1
|
Wang YC, Kao IP, Chang CH. Dietary carotenoids enhance SWS1 expression in female western mosquitofish (Gambusia affinis) but do not impair their likelihood of pregnancy in the presence of male guppy. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025:10.1007/s00359-025-01741-w. [PMID: 40299003 DOI: 10.1007/s00359-025-01741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
The various cone opsin genes are responsible for distinct ecological tasks, with the altered expression profiles in teleost fishes representing an excellent paradigm for studying how fishes can quickly adapt to diverse habitats within their lifecycles. The molecular mechanisms underlying transcriptional switching among cone opsin genes are still being investigated, but factors such as light conditions, developmental stages, sex hormones, and diet are known to play a role in changing cone opsin expression profiles. Based on previous research on guppies, we hypothesized that a diet rich in carotenoids could enhance expression of the opsin gene LWS in western mosquitofish (Gambusia affinis) and potentially influence female mate choice. We raised female western mosquitofish under low-level or high-level carotenoid diets and then conducted female mating preference experiments, with or without the presence of male guppy (Poecilia reticulata). qPCR revealed that high carotenoid intake upregulates SWS1 rather than LWS transcription. This positive feedback loop may promote foraging efficiency and also protect the visual system from UV damage. The carotenoid diets had no effect on pregnancy likelihood, possibly because UV light is not a critical cue in western mosquitofish female mate choice and/or the light source we used did not encompass the UV spectrum. Presence of male guppies had no effect on pregnancy likelihood, though a previous study reported that it significantly reduced brood size. Therefore, interactions between male guppies and western mosquitofish likely reduces the number of copulations and/or disrupts parenting to reduce the number of offspring.
Collapse
Affiliation(s)
- Yu-Chun Wang
- Institution of Fisheries Science, National Taiwan University, Taipei City, Taiwan
- Technical Service Division, Fisheries Research Institute, Ministry of Agriculture, Keelung City, Taiwan
| | - I-Pei Kao
- Freshwater Aquaculture Research Center Chupei Station, Fisheries Research Institute, Ministry of Agriculture, Hsinchu County, Taiwan
| | - Chia-Hao Chang
- Department of Science Education, National Taipei University of Education, Taipei City, Taiwan.
| |
Collapse
|
2
|
Tettamanti V, Marshall NJ, Cheney KL, Cortesi F. Damsels in Disguise: Development of Ultraviolet Sensitivity and Colour Patterns in Damselfishes (Pomacentridae). Mol Ecol 2025; 34:e17680. [PMID: 39907248 PMCID: PMC11874681 DOI: 10.1111/mec.17680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Damselfishes (Pomacentridae) are widespread and highly abundant on tropical coral reefs. They exhibit diverse body colouration within and between the ~250 species and across ontogenetic stages. In addition to human-visible colours (i.e., 400-700 nm), most adult damselfishes reflect ultraviolet (UV, 300-400 nm) colour patches. UV sensitivity and UV colour signals are essential for feeding and form the basis for a secret communication channel invisible to the many UV-blind predatory fish on the reef; however, how these traits develop across ontogenetic stages and their distribution across the damselfish family is poorly characterised. Here, we used UV photography, phylogenetic reconstructions of opsin genes, and differential gene expression analysis (DGE) of retinal samples to investigate the development of UV vision and colour patterns in three ontogenetic stages (pre-settlement larval, juvenile, and adult) of 11 damselfish species. Using DGE, we found similar gene expression between juveniles and adults, which strongly differed from larvae. All species and all stages expressed at least one UV-sensitive sws1 opsin gene. However, UV body colour patterns only started to appear at the juvenile stage. Moreover, Pomacentrus species displayed highly complex UV body patterns that were correlated with the expression of two sws1 copies. This could mean that some damselfishes can discriminate colours that change only in their UV component. We demonstrate dramatic shifts in both UV sensitivity and UV colouration across the development stages of damselfish while highlighting the importance of considering ontogeny when studying the coevolution of visual systems and colour signals.
