1
|
Pei T, Zhang M, Gao Z, Li L, Bing Z, Meng J, Nwanade CF, Yuan C, Yu Z, Liu J. Molecular characterization and induced changes of histone acetyltransferases in the tick Haemaphysalis longicornis in response to cold stress. Parasit Vectors 2024; 17:218. [PMID: 38735919 PMCID: PMC11089763 DOI: 10.1186/s13071-024-06288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Epigenetic modifications of histones play important roles in the response of eukaryotic organisms to environmental stress. However, many histone acetyltransferases (HATs), which are responsible for histone acetylation, and their roles in mediating the tick response to cold stress have yet to be identified. In the present study, HATs were molecularly characterized and their associations with the cold response of the tick Haemaphysalis longicornis explored. METHODS HATs were characterized by using polymerase chain reaction (PCR) based on published genome sequences, followed by multiple bioinformatic analyses. The differential expression of genes in H. longicornis under different cold treatment conditions was evaluated using reverse transcription quantitative PCR (RT-qPCR). RNA interference was used to explore the association of HATs with the cold response of H. longicornis. RESULTS Two HAT genes were identified in H. longicornis (Hl), a GCN5-related N-acetyltransferase (henceforth HlGNAT) and a type B histone acetyltransferase (henceforth HlHAT-B), which are respectively 960 base pairs (bp) and 1239 bp in length. Bioinformatics analysis revealed that HlGNAT and HlHAT-B are unstable hydrophilic proteins characterized by the presence of the acetyltransferase 16 domain and Hat1_N domain, respectively. RT-qPCR revealed that the expression of HlGNAT and HlHAT-B decreased after 3 days of cold treatment, but gradually increased with a longer period of cold treatment. The mortality rate following knockdown of HlGNAT or HlHAT-B by RNA interference, which was confirmed by RT-qPCR, significantly increased (P < 0.05) when H. longicornis was treated at the lowest lethal temperature (- 14 °C) for 2 h. CONCLUSIONS The findings demonstrate that HATs may play a crucial role in the cold response of H. longicornis. Thus further research is warranted to explore the mechanisms underlying the epigenetic regulation of the cold response in ticks.
Collapse
Affiliation(s)
- Tingwei Pei
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Miao Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ziwen Gao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lu Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ziyan Bing
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jianglei Meng
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chuks Fidel Nwanade
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chaohui Yuan
- The Professional and Technical Center of Hebei Administration for Market Regulation, Shijiazhuang, 050024, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
2
|
Ajayi OM, Wynne NE, Chen SC, Vinauger C, Benoit JB. Sleep: An Essential and Understudied Process in the Biology of Blood-Feeding Arthropods. Integr Comp Biol 2023; 63:530-547. [PMID: 37429615 PMCID: PMC10503478 DOI: 10.1093/icb/icad097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Understanding the biology of blood-feeding arthropods is critical to managing them as vectors of etiological agents. Circadian rhythms act in the regulation of behavioral and physiological aspects such as blood feeding, immunity, and reproduction. However, the impact of sleep on these processes has been largely ignored in blood-feeding arthropods, but recent studies in mosquitoes show that sleep-like states directly impact host landing and blood feeding. Our focus in this review is on discussing the relationship between sleep and circadian rhythms in blood-feeding arthropods along with how unique aspects such as blood gluttony and dormancy can impact sleep-like states. We highlight that sleep-like states are likely to have profound impacts on vector-host interactions but will vary between lineages even though few direct studies have been conducted. A myriad of factors, such as artificial light, could directly impact the time and levels of sleep in blood-feeding arthropods and their roles as vectors. Lastly, we discuss underlying factors that make sleep studies in blood-feeding arthropods difficult and how these can be bypassed. As sleep is a critical factor in the fitness of animal systems, a lack of focus on sleep in blood-feeding arthropods represents a significant oversight in understanding their behavior and its role in pathogen transmission.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nicole E Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
3
|
Benoit JB, Finch G, Ankrum AL, Niemantsverdriet J, Paul B, Kelley M, Gantz JD, Matter SF, Lee RE, Denlinger DL. Reduced male fertility of an Antarctic mite following extreme heat stress could prompt localized population declines. Cell Stress Chaperones 2023; 28:541-549. [PMID: 37392307 PMCID: PMC10468472 DOI: 10.1007/s12192-023-01359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023] Open
Abstract
Climate change is leading to substantial global thermal changes, which are particularly pronounced in polar regions. Therefore, it is important to examine the impact of heat stress on the reproduction of polar terrestrial arthropods, specifically, how brief extreme events may alter survival. We observed that sublethal heat stress reduces male fecundity in an Antarctic mite, yielding females that produced fewer viable eggs. Females and males collected from microhabitats with high temperatures showed a similar reduction in fertility. This impact is temporary, as indicated by recovery of male fecundity following return to cooler, stable conditions. The diminished fecundity is likely due to a drastic reduction in the expression of male-associated factors that occur in tandem with a substantial increase in the expression of heat shock proteins. Cross-mating between mites from different sites confirmed that heat-exposed populations have impaired male fertility. However, the negative impacts are transient as the effect on fertility declines with recovery time under less stressful conditions. Modeling indicated that heat stress is likely to reduce population growth and that short bouts of non-lethal heat stress could have substantial reproductive effects on local populations of Antarctic arthropods.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| | - Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrea L Ankrum
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | | | - Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Melissa Kelley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - J D Gantz
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Biology and Health Science, Hendrix College, Conway, AR, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Benoit JB, McCluney KE, DeGennaro MJ, Dow JAT. Dehydration Dynamics in Terrestrial Arthropods: From Water Sensing to Trophic Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:129-149. [PMID: 36270273 PMCID: PMC9936378 DOI: 10.1146/annurev-ento-120120-091609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the transition from water to land, maintaining water balance has been a key challenge for terrestrial arthropods. We explore factors that allow terrestrial arthropods to survive within a variably dry world and how they shape ecological interactions. Detection of water and hydration is critical for maintaining water content. Efficient regulation of internal water content is accomplished by excretory and osmoregulatory systems that balance water intake and loss. Biochemical and physiological responses are necessary as water content declines to prevent and repair the damage that occurs during dehydration. Desiccation avoidance can occur seasonally or daily via a move to more favorable areas. Dehydration and its avoidance have ecological impacts that extend beyond a single species to alter trophic interactions. As climate changes, evolutionary and ecological processes will be critical to species survival during drought.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Kevin E McCluney
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA;
| | - Matthew J DeGennaro
- Department of Biological Sciences, Florida International University and Biomolecular Sciences Institute, Miami, Florida, USA;
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, United Kingdom;
| |
Collapse
|
5
|
Pathak A, Chakraborty S, Oyen K, Rosendale AJ, Benoit JB. Dual assessment of transcriptional and metabolomic responses in the American dog tick following exposure to different pesticides and repellents. Ticks Tick Borne Dis 2022; 13:102033. [PMID: 36099731 PMCID: PMC9971363 DOI: 10.1016/j.ttbdis.2022.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 02/03/2023]
Abstract
The American dog tick, Dermacentor variabilis, is a major pest to humans and animals, serving as a vector to Rickettsia rickettsii, a bacterium responsible for Rocky Mountain spotted fever, and Francisella tularensis, which is responsible for tularemia. Although several tactics for management have been deployed, very little is known about the molecular response following pesticidal treatments in ticks. In this study, we used a combined approach utilizing transcriptomics and metabolomics to understand the response of the American dog tick to five common pesticides (amitraz, chlorpyrifos, fipronil, permethrin, and propoxur), and analyzed previous experimental data utilizing DEET repellent. Exposure to different chemicals led to significant differential expression of a varying number of transcripts, where 42 were downregulated and only one was upregulated across all treatments. A metabolomic analysis identified significant changes in acetate and aspartate levels following exposure to chlorpyrifos and propoxur, which was attributed to reduced cholinesterase activity. Integrating the metabolomics study with RNA-seq analysis, we found the physiological manifestations of the combined metabolic and transcriptional differences, revealing several novel biomolecular pathways. In particular, we discovered the downregulation of amino sugar metabolism and methylhistidine metabolism after permethrin exposure, as well as an upregulation of glutamate metabolism in amitraz treated samples. Understanding these altered biochemical pathways following pesticide and repellent exposure can help us formulate more effective chemical treatments to reduce the burden of ticks.
