrb2-/- larvae show positive changes in feeding behaviour and growth rate, which may be related to their enhanced ability to adapt to their environment. These results provide novel insights into the function of the thrb2 gene in the visual system and behaviour and may have implications in areas such as fish farming and genetic improvement.
Collapse
Affiliation(s)
- Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (K.L.); (R.X.); (C.Z.); (Q.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (K.L.); (R.X.); (C.Z.); (Q.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Ruipeng Xie
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (K.L.); (R.X.); (C.Z.); (Q.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Chenyuan Zhu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (K.L.); (R.X.); (C.Z.); (Q.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Qiyao Luo
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (K.L.); (R.X.); (C.Z.); (Q.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; (J.W.); (K.L.); (R.X.); (C.Z.); (Q.L.)
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
4
|
Nielsen LM, Beck H, Oufiero C, Johnston RJ, Handler JS, Hagen JFD. Trichromacy and ultraviolet vision in a nocturnal marsupial. Sci Rep 2025; 15:7585. [PMID: 40038358 PMCID: PMC11880520 DOI: 10.1038/s41598-025-92039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
Color vision among mammals is diverse and complex, with many physiological and genetic factors affecting spectral sensitivity, the ability to perceive different wavelengths of light. In this study, the color vision of the sugar glider (Petaurus breviceps), a nocturnal, gliding mammal, was examined through a series of behavioral tests, genetic analyses, and immunohistochemistry. This is the first study to classify the color vision capabilities of this species. Sugar gliders demonstrated trichromacy and ultraviolet (UV) sensitivity, the latter of which was further supported by genetic analysis. Visualization of the sugar glider retina exhibited a rod-dominant retina that expresses rhodopsin, short-wavelength sensitive 1 opsin, and long/medium-wavelength sensitive opsin. Diurnal primates were thought to be the only mammals able to visualize trichromatically, however the results of this examination and evidence from a few other marsupial studies provide support for nocturnal trichromacy in Metatheria. Intriguingly, the genetic basis for the medium-wavelength sensitivity in marsupials has yet to be discovered. Our results are evidence of a fourth Australian marsupial that is UV-trichromatic, supporting complex spectral sensitivity and UV vision as benefits to survival in nocturnal environments. Given that Rh1 sensitivity at 501 nm explains the green sensitivity behaviorally, question arises how many other nocturnal 'dichromatic' species use rods for trichromatic vision in mesopic light.
Collapse
Affiliation(s)
- Leah M Nielsen
- Department of Biology, Towson University, Baltimore, MD, 21252, USA
| | - Harald Beck
- Department of Biology, Towson University, Baltimore, MD, 21252, USA.
| | | | | | - Jesse S Handler
- The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | |
Collapse
|
5
|
Ji Y, Meng Y, Geng X, Sun J, Gao Q, Yin H, Gao J, Wang R, Wang M, Xiao Z, Wang Y, Huang A. Retina-Inspired Flexible Visual Synaptic Device for Dynamic Image Processing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7948-7957. [PMID: 39841109 DOI: 10.1021/acsami.4c16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaOx@GaN-composited nanowires for dynamic visual perception. Benefiting from the combined action of oxygen adsorption kinetics on the GaOx shell and photoelectronic excitation in the GaN core, the NeuVSD can achieve rapid photoresponse and long-term plasticity simultaneously, a feature that surpasses traditional devices based on persistent photoconductivity mechanisms. Beyond the optoelectronic synaptic plasticity, the flexible NeuVSD on the PET/PI substrate exhibits good performance stability after 1000 bending cycles, profiting from the high adaptability of nanowires. Furthermore, target recognition and motion detection with weak light intensities are achieved through the establishment of neuromorphic visual neural networks, relying on dynamic exposures and edge information processing, respectively. Real-time edge detection can still be realized under a 40% noise factor and effectively remove the noise background. The flexible NeuVSD array-based artificial visual system can enhance the capability of dynamic visual information processing in low-light and high-noise conditions, thereby fostering the evolution of in-sensor computing and artificial intelligence.
Collapse
Affiliation(s)
- Yuhang Ji
- School of Physics, Beihang University, Beijing 100191, China
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Yao Meng
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Xueli Geng
- School of Physics, Beihang University, Beijing 100191, China
| | - Jiacheng Sun
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Qin Gao
- School of Physics, Beihang University, Beijing 100191, China
| | - Hao Yin
- School of Physics, Beihang University, Beijing 100191, China
| | - Juan Gao
- School of Physics, Beihang University, Beijing 100191, China
| | - Ruzhi Wang
- Institute of New Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Mei Wang
- School of Physics, Beihang University, Beijing 100191, China
| | - Zhisong Xiao
- School of Physics, Beihang University, Beijing 100191, China
| | - Yuyan Wang
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Anping Huang
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
6
|
Morgante G, Belušič G, Ilić M, Škorjanc A, Negrisolo E, Battisti A. Ips typographus vision system: a comprehensive study. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:101-112. [PMID: 39331063 PMCID: PMC11846742 DOI: 10.1007/s00359-024-01717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/20/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Aggressive bark beetle species such as the Eurasian spruce bark beetle Ips typographus play a fundamental role in forest ecosystems but can also lead to extensive forest mortality and massive economic damage during outbreaks. Currently I. typographus' eyes, visual perception of the world and recognition of specific targets like host plants are understudied topics. Studying its visual sense can open the way to novel efficient monitoring and management methods, particularly important in avoiding the switch from an endemic to an epidemic condition. In addition, the integration of visual cues in trapping systems may offer new opportunities for surveillance. Vision in I. typographus was investigated by means of morphological analysis, electroretinography (ERG), molecular analysis of opsin genes and behavioural tests. ERG has revealed that the compound eyes contain two classes of photoreceptors, maximally sensitive to UV and green at 370 and 530 nm, respectively. The result was further supported by the identification of two relevant opsin genes. Finally, the innate wavelength sensitivity was tested in a Y-maze. Ips typographus consistently preferred UV over non-UV (VIS) light, irrespective of their intensity ratios, but preferred high over low intensity VIS light, consistent with a UV-VIS dichromatic visual system. Overall, the results may open the way to better understand the navigation pattern in tree canopies and the host selection processes of this ecologically and economically important beetle species.
Collapse
Affiliation(s)
- Giuseppe Morgante
- Department DAFNAE, University of Padova, Viale dell'Università, 16, Legnaro, Italy.
| | - Gregor Belušič
- Department of Biology, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Marko Ilić
- Department of Biology, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Aleš Škorjanc
- Department of Biology, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Enrico Negrisolo
- Department DAFNAE, University of Padova, Viale dell'Università, 16, Legnaro, Italy
- Department BCA, University of Padova, Viale dell'Università, 16, Legnaro, Italy
| | - Andrea Battisti
- Department DAFNAE, University of Padova, Viale dell'Università, 16, Legnaro, Italy
| |
Collapse
|
7
|
Liu Z, Wang Y, Zhang Y, Sun S, Zhang T, Zeng YJ, Hu L, Zhuge F, Lu B, Pan X, Ye Z. Harnessing Defects in SnSe Film via Photo-Induced Doping for Fully Light-Controlled Artificial Synapse. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410783. [PMID: 39648576 DOI: 10.1002/adma.202410783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 12/10/2024]
Abstract
2D-layered materials are recognized as up-and-coming candidates to overcome the intrinsic physical limitation of silicon-based devices. Herein, the coexistence of positive persistent photoconductivity (PPPC) and negative persistent photoconductivity (NPPC) in SnSe thin films prepared by pulsed laser deposition provides an excellent avenue for engineering novel devices. It is determined that surface oxygen is co-regulated by physisorption and chemisorption, and the NPPC is attributed to the photo-controllable oxygen desorption behavior. The dominant behavior of chemisorption induces high stability, while physisorption provides room for adjusting NPPC. A simple fully light-modulated artificial synaptic device based on SnSe film is constructed to operate various synaptic plasticity and reversible modulation of conductance by applying 430 and 255 nm illuminations. A three-layer artificial neural network structure with a high accuracy of 95.33% to recognize handwritten digital images is implemented based on the device. Furthermore, the pressure-related cognition response of humans while climbing and the foraging and recognition behaviors of anemonefish are mimicked. This work demonstrates the potential of 2D-layered materials for developing neuromorphic computing and simulating biological behaviors without additional treatment. Furthermore, the one-step method for preparation is highly adaptable and expected to realize large-area growth and integration of SnSe-based devices.
Collapse
Affiliation(s)
- Zihui Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yao Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yumin Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shuyi Sun
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tao Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Kunming Institute of Physics, Kunming, Yunnan Province, 650223, P. R. China
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lingxiang Hu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Fei Zhuge
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Bin Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xinhua Pan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
| |
Collapse
|
8
|
Joiner JM, Branca AS, Banfield MG, Downs CH, Muzio GM, Borden JH. Three-dimensional evaluation of the responses of two species of flies (Diptera) to an indoor light trap. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2591-2598. [PMID: 39300800 DOI: 10.1093/jee/toae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
We used the Photonic Fence Monitoring Device (PFMD) to evaluate orientation by Musca domestica L. (Diptera: Muscidae), and Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae) to the Zevo Flying Insect Trap Model 3. The PFMD's dual cameras record infrared light (IR) reflected from a wavelength-specific fabric; insects do not reflect IR at the same wavelength and are tracked in 3 dimensions as moving objects. The plug-in trap emits ultraviolet and blue light from behind an opaque shield; attracted insects enter the space between the shield and the wall and are trapped on a sticky cartridge facing the wall. An experiment (N = 10) with replicates of approximately 40, 1- to 7-day-old mixed-sex flies of each species was conducted in a 6.1 m3 arena. Prior to turning the trap on, the fly movement was not directed toward the trap on the back wall of the arena, regardless of whether the overhead light was on or off. When the overhead light was off, the mean first catch of both species occurred within 5 min after the trap was turned on, and 33.1% and 41.8% of M. domestica and C. vicina, respectively, were caught. House flies flew toward the trap, many approaching from below, while C. vicina apparently walked or flew outside the field of view of the PFMD until they appeared on the vertical reflective surface, and then walked toward the trap from all directions. Our results show that the Zevo Trap attracts and catches flies, and that the PFMD can be used to track flying and walking flies.