Collapse
Affiliation(s)
- Valerio Tettamanti
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Karen L. Cheney
- School of the EnvironmentThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- School of the EnvironmentThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
3
|
Rossetto IH, Ludington AJ, Simões BF, Van Cao N, Sanders KL. Dynamic Expansions and Retinal Expression of Spectrally Distinct Short-Wavelength Opsin Genes in Sea Snakes. Genome Biol Evol 2024; 16:evae150. [PMID: 38985750 PMCID: PMC11316226 DOI: 10.1093/gbe/evae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
The photopigment-encoding visual opsin genes that mediate color perception show great variation in copy number and adaptive function across vertebrates. An open question is how this variation has been shaped by the interaction of lineage-specific structural genomic architecture and ecological selection pressures. We contribute to this issue by investigating the expansion dynamics and expression of the duplicated Short-Wavelength-Sensitive-1 opsin (SWS1) in sea snakes (Elapidae). We generated one new genome, 45 resequencing datasets, 10 retinal transcriptomes, and 81 SWS1 exon sequences for sea snakes, and analyzed these alongside 16 existing genomes for sea snakes and their terrestrial relatives. Our analyses revealed multiple independent transitions in SWS1 copy number in the marine Hydrophis clade, with at least three lineages having multiple intact SWS1 genes: the previously studied Hydrophis cyanocinctus and at least two close relatives of this species; Hydrophis atriceps and Hydrophis fasciatus; and an individual Hydrophis curtus. In each lineage, gene copy divergence at a key spectral tuning site resulted in distinct UV and Violet/Blue-sensitive SWS1 subtypes. Both spectral variants were simultaneously expressed in the retinae of H. cyanocinctus and H. atriceps, providing the first evidence that these SWS1 expansions confer novel phenotypes. Finally, chromosome annotation for nine species revealed shared structural features in proximity to SWS1 regardless of copy number. If these features are associated with SWS1 duplication, expanded opsin complements could be more common in snakes than is currently recognized. Alternatively, selection pressures specific to aquatic environments could favor improved chromatic distinction in just some lineages.
Collapse
Affiliation(s)
- Isaac H Rossetto
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alastair J Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bruno F Simões
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Nguyen Van Cao
- Department of Aquaculture Biotechnology, Vietnamese Academy of Science and Technology, Institute of Oceanography, Nha Trang, Khánh Hòa, Vietnam
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
4
|
Stieb SM, Cortesi F, Mitchell L, Jardim de Queiroz L, Marshall NJ, Seehausen O. Short-wavelength-sensitive 1 ( SWS1) opsin gene duplications and parallel visual pigment tuning support ultraviolet communication in damselfishes (Pomacentridae). Ecol Evol 2024; 14:e11186. [PMID: 38628922 PMCID: PMC11019301 DOI: 10.1002/ece3.11186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Damselfishes (Pomacentridae) are one of the most behaviourally diverse, colourful and species-rich reef fish families. One remarkable characteristic of damselfishes is their communication in ultraviolet (UV) light. Not only are they sensitive to UV, they are also prone to have UV-reflective colours and patterns enabling social signalling. Using more than 50 species, we aimed to uncover the evolutionary history of UV colour and UV vision in damselfishes. All damselfishes had UV-transmitting lenses, expressed the UV-sensitive SWS1 opsin gene, and most displayed UV-reflective patterns and colours. We find evidence for several tuning events across the radiation, and while SWS1 gene duplications are generally very rare among teleosts, our phylogenetic reconstructions uncovered two independent duplication events: one close to the base of the most species-rich clade in the subfamily Pomacentrinae, and one in a single Chromis species. Using amino acid comparisons, we found that known spectral tuning sites were altered several times in parallel across the damselfish radiation (through sequence change and duplication followed by sequence change), causing repeated shifts in peak spectral absorbance of around 10 nm. Pomacentrinae damselfishes expressed either one or both copies of SWS1, likely to further finetune UV-signal detection and differentiation. This highly advanced and modified UV vision among damselfishes, in particular the duplication of SWS1 among Pomacentrinae, might be seen as a key evolutionary innovation that facilitated the evolution of the exuberant variety of UV-reflectance traits and the diversification of this coral reef fish lineage.