Collapse
Affiliation(s)
- Atit Pathak
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211; Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45211.
| |
Collapse
|
6
|
Cibichakravarthy B, Oses-Prieto JA, Ben-Yosef M, Burlingame AL, Karr TL, Gottlieb Y. Comparative Proteomics of Coxiella like Endosymbionts (CLEs) in the Symbiotic Organs of Rhipicephalus sanguineus Ticks. Microbiol Spectr 2022; 10:e0167321. [PMID: 35019702 PMCID: PMC8754119 DOI: 10.1128/spectrum.01673-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/07/2021] [Indexed: 12/31/2022] Open
Abstract
Maternally transmitted obligatory endosymbionts are found in the female gonads as well as in somatic tissue and are expected to provide missing metabolite to their hosts. These deficiencies are presumably complemented through specific symbiotic microorganisms such as Coxiella-like endosymbionts (CLEs) of Rhipicephalus ticks. CLEs are localized in specialized host tissue cells within the Malpighian tubules (Mt) and the ovaries (Ov) from which they are maternally transmitted to developing oocytes. These two organs differ in function and cell types, but the role of CLEs in these tissues is unknown. To probe possible functions of CLEs, comparative proteomics was performed between Mt and Ov of R. sanguineus ticks. Altogether, a total of 580 and 614 CLE proteins were identified in Mt and Ov, respectively. Of these, 276 CLE proteins were more abundant in Mt, of which 12 were significantly differentially abundant. In Ov, 290 CLE proteins were more abundant, of which 16 were significantly differentially abundant. Gene Ontology analysis revealed that most of the proteins enriched in Mt are related to cellular metabolic functions and stress responses, whereas in Ov, the majority were related to cell proliferation suggesting CLEs function differentially and interdependently with host requirements specific to each organ. The results suggest Mt CLEs provide essential nutrients to its host and Ov CLEs promote proliferation and vertical transmission to tick progeny. IMPORTANCE Here we compare the Coxiella-like endosymbionts (CLEs) proteomes from Malpighian tubule (Mt) and the ovaries (Ov) of the brown dog tick Rhipicephalus sanguineus. Our results support the hypothesis that CLEs function interdependently with host requirements in each of the organs. The different functional specificity of CLE in the same host suggest that metabolic capabilities evolved according to the constrains imposed by the specific organ function and requirements. Our findings provide specific CLE protein targets that can be useful for future studies of CLE biology with a focus on tick population control.
Collapse
Affiliation(s)
- Balasubramanian Cibichakravarthy
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Michael Ben-Yosef
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Timothy L. Karr
- The Biodesign Institute, Mass Spectrometry Core Facility, Arizona State University, Tempe, Arizona, USA
| | - Yuval Gottlieb
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
7
|
Rosendale AJ, Leonard RK, Patterson IW, Arya T, Uhran MR, Benoit JB. Metabolomic and transcriptomic responses of ticks during recovery from cold shock reveal mechanisms of survival. J Exp Biol 2022; 225:275159. [PMID: 35179594 DOI: 10.1242/jeb.236497] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
Ticks are blood-feeding ectoparasites but spend most of their life off-host where they may have to tolerate low winter temperatures. Rapid cold-hardening (RCH) is a process commonly used by arthropods, including ticks, to improve survival of acute low temperature exposure. However, little is known about the underlying mechanisms in ticks associated with RCH, cold shock, and recovery from these stresses. In the present study, we investigated the extent to which RCH influences gene expression and metabolism during recovery from cold stress in Dermacentor variabilis, the American dog tick, using a combined transcriptomics and metabolomics approach. Following recovery from RCH, 1,860 genes were differentially expressed in ticks, whereas only 99 genes responded during recovery to direct cold shock. Recovery from RCH resulted in an upregulation of various pathways associated with ion binding, transport, metabolism, and cellular structures seen in the response of other arthropods to cold. The accumulation of various metabolites, including several amino acids and betaine, corresponded to transcriptional shifts in the pathways associated with these molecules, suggesting congruent metabolome and transcriptome changes. Ticks receiving exogenous betaine and valine demonstrated enhanced cold tolerance, suggesting cryoprotective effects of these metabolites. Overall, many of the responses during recovery from cold shock in ticks were similar to those observed in other arthropods, but several adjustments may be distinct from other currently examined taxa.
Collapse
Affiliation(s)
- Andrew J Rosendale
- Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Ryan K Leonard
- Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Isaac W Patterson
- Biology Department, Mount St. Joseph University, Cincinnati, OH, 45233, USA
| | - Thomas Arya
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Melissa R Uhran
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
8
|
Davies B, Rosendale AJ, Gantz JD, Lee RE, Denlinger DL, Benoit JB. Cross-tolerance and transcriptional shifts underlying abiotic stress in the seabird tick, Ixodes uriae. Polar Biol 2021. [DOI: 10.1007/s00300-021-02887-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Fieler AM, Rosendale AJ, Farrow DW, Dunlevy MD, Davies B, Oyen K, Xiao Y, Benoit JB. Larval thermal characteristics of multiple ixodid ticks. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110939. [PMID: 33794367 PMCID: PMC8500258 DOI: 10.1016/j.cbpa.2021.110939] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022]
Abstract
Temperature limits the geographic ranges of several tick species. Little is known about the thermal characteristics of these pests outside of a few studies on survival related to thermal tolerance. In this study, thermal tolerance limits, thermal preference, and the impact of temperature on activity levels and metabolic rate were examined in larvae for six species of ixodid ticks. Tolerance of low temperatures ranged from -15 to -24 °C with Dermacentor andersoni surviving the lowest temperatures. High temperature survival ranged from 41 to 47 °C, with Rhipicephalus sanguineus sensu lato having the highest upper lethal limit. Ixodes scapularis showed the lowest survival at both low and high temperatures. Thermal preference temperatures were tested from 0 to 41 °C. The majority of species preferred temperatures between 17 and 22 °C, while Dermacentor variabilis preferred significantly lower temperatures, near 12 °C. Overall activity was measured across a range of temperatures from 10 to 60 °C, and most tick species had the greatest activity near 30 °C. Metabolic rate was the greatest between 30 and 40 °C for all tick species and was relatively stable from 5 to 20 °C. The optimal temperature for tick larvae is likely near the thermal preference for each species, where oxygen consumption is low and activity occurs that will balance questing and conservation of nutrient reserves. In summary, tick species vary greatly in their thermal characteristics, and our results will be critical to predict distribution of these ectoparasites with changing climates.
