1
|
Zhang M, He W, Li Y, Chen J, Teets NM, Zhang L. Metabolic and transcriptional regulation of reproductive diapause in Arma chinensis. iScience 2025; 28:111761. [PMID: 40124477 PMCID: PMC11928864 DOI: 10.1016/j.isci.2025.111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 01/03/2025] [Indexed: 03/25/2025] Open
Abstract
Diapause enables insects to survive unfavorable conditions through metabolic and developmental adjustments. We investigated metabolic regulation during reproductive diapause in the predatory stinkbug Arma chinensis using transcriptomic and metabolomic analyses. Our study revealed 9,254 differentially expressed genes and 493 significantly changed metabolites across diapause stages. Key metabolic pathways including glutathione metabolism, TCA cycle, glycolysis, and lipid metabolism underwent substantial reorganization. The pre-diapause phase showed increased energy consumption and lipid accumulation, while the maintenance phase exhibited restructuring of amino acid and glucose metabolism. We identified stage-specific metabolic signatures and potential regulatory mechanisms, including the roles of glutathione metabolism in redox regulation and insulin signaling in diapause control. This comprehensive characterization of metabolic reprogramming during A. chinensis diapause provides insights for improving biocontrol agent production and storage strategies.
Collapse
Affiliation(s)
- Maosen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Weiwei He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Yuyan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Junjie Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Nicholas M. Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Lisheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
2
|
Izadi H. Endocrine and enzymatic shifts during insect diapause: a review of regulatory mechanisms. Front Physiol 2025; 16:1544198. [PMID: 40161974 PMCID: PMC11949959 DOI: 10.3389/fphys.2025.1544198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Insect diapause is a vital survival strategy that enables insects to enter a state of suspended development, allowing them to withstand unfavorable environmental conditions. During diapause, insects significantly lower their metabolic rate and build up energy reserves, which they gradually utilize throughout this period. The regulation of diapause involves a complex interaction of hormones and enzymes. Juvenile hormones (JHs) affect adults and larvae differently; in adults, the absence of JH typically triggers diapause, while in larvae, the presence of JH encourages this state. Ecdysteroids, which regulate molting and metamorphosis, are carefully controlled to prevent premature development. Reduced signaling of insulin-like peptides enhances stress resistance and promotes energy storage. Several enzymes play crucial roles in the metabolic adjustments necessary for diapause. These adjustments include the degradation of JH, the ecdysteroidogenic pathway, and the metabolism of fatty acids, glycogen, cryoprotectants, and stress responses. Understanding diapause's molecular and biochemical mechanisms is essential for fundamental entomological research and practical applications. Despite recent advances, many aspects of diapause regulation, especially the interactions among hormonal pathways and the role of enzymes, remain poorly understood. This review analyzes approximately 250 papers to consolidate current knowledge on the enzymatic and hormonal regulation of diapause. It offers a comprehensive overview of key processes based on recent studies and suggests future research directions to fill gaps in our understanding of this significant biological phenomenon. The review also lays the groundwork for enhancing pest control strategies and ecological conservation by deepening our understanding of diapause mechanisms.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
3
|
Süess P, Roberts KT, Lehmann P. Temperature dependence of gas exchange patterns shift as diapause progresses in the butterfly Pieris napi. JOURNAL OF INSECT PHYSIOLOGY 2023; 151:104585. [PMID: 37977342 DOI: 10.1016/j.jinsphys.2023.104585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Insects have the capacity to significantly modify their metabolic rate according to environmental conditions and physiological requirement. Consequently, the respiratory patterns can range from continuous gas exchange (CGE) to discontinuous gas exchange (DGE). In the latter, spiracles are kept closed during much of the time, and gas exchange occurs only during short periods when spiracles are opened. While ultimate causes and benefits of DGE remain debated, it is often seen during insect diapause, a deep resting stage that insects induce to survive unfavourable environmental conditions, such as winter. The present study explores the shifts between CGE and DGE during diapause by performing long continuous respirometry measurements at multiple temperatures during key diapause stages in the green-veined white butterfly Pieris napi. The primary goal is to explore respiratory pattern as a non-invasive method to assess whether pupae are in diapause or have transitioned to post-diapause. Respiratory pattern can also provide insight into endogenous processes taking place during diapause, and the prolonged duration of diapause allows for the detailed study of the thermal dependence of the DGE pattern. Pupae change from CGE to DGE a few days after pupation, and this shift coincides with metabolic rate suppression during diapause initiation. Once in diapause, pupae maintain DGE even at elevated temperatures that significantly increase CO2 production. Instead of shifting respiratory pattern to CGE, pupae increase the frequency of DGE cycles. Since total CO2 released during a single open phase remains unchanged, our results suggest that P. napi pupae defend a maximum internal ρCO2 set point, even in their heavily suppressed diapause state. During post-diapause development, CO2 production increases as a function of development and changes to CGE during temperature conditions permissive for development. Taken together, the results show that respiratory patterns are highly regulated during diapause in P. napi and change predictably as diapause progresses.
Collapse
Affiliation(s)
- Philip Süess
- Department of Zoology, Stockholm University, 11418 Stockholm, Sweden.
| | - Kevin T Roberts
- Department of Zoology, Stockholm University, 11418 Stockholm, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, 11418 Stockholm, Sweden; Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
4
|
Roberts KT, Szejner-Sigal A, Lehmann P. Seasonal energetics: are insects constrained by energy during dormancy? J Exp Biol 2023; 226:jeb245782. [PMID: 37921417 DOI: 10.1242/jeb.245782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In seasonal environments, many animals, including insects, enter dormancy, where they are limited to a fixed energy budget. The inability to replenish energetic stores during these periods suggests insects should be constrained by pre-dormancy energy stores. Over the last century, the community of researchers working on survival during dormancy has operated under the strong assumption that energy limitation is a key fitness trait driving the evolution of seasonal strategies. That is, energy use has to be minimized during dormancy because insects otherwise run out of energy and die during dormancy, or are left with too little energy to complete development, reproductive maturation or other costly post-dormancy processes such as dispersal or nest building. But if energy is so strongly constrained during dormancy, how can some insects - even within the same species and population - be dormant in very warm environments or show prolonged dormancy for many successive years? In this Commentary, we discuss major assumptions regarding dormancy energetics and outline cases where insects appear to align with our assumptions and where they do not. We then highlight several research directions that could help link organismal energy use with landscape-level changes. Overall, the optimal energetic strategy during dormancy might not be to simply minimize metabolic rate, but instead to maintain a level that matches the demands of the specific life-history strategy. Given the influence of temperature on energy use rates of insects in winter, understanding dormancy energetic strategies is critical in order to determine the potential impacts of climate change on insects in seasonal environments.