Collapse
Affiliation(s)
- Sara M. Stieb
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- School of the EnvironmentThe University of QueenslandBrisbaneAustralia
| | - Laurie Mitchell
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
- Marine Eco‐Evo‐Devo UnitOkinawa Institute of Science and TechnologyOnna sonOkinawaJapan
| | - Luiz Jardim de Queiroz
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Ole Seehausen
- Center for Ecology, Evolution and BiogeochemistryEAWAG Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Institute for Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
5
|
Stieb SM, Cortesi F, de Queiroz LJ, Carleton KL, Seehausen O, Marshall NJ. Long-wavelength-sensitive (lws) opsin gene expression, foraging and visual communication in coral reef fishes. Mol Ecol 2023; 32:1656-1672. [PMID: 36560895 PMCID: PMC10065935 DOI: 10.1111/mec.16831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/25/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Coral reef fishes are diverse in ecology and behaviour and show remarkable colour variability. Investigating the visual pigment gene (opsin) expression in these fishes makes it possible to associate their visual genotype and phenotype (spectral sensitivities) to visual tasks, such as feeding strategy or conspecific detection. By studying all major damselfish clades (Pomacentridae) and representatives from five other coral reef fish families, we show that the long-wavelength-sensitive (lws) opsin is highly expressed in algivorous and less or not expressed in zooplanktivorous species. Lws is also upregulated in species with orange/red colours (reflectance >520 nm) and expression is highest in orange/red-coloured algivores. Visual models from the perspective of a typical damselfish indicate that sensitivity to longer wavelengths does enhance the ability to detect the red to far-red component of algae and orange/red-coloured conspecifics, possibly enabling social signalling. Character state reconstructions indicate that in the early evolutionary history of damselfishes, there was no lws expression and no orange/red coloration. Omnivory was most often the dominant state. Although herbivory was sometimes dominant, zooplanktivory was never dominant. Sensitivity to long wavelength (increased lws expression) only emerged in association with algivory but never with zooplanktivory. Higher lws expression is also exploited by social signalling in orange/red, which emerged after the transition to algivory. Although the relative timing of traits may deviate by different reconstructions and alternative explanations are possible, our results are consistent with sensory bias whereby social signals evolve as a correlated response to natural selection on sensory system properties in other contexts.
Collapse
Affiliation(s)
- Sara M. Stieb
- Centre for Ecology, Evolution and Biogeochemistry (CEEB), EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, Switzerland
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Luiz Jardim de Queiroz
- Centre for Ecology, Evolution and Biogeochemistry (CEEB), EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, Switzerland
| | - Karen L. Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ole Seehausen
- Centre for Ecology, Evolution and Biogeochemistry (CEEB), EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, Switzerland
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
7
|
Hagen JFD, Roberts NS, Johnston RJ. The evolutionary history and spectral tuning of vertebrate visual opsins. Dev Biol 2023; 493:40-66. [PMID: 36370769 PMCID: PMC9729497 DOI: 10.1016/j.ydbio.2022.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Many animals depend on the sense of vision for survival. In eumetazoans, vision requires specialized, light-sensitive cells called photoreceptors. Light reaches the photoreceptors and triggers the excitation of light-detecting proteins called opsins. Here, we describe the story of visual opsin evolution from the ancestral bilaterian to the extant vertebrate lineages. We explain the mechanisms determining color vision of extant vertebrates, focusing on opsin gene losses, duplications, and the expression regulation of vertebrate opsins. We describe the sequence variation both within and between species that has tweaked the sensitivities of opsin proteins towards different wavelengths of light. We provide an extensive resource of wavelength sensitivities and mutations that have diverged light sensitivity in many vertebrate species and predict how these mutations were accumulated in each lineage based on parsimony. We suggest possible natural and sexual selection mechanisms underlying these spectral differences. Understanding how molecular changes allow for functional adaptation of animals to different environments is a major goal in the field, and therefore identifying mutations affecting vision and their relationship to photic selection pressures is imperative. The goal of this review is to provide a comprehensive overview of our current understanding of opsin evolution in vertebrates.