Collapse
Affiliation(s)
| | | | | | | | | | - John H Borden
- JHB Consulting, 6552 Carnegie Street, Burnaby, BC, V5B 1Y3, Canada
| |
Collapse
|
9
|
Turton-Hughes S, Holmes G, Hassall C. The diversity of ignorance and the ignorance of diversity: origins and implications of "shadow diversity" for conservation biology and extinction. CAMBRIDGE PRISMS. EXTINCTION 2024; 2:e18. [PMID: 40078810 PMCID: PMC11895729 DOI: 10.1017/ext.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/05/2024] [Accepted: 06/19/2024] [Indexed: 03/14/2025]
Abstract
Biodiversity shortfalls and taxonomic bias can lead to inaccurate assessment of conservation priorities. Previous literature has begun to explore practical reasons why some species are discovered sooner or are better researched than others. However, the deeper socio-cultural causes for undiscovered and neglected biodiversity, and the value of collectively analysing species at risk of unrecorded, or "dark", extinction, are yet to be fully examined. Here, we argue that a new label (we propose "shadow diversity") is needed to shift our perspective from biodiversity shortfalls to living, albeit unknown, species. We suggest this linguistic shift imparts intrinsic value to these species, beyond scientific gaze and cultural systems. We review research on undiscovered, undetected and hidden biodiversity in the fields of conservation biology, macroecology and genetics. Drawing on philosophy, geography, history and sociology, we demonstrate that a range of socio-cultural factors (funding, education and historical bias) combine with traditional, practical impediments to limit species discovery and detection. We propose using a spectrum of shadow diversity which enables a complex, non-binary and comprehensive approach to biodiversity unknowns. Shadow diversity holds exciting potential as a tool to increase awareness, appreciation and support for the conservation of traditionally less studied wildlife species and sites, from soil microbes to less charismatic habitat fragments. We advocate for a shift in how the conservation community and wider public see biodiversity and an increase in popular support for conserving a wider range of life forms. Most importantly, shadow diversity provides appropriate language and conceptual frameworks to discuss species absent from conservation assessment and at potential risk of dark extinction.
Collapse
Affiliation(s)
- Serena Turton-Hughes
- School of Earth and Environment, Faculty of Environment, University of Leeds, Leeds, UK
| | - George Holmes
- School of Earth and Environment, Faculty of Environment, University of Leeds, Leeds, UK
| | - Christopher Hassall
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Tommasini D, Yoshimatsu T, Baden T, Shekhar K. Comparative transcriptomic insights into the evolutionary origin of the tetrapod double cone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621990. [PMID: 39574734 PMCID: PMC11580882 DOI: 10.1101/2024.11.04.621990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
The tetrapod double cone is a pair of tightly associated cones called the "principal" and the "accessory" member. It is found in amphibians, reptiles, and birds, as well as monotreme and marsupial mammals but is absent in fish and eutherian mammals. To explore the potential evolutionary origins of the double cone, we analyzed single-cell and -nucleus transcriptomic atlases of photoreceptors from six vertebrate species: zebrafish, chicken, lizard, opossum, ground squirrel, and human. Computational analyses separated the principal and accessory members in chicken and lizard, identifying molecular signatures distinguishing either member from single cones and rods in the same species. Comparative transcriptomic analyses suggest that both the principal and accessory originated from ancestral red cones. Furthermore, the gene expression variation among cone subtypes mirrors their spectral order (red → green → blue → UV), suggesting a constraint in their order of emergence during evolution. Finally, we find that rods are equally dissimilar to all cone types, suggesting that they emerged before the spectral diversification of cones.
Collapse
Affiliation(s)
- Dario Tommasini
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Tom Baden
- Center for Sensory Neuroscience and Computation, Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Karthik Shekhar
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA, USA
- Vision Sciences Graduate Program; Center for Computational Biology; Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
11
|
Wang L, Wong TS. Tiny particles help insects evade predators. eLife 2024; 13:e103508. [PMID: 39465677 PMCID: PMC11517244 DOI: 10.7554/elife.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
By reducing the reflection of ultraviolet light, hollow nanoparticles called brochosomes help to protect leafhoppers from predators.
Collapse
Affiliation(s)
- Lin Wang
- Department of Mechanical Engineering and the Materials Research Institute, Pennsylvania State UniversityUniversity ParkUnited States
| | - Tak-Sing Wong
- Department of Mechanical Engineering and the Materials Research Institute, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
12
|
Grujic N, Polania R, Burdakov D. Neurobehavioral meaning of pupil size. Neuron 2024; 112:3381-3395. [PMID: 38925124 DOI: 10.1016/j.neuron.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Pupil size is a widely used metric of brain state. It is one of the few signals originating from the brain that can be readily monitored with low-cost devices in basic science, clinical, and home settings. It is, therefore, important to investigate and generate well-defined theories related to specific interpretations of this metric. What exactly does it tell us about the brain? Pupils constrict in response to light and dilate during darkness, but the brain also controls pupil size irrespective of luminosity. Pupil size fluctuations resulting from ongoing "brain states" are used as a metric of arousal, but what is pupil-linked arousal and how should it be interpreted in neural, cognitive, and computational terms? Here, we discuss some recent findings related to these issues. We identify open questions and propose how to answer them through a combination of well-defined tasks, neurocomputational models, and neurophysiological probing of the interconnected loops of causes and consequences of pupil size.
Collapse
Affiliation(s)
- Nikola Grujic
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | - Rafael Polania
- Decision Neuroscience Lab, ETH Zürich, Department of Health Sciences and Technology, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
13
|
Lee JM, Cho SW, Jo C, Yang SH, Kim J, Kim DY, Jo JW, Park JS, Kim YH, Park SK. Monolithically integrated neuromorphic electronic skin for biomimetic radiation shielding. SCIENCE ADVANCES 2024; 10:eadp9885. [PMID: 39365868 PMCID: PMC11451525 DOI: 10.1126/sciadv.adp9885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Melanogenesis, a natural responsive mechanism of human skin to harmful radiation, is a self-triggered defensive neural activity safeguarding the body from radiation exposure in advance. With the increasing significance of radiation shielding in diverse medical health care and wearable applications, a biomimetic neuromorphic optoelectronic system with adaptive radiation shielding capability is often needed. Here, we demonstrate a transparent and flexible metal oxide-based photovoltaic neuromorphic defensive system. By using a monolithically integrated ultraflexible optoelectronic circuitry and electrochromic device, seamless neural processing for ultraviolet (UV) radiation shielding including history-based sensing, memorizing, risk recognition, and blocking can be realized with piling the entire signal chain into the flexible devices. The UV shielding capability of the system can be evaluated as autonomous blocking up to 97% of UV radiation from 5 to 90 watts per square meter in less than 16.9 seconds, demonstrating autonomously modulated sensitivity and response time corresponding to UV environmental conditions and supplied bias.
Collapse
Affiliation(s)
- Jong Min Lee
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Woon Cho
- Department of Advanced Components and Materials Engineering, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Chanho Jo
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong Hwan Yang
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jaehyun Kim
- Department of Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Do Yeon Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Wan Jo
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Jong S. Park
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sung Kyu Park
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
14
|
Franke K, Cai C, Ponder K, Fu J, Sokoloski S, Berens P, Tolias AS. Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky. eLife 2024; 12:RP89996. [PMID: 39234821 PMCID: PMC11377037 DOI: 10.7554/elife.89996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Color is an important visual feature that informs behavior, and the retinal basis for color vision has been studied across various vertebrate species. While many studies have investigated how color information is processed in visual brain areas of primate species, we have limited understanding of how it is organized beyond the retina in other species, including most dichromatic mammals. In this study, we systematically characterized how color is represented in the primary visual cortex (V1) of mice. Using large-scale neuronal recordings and a luminance and color noise stimulus, we found that more than a third of neurons in mouse V1 are color-opponent in their receptive field center, while the receptive field surround predominantly captures luminance contrast. Furthermore, we found that color-opponency is especially pronounced in posterior V1 that encodes the sky, matching the statistics of natural scenes experienced by mice. Using unsupervised clustering, we demonstrate that the asymmetry in color representations across cortex can be explained by an uneven distribution of green-On/UV-Off color-opponent response types that are represented in the upper visual field. Finally, a simple model with natural scene-inspired parametric stimuli shows that green-On/UV-Off color-opponent response types may enhance the detection of 'predatory'-like dark UV-objects in noisy daylight scenes. The results from this study highlight the relevance of color processing in the mouse visual system and contribute to our understanding of how color information is organized in the visual hierarchy across species.