Collapse
Affiliation(s)
- Alicia M Fieler
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA; Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Megan D Dunlevy
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Benjamin Davies
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yanyu Xiao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
10
|
Oyen KJ, Croucher L, Benoit JB. Tonic Immobility Is Influenced by Starvation, Life Stage, and Body Mass in Ixodid Ticks. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1030-1040. [PMID: 33590870 PMCID: PMC8122239 DOI: 10.1093/jme/tjab003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 05/09/2023]
Abstract
The ability to escape predation modulates predator-prey interactions and represents a crucial aspect of organismal life history, influencing feeding, mating success, and survival. Thanatosis, also known as death feigning or tonic immobility (TI), is taxonomically widespread, but understudied in blood-feeding vectors. Hematophagous arthropods, such as ticks, are unique among animals as their predators (birds, mice, lizards, frogs, and other invertebrates) may also be their source of food. Therefore, the trade-off between predator avoidance and host-seeking may shift as the time since the last bloodmeal increases. Because ticks are slow-moving and unable to fly, or otherwise escape, we predicted that they may use TI to avoid predation, but that TI would be influenced by time since the last bloodmeal (starvation). We therefore aimed to quantify this relationship, examining the effect of starvation, body mass, and ontogeny on TI for two tick species: Dermacentor variabilis (Say) (Acari: Ixodidae) and Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae). As we predicted, the duration and use of TI decreased with time since feeding and emergence across species and life stages. Therefore, ticks may become more aggressive in their search for a bloodmeal as they continue to starve, opting to treat potential predators as hosts, rather than avoiding predation by feigning death. Antipredator behaviors such as TI may influence the intensity and amount of time ticks spend searching for hosts, driving patterns of tick-borne pathogen transmission. This identification and quantification of a novel antipredation strategy add a new component to our understanding of tick life history.
Collapse
Affiliation(s)
- Kennan J Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Lillian Croucher
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
11
|
Olafson PU, Aksoy S, Attardo GM, Buckmeier G, Chen X, Coates CJ, Davis M, Dykema J, Emrich SJ, Friedrich M, Holmes CJ, Ioannidis P, Jansen EN, Jennings EC, Lawson D, Martinson EO, Maslen GL, Meisel RP, Murphy TD, Nayduch D, Nelson DR, Oyen KJ, Raszick TJ, Ribeiro JMC, Robertson HM, Rosendale AJ, Sackton TB, Saelao P, Swiger SL, Sze SH, Tarone AM, Taylor DB, Warren WC, Waterhouse RM, Weirauch MT, Werren JH, Wilson RK, Zdobnov EM, Benoit JB. The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biol 2021; 19:41. [PMID: 33750380 PMCID: PMC7944917 DOI: 10.1186/s12915-021-00975-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Background The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. Results This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. Conclusions The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00975-9.
Collapse
Affiliation(s)
- Pia U Olafson
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA.
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California - Davis, Davis, CA, USA
| | - Greta Buckmeier
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Xiaoting Chen
- The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig J Coates
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - Megan Davis
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Justin Dykema
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Scott J Emrich
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Evan N Jansen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Daniel Lawson
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | | | - Gareth L Maslen
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Dana Nayduch
- Arthropod-borne Animal Diseases Research Unit, USDA-ARS, Manhattan, KS, USA
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kennan J Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Tyler J Raszick
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Perot Saelao
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Sonja L Swiger
- Department of Entomology, Texas A&M AgriLife Research and Extension Center, Stephenville, TX, USA
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX, USA
| | - Aaron M Tarone
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - David B Taylor
- Agroecosystem Management Research Unit, USDA-ARS, Lincoln, NE, USA
| | - Wesley C Warren
- University of Missouri, Bond Life Sciences Center, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,College of Medicine, Ohio State University, Columbus, OH, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Finch G, Nandyal S, Perretta C, Davies B, Rosendale AJ, Holmes CJ, Gantz JD, Spacht DE, Bailey ST, Chen X, Oyen K, Didion EM, Chakraborty S, Lee RE, Denlinger DL, Matter SF, Attardo GM, Weirauch MT, Benoit JB. Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability. Sci Rep 2020; 10:19791. [PMID: 33188214 PMCID: PMC7666147 DOI: 10.1038/s41598-020-76139-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
The Antarctic midge, Belgica antarctica, is a wingless, non-biting midge endemic to Antarctica. Larval development requires at least 2 years, but adults live only 2 weeks. The nonfeeding adults mate in swarms and females die shortly after oviposition. Eggs are suspended in a gel of unknown composition that is expressed from the female accessory gland. This project characterizes molecular mechanisms underlying reproduction in this midge by examining differential gene expression in whole males, females, and larvae, as well as in male and female accessory glands. Functional studies were used to assess the role of the gel encasing the eggs, as well as the impact of stress on reproductive biology. RNA-seq analyses revealed sex- and development-specific gene sets along with those associated with the accessory glands. Proteomic analyses were used to define the composition of the egg-containing gel, which is generated during multiple developmental stages and derived from both the accessory gland and other female organs. Functional studies indicate the gel provides a larval food source as well as a buffer for thermal and dehydration stress. All of these function are critical to juvenile survival. Larval dehydration stress directly reduces production of storage proteins and key accessory gland components, a feature that impacts adult reproductive success. Modeling reveals that bouts of dehydration may have a significant impact on population growth. This work lays a foundation for further examination of reproduction in midges and provides new information related to general reproduction in dipterans. A key aspect of this work is that reproduction and stress dynamics, currently understudied in polar organisms, are likely to prove critical in determining how climate change will alter their survivability.