Collapse
Affiliation(s)
- Joanna F D Hagen
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Natalie S Roberts
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
8
|
Fogg LG, Cortesi F, Gache C, Lecchini D, Marshall NJ, de Busserolles F. Developing and adult reef fish show rapid light-induced plasticity in their visual system. Mol Ecol 2023; 32:167-181. [PMID: 36261875 PMCID: PMC10099556 DOI: 10.1111/mec.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 12/29/2022]
Abstract
The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in "constant night". Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Camille Gache
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - David Lecchini
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fanny de Busserolles
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
9
|
Salgado D, Mariluz BR, Araujo M, Lorena J, Perez LN, Ribeiro RDL, Sousa JDF, Schneider PN. Light-induced shifts in opsin gene expression in the four-eyed fish Anableps anableps. Front Neurosci 2022; 16:995469. [PMID: 36248668 PMCID: PMC9556854 DOI: 10.3389/fnins.2022.995469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the vertebrate eye is a complex process orchestrated by several conserved transcriptional and signaling regulators. Aside from partial or complete loss, examples of exceptional modifications to this intricate organ are scarce. The unique eye of the four-eyed fish Anableps anableps is composed of duplicated corneas and pupils, as well as specialized retina regions associated with simultaneous aerial and aquatic vision. In a previous transcriptomic study of the A. anableps developing eye we identified expression of twenty non-visual and eleven visual opsin genes. Here, we surveyed the expression territories of three non-visual melanopsins genes (opn4×1, opn4×2, opn4m3), one teleost multiple tissue opsin (tmt1b) and two visual opsins (lws and rh2-1) in dorsal and ventral retinas. Our data showed that asymmetry of non-visual opsin expression is only established after birth. During embryonic development, while inside pregnant females, the expression of opn4×1, opn4×2, and tmt1b spans the whole retina. In juvenile fish (post birth), the expression of opn4×1, opn4×2, opn4m3, and tmt1b genes becomes restricted to the ventral retina, which receives aerial light. Raising juvenile fish in clear water instead of the murky waters found in its natural habitat is sufficient to change gene expression territories of opn4×1, opn4×2, opn4m3, tmt1b, and rh2-1, demonstrating that different lighting conditions can shift opsin expression and potentially contribute to changes in spectral sensitivity in the four eyed fish.
Collapse
Affiliation(s)
- Daniele Salgado
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Bertha R. Mariluz
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Maysa Araujo
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Jamily Lorena
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Louise N. Perez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | | | - Josane de F. Sousa
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Patricia N. Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Patricia N. Schneider,
| |
Collapse
|
10
|
Fogg LG, Cortesi F, Lecchini D, Gache C, Marshall NJ, de Busserolles F. Development of dim-light vision in the nocturnal reef fish family Holocentridae. II: Retinal morphology. J Exp Biol 2022; 225:jeb244740. [PMID: 35929495 PMCID: PMC9482369 DOI: 10.1242/jeb.244740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022]
Abstract
Ontogenetic changes in the habitats and lifestyles of animals are often reflected in their visual systems. Coral reef fishes start life in the shallow open ocean but inhabit the reef as juveniles and adults. Alongside this change in habitat, some species also change lifestyles and become nocturnal. However, it is not fully understood how the visual systems of nocturnal reef fishes develop and adapt to these significant ecological shifts over their lives. Therefore, we used a histological approach to examine visual development in the nocturnal coral reef fish family, Holocentridae. We examined 7 representative species spanning both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes). Pre-settlement larvae showed strong adaptation for photopic vision with high cone densities and had also started to develop a multibank retina (i.e. multiple rod layers), with up to two rod banks present. At reef settlement, holocentrids showed greater adaptation for scotopic vision, with higher rod densities and higher summation of rods onto the ganglion cell layer. By adulthood, they had well-developed scotopic vision with a highly rod-dominated multibank retina comprising 5-17 rod banks and enhanced summation of rods onto the ganglion cell layer. Although the ecological demands of the two subfamilies were similar throughout their lives, their visual systems differed after settlement, with Myripristinae showing more pronounced adaptation for scotopic vision than Holocentrinae. Thus, it is likely that both ecology and phylogeny contribute to the development of the holocentrid visual system.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Lecchini
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - Camille Gache
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Tang SL, Liang XF, Li L, Wu J, Lu K. Genome-wide identification and expression patterns of opsin genes during larval development in Chinese perch (Siniperca chuatsi). Gene X 2022; 825:146434. [PMID: 35304240 DOI: 10.1016/j.gene.2022.146434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/01/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Vision is important for fish to forage food and fishes express opsin genes to receive visual signals. Chinese perch (Siniperca chuatsi) larvae prey on other fish species larvae at firstfeeding but donoteat any zooplankton, the expression of opsin genes in S. chuatsilarvae is unknown. In this study, we conducted a whole-genome analysis and demonstrated that S. chuatsihave5cone opsin genes (sws1, sws2Aα, sws2Aβ, rh2and lws)and 2 rod opsin genes (rh1and rh1-exorh). The syntenicanalysisshowedthe flanking genes ofall opsin genes were conserved during fish evolution, but the ancestorof S. chuatsimightlost some opsin gene copies duringtheevolution.The phylogeneticanalysisshowed sws1of S. chuatsiwas closest to those of Lates calcariferwhich had a truncated sws1gene; the sws2Aα, sws2Aβ,lws,rh2,rh1 andrh1-exorh of S. chuatsihad a closer relationship with those of Percomorpha fishes.Importantly, results of in situhybridization showed the sws1 opsingene,which is related to forage zooplankton,had extremely low levelexpression in retinaat early stages.Surprisingly, the rh2 opsin gene had a high level expression at firstfeeding stage. The sws2Aα, sws2Aβand lwshad a little expression at early stages but the lwsshowed a increasing trend with larval development, rh1 opsin gene expression appeared at15 dph. In thisstudy, we found a specialpattern of visual opsin genes expression in S. chuatsi, it might influence the larval first feeding and feeding habit.