Collapse
Affiliation(s)
- Katrin Franke
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, United States
- Stanford Bio-X, Stanford University, Stanford, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, United States
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, United States
| | - Chenchen Cai
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Kayla Ponder
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, United States
| | - Jiakun Fu
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, United States
| | - Sacha Sokoloski
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Andreas Savas Tolias
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, United States
- Stanford Bio-X, Stanford University, Stanford, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, United States
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, United States
- Department of Electrical Engineering, Stanford University, Stanford, United States
| |
Collapse
|
15
|
Lin JJ, Wang FY, Chung WY, Wang TY. The genomic evolution of visual opsin genes in amphibians. Vision Res 2024; 222:108447. [PMID: 38906036 DOI: 10.1016/j.visres.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Among tetrapod (terrestrial) vertebrates, amphibians remain more closely tied to an amphibious lifestyle than amniotes, and their visual opsin genes may be adapted to this lifestyle. Previous studies have discussed physiological, morphological, and molecular changes in the evolution of amphibian vision. We predicted the locations of the visual opsin genes, their neighboring genes, and the tuning sites of the visual opsins, in 39 amphibian genomes. We found that all of the examined genomes lacked the Rh2 gene. The caecilian genomes have further lost the SWS1 and SWS2 genes; only the Rh1 and LWS genes were retained. The loss of the SWS1 and SWS2 genes in caecilians may be correlated with their cryptic lifestyles. The opsin gene syntenies were predicted to be highly similar to those of other bony vertebrates. Moreover, dual syntenies were identified in allotetraploid Xenopus laevis and X. borealis. Tuning site analysis showed that only some Caudata species might have UV vision. In addition, the S164A that occurred several times in LWS evolution might either functionally compensate for the Rh2 gene loss or fine-tuning visual adaptation. Our study provides the first genomic evidence for a caecilian LWS gene and a genomic viewpoint of visual opsin genes by reviewing the gains and losses of visual opsin genes, the rearrangement of syntenies, and the alteration of spectral tuning in the course of amphibians' evolution.
Collapse
Affiliation(s)
- Jinn-Jy Lin
- National Center for High-performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Feng-Yu Wang
- Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung, Taiwan
| | - Wen-Yu Chung
- Department of Computer Science and Information Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
16
|
Krebs SA, Schummer ML. A review of plant phenolics and endozoochory. Ecol Evol 2024; 14:e70255. [PMID: 39290664 PMCID: PMC11405292 DOI: 10.1002/ece3.70255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Phenolic compounds (phenolics) are secondary metabolites ubiquitous across plants. The earliest phenolics are linked to plants' successful transition from an aquatic to a terrestrial environment, serving as protection against damaging ultraviolet (UV) radiation, and as antioxidants to reduce oxidative stress in an atmosphere with an increasingly high O2:CO2 ratio. In modern plants, phenolics are best known for the defense against fungal and bacterial pathogens and as antifeedants that deter herbivory. Phenolics also play a role in seed dormancy, delaying germination, and lengthening viability in the seed bank. Many plants' seeds are endozoochorous - dispersed by animals, like birds, who eat and later excrete the seeds. Plants send visual signals to attract birds with UV-sensitive (UVS) vision for pollination and seed dispersal. As fruits ripen, antioxidant activity and phenolic content decrease. The waxy cuticle of fruits increases in UV reflection as phenolic rings, which absorb UV light, degrade. The UV contrast that birds detect may act as an honest signal, indicating nutritional changes in the fruit. However, there is little evidence to support the evolution of UV coloration during ripening being driven by frugivore selection. Antioxidant properties of fruit phenolics may be dually adaptive in plants and avian frugivores.
Collapse
Affiliation(s)
- Samuel A Krebs
- Department of Environmental Biology State University of New York College of Environmental Science and Forestry (SUNY ESF) Syracuse New York USA
| | - Michael L Schummer
- Department of Environmental Biology State University of New York College of Environmental Science and Forestry (SUNY ESF) Syracuse New York USA
| |
Collapse
|
17
|
Chang KC, Feng X, Duan X, Liu H, Liu Y, Peng Z, Lin X, Li L. Integrating ultraviolet sensing and memory functions in gallium nitride-based optoelectronic devices. NANOSCALE HORIZONS 2024; 9:1166-1174. [PMID: 38668875 DOI: 10.1039/d3nh00560g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Optoelectronic devices present a promising avenue for emulating the human visual system. However, existing devices struggle to maintain optical image information after removing external stimuli, preventing the integration of image perception and memory. The development of optoelectronic memory devices offers a feasible solution to bridge this gap. Simultaneously, the artificial vision for perceiving and storing ultraviolet (UV) images is particularly important because UV light carries information imperceptible to the naked eye. This study introduces a multi-level UV optoelectronic memory based on gallium nitride (GaN), seamlessly integrating UV sensing and memory functions within a single device. The embedded SiO2 side-gates around source and drain regions effectively extend the lifetime of photo-generated carriers, enabling dual-mode storage of UV signals in terms of threshold voltage and ON-state current. The optoelectronic memory demonstrates excellent robustness with the retention time exceeding 4 × 104 s and programming/erasing cycles surpassing 1 × 105. Adjusting the gate voltage achieves five distinct storage states, each characterized by excellent retention, and efficiently modulates erasure times for rapid erasure. Furthermore, the integration of the GaN optoelectronic memory array successfully captures and stably stores specific UV images for over 7 days. The study marks a significant stride in optoelectronic memories, showcasing their potential in applications requiring prolonged retention.
Collapse
Affiliation(s)
- Kuan-Chang Chang
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Xibei Feng
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Xinqing Duan
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Huangbai Liu
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yanxin Liu
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Zehui Peng
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Xinnan Lin
- Anhui Engineering Research Center of Vehicle Display Integrated Systems, Joint Discipline Key Laboratory of Touch Display Materials and Devices, School of Integrated Circuits, Anhui Polytechnic University, Wuhu 241000, China.
| | - Lei Li
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
18
|
Franke K, Cai C, Ponder K, Fu J, Sokoloski S, Berens P, Tolias AS. Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.01.543054. [PMID: 37333280 PMCID: PMC10274736 DOI: 10.1101/2023.06.01.543054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Color is an important visual feature that informs behavior, and the retinal basis for color vision has been studied across various vertebrate species. While many studies have investigated how color information is processed in visual brain areas of primate species, we have limited understanding of how it is organized beyond the retina in other species, including most dichromatic mammals. In this study, we systematically characterized how color is represented in the primary visual cortex (V1) of mice. Using large-scale neuronal recordings and a luminance and color noise stimulus, we found that more than a third of neurons in mouse V1 are color-opponent in their receptive field center, while the receptive field surround predominantly captures luminance contrast. Furthermore, we found that color-opponency is especially pronounced in posterior V1 that encodes the sky, matching the statistics of natural scenes experienced by mice. Using unsupervised clustering, we demonstrate that the asymmetry in color representations across cortex can be explained by an uneven distribution of green-On/UV-Off color-opponent response types that are represented in the upper visual field. Finally, a simple model with natural scene-inspired parametric stimuli shows that green-On/UV-Off color-opponent response types may enhance the detection of "predatory"-like dark UV-objects in noisy daylight scenes. The results from this study highlight the relevance of color processing in the mouse visual system and contribute to our understanding of how color information is organized in the visual hierarchy across species.
Collapse
Affiliation(s)
- Katrin Franke
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, US
- Stanford Bio-X, Stanford University, Stanford, CA, US
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, US
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Chenchen Cai
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Center of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Kayla Ponder
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Jiakun Fu
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Sacha Sokoloski
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Andreas S Tolias
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA, US
- Stanford Bio-X, Stanford University, Stanford, CA, US
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, US
- Department of Neuroscience & Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, US
| |
Collapse
|
19
|
Bertinetti C, Härer A, Karagic N, Meyer A, Torres-Dowdall J. Repeated Divergence in Opsin Gene Expression Mirrors Photic Habitat Changes in Rapidly Evolving Crater Lake Cichlid Fishes. Am Nat 2024; 203:604-617. [PMID: 38635367 DOI: 10.1086/729420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractSelection pressures differ along environmental gradients, and traits tightly linked to fitness (e.g., the visual system) are expected to track such variation. Along gradients, adaptation to local conditions might be due to heritable and nonheritable environmentally induced variation. Disentangling these sources of phenotypic variation requires studying closely related populations in nature and in the laboratory. The Nicaraguan lakes represent an environmental gradient in photic conditions from clear crater lakes to very turbid great lakes. From two old, turbid great lakes, Midas cichlid fish (Amphilophus cf. citrinellus) independently colonized seven isolated crater lakes of varying light conditions, resulting in a small adaptive radiation. We estimated variation in visual sensitivities along this photic gradient by measuring cone opsin gene expression among lake populations. Visual sensitivities observed in all seven derived crater lake populations shifted predictably in direction and magnitude, repeatedly mirroring changes in photic conditions. Comparing wild-caught and laboratory-reared fish revealed that 48% of this phenotypic variation is genetically determined and evolved rapidly. Decreasing intrapopulation variation as environments become spectrally narrower suggests that different selective landscapes operate along the gradient. We conclude that the power to predict phenotypic evolution along gradients depends on both the magnitude of environmental change and the selective landscape shape.