Collapse
Affiliation(s)
- Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Sonya Nandyal
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Carlie Perretta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Benjamin Davies
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - J D Gantz
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Biology and Health Science, Hendrix College, Conway, AR, USA
| | - Drew E Spacht
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Mans BJ. Quantitative Visions of Reality at the Tick-Host Interface: Biochemistry, Genomics, Proteomics, and Transcriptomics as Measures of Complete Inventories of the Tick Sialoverse. Front Cell Infect Microbiol 2020; 10:574405. [PMID: 33042874 PMCID: PMC7517725 DOI: 10.3389/fcimb.2020.574405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Species have definitive genomes. Even so, the transcriptional and translational products of the genome are dynamic and subject to change over time. This is especially true for the proteins secreted by ticks at the tick-host feeding interface that represent a complex system known as the sialoverse. The sialoverse represent all of the proteins derived from tick salivary glands for all tick species that may be involved in tick-host interaction and the modulation of the host's defense mechanisms. The current study contemplates the advances made over time to understand and describe the complexity present in the sialoverse. Technological advances at given periods in time allowed detection of functions, genes, and proteins enabling a deeper insight into the complexity of the sialoverse and a concomitant expansion in complexity with as yet, no end in sight. The importance of systematic classification of the sialoverse is highlighted with the realization that our coverage of transcriptome and proteome space remains incomplete, but that complete descriptions may be possible in the future. Even so, analysis and integration of the sialoverse into a comprehensive understanding of tick-host interactions may require further technological advances given the high level of expected complexity that remains to be uncovered.
Collapse
Affiliation(s)
- Ben J Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa.,Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
14
|
Jennings EC, Korthauer MW, Hendershot JM, Bailey ST, Weirauch MT, Ribeiro JMC, Benoit JB. Molecular mechanisms underlying milk production and viviparity in the cockroach, Diploptera punctata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103333. [PMID: 32119906 PMCID: PMC7293887 DOI: 10.1016/j.ibmb.2020.103333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 05/09/2023]
Abstract
Viviparous reproduction is characterized by maternal retention of developing offspring within the reproductive tract during gestation, culminating in live birth. In some cases, a mother will provide nutrition beyond that present in the yolk; this is known as matrotrophic viviparity. While this phenomenon is best associated with mammals, it is observed in insects such as the viviparous cockroach, Diploptera punctata. Female D. punctata carry developing embryos in the brood sac, a reproductive organ that acts as both a uterus and a placenta by protecting and providing a nutritive secretion to the intrauterine developing progeny. While the basic physiology of D. punctata pregnancy has been characterized, little is known about the molecular mechanisms underlying this phenomenon. This study combined RNA-seq analysis, RNA interference, and other assays to characterize molecular and physiological changes associated with D. punctata reproduction. A comparison of four stages of the female reproductive cycle and males revealed unique gene expression profiles corresponding to each stage and between sexes. Differentially regulated transcripts of interest include the previously identified family of milk proteins and transcripts associated with juvenile hormone metabolism. RNA interference and methoprene application experiments established the potential impacts of bothbreakdown and synthesis reduction of juvenile hormone in maintaining pregnancy in D. punctata. These studies provide the comprehensive molecular mechanisms associated with cockroach viviparity, which will be a critical resource for comparative purposes among viviparity in insect systems.
Collapse
Affiliation(s)
- Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Matthew W Korthauer
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Jacob M Hendershot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE) and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Jose M C Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, Bethesda, MD, 20892, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
15
|
do Amaral MCF, Frisbie J, Crum RJ, Goldstein DL, Krane CM. Hepatic transcriptome of the freeze-tolerant Cope's gray treefrog, Dryophytes chrysoscelis: responses to cold acclimation and freezing. BMC Genomics 2020; 21:226. [PMID: 32164545 PMCID: PMC7069055 DOI: 10.1186/s12864-020-6602-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cope’s gray treefrog, Dryophytes chrysoscelis, withstands the physiological challenges of corporeal freezing, partly by accumulating cryoprotective compounds of hepatic origin, including glycerol, urea, and glucose. We hypothesized that expression of genes related to cryoprotectant mobilization and stress tolerance would be differentially regulated in response to cold. Using high-throughput RNA sequencing (RNA-Seq), a hepatic transcriptome was generated for D. chrysoscelis, and gene expression was compared among frogs that were warm-acclimated, cold-acclimated, and frozen. Results A total of 159,556 transcripts were generated; 39% showed homology with known transcripts, and 34% of all transcripts were annotated. Gene-level analyses identified 34,936 genes, 85% of which were annotated. Cold acclimation induced differential expression both of genes and non-coding transcripts; freezing induced few additional changes. Transcript-level analysis followed by gene-level aggregation revealed 3582 differentially expressed genes, whereas analysis at the gene level revealed 1324 differentially regulated genes. Approximately 3.6% of differentially expressed sequences were non-coding and of no identifiable homology. Expression of several genes associated with cryoprotectant accumulation was altered during cold acclimation. Of note, glycerol kinase expression decreased with cold exposure, possibly promoting accumulation of glycerol, whereas glucose export was transcriptionally promoted by upregulation of glucose-6-phosphatase and downregulation of genes of various glycolytic enzymes. Several genes related to heat shock protein response, DNA repair, and the ubiquitin proteasome pathway were upregulated in cold and frozen frogs, whereas genes involved in responses to oxidative stress and anoxia, both potential sources of cellular damage during freezing, were downregulated or unchanged. Conclusion Our study is the first to report transcriptomic responses to low temperature exposure in a freeze-tolerant vertebrate. The hepatic transcriptome of Dryophytes chrysoscelis is responsive to cold and freezing. Transcriptomic regulation of genes related to particular pathways, such as glycerol biosynthesis, were not all regulated in parallel. The physiological demands associated with cold and freezing, as well as the transcriptomic responses observed in this study, are shared with several organisms that face similar ecophysiological challenges, suggesting common regulatory mechanisms. The role of transcriptional regulation relative to other cellular processes, and of non-coding transcripts as elements of those responses, deserve further study.
Collapse
Affiliation(s)
- M Clara F do Amaral
- Department of Biology, Mount St. Joseph University, 5701 Delhi Ave, Cincinnati, OH, 45233, USA
| | - James Frisbie
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - Raphael J Crum
- Department of Biology, University of Dayton, 300 College Park Ave, Dayton, OH, 45469, USA
| | - David L Goldstein
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - Carissa M Krane
- Department of Biology, University of Dayton, 300 College Park Ave, Dayton, OH, 45469, USA.
| |
Collapse
|
16
|
Rosendale AJ, Dunlevy ME, McCue MD, Benoit JB. Progressive behavioural, physiological and transcriptomic shifts over the course of prolonged starvation in ticks. Mol Ecol 2019; 28:49-65. [PMID: 30449039 DOI: 10.1111/mec.14949] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 01/15/2023]
Abstract
Ticks are obligatorily hematophagous but spend the majority of their lives off host in an unfed state where they must resist starvation between bouts of blood feeding. Survival during these extended off-host periods is critical to the success of these arthropods as vectors of disease; however, little is known about the underlying physiological and molecular mechanisms of starvation tolerance in ticks. We examined the bioenergetic, transcriptomic and behavioural changes of female American dog ticks, Dermacentor variabilis, throughout starvation (up to nine months post-bloodmeal). As starvation progressed, ticks utilized glycogen and lipid, and later protein as energy reserves with proteolysis and autophagy facilitating the mobilization of endogenous nutrients. The metabolic rate of the ticks was expectedly low, but showed a slight increase as starvation progressed possibly reflecting the upregulation of several energetically costly processes such as transcription/translation and/or increases in host-seeking behaviours. Starved ticks had higher activity levels, increased questing behaviour and augmented expression of genes related to chemosensing, immunity and salivary gland proteins. The shifts in gene expression and associated behavioural and physiological processes are critical to allowing these parasites to exploit their ecological niche as extreme sit-and-wait parasites. The overall responses of ticks to starvation were similar to other blood-feeding arthropods, but we identified unique responses that could have epidemiological and ecological significance for ticks as ectoparasites that must be tolerant of sporadic feeding.