Collapse
Affiliation(s)
- Shu-Lin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| | - Ling Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
12
|
Cheney KL, Hudson J, de Busserolles F, Luehrmann M, Shaughnessy A, van den Berg C, Green NF, Marshall NJ, Cortesi F. Seeing Picasso: an investigation into the visual system of the triggerfish Rhinecanthus aculeatus. J Exp Biol 2022; 225:jeb243907. [PMID: 35244167 PMCID: PMC9080752 DOI: 10.1242/jeb.243907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022]
Abstract
Vision is used by animals to find food and mates, avoid predators, defend resources and navigate through complex habitats. Behavioural experiments are essential for understanding animals' perception but are often challenging and time-consuming; therefore, using species that can be trained easily for complex tasks is advantageous. Picasso triggerfish, Rhinecanthus aculeatus, have been used in many behavioural studies investigating vision and navigation. However, little is known about the molecular and anatomical basis of their visual system. We addressed this knowledge gap here and behaviourally tested achromatic and chromatic acuity. In terms of visual opsins, R. aculeatus possessed one rod opsin gene (RH1) and at least nine cone opsins: one violet-sensitive SWS2B gene, seven duplicates of the blue-green-sensitive RH2 gene (RH2A, RH2B, RH2C1-5) and one red-sensitive LWS gene. However, only five cone opsins were expressed: SWS2B expression was consistent, while RH2A, RH2C-1 and RH2C-2 expression varied depending on whether fish were sampled from the field or aquaria. Levels of LWS expression were very low. Using fluorescence in situ hybridisation, we found SWS2B was expressed exclusively in single cones, whereas RH2A and RH2Cs were expressed in opposite double cone members. Anatomical resolution estimated from ganglion cell densities was 6.8 cycles per degree (cpd), which was significantly higher than values obtained from behavioural testing for black-and-white achromatic stimuli (3.9 cpd) and chromatic stimuli (1.7-1.8 cpd). These measures were twice as high as previously reported. This detailed information on their visual system will help inform future studies with this emerging focal species.
Collapse
Affiliation(s)
- Karen L. Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jemma Hudson
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin Luehrmann
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abigail Shaughnessy
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cedric van den Berg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F. Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
13
|
Owens GL, Veen T, Moxley DR, Arias-Rodriguez L, Tobler M, Rennison DJ. Parallel shifts of visual sensitivity and body coloration in replicate populations of extremophile fish. Mol Ecol 2021; 31:946-958. [PMID: 34784095 DOI: 10.1111/mec.16279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022]
Abstract
Visual sensitivity and body pigmentation are often shaped by both natural selection from the environment and sexual selection from mate choice. One way of quantifying the impact of the environment is by measuring how traits have changed after colonization of a novel habitat. To do this, we studied Poecilia mexicana populations that have repeatedly adapted to extreme sulphidic (H2 S-containing) environments. We measured visual sensitivity using opsin gene expression, as well as body pigmentation, for populations in four independent drainages. Both visual sensitivity and body pigmentation showed significant parallel shifts towards greater medium-wavelength sensitivity and reflectance in sulphidic populations. Altogether we found that sulphidic habitats select for differences in visual sensitivity and pigmentation. Shifts between habitats may be due to both differences in the water's spectral properties and correlated ecological changes.