Collapse
|
20
|
Stieb SM, Cortesi F, Mitchell L, Jardim de Queiroz L, Marshall NJ, Seehausen O. Short-wavelength-sensitive 1 ( SWS1) opsin gene duplications and parallel visual pigment tuning support ultraviolet communication in damselfishes (Pomacentridae). Ecol Evol 2024; 14:e11186. [PMID: 38628922 PMCID: PMC11019301 DOI: 10.1002/ece3.11186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Damselfishes (Pomacentridae) are one of the most behaviourally diverse, colourful and species-rich reef fish families. One remarkable characteristic of damselfishes is their communication in ultraviolet (UV) light. Not only are they sensitive to UV, they are also prone to have UV-reflective colours and patterns enabling social signalling. Using more than 50 species, we aimed to uncover the evolutionary history of UV colour and UV vision in damselfishes. All damselfishes had UV-transmitting lenses, expressed the UV-sensitive SWS1 opsin gene, and most displayed UV-reflective patterns and colours. We find evidence for several tuning events across the radiation, and while SWS1 gene duplications are generally very rare among teleosts, our phylogenetic reconstructions uncovered two independent duplication events: one close to the base of the most species-rich clade in the subfamily Pomacentrinae, and one in a single Chromis species. Using amino acid comparisons, we found that known spectral tuning sites were altered several times in parallel across the damselfish radiation (through sequence change and duplication followed by sequence change), causing repeated shifts in peak spectral absorbance of around 10 nm. Pomacentrinae damselfishes expressed either one or both copies of SWS1, likely to further finetune UV-signal detection and differentiation. This highly advanced and modified UV vision among damselfishes, in particular the duplication of SWS1 among Pomacentrinae, might be seen as a key evolutionary innovation that facilitated the evolution of the exuberant variety of UV-reflectance traits and the diversification of this coral reef fish lineage.
Collapse
Affiliation(s)
- Sara M. Stieb
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- School of the EnvironmentThe University of QueenslandBrisbaneAustralia
| | - Laurie Mitchell
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- Marine Eco‐Evo‐Devo UnitOkinawa Institute of Science and TechnologyOnna sonOkinawaJapan
| | - Luiz Jardim de Queiroz
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ole Seehausen
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
21
|
Mitchell LJ, Phelan A, Cortesi F, Marshall NJ, Chung WS, Osorio DC, Cheney KL. Ultraviolet vision in anemonefish improves colour discrimination. J Exp Biol 2024; 227:jeb247425. [PMID: 38586934 PMCID: PMC11057877 DOI: 10.1242/jeb.247425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 04/09/2024]
Abstract
In many animals, ultraviolet (UV) vision guides navigation, foraging, and communication, but few studies have addressed the contribution of UV signals to colour vision, or measured UV discrimination thresholds using behavioural experiments. Here, we tested UV colour vision in an anemonefish (Amphiprion ocellaris) using a five-channel (RGB-V-UV) LED display. We first determined that the maximal sensitivity of the A. ocellaris UV cone was ∼386 nm using microspectrophotometry. Three additional cone spectral sensitivities had maxima at ∼497, 515 and ∼535 nm. We then behaviourally measured colour discrimination thresholds by training anemonefish to distinguish a coloured target pixel from grey distractor pixels of varying intensity. Thresholds were calculated for nine sets of colours with and without UV signals. Using a tetrachromatic vision model, we found that anemonefish were better (i.e. discrimination thresholds were lower) at discriminating colours when target pixels had higher UV chromatic contrast. These colours caused a greater stimulation of the UV cone relative to other cone types. These findings imply that a UV component of colour signals and cues improves their detectability, which likely increases the prominence of anemonefish body patterns for communication and the silhouette of zooplankton prey.
Collapse
Affiliation(s)
- Laurie J. Mitchell
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Onna son, Okinawa 904-0495, Japan
| | - Amelia Phelan
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabio Cortesi
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wen-sung Chung
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel C. Osorio
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Karen L. Cheney
- School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
22
|
Baden T. Ancestral photoreceptor diversity as the basis of visual behaviour. Nat Ecol Evol 2024; 8:374-386. [PMID: 38253752 DOI: 10.1038/s41559-023-02291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 01/24/2024]
Abstract
Animal colour vision is based on comparing signals from different photoreceptors. It is generally assumed that processing different spectral types of photoreceptor mainly serves colour vision. Here I propose instead that photoreceptors are parallel feature channels that differentially support visual-motor programmes like motion vision behaviours, prey capture and predator evasion. Colour vision may have emerged as a secondary benefit of these circuits, which originally helped aquatic vertebrates to visually navigate and segment their underwater world. Specifically, I suggest that ancestral vertebrate vision was built around three main systems, including a high-resolution general purpose greyscale system based on ancestral red cones and rods to mediate visual body stabilization and navigation, a high-sensitivity specialized foreground system based on ancestral ultraviolet cones to mediate threat detection and prey capture, and a net-suppressive system based on ancestral green and blue cones for regulating red/rod and ultraviolet circuits. This ancestral strategy probably still underpins vision today, and different vertebrate lineages have since adapted their original photoreceptor circuits to suit their diverse visual ecologies.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, UK.
| |
Collapse
|
23
|
Newman BA, D’Angelo GJ. A Review of Cervidae Visual Ecology. Animals (Basel) 2024; 14:420. [PMID: 38338063 PMCID: PMC10854973 DOI: 10.3390/ani14030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
This review examines the visual systems of cervids in relation to their ability to meet their ecological needs and how their visual systems are specialized for particular tasks. Cervidae encompasses a diverse group of mammals that serve as important ecological drivers within their ecosystems. Despite evidence of highly specialized visual systems, a large portion of cervid research ignores or fails to consider the realities of cervid vision as it relates to their ecology. Failure to account for an animal's visual ecology during research can lead to unintentional biases and uninformed conclusions regarding the decision making and behaviors for a species or population. Our review addresses core behaviors and their interrelationship with cervid visual characteristics. Historically, the study of cervid visual characteristics has been restricted to specific areas of inquiry such as color vision and contains limited integration into broader ecological and behavioral research. The purpose of our review is to bridge these gaps by offering a comprehensive review of cervid visual ecology that emphasizes the interplay between the visual adaptations of cervids and their interactions with habitats and other species. Ultimately, a better understanding of cervid visual ecology allows researchers to gain deeper insights into their behavior and ecology, providing critical information for conservation and management efforts.
Collapse
Affiliation(s)
- Blaise A. Newman
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
24
|
Abstract
When vertebrates first conquered the land, they encountered a visual world that was radically distinct from that of their aquatic ancestors. Fish exploit the strong wavelength-dependent interactions of light with water by differentially feeding the signals from up to 5 spectral photoreceptor types into distinct behavioural programmes. However, above the water the same spectral rules do not apply, and this called for an update to visual circuit strategies. Early tetrapods soon evolved the double cone, a still poorly understood pair of new photoreceptors that brought the "ancestral terrestrial" complement from 5 to 7. Subsequent nonmammalian lineages differentially adapted this highly parallelised retinal input strategy for their diverse visual ecologies. By contrast, mammals shed most ancestral photoreceptors and converged on an input strategy that is exceptionally general. In eutherian mammals including in humans, parallelisation emerges gradually as the visual signal traverses the layers of the retina and into the brain.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, United Kingdom
| |
Collapse
|
25
|
Mizoguchi K, Sato M, Saito R, Koshikuni M, Sakakibara M, Manabe R, Harada Y, Uchikawa T, Ansai S, Kamei Y, Naruse K, Fukamachi S. Behavioral photosensitivity of multi-color-blind medaka: enhanced response under ultraviolet light in the absence of short-wavelength-sensitive opsins. BMC Neurosci 2023; 24:67. [PMID: 38097940 PMCID: PMC10722765 DOI: 10.1186/s12868-023-00835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The behavioral photosensitivity of animals could be quantified via the optomotor response (OMR), for example, and the luminous efficiency function (the range of visible light) should largely rely on the repertoire and expression of light-absorbing proteins in the retina, i.e., the opsins. In fact, the OMR under red light was suppressed in medaka lacking the red (long-wavelength sensitive [LWS]) opsin. RESULTS We investigated the ultraviolet (UV)- or blue-light sensitivity of medaka lacking the violet (short-wavelength sensitive 1 [SWS1]) and blue (SWS2) opsins. The sws1/sws2 double or sws1/sws2/lws triple mutants were as viable as the wild type. The remaining green (rhodopsin 2 [RH2]) or red opsins were not upregulated. Interestingly, the OMR of the double or triple mutants was equivalent or even increased under UV or blue light (λ = 350, 365, or 450 nm), which demonstrated that the rotating stripes (i.e., changes in luminance) could fully be recognized under UV light using RH2 alone. The OMR test using dichromatic stripes projected onto an RGB display consistently showed that the presence or absence of SWS1 and SWS2 did not affect the equiluminant conditions. CONCLUSIONS RH2 and LWS, but not SWS1 and SWS2, should predominantly contribute to the postreceptoral processes leading to the OMR or, possibly, to luminance detection in general, as the medium-wavelength-sensitive and LWS cones, but not the SWS cones, are responsible for luminance detection in humans.