Collapse
Affiliation(s)
- Kevin T Roberts
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Andre Szejner-Sigal
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
5
|
von Schmalensee L, Caillault P, Gunnarsdóttir KH, Gotthard K, Lehmann P. Seasonal specialization drives divergent population dynamics in two closely related butterflies. Nat Commun 2023; 14:3663. [PMID: 37339960 DOI: 10.1038/s41467-023-39359-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Seasons impose different selection pressures on organisms through contrasting environmental conditions. How such seasonal evolutionary conflict is resolved in organisms whose lives span across seasons remains underexplored. Through field experiments, laboratory work, and citizen science data analyses, we investigate this question using two closely related butterflies (Pieris rapae and P. napi). Superficially, the two butterflies appear highly ecologically similar. Yet, the citizen science data reveal that their fitness is partitioned differently across seasons. Pieris rapae have higher population growth during the summer season but lower overwintering success than do P. napi. We show that these differences correspond to the physiology and behavior of the butterflies. Pieris rapae outperform P. napi at high temperatures in several growth season traits, reflected in microclimate choice by ovipositing wild females. Instead, P. rapae have higher winter mortality than do P. napi. We conclude that the difference in population dynamics between the two butterflies is driven by seasonal specialization, manifested as strategies that maximize gains during growth seasons and minimize harm during adverse seasons, respectively.
Collapse
Affiliation(s)
- Loke von Schmalensee
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden.
- Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Pauline Caillault
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden
| | | | - Karl Gotthard
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-106 91, Stockholm, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, 1D-17489, Greifswald, Germany
| |
Collapse
|
6
|
Boman J, Zhu Y, Höök L, Vila R, Talavera G, Backström N. Environmental stress during larval development induces DNA methylation shifts in the migratory painted lady butterfly (Vanessa cardui). Mol Ecol 2023. [PMID: 37088782 DOI: 10.1111/mec.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Seasonal environmental fluctuations provide formidable challenges for living organisms, especially small ectotherms such as butterflies. A common strategy to cope with harsh environments is to enter diapause, but some species avoid unsuitable conditions by migrating. Despite a growing understanding of migration in the life cycles of some butterfly species, it remains unknown how individuals register and store environmental cues to determine whether and where to migrate. Here, we explored how competition and host plant availability during larval development affect patterns of DNA methylation in the migratory painted lady (Vanessa cardui) butterfly. We identify a set of potentially functional methylome shifts associated with differences in the environment, indicating that DNA methylation is involved in the response to different conditions during larval development. By analysing the transcriptome for the same samples used for methylation profiling, we also uncovered a non-monotonic relationship between gene body methylation and gene expression. Our results provide a starting point for understanding the interplay between DNA methylation and gene expression in butterflies in general and how differences in environmental conditions during development can trigger unique epigenetic marks that might be important for behavioural decisions in the adult stage.
Collapse
Affiliation(s)
- Jesper Boman
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Yishu Zhu
- Animal Ecology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Barcelona, Spain
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Zhao L, Wang X, Liu Z, Torson AS. Energy Consumption and Cold Hardiness of Diapausing Fall Webworm Pupae. INSECTS 2022; 13:853. [PMID: 36135554 PMCID: PMC9505466 DOI: 10.3390/insects13090853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Diapause and cold hardiness are essential components of winter survival for most insects in temperate zones. The fall webworm, Hyphantria cunea, overwinters in a pupal diapause. In this study, we investigated the energy consumption and cold hardiness of diapausing pupae. We found that lipid content decreased from October to November and stabilized from November to March. Glycogen content decreased by 61.3% and 52.2% for females and males, respectively, from October to November, and decreased slowly from November to March. We also observed a significant increase in trehalose concentrations as ambient temperatures decreased from October to November and a decrease in trehalose as temperatures increased again in March. We did not observe substantial changes in pupal supercooling points among the dates sampled. In addition, prolonged pupal development time reduced their survival rate and had no significant effect on post-diapause adult body mass and fecundity but reduced egg diameter in females. These results suggest that the energy consumption of H. cunea pupae during early diapause depends on lipid and glycogen, while it shifts to depend on glycogen or other energy stores in the mid- and late diapause stages. Our results also suggest that the prolonged development time of diapausing pupae had a negative effect on post-diapause fitness.
Collapse
Affiliation(s)
- Lvquan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.W.); (Z.L.)
| | - Xinmei Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.W.); (Z.L.)
| | - Zheng Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.W.); (Z.L.)
| | - Alex S. Torson
- USDA-ARS Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND 58102, USA;
| |
Collapse
|
8
|
Zhang X, He B, Monticelli LS, Du W, Ruan C, Desneux N, Zhang J. Gradually Increasing the Temperature Reduces the Diapause Termination Time of Trichogramma dendrolimi While Increasing Parasitoid Performance. INSECTS 2022; 13:720. [PMID: 36005345 PMCID: PMC9409125 DOI: 10.3390/insects13080720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Trichogramma dendrolimi Matsumura is widely used as a biological control agent of many lepidopteran pests. Diapause has been used as an effective method to preserve the Trichogramma products during mass rearing production. However, it currently takes at least 70 days to break diapause, and we tested whether gradually increasing the temperature instead of using constant temperature could reduce the time of diapause termination and offer a higher flexibility to Trichogramma producers. The diapause termination rates of individuals kept at different conditions were measured, and five groups for which diapause termination rate reached the 95% were selected to test five biological parameters, including the number of eggs parasitized, the parasitism and emergence rates, the female sex ratio, the wing deformation rate, and the parasitoid longevity. Compared to the currently used procedure (70 days at 3 °C), treatments with at least two different temperatures resulted in higher parasitism and emergence rates while keeping the other parameters constant. The treatment that consisted of at least two different temperatures preceded by only 55 days of induction period had the highest population trend index, meaning that the population under these conditions grows more rapidly. Our results demonstrate that gradually increasing temperature allows T. dendrolimi to complete diapause earlier than at present while increasing its potential pest control capacity and providing additional flexibility in mass production of T. dendrolimi.