Collapse
Affiliation(s)
- Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Megan E Dunlevy
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | | | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
17
|
Holmes CJ, Benoit JB. Biological Adaptations Associated with Dehydration in Mosquitoes. INSECTS 2019; 10:insects10110375. [PMID: 31661928 PMCID: PMC6920799 DOI: 10.3390/insects10110375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/05/2022]
Abstract
Diseases that are transmitted by mosquitoes are a tremendous health and socioeconomic burden with hundreds of millions of people being impacted by mosquito-borne illnesses annually. Many factors have been implicated and extensively studied in disease transmission dynamics, but knowledge regarding how dehydration impacts mosquito physiology, behavior, and resulting mosquito-borne disease transmission remain underdeveloped. The lapse in understanding on how mosquitoes respond to dehydration stress likely obscures our ability to effectively study mosquito physiology, behavior, and vectorial capabilities. The goal of this review is to develop a profile of factors underlying mosquito biology that are altered by dehydration and the implications that are related to disease transmission.
Collapse
Affiliation(s)
- Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
18
|
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 2019; 20:187. [PMID: 31477173 PMCID: PMC6721284 DOI: 10.1186/s13059-019-1768-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - James E Allen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Jelle Caers
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Mikkel B Christensen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Aurélie Hua-Van
- Laboratoire Evolution, Genomes, Comportement, Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Vasileios P Lenis
- Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Ernesto Lowy-Gallego
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosaline W Macharia
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya.,Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Daniel Masiga
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gareth L Maslen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Irina Matetovici
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Irene Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, Florida, USA.,Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya.,Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Lino Ometto
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Rita Rio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Andrew J Rosendale
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Omar Rota-Stabelli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Liliane Schoofs
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Peter Takáč
- Department of Animal Systematics, Ústav zoológie SAV; Scientica, Ltd, Bratislava, Slovakia
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Etoloakarnania, Greece
| | | | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Jingwen Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Zhao
- CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
19
|
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 2019; 20:187. [PMID: 31477173 DOI: 10.1101/531749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - James E Allen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Jelle Caers
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Mikkel B Christensen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Aurélie Hua-Van
- Laboratoire Evolution, Genomes, Comportement, Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Vasileios P Lenis
- Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Ernesto Lowy-Gallego
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosaline W Macharia
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Daniel Masiga
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gareth L Maslen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Irina Matetovici
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Irene Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Lino Ometto
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Rita Rio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Andrew J Rosendale
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Omar Rota-Stabelli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Liliane Schoofs
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Peter Takáč
- Department of Animal Systematics, Ústav zoológie SAV; Scientica, Ltd, Bratislava, Slovakia
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Etoloakarnania, Greece
| | | | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Jingwen Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Zhao
- CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
20
|
Stowasser A, Stahl A, Benoit JB, Wagenaar DA. Electrophysiology and transcriptomics reveal two photoreceptor classes and complex visual integration in Hirudo verbana. ACTA ACUST UNITED AC 2019; 222:jeb.201764. [PMID: 31262786 DOI: 10.1242/jeb.201764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/22/2019] [Indexed: 11/20/2022]
Abstract
Among animals with visual processing mechanisms, the leech Hirudo verbana is a rare example in which all neurons can be identified. However, little is known about its visual system, which is composed of several pigmented head eyes and photosensitive non-pigmented sensilla that are distributed across its entire body. Although several interneurons are known to respond to visual stimuli, their response properties are poorly understood. Among these, the S-cell system is especially intriguing: it is multimodal, spans the entire body of the leech and is thought to be involved in sensory integration. To improve our understanding of the role of this system, we tested its spectral sensitivity, spatial integration and adaptation properties. The response of the S-cell system to visual stimuli was found to be strongly dependent on the size of the area stimulated, and adaptation was local. Furthermore, an adaptation experiment demonstrated that at least two color channels contributed to the response, and that their contribution was dependent on the adaptation to the background. The existence of at least two color channels was further supported by transcriptomic evidence, which indicated the existence of at least two distinct groups of putative opsins for leeches. Taken together, our results show that the S-cell system has response properties that could be involved in the processing of spatial and color information of visual stimuli. We propose the leech as a novel system to understand visual processing mechanisms with many practical advantages.
Collapse
Affiliation(s)
- Annette Stowasser
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Aaron Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Daniel A Wagenaar
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA .,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
21
|
Meibers HE, Finch G, Gregg RT, Glenn S, Assani KD, Jennings EC, Davies B, Rosendale AJ, Holmes CJ, Gantz JD, Spacht DE, Lee RE, Denlinger DL, Weirauch MT, Benoit JB. Sex- and developmental-specific transcriptomic analyses of the Antarctic mite, Alaskozetes antarcticus, reveal transcriptional shifts underlying oribatid mite reproduction. Polar Biol 2018. [DOI: 10.1007/s00300-018-2427-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Spacht DE, Teets NM, Denlinger DL. Two isoforms of Pepck in Sarcophaga bullata and their distinct expression profiles through development, diapause, and in response to stresses of cold and starvation. JOURNAL OF INSECT PHYSIOLOGY 2018; 111:41-46. [PMID: 30392850 DOI: 10.1016/j.jinsphys.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Pepck is a metabolic enzyme that participates in gluconeogenesis through the conversion of oxaloacetate into phosphoenol pyruvate. Numerous transcriptomic studies have identified Pepck as a potential key player during diapause and various stresses responses. Here, we describe expression patterns of both cytosolic and mitochondrial isoforms of Pepck throughout development, during diapause, and in response to starvation and cold shock in the flesh fly, Sarcophaga bullata. We cloned full-length transcripts for both Pepck isoforms and observed that expression of both genes varied throughout development. Diapausing pupae have the highest relative expression of both isoforms, suggesting participation in the anticipatory production of sugars and sugar alcohols that occurs during this overwintering stage. In response to acute stress, the cytosolic isoform was upregulated whereas the mitochondrial variant remained unchanged. Cytosolic Pepck was strongly upregulated after 2 h recovery from cold shock and returned to baseline levels within 8 h. In response to 24 h of starvation, the cytosolic isoform was similarly upregulated and returned to control levels after 24 h of recovery. Acute stress is known to incur a metabolic cost, and Pepck could be a key player in this response. Although it remains unclear why there is such a dramatic divergence in the expression of the two isoforms, the distinction suggests specific roles for the two isoforms that depend on the developmental status of the fly and the stress conditions to which it is exposed.