Collapse
Affiliation(s)
- Kiyono Mizoguchi
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Mayu Sato
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Rina Saito
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Mayu Koshikuni
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Mana Sakakibara
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Ran Manabe
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Yumi Harada
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Tamaki Uchikawa
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Satoshi Ansai
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi, 444-8585, Japan
- Graduate School of Life Sciences, Tohoku University, Miyagi, 980-8577, Japan
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Aichi, 444-8585, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Aichi, 444-8585, Japan
| | - Shoji Fukamachi
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan.
| |
Collapse
|
26
|
Palecanda S, Madrid E, Porter ML. Molecular Evolution of Malacostracan Short Wavelength Sensitive Opsins. J Mol Evol 2023; 91:806-818. [PMID: 37940679 DOI: 10.1007/s00239-023-10137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Investigations of the molecular mechanisms behind detection of short, and particularly ultraviolet, wavelengths in arthropods have relied heavily on studies from insects due to the relative ease of heterologous expression of modified opsin proteins in model organisms like Drosophila. However, species outside of the Insecta can provide information on mechanisms for spectral tuning as well as the evolutionary history of pancrustacean visual pigments. Here we investigate the basis of spectral tuning in malacostracan short wavelength sensitive (SWS) opsins using phylogenetic comparative methods. Tuning sites that may be responsible for the difference between ultraviolet (UV) and violet visual pigment absorbance in the Malacostraca are identified, and the idea that an amino acid polymorphism at a single site is responsible for this shift is shown to be unlikely. Instead, we suggest that this change in absorbance is accomplished through multiple amino acid substitutions. On the basis of our findings, we conducted further surveys to identify spectral tuning mechanisms in the order Stomatopoda where duplication of UV opsins has occurred. Ancestral state reconstructions of stomatopod opsins from two main clades provide insight into the amino acid changes that lead to differing absorption by the visual pigments they form, and likely contribute the basis for the wide array of UV spectral sensitivities found in this order.
Collapse
Affiliation(s)
- Sitara Palecanda
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| | - Elizabeth Madrid
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Megan L Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
27
|
Dong H, Huang X, Gao Q, Li S, Yang S, Chen F. Research Progress on the Species and Diversity of Ants and Their Three Tropisms. INSECTS 2023; 14:892. [PMID: 37999091 PMCID: PMC10672356 DOI: 10.3390/insects14110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Ants are one of the largest insect groups, with the most species and individuals in the world, and they have an important ecological function. Ants are not only an important part of the food chains but are also one of the main decomposers on the Earth; they can also improve soil fertility, etc. However, some species of ants are harmful to human beings, which leads to people's panic or worry about coming into contact with these insects during their daily home life or in their tourism or leisure activities. The presence of ants in indoor living facilities and in outdoor green spaces, parks, gardens, and tourist attractions seriously interferes with the leisure life and entertainment activities of all people (especially children). How can we control ants in these environments? Do we kill them by spraying insecticides, or do we adopt green prevention and control technology for the ecological management of ants? This topic is related to healthy life for the public and the protection of the ecological environment. In this paper, the species and diversity of ants are introduced, and research progress regarding ant tropism is introduced according to the three aspects of phototaxis, chromotaxis, and chemotaxis (i.e., "3-tropisms"). The research on repellent substances from plants and insects and the related ant attractants are also summarized, analyzed, and discussed, in order to help the research and application of green prevention and control technology for ant diversity protection and conservation.
Collapse
Affiliation(s)
- Hejie Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (H.D.); (X.H.); (Q.G.); (S.Y.)
| | - Xinyi Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (H.D.); (X.H.); (Q.G.); (S.Y.)
| | - Qingqing Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (H.D.); (X.H.); (Q.G.); (S.Y.)
| | - Sihan Li
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shanglin Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (H.D.); (X.H.); (Q.G.); (S.Y.)
| | - Fajun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (H.D.); (X.H.); (Q.G.); (S.Y.)
| |
Collapse
|
28
|
Newman BA, Dyal JR, Miller KV, Cherry MJ, D'Angelo GJ. Influence of visual perception on movement decisions by an ungulate prey species. Biol Open 2023; 12:bio059932. [PMID: 37843403 PMCID: PMC10602006 DOI: 10.1242/bio.059932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Visual perception is dynamic and depends on physiological properties of a species' visual system and physical characteristics of the environment. White-tailed deer (Odocoileus virginianus) are most sensitive to short- and mid-wavelength light (e.g. blue and green). Wavelength enrichment varies spatially and temporally across the landscape. We assessed how the visual perception of deer influences their movement decisions. From August to September 2019, we recorded 10-min locations from 15 GPS-collared adult male deer in Central Florida. We used Hidden-Markov models to identify periods of movement by deer and subset these data into three time periods based on temporal changes in light environments. We modeled resource selection during movement using path-selection functions and simulated 10 available paths for every path used. We developed five a priori models and used 10-fold cross validation to assess our top model's performance for each time period. During the day, deer selected to move through woodland shade, avoided forest shade, and neither selected nor avoided small gaps. At twilight, deer avoided wetlands as cloud cover increased but neither selected nor avoided other cover types. Visual cues and signals are likely more conspicuous to deer in short-wavelength-enriched woodland shade during the day, while at twilight in long-wavelength-enriched wetlands during cloud cover, visual cues are likely less conspicuous. The nocturnal light environment did not influence resource selection and likely has little effect on deer movements because it's relatively homogenous. Our findings suggest visual perception relative to light environments is likely an underappreciated driver of behaviors and decision-making by an ungulate prey species.
Collapse
Affiliation(s)
- Blaise A. Newman
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA 30602, USA
| | - Jordan R. Dyal
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA 30602, USA
| | - Karl V. Miller
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA 30602, USA
| | - Michael J. Cherry
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, 700 University Blvd., Kingsville, TX 78363, USA
| | - Gino J. D'Angelo
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA 30602, USA
| |
Collapse
|
29
|
Alton LA, Novelo M, Beaman JE, Arnold PA, Bywater CL, Kerton EJ, Lombardi EJ, Koh C, McGraw EA. Exposure to ultraviolet-B radiation increases the susceptibility of mosquitoes to infection with dengue virus. GLOBAL CHANGE BIOLOGY 2023; 29:5540-5551. [PMID: 37560790 DOI: 10.1111/gcb.16906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/11/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
By 2100, greenhouse gases are predicted to reduce ozone and cloud cover over the tropics causing increased exposure of organisms to harmful ultraviolet-B radiation (UVBR). UVBR damages DNA and is an important modulator of immune function and disease susceptibility in humans and other vertebrates. The effect of UVBR on invertebrate immune function is largely unknown, but UVBR together with ultraviolet-A radiation impairs an insect immune response that utilizes melanin, a pigment that also protects against UVBR-induced DNA damage. If UVBR weakens insect immunity, then it may make insect disease vectors more susceptible to infection with pathogens of socioeconomic and public health importance. In the tropics, where UVBR is predicted to increase, the mosquito-borne dengue virus (DENV), is prevalent and a growing threat to humans. We therefore examined the effect of UVBR on the mosquito Aedes aegypti, the primary vector for DENV, to better understand the potential implications of increased tropical UVBR for mosquito-borne disease risk. We found that exposure to a UVBR dose that caused significant larval mortality approximately doubled the probability that surviving females would become infected with DENV, despite this UVBR dose having no effect on the expression of an effector gene involved in antiviral immunity. We also found that females exposed to a lower UVBR dose were more likely to have low fecundity even though this UVBR dose had no effect on larval size or activity, pupal cuticular melanin content, or adult mass, metabolic rate, or flight capacity. We conclude that future increases in tropical UVBR associated with anthropogenic global change may have the benefit of reducing mosquito-borne disease risk for humans by reducing mosquito fitness, but this benefit may be eroded if it also makes mosquitoes more likely to be infected with deadly pathogens.
Collapse
Affiliation(s)
- Lesley A Alton
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mario Novelo
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Entomology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Julian E Beaman
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Pieter A Arnold
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Candice L Bywater
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Emily J Kerton
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Emily J Lombardi
- Centre for Geometric Biology, Monash University, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Cassandra Koh
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Biology, Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
30
|
Adami C. The Elements of Intelligence. ARTIFICIAL LIFE 2023; 29:293-307. [PMID: 37490705 DOI: 10.1162/artl_a_00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Affiliation(s)
- Christoph Adami
- Michigan State University, Department of Microbiology and Molecular Genetics, Department of Physics and Astronomy.
| |
Collapse
|
31
|
MOLINA-CARRILLO L, Bassaglia Y, Schires G, BONNAUD-PONTICELLI L. Does the egg capsule protect against chronic UV-B radiation? A study based on encapsulated and decapsulated embryos of cuttlefish Sepia officinalis. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230602. [PMID: 37476507 PMCID: PMC10354468 DOI: 10.1098/rsos.230602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
Although the egg capsule plays a crucial role in the embryonic development of cephalopods, its ability to protect embryos from Ultraviolet (UV) radiation is unknown. Our study evaluated the photoprotection mechanisms of S. officinalis to UV-B radiation and estimated the ability of the black capsule to act as a physical shield against it. Embryos with and without capsule and juveniles were exposed to four experimental UVB conditions for 55 days. The effects of different UVB doses were evaluated in terms of morphological abnormalities and differences in gene expression between each group. We observed that the development might be severely impaired in embryos exposed to UVB without capsule protection, and these effects were time- and UVB-dose-dependent. In addition, we found variations in gene expression levels (light-sensitive, stress response and DNA repair) in different tissues as a function of UVB doses. We suggest a relationship between morphological abnormalities and the limit of molecular regulation. These results suggest that the quantitative differences in expression are essential for defining the survivability of the embryo face to UVB. Thus, we demonstrated that the egg capsule could ensure successful embryonic development of the cuttlefish S. officinalis even at high doses of UVB.