Collapse
Affiliation(s)
- Xue Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Bingxin He
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | | | - Wenmei Du
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Changchun Ruan
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Nicolas Desneux
- Université Côte d’Azur, INRAE, CNRS, UMR ISA, 06600 Nice, France
| | - Junjie Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Pruisscher P, Lehmann P, Nylin S, Gotthard K, Wheat CW. Extensive transcriptomic profiling of pupal diapause in a butterfly reveals a dynamic phenotype. Mol Ecol 2021; 31:1269-1280. [PMID: 34862690 DOI: 10.1111/mec.16304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
Diapause is a common adaptation for overwintering in insects that is characterized by arrested development and increased tolerance to stress and cold. While the expression of specific candidate genes during diapause have been investigated, there is no general understanding of the dynamics of the transcriptional landscape as a whole during the extended diapause phenotype. Such a detailed temporal insight is important as diapause is a vital aspect of life cycle timing. Here, we performed a time-course experiment using RNA-Seq on the head and abdomen in the butterfly Pieris napi. In both body parts, comparing diapausing and nondiapausing siblings, differentially expressed genes are detected from the first day of pupal development and onwards, varying dramatically across these formative stages. During diapause there are strong gene expression dynamics present, revealing a preprogrammed transcriptional landscape that is active during the winter. Different biological processes appear to be active in the two body parts. Finally, adults emerging from either the direct or diapause pathways do not show large transcriptomic differences, suggesting the adult phenotype is strongly canalized.
Collapse
Affiliation(s)
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
10
|
von Schmalensee L, Hulda Gunnarsdóttir K, Näslund J, Gotthard K, Lehmann P. Thermal performance under constant temperatures can accurately predict insect development times across naturally variable microclimates. Ecol Lett 2021; 24:1633-1645. [PMID: 34036719 DOI: 10.1111/ele.13779] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 01/07/2023]
Abstract
External conditions can drive biological rates in ectotherms by directly influencing body temperatures. While estimating the temperature dependence of performance traits such as growth and development rate is feasible under controlled laboratory settings, predictions in nature are difficult. One major challenge lies in translating performance under constant conditions to fluctuating environments. Using the butterfly Pieris napi as model system, we show that development rate, an important fitness trait, can be accurately predicted in the field using models parameterized under constant laboratory temperatures. Additionally, using a factorial design, we show that accurate predictions can be made across microhabitats but critically hinge on adequate consideration of non-linearity in reaction norms, spatial heterogeneity in microclimate and temporal variation in temperature. Our empirical results are also supported by a comparison of published and simulated data. Conclusively, our combined results suggest that, discounting direct effects of temperature, insect development rates are generally unaffected by thermal fluctuations.
Collapse
Affiliation(s)
| | | | - Joacim Näslund
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Esperk T, Tammaru T. Ontogenetic Basis of Among-Generation Differences in Size-Related Traits in a Polyphenic Butterfly. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.612330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seasonal polyphenisms are cases in which individuals representing generations occurring in different times of the year systematically differ in their morphological, physiological, and/or behavioral traits. Such differences are often assumed to constitute adaptive responses to seasonally varying environments, but the evidence for this is still scarce. The adaptive character of the response would be corroborated by the pattern in which the decision about choosing a particular seasonal phenotype is made before the onset of respective environmental conditions (anticipatory plasticity). Alternatively, the between-generation differences can be caused by immediate effects of seasonally varying environments (responsive plasticity). Here we reared the larvae of the seasonally polymorphic map butterfly Araschnia levana under two different photoperiodic regimes, which provided different seasonal cues. These two treatments induced direct development and diapause pathways, respectively. Replicating the experiment at different temperatures and levels of host plant quality allowed us to evaluate both the anticipatory and the responsive components of the associated plastic changes in life-history traits. Larvae representing the direct development pathway invariably had higher growth rates and shorter development periods, although the difference between the developmental pathways was smaller at inferior host quality. Body size differences between the developmental pathways turned out to be less consistent, as the natural pattern of higher pupal mass of the directly developing individuals could only be reproduced at lower rearing temperature. Though being considerably modified by immediate environmental effects, the between-generation differences in size, growth rates, and larval are largely based on anticipatory plasticity (= responses to photoperiodic cues) and should be treated as seasonal adaptations in A. levana. In a more general context, we show how investigating the proximate basis of size differences can serve the purpose of identifying the limits of phenotypic plasticity in juvenile growth schedules.
Collapse
|
12
|
Keehnen NLP, Kučerová L, Nylin S, Theopold U, Wheat CW. Physiological Tradeoffs of Immune Response Differs by Infection Type in Pieris napi. Front Physiol 2021; 11:576797. [PMID: 33519499 PMCID: PMC7838647 DOI: 10.3389/fphys.2020.576797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the tradeoffs that result from successful infection responses is central to understanding how life histories evolve. Gaining such insights, however, can be challenging, as they may be pathogen specific and confounded with experimental design. Here, we investigated whether infection from gram positive or negative bacteria results in different physiological tradeoffs, and whether these infections impact life history later in life (post-diapause development), in the butterfly Pieris napi. During the first 24 h after infection (3, 6, 12, and 24 h), after removing effects due to injection, larvae infected with Micrococcus luteus showed a strong suppression of all non-immunity related processes while several types of immune responses were upregulated. In contrast, this tradeoff between homeostasis and immune response was much less pronounced in Escherichia coli infections. These differences were also visible long after infection, via weight loss and slower development, as well as an increased mortality at higher infection levels during later stages of development. Individuals infected with M. luteus, compared to E. coli, had a higher mortality rate, and a lower pupal weight, developmental rate and adult weight. Further, males exhibited a more negative impact of infection than females. Thus, immune responses come at a cost even when the initial infection has been overcome, and these costs are likely to affect later life history parameters with fitness consequences.