Collapse
Affiliation(s)
- Gregory L Owens
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Thor Veen
- Quest University, Squamish, British Columbia, Canada
| | - Dylan R Moxley
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Diana J Rennison
- Division of Biological Sciences, University of California San Diego, San Diego, California, USA
| |
Collapse
|
14
|
Musilova Z, Salzburger W, Cortesi F. The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function. Annu Rev Cell Dev Biol 2021; 37:441-468. [PMID: 34351785 DOI: 10.1146/annurev-cellbio-120219-024915] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive from the ultraviolet to the red spectrum of the light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Department of Zoology, Charles University, Prague 128 44, Czech Republic;
| | | | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Queensland, Australia;
| |
Collapse
|
15
|
Caves EM, Johnsen S. The sensory impacts of climate change: bathymetric shifts and visually mediated interactions in aquatic species. Proc Biol Sci 2021; 288:20210396. [PMID: 33878924 PMCID: PMC8059512 DOI: 10.1098/rspb.2021.0396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 01/31/2023] Open
Abstract
Visual perception is, in part, a function of the ambient illumination spectrum. In aquatic environments, illumination depends upon the water's optical properties and depth, both of which can change due to anthropogenic impacts: turbidity is increasing in many aquatic habitats, and many species have shifted deeper in response to warming surface waters (known as bathymetric shifts). Although increasing turbidity and bathymetric shifts can result in similarly large changes to a species' optical environment, no studies have yet examined the impact of the latter on visually mediated interactions. Here, we examine a potential link between climate change and visual perception, with a focus on colour. We discuss (i) what is known about bathymetric shifts; (ii) how the impacts of bathymetric shifts on visual interactions may be distributed across species; (iii) which interactions might be affected; and (iv) the ways that animals have to respond to these changes. As warming continues and temperature fluctuations grow more extreme, many species may move into even deeper waters. There is thus a need for studies that examine how such shifts can affect an organism's visual world, interfere with behaviour, and impact fitness, population dynamics, and community structure.
Collapse
Affiliation(s)
- Eleanor M. Caves
- Centre for Ecology and Conservation, Exeter University, Penryn TR10 9FE, UK
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, NC 27708, USA
| |
Collapse
|
16
|
Liénard MA, Bernard GD, Allen A, Lassance JM, Song S, Childers RR, Yu N, Ye D, Stephenson A, Valencia-Montoya WA, Salzman S, Whitaker MRL, Calonje M, Zhang F, Pierce NE. The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies. Proc Natl Acad Sci U S A 2021; 118:e2008986118. [PMID: 33547236 PMCID: PMC8017955 DOI: 10.1073/pnas.2008986118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gq protein-coupled opsins function in a novel or convergent way compared to vertebrate Gt opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gq opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.
Collapse
Affiliation(s)
- Marjorie A Liénard
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142;
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Gary D Bernard
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195
| | - Andrew Allen
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142
| | - Jean-Marc Lassance
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Siliang Song
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Richard Rabideau Childers
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027
| | - Dajia Ye
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Adriana Stephenson
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Wendy A Valencia-Montoya
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Shayla Salzman
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Melissa R L Whitaker
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | | | - Feng Zhang
- Broad Institute of MIT and Harvard University, Cambridge, MA 02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Cambridge, MA 02139
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
17
|
Cortesi F, Mitchell LJ, Tettamanti V, Fogg LG, de Busserolles F, Cheney KL, Marshall NJ. Visual system diversity in coral reef fishes. Semin Cell Dev Biol 2020; 106:31-42. [PMID: 32593517 DOI: 10.1016/j.semcdb.2020.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Coral reefs are one of the most species rich and colourful habitats on earth and for many coral reef teleosts, vision is central to their survival and reproduction. The diversity of reef fish visual systems arises from variations in ocular and retinal anatomy, neural processing and, perhaps most easily revealed by, the peak spectral absorbance of visual pigments. This review examines the interplay between retinal morphology and light environment across a number of reef fish species, but mainly focusses on visual adaptations at the molecular level (i.e. visual pigment structure). Generally, visual pigments tend to match the overall light environment or micro-habitat, with fish inhabiting greener, inshore waters possessing longer wavelength-shifted visual pigments than open water blue-shifted species. In marine fishes, particularly those that live on the reef, most species have between two (likely dichromatic) to four (possible tetrachromatic) cone spectral sensitivities and a single rod for crepuscular vision; however, most are trichromatic with three spectral sensitivities. In addition to variation in spectral sensitivity number, spectral placement of the absorbance maximum (λmax) also has a surprising degree of variability. Variation in ocular and retinal anatomy is also observed at several levels in reef fishes but is best represented by differences in arrangement, density and distribution of neural cell types across the retina (i.e. retinal topography). Here, we focus on the seven reef fish families most comprehensively studied to date to examine and compare how behaviour, environment, activity period, ontogeny and phylogeny might interact to generate the exceptional diversity in visual system design that we observe.