Collapse
Affiliation(s)
- Luis MOLINA-CARRILLO
- UMR Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d'Histoire Naturelle, CNRS 8067, Sorbonne Université, Paris, France
| | - Yann Bassaglia
- UMR Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d'Histoire Naturelle, CNRS 8067, Sorbonne Université, Paris, France
- Université Paris Est Créteil-Val de Marne (UPEC), France
| | - Gaëtan Schires
- Station Biologique de Roscoff, FR2424, CNRS-Sorbonne Université, Roscoff 29682, France
| | - Laure BONNAUD-PONTICELLI
- UMR Biologie des Organismes et Ecosystèmes Aquatiques, Muséum National d'Histoire Naturelle, CNRS 8067, Sorbonne Université, Paris, France
| |
Collapse
|
32
|
Barnes PW, Robson TM, Zepp RG, Bornman JF, Jansen MAK, Ossola R, Wang QW, Robinson SA, Foereid B, Klekociuk AR, Martinez-Abaigar J, Hou WC, Mackenzie R, Paul ND. Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochem Photobiol Sci 2023; 22:1049-1091. [PMID: 36723799 PMCID: PMC9889965 DOI: 10.1007/s43630-023-00376-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Terrestrial organisms and ecosystems are being exposed to new and rapidly changing combinations of solar UV radiation and other environmental factors because of ongoing changes in stratospheric ozone and climate. In this Quadrennial Assessment, we examine the interactive effects of changes in stratospheric ozone, UV radiation and climate on terrestrial ecosystems and biogeochemical cycles in the context of the Montreal Protocol. We specifically assess effects on terrestrial organisms, agriculture and food supply, biodiversity, ecosystem services and feedbacks to the climate system. Emphasis is placed on the role of extreme climate events in altering the exposure to UV radiation of organisms and ecosystems and the potential effects on biodiversity. We also address the responses of plants to increased temporal variability in solar UV radiation, the interactive effects of UV radiation and other climate change factors (e.g. drought, temperature) on crops, and the role of UV radiation in driving the breakdown of organic matter from dead plant material (i.e. litter) and biocides (pesticides and herbicides). Our assessment indicates that UV radiation and climate interact in various ways to affect the structure and function of terrestrial ecosystems, and that by protecting the ozone layer, the Montreal Protocol continues to play a vital role in maintaining healthy, diverse ecosystems on land that sustain life on Earth. Furthermore, the Montreal Protocol and its Kigali Amendment are mitigating some of the negative environmental consequences of climate change by limiting the emissions of greenhouse gases and protecting the carbon sequestration potential of vegetation and the terrestrial carbon pool.
Collapse
Affiliation(s)
- P W Barnes
- Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, USA.
| | - T M Robson
- Organismal & Evolutionary Biology (OEB), Faculty of Biological and Environmental Sciences, Viikki Plant Sciences Centre (ViPS), University of Helsinki, Helsinki, Finland.
- National School of Forestry, University of Cumbria, Ambleside, UK.
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia
| | | | - R Ossola
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - S A Robinson
- Global Challenges Program & School of Earth, Atmospheric and Life Sciences, Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, Logroño (La Rioja), Spain
| | - W-C Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - R Mackenzie
- Cape Horn International Center (CHIC), Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
33
|
Ontogenetic change in the effectiveness of camouflage: growth versus pattern matching in Fowler's toad. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
34
|
Toussaint SLD, Ponstein J, Thoury M, Métivier R, Kalthoff DC, Habermeyer B, Guilard R, Bock S, Mortensen P, Sandberg S, Gueriau P, Amson E. Fur glowing under ultraviolet: in situ analysis of porphyrin accumulation in the skin appendages of mammals. Integr Zool 2023; 18:15-26. [PMID: 35500584 DOI: 10.1111/1749-4877.12655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Examples of photoluminescence (PL) are being reported with increasing frequency in a wide range of organisms from diverse ecosystems. However, the chemical basis of this PL remains poorly defined, and our understanding of its potential ecological function is still superficial. Among mammals, recent analyses have identified free-base porphyrins as the compounds responsible for the reddish ultraviolet-induced photoluminescence (UV-PL) observed in the pelage of springhares and hedgehogs. However, the localization of the pigments within the hair largely remains to be determined. Here, we use photoluminescence multispectral imaging emission and excitation spectroscopy to detect, map, and characterize porphyrinic compounds in skin appendages in situ. We also document new cases of mammalian UV-PL caused by free-base porphyrins in distantly related species. Spatial distribution of the UV-PL is strongly suggestive of an endogenous origin of the porphyrinic compounds. We argue that reddish UV-PL is predominantly observed in crepuscular and nocturnal mammals because porphyrins are photodegradable. Consequently, this phenomenon may not have a specific function in intra- or interspecific communication but rather represents a byproduct of potentially widespread physiological processes.
Collapse
Affiliation(s)
- Séverine L D Toussaint
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Jasper Ponstein
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,AG Paläobiologie und Evolution, Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Mathieu Thoury
- IPANEMA, CNRS, ministère de la Culture, UVSQ, MNHN, USR3461, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rémi Métivier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette, France
| | - Daniela C Kalthoff
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Roger Guilard
- ICMUB, UMR CNRS 6302, Université de Bourgogne Franche-Comté, France
| | - Steffen Bock
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Peter Mortensen
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Sverre Sandberg
- Norwegian Porphyria Centre (NAPOS), Haukeland University Hospital, Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), and Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Norway
| | - Pierre Gueriau
- IPANEMA, CNRS, ministère de la Culture, UVSQ, MNHN, USR3461, Université Paris-Saclay, Gif-sur-Yvette, France.,Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| |
Collapse
|
35
|
Mitchell LJ, Cortesi F, Marshall NJ, Cheney KL. Higher ultraviolet skin reflectance signals submissiveness in the anemonefish, Amphiprion akindynos. Behav Ecol 2023; 34:19-32. [PMID: 36789393 PMCID: PMC9918861 DOI: 10.1093/beheco/arac089] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
Ultraviolet (UV) vision is widespread among teleost fishes, of which many exhibit UV skin colors for communication. However, aside from its role in mate selection, few studies have examined the information UV signaling conveys in other socio-behavioral contexts. Anemonefishes (subfamily, Amphiprioninae) live in a fascinating dominance hierarchy, in which a large female and male dominate over non-breeding subordinates, and body size is the primary cue for dominance. The iconic orange and white bars of anemonefishes are highly UV-reflective, and their color vision is well tuned to perceive the chromatic contrast of skin, which we show here decreases in the amount of UV reflectance with increasing social rank. To test the function of their UV-skin signals, we compared the outcomes of staged contests over dominance between size-matched Barrier Reef anemonefish (Amphiprion akindynos) in aquarium chambers viewed under different UV-absorbing filters. Fish under UV-blocking filters were more likely to win contests, where fish under no-filter or neutral-density filter were more likely to submit. For contests between fish in no-filter and neutral density filter treatments, light treatment had no effect on contest outcome (win/lose). We also show that sub-adults were more aggressive toward smaller juveniles placed under a UV filter than a neutral density filter. Taken together, our results show that UV reflectance or UV contrast in anemonefish can modulate aggression and encode dominant and submissive cues, when changes in overall intensity are controlled for.