Collapse
Affiliation(s)
- Drew E Spacht
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210 USA.
| | - Nicholas M Teets
- Department of Entomology, The Ohio State University, Columbus, OH 43210 USA; Department of Entomology, University of Kentucky, Lexington, KY 40546 USA
| | - David L Denlinger
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210 USA; Department of Entomology, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
23
|
Poynton HC, Hasenbein S, Benoit JB, Sepulveda MS, Poelchau MF, Hughes DST, Murali SC, Chen S, Glastad KM, Goodisman MAD, Werren JH, Vineis JH, Bowen JL, Friedrich M, Jones J, Robertson HM, Feyereisen R, Mechler-Hickson A, Mathers N, Lee CE, Colbourne JK, Biales A, Johnston JS, Wellborn GA, Rosendale AJ, Cridge AG, Munoz-Torres MC, Bain PA, Manny AR, Major KM, Lambert FN, Vulpe CD, Tuck P, Blalock BJ, Lin YY, Smith ME, Ochoa-Acuña H, Chen MJM, Childers CP, Qu J, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni H, Worley KC, Muzny DM, Gibbs RA, Richards S. The Toxicogenome of Hyalella azteca: A Model for Sediment Ecotoxicology and Evolutionary Toxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6009-6022. [PMID: 29634279 DOI: 10.15482/usda.adc/1415994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity testing and an emerging model for molecular ecotoxicology. To provide molecular resources for sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable with other ecotoxicological model species. Through targeted investigation and use of gene expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, we annotated and characterized the major gene families involved in sequestration, detoxification, oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion transporters, and include recent gene duplications in the metal sequestration protein, metallothionein. Mapping of differentially expressed transcripts to the genome significantly increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will greatly facilitate development of genomic tools for environmental assessments and promote an understanding of how evolution shapes toxicological pathways with implications for environmental and human health.
Collapse
Affiliation(s)
- Helen C Poynton
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Simone Hasenbein
- Aquatic Systems Biology Unit , Technical University of Munich , D-85354 Freising , Germany
| | - Joshua B Benoit
- Department of Biological Sciences , University of Cincinnati , Cincinnati , Ohio 45221 United States
| | - Maria S Sepulveda
- Forestry and Natural Resources , Purdue University , West Lafayette , Indiana 47907 United States
| | - Monica F Poelchau
- Agricultural Research Service, National Agricultural Library , U.S. Department of Agriculture , Beltsville , Maryland 20705 United States
| | - Daniel S T Hughes
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Shwetha C Murali
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Shuai Chen
- Forestry and Natural Resources , Purdue University , West Lafayette , Indiana 47907 United States
- OmicSoft Corporation, Cary , North Carolina 27513 United States
| | - Karl M Glastad
- Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 United States
| | - Michael A D Goodisman
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 United States
| | - John H Werren
- Biology Department , University of Rochester , Rochester , New York 14627 United States
| | - Joseph H Vineis
- Department of Marine and Environmental Sciences, Marine Science Center , Northeastern University , Nahant , Massachusetts 01908 United States
| | - Jennifer L Bowen
- Department of Marine and Environmental Sciences, Marine Science Center , Northeastern University , Nahant , Massachusetts 01908 United States
| | - Markus Friedrich
- Department of Biological Sciences , Wayne State University , Detroit Michigan 48202 United States
| | - Jeffery Jones
- Department of Biological Sciences , Wayne State University , Detroit Michigan 48202 United States
| | - Hugh M Robertson
- Department of Entomology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 United States
| | - René Feyereisen
- Department of Plant and Environmental Sciences , University of Copenhagen , DK-1871 Frederiksberg , Denmark
| | - Alexandra Mechler-Hickson
- Center of Rapid Evolution (CORE) and Department of Integrative Biology , University of Wisconsin , Madison , Wisconsin 53706 United States
| | - Nicholas Mathers
- Center of Rapid Evolution (CORE) and Department of Integrative Biology , University of Wisconsin , Madison , Wisconsin 53706 United States
| | - Carol Eunmi Lee
- Center of Rapid Evolution (CORE) and Department of Integrative Biology , University of Wisconsin , Madison , Wisconsin 53706 United States
| | - John K Colbourne
- School of Biosciences , University of Birmingham , Birmingham B15 2TT U.K
| | - Adam Biales
- National Exposure Research Laboratory , United States Environmental Protection Agency , Cincinnati , Ohio 45268 United States
| | - J Spencer Johnston
- Department of Entomology , Texas A&M University , College Station , Texas 77843 United States
| | - Gary A Wellborn
- Department of Biology , University of Oklahoma , Norman , Oklahoma 73019 United States
| | - Andrew J Rosendale
- Department of Biological Sciences , University of Cincinnati , Cincinnati , Ohio 45221 United States
| | - Andrew G Cridge
- Laboratory for Evolution and Development, Department of Biochemistry , University of Otago , Dunedin , 9054 New Zealand
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 United States
| | - Peter A Bain
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae SA 5064 Australia
| | - Austin R Manny
- Department of Microbiology & Cell Science , University of Florida , Gainesville , Florida 32611 United States
| | - Kaley M Major
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Faith N Lambert
- Center for Environmental and Human Toxicology, Department of Physiological Sciences , University of Florida , Gainesville , Florida 32611 United States
| | - Chris D Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences , University of Florida , Gainesville , Florida 32611 United States
| | - Padrig Tuck
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Bonnie J Blalock
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Yu-Yu Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics , National Taiwan University , Taipei , 10617 Taiwan
| | - Mark E Smith
- McConnell Group, Cincinnati , Ohio 45268 , United States
| | - Hugo Ochoa-Acuña
- Forestry and Natural Resources , Purdue University , West Lafayette , Indiana 47907 United States
| | - Mei-Ju May Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics , National Taiwan University , Taipei , 10617 Taiwan
| | - Christopher P Childers
- Agricultural Research Service, National Agricultural Library , U.S. Department of Agriculture , Beltsville , Maryland 20705 United States
| | - Jiaxin Qu
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Shannon Dugan
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Sandra L Lee
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Hsu Chao
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Huyen Dinh
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Yi Han
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | | | - Kim C Worley
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
- Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Donna M Muzny
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Richard A Gibbs
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Stephen Richards
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| |
Collapse
|
24
|
Poynton HC, Hasenbein S, Benoit JB, Sepulveda MS, Poelchau MF, Hughes DST, Murali SC, Chen S, Glastad KM, Goodisman MAD, Werren JH, Vineis JH, Bowen JL, Friedrich M, Jones J, Robertson HM, Feyereisen R, Mechler-Hickson A, Mathers N, Lee CE, Colbourne JK, Biales A, Johnston JS, Wellborn GA, Rosendale AJ, Cridge AG, Munoz-Torres MC, Bain PA, Manny AR, Major KM, Lambert FN, Vulpe CD, Tuck P, Blalock BJ, Lin YY, Smith ME, Ochoa-Acuña H, Chen MJM, Childers CP, Qu J, Dugan S, Lee SL, Chao H, Dinh H, Han Y, Doddapaneni H, Worley KC, Muzny DM, Gibbs RA, Richards S. The Toxicogenome of Hyalella azteca: A Model for Sediment Ecotoxicology and Evolutionary Toxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6009-6022. [PMID: 29634279 PMCID: PMC6091588 DOI: 10.1021/acs.est.8b00837] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity testing and an emerging model for molecular ecotoxicology. To provide molecular resources for sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable with other ecotoxicological model species. Through targeted investigation and use of gene expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, we annotated and characterized the major gene families involved in sequestration, detoxification, oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion transporters, and include recent gene duplications in the metal sequestration protein, metallothionein. Mapping of differentially expressed transcripts to the genome significantly increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will greatly facilitate development of genomic tools for environmental assessments and promote an understanding of how evolution shapes toxicological pathways with implications for environmental and human health.