Collapse
Affiliation(s)
- Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Laurie J Mitchell
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Valerio Tettamanti
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lily G Fogg
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
18
|
Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol 2020; 223:jeb193334. [PMID: 32327561 PMCID: PMC7188444 DOI: 10.1242/jeb.193334] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among vertebrates, teleost eye diversity exceeds that found in all other groups. Their spectral sensitivities range from ultraviolet to red, and the number of visual pigments varies from 1 to over 40. This variation is correlated with the different ecologies and life histories of fish species, including their variable aquatic habitats: murky lakes, clear oceans, deep seas and turbulent rivers. These ecotopes often change with the season, but fish may also migrate between ecotopes diurnally, seasonally or ontogenetically. To survive in these variable light habitats, fish visual systems have evolved a suite of mechanisms that modulate spectral sensitivities on a range of timescales. These mechanisms include: (1) optical media that filter light, (2) variations in photoreceptor type and size to vary absorbance and sensitivity, and (3) changes in photoreceptor visual pigments to optimize peak sensitivity. The visual pigment changes can result from changes in chromophore or changes to the opsin. Opsin variation results from changes in opsin sequence, opsin expression or co-expression, and opsin gene duplications and losses. Here, we review visual diversity in a number of teleost groups where the structural and molecular mechanisms underlying their spectral sensitivities have been relatively well determined. Although we document considerable variability, this alone does not imply functional difference per se. We therefore highlight the need for more studies that examine species with known sensitivity differences, emphasizing behavioral experiments to test whether such differences actually matter in the execution of visual tasks that are relevant to the fish.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Sara M Stieb
- Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| |
Collapse
|
19
|
A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish, Amphiprion akindynos. Sci Rep 2019; 9:16459. [PMID: 31712572 PMCID: PMC6848076 DOI: 10.1038/s41598-019-52297-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/13/2019] [Indexed: 11/24/2022] Open
Abstract
Vision plays a major role in the life of most teleosts, and is assumingly well adapted to each species ecology and behaviour. Using a multidisciplinary approach, we scrutinised several aspects of the visual system and ecology of the Great Barrier Reef anemonefish, Amphiprion akindynos, including its orange with white patterning, retinal anatomy and molecular biology, its symbiosis with anemones and sequential hermaphroditism. Amphiprion akindynos possesses spectrally distinct visual pigments and opsins: one rod opsin, RH1 (498 nm), and five cone opsins, SWS1 (370 nm), SWS2B (408 nm), RH2B (498 nm), RH2A (520 nm), and LWS (554 nm). Cones were arranged in a regular mosaic with each single cone surrounded by four double cones. Double cones mainly expressed RH2B (53%) in one member and RH2A (46%) in the other, matching the prevailing light. Single cones expressed SWS1 (89%), which may serve to detect zooplankton, conspecifics and the host anemone. Moreover, a segregated small fraction of single cones coexpressed SWS1 with SWS2B (11%). This novel visual specialisation falls within the region of highest acuity and is suggested to increase the chromatic contrast of Amphiprion akindynos colour patterns, which might improve detection of conspecifics.
Collapse
|
20
|
Yourick MR, Sandkam BA, Gammerdinger WJ, Escobar-Camacho D, Nandamuri SP, Clark FE, Joyce B, Conte MA, Kocher TD, Carleton KL. Diurnal variation in opsin expression and common housekeeping genes necessitates comprehensive normalization methods for quantitative real-time PCR analyses. Mol Ecol Resour 2019; 19:1447-1460. [PMID: 31325910 DOI: 10.1111/1755-0998.13062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023]
Abstract
To determine the visual sensitivities of an organism of interest, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is often used to quantify expression of the light-sensitive opsins in the retina. While qRT-PCR is an affordable, high-throughput method for measuring expression, it comes with inherent normalization issues that affect the interpretation of results, especially as opsin expression can vary greatly based on developmental stage, light environment or diurnal cycles. We tested for diurnal cycles of opsin expression over a period of 24 hr at 1-hr increments and examined how normalization affects a data set with fluctuating expression levels using qRT-PCR and transcriptome data from the retinae of the cichlid Pelmatolapia mariae. We compared five methods of normalizing opsin expression relative to (a) the average of three stably expressed housekeeping genes (Ube2z, EF1-α and β-actin), (b) total RNA concentration, (c) GNAT2, (the cone-specific subunit of transducin), (d) total opsin expression and (e) only opsins expressed in the same cone type. Normalizing by proportion of cone type produced the least variation and would be best for removing time-of-day variation. In contrast, normalizing by housekeeping genes produced the highest daily variation in expression and demonstrated that the peak of cone opsin expression was in the late afternoon. A weighted correlation network analysis showed that the expression of different cone opsins follows a very similar daily cycle. With the knowledge of how these normalization methods affect opsin expression data, we make recommendations for designing sampling approaches and quantification methods based upon the scientific question being examined.