Collapse
Affiliation(s)
| | - Lucie Kučerová
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Ulrich Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
13
|
Brent CS. Diapause Termination and Postdiapause in Lygus hesperus (Heteroptera: Miridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:4. [PMID: 33400796 PMCID: PMC7785046 DOI: 10.1093/jisesa/ieaa142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 06/12/2023]
Abstract
The western tarnished plant bug, Lygus hesperus Knight, overwinters as a diapausing adult in response to short day lengths. Once environmental conditions are favorable, the bugs revert to an active reproductive state. To determine the impact on life-history traits of diverting resources toward diapause rather than oogenesis during early adulthood, diapausing and nondiapausing L. hesperus females were reared from the same cohorts. Body mass, ovarian maturation, ovipositional activity, and survivorship were monitored starting either at the time of release from diapause-inducing conditions or at adult eclosion for diapausers and nondiapausers, respectively. Females that had gone through 2 wk of diapause were larger and able to mobilize the resources necessary for oogenesis faster than nondiapausers, initiating oogenesis and ovipositing sooner and at a faster initial rate. However, lifetime egg production and average daily rates were similar for both groups. Postdiapausers lived longer than nondiapausers by an average of 19 d, which is five more than the 2-wk period when they were reproductively senescent. Overall, the results indicate that short-term diapause does not have a negative impact on life history. Furthermore, the extra endogenous resources stored during diapause may be able to enhance the alacrity with which the female can take advantage of improved environmental conditions and may prolong life by shielding the females against environmental stressors such as temperature extremes, oxidative agents, or food deficits.
Collapse
Affiliation(s)
- Colin S Brent
- USDA-ARS, Arid Land Agricultural Research Center, Maricopa, AZ
| |
Collapse
|
14
|
Doğan C, Hänniger S, Heckel DG, Coutu C, Hegedus DD, Crubaugh L, Groves RL, Bayram Ş, Toprak U. Two calcium-binding chaperones from the fat body of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) involved in diapause. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21755. [PMID: 33118236 DOI: 10.1002/arch.21755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Molecular chaperones are crucial for the correct folding of newly synthesized polypeptides, in particular, under stress conditions. Various studies have revealed the involvement of molecular chaperones, such as heat shock proteins, in diapause maintenance and starvation; however, the role of other chaperones in diapause and starvation relatively is unknown. In the current study, we identified two lectin-type chaperones with calcium affinity, a calreticulin (LdCrT) and a calnexin (LdCnX), that were present in the fat body of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) during diapause. Both proteins possessed an N-globular domain, a P-arm domain, and a highly charged C-terminal domain, while an additional transmembrane domain was present in LdCnX. Phylogenetic analysis revealed distinction at the order level. Both genes were expressed in multiple tissues in larval and adult stages, and constitutively throughout development, though a starvation response was detected only for LdCrT. In females, diapause-related expression analysis in the whole body revealed an upregulation of both genes by post-diapause, but a downregulation by diapause only for LdCrT. By contrast, males revealed no alteration in their diapause-related expression pattern in the entire body for both genes. Fat body-specific expression analysis of both genes in relation to diapause revealed the same expression pattern with no alteration in females and downregulation in males by post-diapause. This study suggests that calcium-binding chaperones play similar and possibly gender-specific roles during diapause.
Collapse
Affiliation(s)
- Cansu Doğan
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sabine Hänniger
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
| | - Linda Crubaugh
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Russell L Groves
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Şerife Bayram
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Umut Toprak
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
15
|
Wilsterman K, Ballinger MA, Williams CM. A unifying, eco‐physiological framework for animal dormancy. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13718] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kathryn Wilsterman
- Biological Sciences University of Montana Missoula MT USA
- Integrative Biology University of California Berkeley CA USA
| | | | | |
Collapse
|
16
|
Simultaneous Occurrence of Diapause and Cold Hardiness in Overwintering Eggs of the Apple Oystershell Scale, Lepidosaphes Malicola Borchsenius (Hem.: Diaspididae). Zool Stud 2020; 59:e25. [PMID: 33262848 DOI: 10.6620/zs.2020.59-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022]
Abstract
As the key pest of apple fruits, the oystershell scale, Lepidosaphes malicola Borchsenius (Hem.: Diaspididae), overwinters as diapausing eggs under the protective, waxy cover of females. In this research, the effects of diapause development, cold acclimation, and rapid cold hardening were studied on the cold hardiness of the eggs. The changes in some physiological components were also investigated. The results indicated cold exposure to be a prerequisite for the survival of the diapausing eggs of L. malicola. No eggs hatched without exposure to cold. In addition, a direct relationship was observed among cold hardiness, cold acclimation, and diapause of the eggs based on the results. The highest level of hatching (the highest cold hardiness) of the eggs (80%) occurred in the cold-acclimated eggs at the end of diapause (March). Rapid cold hardening also influenced the cold hardiness of the eggs with diapause development. At the end of diapause, the lowest (61%) and the highest (77%) rates of egg survival were observed when the eggs were exposed to 5 and -10°C for 24 h, respectively. Cold hardiness of the diapausing eggs of L. malicola was also accompanied by some physiological changes, i.e., a decrease in glycogen content and an increase in simple sugar, lipid, and protein contents. The lowest glycogen content (about 50 μg/g) and the highest amounts of total simple sugars (454 μg/g) of lipids (542 μg/g) and proteins (84 μg/g) were observed in the cold-acclimated eggs at the end of diapause.