Collapse
Affiliation(s)
- Helen C Poynton
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Simone Hasenbein
- Aquatic Systems Biology Unit , Technical University of Munich , D-85354 Freising , Germany
| | - Joshua B Benoit
- Department of Biological Sciences , University of Cincinnati , Cincinnati , Ohio 45221 United States
| | - Maria S Sepulveda
- Forestry and Natural Resources , Purdue University , West Lafayette , Indiana 47907 United States
| | - Monica F Poelchau
- Agricultural Research Service, National Agricultural Library , U.S. Department of Agriculture , Beltsville , Maryland 20705 United States
| | - Daniel S T Hughes
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Shwetha C Murali
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Shuai Chen
- Forestry and Natural Resources , Purdue University , West Lafayette , Indiana 47907 United States
- OmicSoft Corporation, Cary , North Carolina 27513 United States
| | - Karl M Glastad
- Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 United States
| | - Michael A D Goodisman
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 United States
| | - John H Werren
- Biology Department , University of Rochester , Rochester , New York 14627 United States
| | - Joseph H Vineis
- Department of Marine and Environmental Sciences, Marine Science Center , Northeastern University , Nahant , Massachusetts 01908 United States
| | - Jennifer L Bowen
- Department of Marine and Environmental Sciences, Marine Science Center , Northeastern University , Nahant , Massachusetts 01908 United States
| | - Markus Friedrich
- Department of Biological Sciences , Wayne State University , Detroit Michigan 48202 United States
| | - Jeffery Jones
- Department of Biological Sciences , Wayne State University , Detroit Michigan 48202 United States
| | - Hugh M Robertson
- Department of Entomology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 United States
| | - René Feyereisen
- Department of Plant and Environmental Sciences , University of Copenhagen , DK-1871 Frederiksberg , Denmark
| | - Alexandra Mechler-Hickson
- Center of Rapid Evolution (CORE) and Department of Integrative Biology , University of Wisconsin , Madison , Wisconsin 53706 United States
| | - Nicholas Mathers
- Center of Rapid Evolution (CORE) and Department of Integrative Biology , University of Wisconsin , Madison , Wisconsin 53706 United States
| | - Carol Eunmi Lee
- Center of Rapid Evolution (CORE) and Department of Integrative Biology , University of Wisconsin , Madison , Wisconsin 53706 United States
| | - John K Colbourne
- School of Biosciences , University of Birmingham , Birmingham B15 2TT U.K
| | - Adam Biales
- National Exposure Research Laboratory , United States Environmental Protection Agency , Cincinnati , Ohio 45268 United States
| | - J Spencer Johnston
- Department of Entomology , Texas A&M University , College Station , Texas 77843 United States
| | - Gary A Wellborn
- Department of Biology , University of Oklahoma , Norman , Oklahoma 73019 United States
| | - Andrew J Rosendale
- Department of Biological Sciences , University of Cincinnati , Cincinnati , Ohio 45221 United States
| | - Andrew G Cridge
- Laboratory for Evolution and Development, Department of Biochemistry , University of Otago , Dunedin , 9054 New Zealand
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 United States
| | - Peter A Bain
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae SA 5064 Australia
| | - Austin R Manny
- Department of Microbiology & Cell Science , University of Florida , Gainesville , Florida 32611 United States
| | - Kaley M Major
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Faith N Lambert
- Center for Environmental and Human Toxicology, Department of Physiological Sciences , University of Florida , Gainesville , Florida 32611 United States
| | - Chris D Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences , University of Florida , Gainesville , Florida 32611 United States
| | - Padrig Tuck
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Bonnie J Blalock
- School for the Environment , University of Massachusetts Boston , Boston , Massachusetts 02125 United States
| | - Yu-Yu Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics , National Taiwan University , Taipei , 10617 Taiwan
| | - Mark E Smith
- McConnell Group, Cincinnati , Ohio 45268 , United States
| | - Hugo Ochoa-Acuña
- Forestry and Natural Resources , Purdue University , West Lafayette , Indiana 47907 United States
| | - Mei-Ju May Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics , National Taiwan University , Taipei , 10617 Taiwan
| | - Christopher P Childers
- Agricultural Research Service, National Agricultural Library , U.S. Department of Agriculture , Beltsville , Maryland 20705 United States
| | - Jiaxin Qu
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Shannon Dugan
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Sandra L Lee
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Hsu Chao
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Huyen Dinh
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Yi Han
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | | | - Kim C Worley
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
- Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Donna M Muzny
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Richard A Gibbs
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| | - Stephen Richards
- Human Genome Sequencing Center , Baylor College of Medicine , Houston , Texas 77030 United States
| |
Collapse
|
25
|
Toxopeus J, Sinclair BJ. Mechanisms underlying insect freeze tolerance. Biol Rev Camb Philos Soc 2018; 93:1891-1914. [DOI: 10.1111/brv.12425] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Jantina Toxopeus
- Department of Biology; University of Western Ontario; 1151 Richmond Street N, London ON, N6A 5B7 Canada
| | - Brent J. Sinclair
- Department of Biology; University of Western Ontario; 1151 Richmond Street N, London ON, N6A 5B7 Canada
| |
Collapse
|
26
|
Dehydration prompts increased activity and blood feeding by mosquitoes. Sci Rep 2018; 8:6804. [PMID: 29717151 PMCID: PMC5931509 DOI: 10.1038/s41598-018-24893-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/11/2018] [Indexed: 11/27/2022] Open
Abstract
Current insights into the mosquito dehydration response rely on studies that examine specific responses but ultimately fail to provide an encompassing view of mosquito biology. Here, we examined underlying changes in the biology of mosquitoes associated with dehydration. Specifically, we show that dehydration increases blood feeding in the northern house mosquito, Culex pipiens, which was the result of both higher activity and a greater tendency to land on a host. Similar observations were noted for Aedes aegypti and Anopheles quadrimaculatus. RNA-seq and metabolome analyses in C. pipiens following dehydration revealed that factors associated with carbohydrate metabolism are altered, specifically the breakdown of trehalose. Suppression of trehalose breakdown in C. pipiens by RNA interference reduced phenotypes associated with lower hydration levels. Lastly, mesocosm studies for C. pipiens confirmed that dehydrated mosquitoes were more likely to host feed under ecologically relevant conditions. Disease modeling indicates dehydration bouts will likely enhance viral transmission. This dehydration-induced increase in blood feeding is therefore likely to occur regularly and intensify during periods when availability of water is low.