Collapse
Affiliation(s)
- Miranda R Yourick
- Department of Biology, University of Maryland, College Park, Maryland
| | | | | | | | | | - Frances E Clark
- Department of Biology, University of Maryland, College Park, Maryland
| | - Brendan Joyce
- Department of Biology, University of Maryland, College Park, Maryland
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, Maryland
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, Maryland
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
21
|
Marshall NJ, Cortesi F, de Busserolles F, Siebeck UE, Cheney KL. Colours and colour vision in reef fishes: Past, present and future research directions. JOURNAL OF FISH BIOLOGY 2019; 95:5-38. [PMID: 30357835 DOI: 10.1111/jfb.13849] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Many fishes, both freshwater or marine, have colour vision that may outperform humans. As a result, to understand the behavioural tasks that vision enables; including mate choice, feeding, agonistic behaviour and camouflage, we need to see the world through a fish's eye. This includes quantifying the variable light environment underwater and its various influences on vision. As well as rapid loss of light with depth, light attenuation underwater limits visual interaction to metres at most and in many instances, less than a metre. We also need to characterize visual sensitivities, fish colours and behaviours relative to both these factors. An increasingly large set of techniques over the past few years, including improved photography, submersible spectrophotometers and genetic sequencing, have taken us from intelligent guesswork to something closer to sensible hypotheses. This contribution to the special edition on the Ecology of Fish Senses under a shifting environment first reviews our knowledge of fish colour vision and visual ecology, past, present and very recent, and then goes on to examine how climate change may impinge on fish visual capability. The review is limited to mostly colour vision and to mostly reef fishes. This ignores a large body of work, both from other marine environments and freshwater systems, but the reef contains examples of many of the challenges to vision from the aquatic environment. It is also a concentrate of life, perhaps the most specious and complex on earth, suffering now catastrophically from the consequences of our lack of action on climate change. A clear course of action to prevent destruction of this habitat is the need to spend more time in it, in the study of it and sharing it with those not fortunate enough to see coral reefs first-hand. Sir David Attenborough on The Great Barrier Reef: "Do we really care so little about the Earth upon which we live that we don't wish to protect one of its greatest wonders from the consequences of our behaviours?"
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Uli E Siebeck
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Karen L Cheney
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- School of Biology, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Tettamanti V, de Busserolles F, Lecchini D, Marshall NJ, Cortesi F. Visual system development of the spotted unicornfish, Naso brevirostris (Acanthuridae). J Exp Biol 2019; 222:jeb.209916. [DOI: 10.1242/jeb.209916] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
Ontogenetic changes of the visual system are often correlated to shifts in habitat and feeding behaviour of animals. Coral reef fishes begin their lives in the pelagic zone and then migrate to the reef. This habitat transition frequently involves a change in diet and light environment as well as major morphological modifications. The spotted unicornfish, Naso brevirostris, is known to shift diet from zooplankton to algae and back to mainly zooplankton when transitioning from larval to juvenile and then to adult stages. Concurrently, N. brevirostris also moves from an open pelagic to a coral-associated habitat before migrating up in the water column when reaching adulthood. Using retinal mapping techniques, we discovered that the distribution and density of ganglion and photoreceptor cells in N. brevirostris mostly changes during the transition from the larval to the juvenile stage, with only minor modifications thereafter. Similarly, visual gene (opsin) expression based on RNA sequencing, although qualitatively similar between stages (all fishes mainly expressed the same three cone opsins; SWS2B, RH2B, RH2A), also showed the biggest quantitative difference when transitioning from larvae to juveniles. The juvenile stage in particular seems mismatched with its reef-associated ecology, which may be due to this stage only lasting a fraction of the lifespan of these fishes. Hence, the visual ontogeny found in N. brevirostris is very different from the progressive changes found in other reef fishes calling for a thorough analysis of visual system development of the reef fish community.
Collapse
Affiliation(s)
- Valerio Tettamanti
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
- Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - David Lecchini
- PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris, France
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|