Collapse
|
17
|
Yang M, Wang Z, Wang R, Zhang X, Li M, Xin J, Qin Y, Zhang C, Meng F. Transcriptomic and proteomic analyses of the mechanisms of overwintering diapause in soybean pod borer (Leguminivora glycinivorella). PEST MANAGEMENT SCIENCE 2020; 76:4248-4257. [PMID: 32633047 DOI: 10.1002/ps.5989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/24/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Soybean pod borer (Leguminivora glycinivorella) is an important soybean pest in north-eastern Asia, whose mature larvae overwinter in a diapause state. Disruption of winter diapause may be a valuable tool in pest management. However, the molecular mechanisms regulating diapause in this species have not yet been elucidated. RESULTS We compared the transcriptomes and proteomes between diapause and mature larvae and between mature and newly developed pupae to identify the genes and proteins associated with diapause. Thirty-seven differentially expressed genes and their proteins changed synchronously between diapause and mature larvae and 82 changed synchronously between diapause larvae and newly developed pupae. Among these, genes involved in fatty acid biosynthesis and the longevity regulating pathway were up-regulated in diapause larvae and down-regulated in newly developed pupae, suggesting that they may regulate diapause. One fatty acid synthase (FAS) gene and two small heat shock genes (HSP19.8 and HSP18.9) were chosen for further functional analysis. After RNA interference (RNAi)-mediated knockdown of FAS, the survival of mature larvae was significantly lower than that of control larvae, but the mean developmental time from first-instar larva to adult remained unchanged. RNAi-mediated knockdown of HSP19.8 and HSP18.9 severely shortened the mean developmental time, causing approximately 50% larvae to develop directly into pupae. CONCLUSION FAS and the small heat shock gene play roles in diapause regulation and larvae survival. This study provides important information that may assist in understanding the molecular regulatory mechanisms of overwintering diapause of this important agricultural insect pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingyu Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhanchun Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Rui Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Mingyue Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junjie Xin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yushi Qin
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chuan Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Eriksson M, Janz N, Nylin S, Carlsson MA. Structural plasticity of olfactory neuropils in relation to insect diapause. Ecol Evol 2020; 10:14423-14434. [PMID: 33391725 PMCID: PMC7771155 DOI: 10.1002/ece3.7046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Many insects that live in temperate zones spend the cold season in a state of dormancy, referred to as diapause. As the insect must rely on resources that were gathered before entering diapause, keeping a low metabolic rate is of utmost importance. Organs that are metabolically expensive to maintain, such as the brain, can therefore become a liability to survival if they are too large.Insects that go through diapause as adults generally do so before entering the season of reproduction. This order of events introduces a conflict between maintaining low metabolism during dormancy and emerging afterward with highly developed sensory systems that improve fitness during the mating season.We investigated the timing of when investments into the olfactory system are made by measuring the volumes of primary and secondary olfactory neuropils in the brain as they fluctuate in size throughout the extended diapause life-period of adult Polygonia c-album butterflies.Relative volumes of both olfactory neuropils increase significantly during early adult development, indicating the importance of olfaction to this species, but still remain considerably smaller than those of nondiapausing conspecifics. However, despite butterflies being kept under the same conditions as before the dormancy, their olfactory neuropil volumes decreased significantly during the postdormancy period.The opposing directions of change in relative neuropil volumes before and after diapause dormancy indicate that the investment strategies governing structural plasticity during the two life stages could be functionally distinct. As butterflies were kept in stimulus-poor conditions, we find it likely that investments into these brain regions rely on experience-expectant processes before diapause and experience-dependent processes after diapause conditions are broken.As the shift in investment strategies coincides with a hard shift from premating season to mating season, we argue that these developmental characteristics could be adaptations that mitigate the trade-off between dormancy survival and reproductive fitness.
Collapse
Affiliation(s)
| | - Niklas Janz
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Sören Nylin
- Department of ZoologyStockholm UniversityStockholmSweden
| | | |
Collapse
|
19
|
Lehmann P, Westberg M, Tang P, Lindström L, Käkelä R. The Diapause Lipidomes of Three Closely Related Beetle Species Reveal Mechanisms for Tolerating Energetic and Cold Stress in High-Latitude Seasonal Environments. Front Physiol 2020; 11:576617. [PMID: 33101058 PMCID: PMC7546402 DOI: 10.3389/fphys.2020.576617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
During winter insects face energetic stress driven by lack of food, and thermal stress due to sub-optimal and even lethal temperatures. To survive, most insects living in seasonal environments such as high latitudes, enter diapause, a deep resting stage characterized by a cessation of development, metabolic suppression and increased stress tolerance. The current study explores physiological adaptations related to diapause in three beetle species at high latitudes in Europe. From an ecological perspective, the comparison is interesting since one species (Leptinotarsa decemlineata) is an invasive pest that has recently expanded its range into northern Europe, where a retardation in range expansion is seen. By comparing its physiological toolkit to that of two closely related native beetles (Agelastica alni and Chrysolina polita) with similar overwintering ecology and collected from similar latitude, we can study if harsh winters might be constraining further expansion. Our results suggest all species suppress metabolism during diapause and build large lipid stores before diapause, which then are used sparingly. In all species diapause is associated with temporal shifts in storage and membrane lipid profiles, mostly in accordance with the homeoviscous adaptation hypothesis, stating that low temperatures necessitate acclimation responses that increase fluidity of storage lipids, allowing their enzymatic hydrolysis, and ensure integral protein functions. Overall, the two native species had similar lipidomic profiles when compared to the invasive species, but all species showed specific shifts in their lipid profiles after entering diapause. Taken together, all three species show adaptations that improve energy saving and storage and membrane lipid fluidity during overwintering diapause. While the three species differed in the specific strategies used to increase lipid viscosity, the two native beetle species showed a more canalized lipidomic response, than the recent invader. Since close relatives with similar winter ecology can have different winter ecophysiology, extrapolations among species should be done with care. Still, range expansion of the recent invader into high latitude habitats might indeed be retarded by lack of physiological tools to manage especially thermal stress during winter, but conversely species adapted to long cold winters may face these stressors as a consequence of ongoing climate warming.
Collapse
Affiliation(s)
- Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Melissa Westberg
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Patrik Tang
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit, Helsinki Institute for Life Science and Biocenter Finland, Helsinki, Finland
| |
Collapse
|
20
|
Batz ZA, Clemento AJ, Fritzenwanker J, Ring TJ, Garza JC, Armbruster PA. Rapid adaptive evolution of the diapause program during range expansion of an invasive mosquito. Evolution 2020; 74:1451-1465. [PMID: 32490563 PMCID: PMC8023039 DOI: 10.1111/evo.14029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
In temperate climates, the recurring seasonal exigencies of winter represent a fundamental physiological challenge for a wide range of organisms. In response, many temperate insects enter diapause, an alternative developmental program, including developmental arrest, that allows organisms to synchronize their life cycle with seasonal environmental variation. Geographic variation in diapause phenology contributing to local climatic adaptation is well documented. However, few studies have examined how the rapid evolution of a suite of traits expressed across the diapause program may contribute to climatic adaptation on a contemporary timescale. Here, we investigate the evolution of the diapause program over the past 35 years by leveraging a "natural experiment" presented by the recent invasion of the Asian tiger mosquito, Aedes albopictus, across the eastern United States. We sampled populations from two distinct climatic regions separated by 6° of latitude (∼700 km). Using common-garden experiments, we identified regional genetic divergence in diapause-associated cold tolerance, diapause duration, and postdiapause starvation tolerance. We also found regional divergence in nondiapause thermal performance. In contrast, we observed minimal regional divergence in nondiapause larval growth traits and at neutral molecular marker loci. Our results demonstrate rapid evolution of the diapause program and imply strong selection caused by differences in winter conditions.