Collapse
Affiliation(s)
- Laurie J Mitchell
- School of Biological Sciences, Faculty of Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen L Cheney
- School of Biological Sciences, Faculty of Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
36
|
Techniques for documenting and quantifying biofluorescence through digital photography and color quantization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Cronin TW, Porter ML, Bok MJ, Caldwell RL, Marshall J. Colour vision in stomatopod crustaceans. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210278. [PMID: 36058241 PMCID: PMC9441230 DOI: 10.1098/rstb.2021.0278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022] Open
Abstract
The stomatopod crustaceans, or mantis shrimps, are colourful marine invertebrate predators. Their unusual compound eyes have dorsal and ventral regions resembling typical crustacean apposition designs separated by a unique region called the midband that consists of from two to six parallel rows of ommatidia. In species with six-row midbands, the dorsal four rows are themselves uniquely specialized for colour analysis. Rhabdoms of ommatidia in these rows are longitudinally divided into three distinct regions: an apical ultraviolet (UV) receptor, a shorter-wavelength middle tier receptor and a longer-wavelength proximal tier receptor. Each of the total of 12 photoreceptors has a different spectral sensitivity, potentially contributing to a colour-vision system with 12 channels. Mantis shrimps can discriminate both human-visible and UV colours, but with limited precision compared to other colour-vision systems. Here, we review the structure and function of stomatopod colour vision, examining the types of receptors present in a species, the spectral tuning of photoreceptors both within and across species, the neural analysis of colour and the genetics underlying the multiple visual pigments used for colour vision. Even today, after many decades of research into the colour vision of stomatopods, much of its operation and its use in nature remain a mystery. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Thomas W. Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 20250, USA
| | - Megan L. Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Michael J. Bok
- Department of Biology, Lund Vision Group, Lund University, Lund 22362, Sweden
| | - Roy L. Caldwell
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
38
|
Palecanda S, Iwanicki T, Steck M, Porter ML. Crustacean conundrums: a review of opsin diversity and evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210289. [PMID: 36058240 PMCID: PMC9441232 DOI: 10.1098/rstb.2021.0289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/06/2022] [Indexed: 11/12/2022] Open
Abstract
Knowledge of crustacean vision is lacking compared to the more well-studied vertebrates and insects. While crustacean visual systems are typically conserved morphologically, the molecular components (i.e. opsins) remain understudied. This review aims to characterize opsin diversity across crustacean lineages for an integrated view of visual system evolution. Using publicly available data from 95 species, we identified opsin sequences and classified them by clade. Our analysis produced 485 putative visual opsins and 141 non-visual opsins. The visual opsins were separated into six clades: long wavelength sensitive (LWS), middle wavelength sensitive (MWS) 1 and 2, short wavelength or ultraviolet sensitive (SWS/UVS) and a clade of thecostracan opsins, with multiple LWS and MWS opsin copies observed. The SWS/UVS opsins were relatively conserved in most species. The crustacean classes Cephalocarida, Remipedia and Hexanauplia exhibited reduced visual opsin diversity compared to others, with the malacostracan decapods having the highest opsin diversity. Non-visual opsins were identified from all investigated classes except Cephalocarida. Additionally, a novel clade of non-visual crustacean-specific, R-type opsins (Rc) was discovered. This review aims to provide a framework for future research on crustacean vision, with an emphasis on the need for more work in spectral characterization and molecular analysis. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Sitara Palecanda
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Thomas Iwanicki
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Mireille Steck
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Megan L. Porter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
39
|
Lopez-Reyes K, Armstrong KF, van Tol RWHM, Teulon DAJ, Bok MJ. Colour vision in thrips (Thysanoptera). Philos Trans R Soc Lond B Biol Sci 2022; 377:20210282. [PMID: 36058245 PMCID: PMC9441234 DOI: 10.1098/rstb.2021.0282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Insects are an astonishingly successful and diverse group, occupying the gamut of habitats and lifestyle niches. They represent the vast majority of described species and total terrestrial animal biomass on the planet. Their success is in part owed to their sophisticated visual systems, including colour vision, which drive a variety of complex behaviours. However, the majority of research on insect vision has focused on only a few model organisms including flies, honeybees and butterflies. Especially understudied are phytophagous insects, such as diminutive thrips (Thysanoptera), in spite of their damage to agriculture. Thrips display robust yet variable colour-specific responses despite their miniaturized eyes, but little is known about the physiological and ecological basis of their visual systems. Here, we review the known visual behavioural information about thrips and the few physiological studies regarding their eyes. Eye structure, spectral sensitivity, opsin genes and the presence of putative colour filters in certain ommatidia strongly imply dynamic visual capabilities. Finally, we discuss the major gaps in knowledge that remain for a better understanding of the visual system of thrips and why bridging these gaps is important for expanding new possibilities for applied pest management strategies for these tiny insects. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Karla Lopez-Reyes
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Karen F. Armstrong
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- Better Border Biosecurity (B3, B3nz.org.nz), New Zealand
| | - Robert W. H. M. van Tol
- Biointeractions and Plant Health (BIONT), Wageningen University and Research, Wageningen, The Netherlands
- BugResearch Consultancy, TheNetherlands
| | - David A. J. Teulon
- Better Border Biosecurity (B3, B3nz.org.nz), New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Michael J. Bok
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Franke K, Willeke KF, Ponder K, Galdamez M, Zhou N, Muhammad T, Patel S, Froudarakis E, Reimer J, Sinz FH, Tolias AS. State-dependent pupil dilation rapidly shifts visual feature selectivity. Nature 2022; 610:128-134. [PMID: 36171291 PMCID: PMC10635574 DOI: 10.1038/s41586-022-05270-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
To increase computational flexibility, the processing of sensory inputs changes with behavioural context. In the visual system, active behavioural states characterized by motor activity and pupil dilation1,2 enhance sensory responses, but typically leave the preferred stimuli of neurons unchanged2-9. Here we find that behavioural state also modulates stimulus selectivity in the mouse visual cortex in the context of coloured natural scenes. Using population imaging in behaving mice, pharmacology and deep neural network modelling, we identified a rapid shift in colour selectivity towards ultraviolet stimuli during an active behavioural state. This was exclusively caused by state-dependent pupil dilation, which resulted in a dynamic switch from rod to cone photoreceptors, thereby extending their role beyond night and day vision. The change in tuning facilitated the decoding of ethological stimuli, such as aerial predators against the twilight sky10. For decades, studies in neuroscience and cognitive science have used pupil dilation as an indirect measure of brain state. Our data suggest that, in addition, state-dependent pupil dilation itself tunes visual representations to behavioural demands by differentially recruiting rods and cones on fast timescales.
Collapse
Affiliation(s)
- Katrin Franke
- Institute for Ophthalmic Research, Tübingen University, Tübingen, Germany.
- Center for Integrative Neuroscience, Tübingen University, Tübingen, Germany.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
| | - Konstantin F Willeke
- Institute for Bioinformatics and Medical Informatics, Tübingen University, Tübingen, Germany
- Department of Computer Science, Göttingen University, Göttingen, Germany
| | - Kayla Ponder
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Mario Galdamez
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Na Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Taliah Muhammad
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Saumil Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Fabian H Sinz
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Institute for Bioinformatics and Medical Informatics, Tübingen University, Tübingen, Germany
- Department of Computer Science, Göttingen University, Göttingen, Germany
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
41
|
Dominy NJ, Harris JM. Adaptive optics in the Arctic? A commentary on Fosbury and Jeffery. Proc Biol Sci 2022; 289:20221528. [PMID: 36126682 PMCID: PMC9489282 DOI: 10.1098/rspb.2022.1528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Nathaniel J Dominy
- Departments of Anthropology and Biological Sciences, Dartmouth College, 6047 Silsby Hall, Hanover, NH 03755-3537, USA.,Zukunftskolleg, University of Konstanz, Box 216, Konstanz 78457, Germany
| | - Julie M Harris
- School of Psychology and Neuroscience, University of St Andrews, South Street, St Andrews, Fife KY16 9JP, UK
| |
Collapse
|
42
|
Giannikaki S, Douglas RH. Spectral transmittance of animal intraocular lenses in comparison with the spectral properties of their biological lenses. Vet Ophthalmol 2022; 25:510-514. [PMID: 35909253 DOI: 10.1111/vop.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/28/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To determine the spectral transmittance of artificial intraocular lenses (IOLs) designed for various species (dog, cat, chinchilla, eagle, tiger) and compare them to the spectral properties of the biological lenses of these species. METHODS Twenty-seven IOLs were scanned with a spectrophotometer fitted with an integrating sphere. RESULTS All IOLs transmitted long wavelengths well before cutting off sharply at short wavelengths, with insignificant transmission below ca. 340 nm. In comparison with the IOLs, the biological lenses of the cat, dog, and probably the chinchilla transmitted significantly more short wavelengths. The spectral properties of the biological lenses of eagles and tigers, while uncertain, may be a closer match to the IOLs made for these species. CONCLUSION It is not known if there are any visual or behavioral consequences for animals caused by a mismatch between the spectral properties of their biological lenses and IOLs. However, following IOL implantation there might be a change in the perceived hue of objects due to the removal of UV wavelengths which form a normal part of the visible spectrum for these species and/or a decrease in sensitivity.
Collapse
Affiliation(s)
| | - Ronald H Douglas
- Division of Optometry and Visual Science, City, University of London, London, UK
| |
Collapse
|
43
|
Colour Response in Western Flower Thrips Varies Intraspecifically. INSECTS 2022; 13:insects13060538. [PMID: 35735875 PMCID: PMC9224597 DOI: 10.3390/insects13060538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Discrepancies in the published research as to the attraction of the economically important pest western flower thrips (WFT) to different colours confounds the optimisation of field traps for pest management purposes. We considered whether the different experimental conditions of independent studies could have contributed to this. Therefore, the behavioural response (i.e., landings) to different colour cues of two WFT laboratory populations from Germany (DE) and The Netherlands (NL), which had previously been independently shown to have different colour preferences, were tested in the same place, and under the same experimental conditions. Single-choice wind tunnel bioassays supported previous independent findings, with more of a NL population landing on the yellow LED lamp (588 nm) than the blue (470 nm) (p = 0.022), and a not-statistically significant trend observed in a DE population landing more on blue compared to yellow (p = 0.104). To account for potential original host rearing influences, both populations were subsequently established on bean for ~20 weeks, then yellow chrysanthemum for 4−8 and 12−14 weeks and tested in wind tunnel choice bioassays. Laboratory of origin, irrespective of the host plant rearing regime, remained a significant effect (p < 0.001), with 65% of the NL WFT landing on yellow compared to blue (35%), while 66% of the DE WFT landed on blue compared to yellow (34%). There was also a significant host plant effect (p < 0.001), with increased response to yellow independent of laboratory of origin after rearing on chrysanthemum for 12−14 weeks. Results suggest that differing responses of WFT populations to colour is, in this case, independent of the experimental situation. Long-term separate isolation from the wild cannot be excluded as a cause, and the implications of this for optimising the trap colour is discussed.
Collapse
|
44
|
Tang SL, Liang XF, Li L, Wu J, Lu K. Genome-wide identification and expression patterns of opsin genes during larval development in Chinese perch (Siniperca chuatsi). Gene X 2022; 825:146434. [PMID: 35304240 DOI: 10.1016/j.gene.2022.146434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/01/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Vision is important for fish to forage food and fishes express opsin genes to receive visual signals. Chinese perch (Siniperca chuatsi) larvae prey on other fish species larvae at firstfeeding but donoteat any zooplankton, the expression of opsin genes in S. chuatsilarvae is unknown. In this study, we conducted a whole-genome analysis and demonstrated that S. chuatsihave5cone opsin genes (sws1, sws2Aα, sws2Aβ, rh2and lws)and 2 rod opsin genes (rh1and rh1-exorh). The syntenicanalysisshowedthe flanking genes ofall opsin genes were conserved during fish evolution, but the ancestorof S. chuatsimightlost some opsin gene copies duringtheevolution.The phylogeneticanalysisshowed sws1of S. chuatsiwas closest to those of Lates calcariferwhich had a truncated sws1gene; the sws2Aα, sws2Aβ,lws,rh2,rh1 andrh1-exorh of S. chuatsihad a closer relationship with those of Percomorpha fishes.Importantly, results of in situhybridization showed the sws1 opsingene,which is related to forage zooplankton,had extremely low levelexpression in retinaat early stages.Surprisingly, the rh2 opsin gene had a high level expression at firstfeeding stage. The sws2Aα, sws2Aβand lwshad a little expression at early stages but the lwsshowed a increasing trend with larval development, rh1 opsin gene expression appeared at15 dph. In thisstudy, we found a specialpattern of visual opsin genes expression in S. chuatsi, it might influence the larval first feeding and feeding habit.