Collapse
|
27
|
Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, Brevik K, Cappelle K, Chen MJM, Childers AK, Childers C, Christiaens O, Clements J, Didion EM, Elpidina EN, Engsontia P, Friedrich M, García-Robles I, Gibbs RA, Goswami C, Grapputo A, Gruden K, Grynberg M, Henrissat B, Jennings EC, Jones JW, Kalsi M, Khan SA, Kumar A, Li F, Lombard V, Ma X, Martynov A, Miller NJ, Mitchell RF, Munoz-Torres M, Muszewska A, Oppert B, Palli SR, Panfilio KA, Pauchet Y, Perkin LC, Petek M, Poelchau MF, Record É, Rinehart JP, Robertson HM, Rosendale AJ, Ruiz-Arroyo VM, Smagghe G, Szendrei Z, Thomas GWC, Torson AS, Vargas Jentzsch IM, Weirauch MT, Yates AD, Yocum GD, Yoon JS, Richards S. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep 2018; 8:1931. [PMID: 29386578 PMCID: PMC5792627 DOI: 10.1038/s41598-018-20154-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/13/2018] [Indexed: 01/04/2023] Open
Abstract
The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, USA.
| | - Yolanda H Chen
- Department of Plant and Soil Sciences, University of Vermont, Burlington, USA
| | | | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Anita Bhandari
- Department of Molecular Physiology, Christian-Albrechts-University at Kiel, Kiel, Germany
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, USA
| | - Kristian Brevik
- Department of Plant and Soil Sciences, University of Vermont, Burlington, USA
| | - Kaat Cappelle
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Mei-Ju M Chen
- USDA-ARS National Agricultural Library, Beltsville, MD, USA
| | - Anna K Childers
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | | | | | - Justin Clements
- Department of Entomology, University of Wisconsin-Madison, Madison, USA
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moskva, Russia
| | - Patamarerk Engsontia
- Department of Biology, Faculty of Science, Prince of Songkla University, Amphoe Hat Yai, Thailand
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, USA
| | | | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Chandan Goswami
- National Institute of Science Education and Research, Bhubaneswar, India
| | | | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288, Marseille, France
- INRA, USC 1408 AFMB, F-13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, King Abdulaziz, Saudi Arabia
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, USA
| | - Megha Kalsi
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Sher A Khan
- Department of Entomology, Texas A&M University, College Station, USA
| | - Abhishek Kumar
- Department of Genetics & Molecular Biology in Botany, Christian-Albrechts-University at Kiel, Kiel, Germany
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Fei Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288, Marseille, France
- INRA, USC 1408 AFMB, F-13288, Marseille, France
| | - Xingzhou Ma
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Alexander Martynov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nicholas J Miller
- Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Robert F Mitchell
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, USA
| | - Monica Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Brenda Oppert
- USDA-ARS Center for Grain and Animal Health Research, New York, USA
| | | | - Kristen A Panfilio
- Institute for Developmental Biology, University of Cologne, Köln, Germany
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, England, UK
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lindsey C Perkin
- USDA-ARS Center for Grain and Animal Health Research, New York, USA
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Éric Record
- INRA, Aix-Marseille Université, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Joseph P Rinehart
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, USA
| | | | - Guy Smagghe
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, USA
| | - Gregg W C Thomas
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, USA
| | - Alex S Torson
- Department of Biological Sciences, North Dakota State University, Fargo, USA
| | | | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Ashley D Yates
- Department of Entomology, The Ohio State University, Columbus, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, USA
| | - George D Yocum
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA
| | - June-Sun Yoon
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Stephen Richards
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
28
|
McCue MD, Terblanche JS, Benoit JB. Learning to starve: impacts of food limitation beyond the stress period. J Exp Biol 2017; 220:4330-4338. [DOI: 10.1242/jeb.157867] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Starvation is common among wild animal populations, and many individuals experience repeated bouts of starvation over the course of their lives. Although much information has been gained through laboratory studies of acute starvation, little is known about how starvation affects an animal once food is again available (i.e. during the refeeding and recovery phases). Many animals exhibit a curious phenomenon – some seem to ‘get better’ at starving following exposure to one or more starvation events – by this we mean that they exhibit potentially adaptive responses, including reduced rates of mass loss, reduced metabolic rates, and lower costs of digestion. During subsequent refeedings they may also exhibit improved digestive efficiency and more rapid mass gain. Importantly, these responses can last until the next starvation bout or even be inherited and expressed in the subsequent generation. Currently, however, little is known about the molecular regulation and physiological mechanisms underlying these changes. Here, we identify areas of research that can fill in the most pressing knowledge gaps. In particular, we highlight how recently refined techniques (e.g. stable isotope tracers, quantitative magnetic resonance and thermal measurement) as well as next-generation sequencing approaches (e.g. RNA-seq, proteomics and holobiome sequencing) can address specific starvation-focused questions. We also describe outstanding unknowns ripe for future research regarding the timing and severity of starvation, and concerning the persistence of these responses and their interactions with other ecological stressors.
Collapse
Affiliation(s)
- Marshall D. McCue
- Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
29
|
Chen D, Su X, Wang N, Li Y, Yin H, Li L, Li L. Chemical Isotope Labeling LC-MS for Monitoring Disease Progression and Treatment in Animal Models: Plasma Metabolomics Study of Osteoarthritis Rat Model. Sci Rep 2017; 7:40543. [PMID: 28091618 PMCID: PMC5238386 DOI: 10.1038/srep40543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/07/2016] [Indexed: 01/15/2023] Open
Abstract
We report a chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) method generally applicable for tracking metabolomic changes from samples collected in an animal model for studying disease development and treatment. A rat model of surgically induced osteoarthritis (OA) was used as an example to illustrate the workflow and technical performance. Experimental duplicate analyses of 234 plasma samples were carried out using dansylation labeling LC-MS targeting the amine/phenol submetabolome. These samples composed of 39 groups (6 rats per group) were collected at multiple time points with sham operation, OA control group, and OA rats with treatment, separately, using glucosamine/Celecoxib and three traditional Chinese medicines (Epimedii folium, Chuanxiong Rhizoma and Bushen-Huoxue). In total, 3893 metabolites could be detected and 2923 of them were consistently detected in more than 50% of the runs. This high-coverage submetabolome dataset could be used to track OA progression and treatment. Many differentiating metabolites were found and 11 metabolites including 2-aminoadipic acid, saccharopine and GABA were selected as potential biomarkers of OA progression and OA treatment. This study illustrates that CIL LC-MS is a very useful technique for monitoring incremental metabolomic changes with high coverage and accuracy for studying disease progression and treatment in animal models.
Collapse
Affiliation(s)
- Deying Chen
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoling Su
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Nan Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yunong Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Hua Yin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liang Li
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lanjuan Li
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
30
|
Knight K. How dog ticks protect themselves from dehydration. J Exp Biol 2016. [DOI: 10.1242/jeb.143677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|