Collapse
Affiliation(s)
- Zachary A. Batz
- Department of BiologyGeorgetown UniversityWashingtonDC20057
- Current Address: Neurobiology‐Neurodegeneration and Repair LaboratoryNational Eye Institute, National Institute of Health6 Center Drive, Room 307BethesdaMaryland20892
| | - Anthony J. Clemento
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCalifornia95064
| | | | | | - John Carlos Garza
- Institute of Marine SciencesUniversity of CaliforniaSanta CruzCalifornia95064
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCalifornia95064
| | | |
Collapse
|
21
|
Lindestad O, Schmalensee L, Lehmann P, Gotthard K. Variation in butterfly diapause duration in relation to voltinism suggests adaptation to autumn warmth, not winter cold. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Olle Lindestad
- Department of Zoology Stockholm University Stockholm Sweden
| | | | | | - Karl Gotthard
- Department of Zoology Stockholm University Stockholm Sweden
| |
Collapse
|
22
|
Liao S, Post S, Lehmann P, Veenstra JA, Tatar M, Nässel DR. Regulatory Roles of Drosophila Insulin-Like Peptide 1 (DILP1) in Metabolism Differ in Pupal and Adult Stages. Front Endocrinol (Lausanne) 2020; 11:180. [PMID: 32373064 PMCID: PMC7186318 DOI: 10.3389/fendo.2020.00180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/13/2020] [Indexed: 01/12/2023] Open
Abstract
The insulin/IGF-signaling pathway is central in control of nutrient-dependent growth during development, and in adult physiology and longevity. Eight insulin-like peptides (DILP1-8) have been identified in Drosophila, and several of these are known to regulate growth, metabolism, reproduction, stress responses, and lifespan. However, the functional role of DILP1 is far from understood. Previous work has shown that dilp1/DILP1 is transiently expressed mainly during the pupal stage and the first days of adult life. Here, we study the role of dilp1 in the pupa, as well as in the first week of adult life, and make some comparisons to dilp6 that displays a similar pupal expression profile, but is expressed in fat body rather than brain neurosecretory cells. We show that mutation of dilp1 diminishes organismal weight during pupal development, whereas overexpression increases it, similar to dilp6 manipulations. No growth effects of dilp1 or dilp6 manipulations were detected during larval development. We next show that dilp1 and dilp6 increase metabolic rate in the late pupa and promote lipids as the primary source of catabolic energy. Effects of dilp1 manipulations can also be seen in the adult fly. In newly eclosed female flies, survival during starvation is strongly diminished in dilp1 mutants, but not in dilp2 and dilp1/dilp2 mutants, whereas in older flies, only the double mutants display reduced starvation resistance. Starvation resistance is not affected in male dilp1 mutant flies, suggesting a sex dimorphism in dilp1 function. Overexpression of dilp1 also decreases survival during starvation in female flies and increases egg laying and decreases egg to pupal viability. In conclusion, dilp1 and dilp6 overexpression promotes metabolism and growth of adult tissues during the pupal stage, likely by utilization of stored lipids. Some of the effects of the dilp1 manipulations may carry over from the pupa to affect physiology in young adults, but our data also suggest that dilp1 signaling is important in metabolism and stress resistance in the adult stage.
Collapse
Affiliation(s)
- Sifang Liao
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Stephanie Post
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Jan A. Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (CNRS UMR5287), University of Bordeaux, Pessac, France
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
- *Correspondence: Dick R. Nässel
| |
Collapse
|
23
|
Green DA, Kronforst MR. Monarch butterflies use an environmentally sensitive, internal timer to control overwintering dynamics. Mol Ecol 2019; 28:3642-3655. [PMID: 31338928 PMCID: PMC6834359 DOI: 10.1111/mec.15178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023]
Abstract
The monarch butterfly (Danaus plexippus) complements its iconic migration with diapause, a hormonally controlled developmental programme that contributes to winter survival at overwintering sites. Although timing is a critical adaptive feature of diapause, how environmental cues are integrated with genetically-determined physiological mechanisms to time diapause development, particularly termination, is not well understood. In a design that subjected western North American monarchs to different environmental chamber conditions over time, we modularized constituent components of an environmentally-controlled, internal diapause termination timer. Using comparative transcriptomics, we identified molecular controllers of these specific diapause termination components. Calcium signalling mediated environmental sensitivity of the diapause timer, and we speculate that it is a key integrator of environmental condition (cold temperature) with downstream hormonal control of diapause. Juvenile hormone (JH) signalling changed spontaneously in diapause-inducing conditions, capacitating response to future environmental condition. Although JH is a major target of the internal timer, it is not itself the timer. Epigenetic mechanisms are implicated to be the proximate timing mechanism. Ecdysteroid, JH, and insulin/insulin-like peptide signalling are major targets of the diapause programme used to control response to permissive environmental conditions. Understanding the environmental and physiological mechanisms of diapause termination sheds light on fundamental properties of biological timing, and also helps inform expectations for how monarch populations may respond to future climate change.
Collapse
Affiliation(s)
- Delbert A. Green
- Department of Ecology and Evolution University of Chicago. Chicago, IL 60637 USA
- Current Address: Department of Ecology and Evolutionary Biology University of Michigan. Ann Arbor, MI 48109 USA
| | - Marcus R. Kronforst
- Department of Ecology and Evolution University of Chicago. Chicago, IL 60637 USA
| |
Collapse
|
24
|
Kivelä SM, Gotthard K, Lehmann P. Developmental plasticity in metabolism but not in energy reserve accumulation in a seasonally polyphenic butterfly. ACTA ACUST UNITED AC 2019; 222:jeb.202150. [PMID: 31138637 DOI: 10.1242/jeb.202150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/19/2019] [Indexed: 01/25/2023]
Abstract
The evolution of seasonal polyphenisms (discrete phenotypes in different annual generations) associated with alternative developmental pathways of diapause (overwintering) and direct development is favoured in temperate insects. Seasonal life history polyphenisms are common and include faster growth and development under direct development than in diapause. However, the physiological underpinnings of this difference remain poorly known despite its significance for understanding the evolution of polyphenisms. We measured respiration and metabolic rates through the penultimate and final larval instars in the butterfly Pieris napi and show that directly developing larvae grew and developed faster and had a higher metabolic rate than larvae entering pupal diapause. The metabolic divergence appeared only in the final instar, that is, after induction of the developmental pathway that takes place in the penultimate instar in P. napi. The accumulation of fat reserves during the final larval instar was similar under diapause and direct development, which was unexpected as diapause is predicted to select for exaggerated reserve accumulation. This suggests that overwinter survival in diapause does not require larger energy reserves than direct development, likely because of metabolic suppression in diapause pupae. The results, nevertheless, demonstrate that physiological changes coincide with the divergence of life histories between the alternative developmental pathways, thus elucidating the proximate basis of seasonal life history polyphenisms.