Collapse
Affiliation(s)
- Shu-Lin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| | - Ling Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
45
|
Dzik S, Mituniewicz T, Beisenov A. Efficacy of a Biocidal Paint in Controlling Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) and Improving the Quality of Air and Litter in Poultry Houses. Animals (Basel) 2022; 12:1264. [PMID: 35625110 PMCID: PMC9137729 DOI: 10.3390/ani12101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Effective disinfection and disinsection are the keys to successful operation of modern poultry farms and the safety of poultry products. The cleaning and disinfection of poultry houses are important aspects of farm hygiene management. The correct execution of all steps of cleaning, disinfection, and disinsection procedures and the use of appropriate products are crucial for the prevention and control of zoonotic and animal diseases. In this study it was assumed that a water-based slow-release biocidal paint could be useful in controlling insect pests such as Alphitobius diaperinus and reducing microbiological contamination of air and litter in poultry houses and have a beneficial effect on microclimate in poultry houses. Therefore, the locations of A. diaperinus in the poultry houses, the microbiological contamination of air and litter, as well as the microclimatic conditions in the houses and the physicochemical parameters of the litter were evaluated. The results suggest that the tested biocidal paint could be an effective alternative to other insecticides and disinfectants. Additionally, the research is of a practical nature and may be very useful for poultry producers in controlling A. diaperinus populations and maintaining proper hygiene in poultry houses. Further research is needed.
Collapse
Affiliation(s)
- Sara Dzik
- Department of Animal and Environmental Hygiene, University of Warmia and Mazury in Olsztyn, 5 Oczapowski Street, 10-719 Olsztyn, Poland;
| | - Tomasz Mituniewicz
- Department of Animal and Environmental Hygiene, University of Warmia and Mazury in Olsztyn, 5 Oczapowski Street, 10-719 Olsztyn, Poland;
| | - Ariphzan Beisenov
- Department of Technology and Biological Resources, Kazakh National Agrarian Research University, 8 Abai Avenue, Almaty 050010, Kazakhstan;
| |
Collapse
|
46
|
Photo-induced non-volatile VO 2 phase transition for neuromorphic ultraviolet sensors. Nat Commun 2022; 13:1729. [PMID: 35365642 PMCID: PMC8975822 DOI: 10.1038/s41467-022-29456-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
In the quest for emerging in-sensor computing, materials that respond to optical stimuli in conjunction with non-volatile phase transition are highly desired for realizing bioinspired neuromorphic vision components. Here, we report a non-volatile multi-level control of VO2 films by oxygen stoichiometry engineering under ultraviolet irradiation. Based on the reversible regulation of VO2 films using ultraviolet irradiation and electrolyte gating, we demonstrate a proof-of-principle neuromorphic ultraviolet sensor with integrated sensing, memory, and processing functions at room temperature, and also prove its silicon compatible potential through the wafer-scale integration of a neuromorphic sensor array. The device displays linear weight update with optical writing because its metallic phase proportion increases almost linearly with the light dosage. Moreover, the artificial neural network consisting of this neuromorphic sensor can extract ultraviolet information from the surrounding environment, and significantly improve the recognition accuracy from 24% to 93%. This work provides a path to design neuromorphic sensors and will facilitate the potential applications in artificial vision systems. Bioinspired neuromorphic vision components are highly desired for the emerging in-sensor computing technology. Here, Ge et al. develop an array of optoelectronic synapses capable of memorizing and processing ultraviolet images facilitated by photo-induced non-volatile phase transition in VO2 films.
Collapse
|
47
|
Stella D, Kleisner K. Visible beyond Violet: How Butterflies Manage Ultraviolet. INSECTS 2022; 13:insects13030242. [PMID: 35323542 PMCID: PMC8955501 DOI: 10.3390/insects13030242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022]
Abstract
Ultraviolet (UV) means ‘beyond violet’ (from Latin ‘ultra’, meaning ‘beyond’), whereby violet is the colour with the highest frequencies in the ‘visible’ light spectrum. By ‘visible’ we mean human vision, but, in comparison to many other organisms, human visual perception is rather limited in terms of the wavelengths it can perceive. Still, this is why communication in the UV spectrum is often called hidden, although it most likely plays an important role in communicating various kinds of information among a wide variety of organisms. Since Silberglied’s revolutionary Communication in the Ultraviolet, comprehensive studies on UV signals in a wide list of genera are lacking. This review investigates the significance of UV reflectance (and UV absorption)—a feature often neglected in intra- and interspecific communication studies—mainly in Lepidoptera. Although the text focuses on various butterfly families, links and connections to other animal groups, such as birds, are also discussed in the context of ecology and the evolution of species. The basic mechanisms of UV colouration and factors shaping the characteristics of UV patterns are also discussed in a broad context of lepidopteran communication.
Collapse
Affiliation(s)
- David Stella
- Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Karel Kleisner
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| |
Collapse
|
48
|
Thomas KN, Gower DJ, Streicher JW, Bell RC, Fujita MK, Schott RK, Liedtke HC, Haddad CFB, Becker CG, Cox CL, Martins RA, Douglas RH. Ecology drives patterns of spectral transmission in the ocular lenses of frogs and salamanders. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kate N. Thomas
- Department of Life Sciences The Natural History Museum London UK
| | - David J. Gower
- Department of Life Sciences The Natural History Museum London UK
| | | | - Rayna C. Bell
- Department of Herpetology California Academy of Sciences San Francisco CA USA
- Department of Vertebrate Zoology National Museum of Natural History, Smithsonian Institution Washington DC USA
| | - Matthew K. Fujita
- Department of Biology Amphibian and Reptile Diversity Research Center The University of Texas at Arlington Arlington TX USA
| | - Ryan K. Schott
- Department of Vertebrate Zoology National Museum of Natural History, Smithsonian Institution Washington DC USA
- Department of Biology York University Toronto ON Canada
| | - H. Christoph Liedtke
- Ecology, Evolution and Development Group, Department of Wetland Ecology Estación Biológica de Doñana (CSIC) Sevilla Spain
| | - Célio F. B. Haddad
- Departamento de Biodiversidade and Centro de Aquicultura (CAUNESP) I.B. Universidade Estadual Paulista Rio Claro Brazil
| | - C. Guilherme Becker
- Department of Biology The Pennsylvania State University University Park PA USA
| | - Christian L. Cox
- Department of Biological Sciences Institute for the Environment Florida International University Miami FL USA
| | - Renato A. Martins
- Programa de Pós‐graduação em Conservação da Fauna Universidade Federal de São Carlos São Carlos Brazil
| | - Ron H. Douglas
- Division of Optometry & Visual Science, School of Health Sciences City, University of London London UK
| |
Collapse
|
49
|
Crowther J. Monochrome Camera Conversion: Effect on Sensitivity for Multispectral Imaging (Ultraviolet, Visible, and Infrared). J Imaging 2022; 8:jimaging8030054. [PMID: 35324609 PMCID: PMC8951089 DOI: 10.3390/jimaging8030054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
Conversion of standard cameras to enable them to capture images in the ultraviolet (UV) and infrared (IR) spectral regions has applications ranging from purely artistic to science and research. Taking the modification of the camera a step further and removing the color filter array (CFA) results in the formation of a monochrome camera. The spectral sensitivities of a range of cameras with different sensors which were converted to monochrome were measured and compared with standard multispectral camera conversions, with an emphasis on their behavior from the UV through to the IR regions.
Collapse
|
50
|
Abstract
The mouse has dichromatic color vision based on two different types of opsins: short (S)- and middle (M)-wavelength-sensitive opsins with peak sensitivity to ultraviolet (UV; 360 nm) and green light (508 nm), respectively. In the mouse retina, cone photoreceptors that predominantly express the S-opsin are more sensitive to contrasts and denser towards the ventral retina, preferentially sampling the upper part of the visual field. In contrast, the expression of the M-opsin gradually increases towards the dorsal retina that encodes the lower visual field. Such a distinctive retinal organization is assumed to arise from a selective pressure in evolution to efficiently encode the natural scenes. However, natural image statistics of UV light remain largely unexplored. Here we developed a multi-spectral camera to acquire high-quality UV and green images of the same natural scenes, and examined the optimality of the mouse retina to the image statistics. We found that the local contrast and the spatial correlation were both higher in UV than in green for images above the horizon, but lower in UV than in green for those below the horizon. This suggests that the dorsoventral functional division of the mouse retina is not optimal for maximizing the bandwidth of information transmission. Factors besides the coding efficiency, such as visual behavioral requirements, will thus need to be considered to fully explain the characteristic organization of the mouse retina.
Collapse
Affiliation(s)
- Luca Abballe
- Department of Biomedical Engineering, Sapienza University of Rome, Rome, Italy
| | - Hiroki Asari
- European Molecular Biology Laboratory, Epigenetics and Neurobiology Unit, EMBL Rome, Monterotondo, Rome, Italy
| |
Collapse
|