Collapse
Affiliation(s)
- Sami M Kivelä
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, EE-51014 Tartu, Estonia
| | - Karl Gotthard
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
25
|
Zhang HZ, Li YY, An T, Huang FX, Wang MQ, Liu CX, Mao JJ, Zhang LS. Comparative Transcriptome and iTRAQ Proteome Analyses Reveal the Mechanisms of Diapause in Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae). Front Physiol 2018; 9:1697. [PMID: 30555341 PMCID: PMC6284037 DOI: 10.3389/fphys.2018.01697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/12/2018] [Indexed: 11/17/2022] Open
Abstract
Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae) is a solitary endoparasitoid used in the biological control of various aphids. Diapause plays an important role in the successful production and deployment of A. gifuensis. Diapause can effectively extend the shelf life of biological control agents and solve several practical production problems like long production cycles, short retention periods, and discontinuities between supply and demand. In recent years, studies have been conducted on the environmental regulation and physiological and biochemical mechanisms of diapause in A. gifuensis. Nevertheless, the molecular mechanism of diapause in this species remains unclear. In this study, we compared the transcriptomes and proteomes of diapause and non-diapause A. gifuensis to identify the genes and proteins associated with this process. A total of 557 transcripts and 568 proteins were differentially expressed between the two groups. Among them, (1) genes involved in trehalose synthesis such as glycogen synthase, glycogen phosphorylase, and trehalose 6-phosphate synthase were upregulated in diapause at mRNA or protein level while glycolysis and gluconeogenesis-related genes were downregulated, suggesting that A. gifuensis stores trehalose as an energy resource and cryoprotectant; (2) the expression of immune-related genes like C-type lectins, hemocyanin, and phenoloxidase was increased, which helps to maintain immunity during diapause; (3) a chitin synthase and several cuticular protein genes were upregulated to harden the cuticle of diapausing A. gifuensis larval. These findings improve our understanding of A. gifuensis. diapause and provide the foundation for further pertinent studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li-Sheng Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Sino-American Biological Control Laboratory, USDA-ARS/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Woronik A, Stefanescu C, Käkelä R, Wheat CW, Lehmann P. Physiological differences between female limited, alternative life history strategies: The Alba phenotype in the butterfly Colias croceus. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:257-264. [PMID: 29580782 DOI: 10.1016/j.jinsphys.2018.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/16/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Across a wide range of taxa, individuals within populations exhibit alternative life history strategies (ALHS) where their phenotypes dramatically differ due to divergent investments in growth, reproduction and survivorship, with the resulting trade-offs directly impacting Darwinian fitness. Though the maintenance of ALHS within populations is fairly well understood, little is known regarding the physiological mechanisms that underlie ALHS and how environmental conditions can affect the evolution and expression of these phenotypes. One such ALHS, known as Alba, exists within females of many species in the butterfly genus Colias. Previous works in New World species not only found that female morphs differ in their wing color due to a reallocation of resources away from the synthesis of wing pigments to other areas of development, but also that temperature played an important role in these trade-offs. Here we build on previous work conducted in New World species by measuring life history traits and conducting lipidomics on individuals reared at hot and cold temperatures in the Old World species Colias croceus. Results suggest that the fitness of Alba and orange morphs likely varies with rearing temperature, where Alba females have higher fitness in cold conditions and orange in warm. Additionally shared traits between Old and New World species suggest the Alba mechanism is likely conserved across the genus. Finally, in the cold treatment we observe an intermediate yellow morph that may have decreased fitness due to slower larval development. This cost may manifest as disruptive selection in the field, thereby favoring the maintenance of the two discrete morphs. Taken together these results add insights into the evolution of, and the selection on, the Alba ALHS.
Collapse
Affiliation(s)
- Alyssa Woronik
- Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Constanti Stefanescu
- Museum of Natural Sciences of Granollers, Granollers, Catalonia 08402, Spain; CREAF, Cerdanyola del Valles, Catalonia 08193, Spain
| | - Reijo Käkelä
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Philipp Lehmann
- Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
27
|
Lehmann P, Pruisscher P, Koštál V, Moos M, Šimek P, Nylin S, Agren R, Väremo L, Wiklund C, Wheat CW, Gotthard K. Metabolome dynamics of diapause in the butterfly Pieris napi: distinguishing maintenance, termination and post-diapause phases. ACTA ACUST UNITED AC 2018; 221:jeb.169508. [PMID: 29180603 DOI: 10.1242/jeb.169508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022]
Abstract
Diapause is a deep resting stage facilitating temporal avoidance of unfavourable environmental conditions, and is used by many insects to adapt their life cycle to seasonal variation. Although considerable work has been invested in trying to understand each of the major diapause stages (induction, maintenance and termination), we know very little about the transitions between stages, especially diapause termination. Understanding diapause termination is crucial for modelling and predicting spring emergence and winter physiology of insects, including many pest insects. In order to gain these insights, we investigated metabolome dynamics across diapause development in pupae of the butterfly Pieris napi, which exhibits adaptive latitudinal variation in the length of endogenous diapause that is uniquely well characterized. By employing a time-series experiment, we show that the whole-body metabolome is highly dynamic throughout diapause and differs between pupae kept at a diapause-terminating (low) temperature and those kept at a diapause-maintaining (high) temperature. We show major physiological transitions through diapause, separate temperature-dependent from temperature-independent processes and identify significant patterns of metabolite accumulation and degradation. Together, the data show that although the general diapause phenotype (suppressed metabolism, increased cold tolerance) is established in a temperature-independent fashion, diapause termination is temperature dependent and requires a cold signal. This revealed several metabolites that are only accumulated under diapause-terminating conditions and degraded in a temperature-unrelated fashion during diapause termination. In conclusion, our findings indicate that some metabolites, in addition to functioning as cryoprotectants, for example, are candidates for having regulatory roles as metabolic clocks or time-keepers during diapause.
Collapse
Affiliation(s)
- Philipp Lehmann
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Peter Pruisscher
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, 370 05 České Budějovice, Czech Republic, 370 05 České Budějovice, Czech Republic
| | - Martin Moos
- Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, 370 05 České Budějovice, Czech Republic, 370 05 České Budějovice, Czech Republic
| | - Petr Šimek
- Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, 370 05 České Budějovice, Czech Republic, 370 05 České Budějovice, Czech Republic
| | - Sören Nylin
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Rasmus Agren
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Leif Väremo
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Christer Wiklund
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | | | - Karl Gotthard
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
28
|
Zhai Y, Zhang Z, Gao H, Chen H, Sun M, Zhang W, Yu Y, Zheng L. Hormone Signaling Regulates Nymphal Diapause in Laodelphax striatellus (Hemiptera: Delphacidae). Sci Rep 2017; 7:13370. [PMID: 29042683 PMCID: PMC5645394 DOI: 10.1038/s41598-017-13879-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023] Open
Abstract
Diapause is a physiological adaptation that allows an organism to survive adverse environmental conditions. Diapause occurs at a specific developmental stage in each species. There are few reports regarding the molecular regulatory mechanism of nymphal diapause in Laodelphax striatellus, which is an important graminaceous crop pest. Our previous studies identified the conditions for nymphal diapause in this species. Here, we combined RNA sequencing transcriptomics and quantitative proteomic analyses to identify nymphal diapause-related genes and proteins. The analysis of differentially regulated genes identified four gene/protein pairs that were synchronously up-regulated, and six gene/protein pairs that were synchronously down-regulated, suggesting that these genes may regulate nymphal diapause. The up-regulated gene juvenile hormone acid methyl transferase (JHAMT) and the down-regulated gene cytochrome P450 monooxygenase (CYP314A1, Shd) were chosen for further functional studies. After knocking-down of LsJHAMT and LsShd in vivo by RNA interference, the titer of JH III and 20E decreased significantly, and the duration of the nymphal development period was severely altered. Thus LsJHAMT and LsShd regulated JH III and 20E titers in the hemolymph to control the nymphal diapause status. This study may lead to new information on the regulation nymphal diapause of this important agricultural insect pest.
Collapse
Affiliation(s)
- Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Zhiming Zhang
- Collage of Forestry, Henan Agricultural University, Zhengzhou, 450001, China
| | - Huanhuan Gao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Meng Sun
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yi Yu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
29
|
Lehmann P, Nylin S, Gotthard K, Carlsson MA. Idiosyncratic development of sensory structures in brains of diapausing butterfly pupae: implications for information processing. Proc Biol Sci 2017; 284:20170897. [PMID: 28679728 PMCID: PMC5524504 DOI: 10.1098/rspb.2017.0897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/30/2017] [Indexed: 11/21/2022] Open
Abstract
Diapause is an important escape mechanism from seasonal stress in many insects. A certain minimum amount of time in diapause is generally needed in order for it to terminate. The mechanisms of time-keeping in diapause are poorly understood, but it can be hypothesized that a well-developed neural system is required. However, because neural tissue is metabolically costly to maintain, there might exist conflicting selective pressures on overall brain development during diapause, on the one hand to save energy and on the other hand to provide reliable information processing during diapause. We performed the first ever investigation of neural development during diapause and non-diapause (direct) development in pupae of the butterfly Pieris napi from a population whose diapause duration is known. The brain grew in size similarly in pupae of both pathways up to 3 days after pupation, when development in the diapause brain was arrested. While development in the brain of direct pupae continued steadily after this point, no further development occurred during diapause until temperatures increased far after diapause termination. Interestingly, sensory structures related to vision were remarkably well developed in pupae from both pathways, in contrast with neuropils related to olfaction, which only developed in direct pupae. The results suggest that a well-developed visual system might be important for normal diapause development.
Collapse
Affiliation(s)
- Philipp Lehmann
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Karl Gotthard
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mikael A Carlsson
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
30
|
Reynolds JA, Peyton JT, Denlinger DL. Changes in microRNA abundance may regulate diapause in the flesh fly, Sarcophaga bullata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 84:1-14. [PMID: 28300610 DOI: 10.1016/j.ibmb.2017.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Diapause, an alternative developmental pathway characterized by changes in developmental timing and metabolism, is coordinated by molecular mechanisms that are not completely understood. MicroRNA (miRNA) mediated gene silencing is emerging as a key component of animal development and may have a significant role in initiating, maintaining, and terminating insect diapause. In the present study, we test this possibility by using high-throughput sequencing and qRT-PCR to discover diapause-related shifts in miRNA abundance in the flesh fly, Sarcophaga bullata. We identified ten evolutionarily conserved miRNAs that were differentially expressed in diapausing pupae compared to their nondiapausing counterparts. miR-289-5p and miR-1-3p were overexpressed in diapausing pupae and may be responsible for silencing expression of candidate genes during diapause. miR-9c-5p, miR-13b-3p, miR-31a-5p, miR-92b-3p, miR-275-3p, miR-276a-3p, miR-277-3p, and miR-305-5p were underexpressed in diapausing pupae and may contribute to increased expression of heat shock proteins and other factors necessary for the enhanced environmental stress-response that is a feature of diapause. In S. bullata, a maternal effect blocks the programming of diapause in progeny of females that have experienced pupal diapause, and in this study we report that several miRNAs, including miR-263a-5p, miR-100-5p, miR-125-5p, and let-7-5p were significantly overexpressed in such nondiapausing flies and may prevent entry into diapause. Together these miRNAs appear to be integral to the molecular processes that mediate entry into diapause.
Collapse
Affiliation(s)
- Julie A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus OH 43210, USA.
| | - Justin T Peyton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus OH 43210, USA
| | - David L Denlinger
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus OH 43210, USA; Department of Entomology, The Ohio State University, Columbus OH 43210, USA
| |
Collapse
|