1
|
Garner D, Kind E, Lai JYH, Nern A, Zhao A, Houghton L, Sancer G, Wolff T, Rubin GM, Wernet MF, Kim SS. Connectomic reconstruction predicts visual features used for navigation. Nature 2024; 634:181-190. [PMID: 39358517 PMCID: PMC11446847 DOI: 10.1038/s41586-024-07967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Many animals use visual information to navigate1-4, but how such information is encoded and integrated by the navigation system remains incompletely understood. In Drosophila melanogaster, EPG neurons in the central complex compute the heading direction5 by integrating visual input from ER neurons6-12, which are part of the anterior visual pathway (AVP)10,13-16. Here we densely reconstruct all neurons in the AVP using electron-microscopy data17. The AVP comprises four neuropils, sequentially linked by three major classes of neurons: MeTu neurons10,14,15, which connect the medulla in the optic lobe to the small unit of the anterior optic tubercle (AOTUsu) in the central brain; TuBu neurons9,16, which connect the AOTUsu to the bulb neuropil; and ER neurons6-12, which connect the bulb to the EPG neurons. On the basis of morphologies, connectivity between neural classes and the locations of synapses, we identify distinct information channels that originate from four types of MeTu neurons, and we further divide these into ten subtypes according to the presynaptic connections in the medulla and the postsynaptic connections in the AOTUsu. Using the connectivity of the entire AVP and the dendritic fields of the MeTu neurons in the optic lobes, we infer potential visual features and the visual area from which any ER neuron receives input. We confirm some of these predictions physiologically. These results provide a strong foundation for understanding how distinct sensory features can be extracted and transformed across multiple processing stages to construct higher-order cognitive representations.
Collapse
Affiliation(s)
- Dustin Garner
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Emil Kind
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jennifer Yuet Ha Lai
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy Houghton
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Gizem Sancer
- Department of Biology, Freie Universität Berlin, Berlin, Germany
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Mathias F Wernet
- Department of Biology, Freie Universität Berlin, Berlin, Germany.
| | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
- Dynamical Neuroscience, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
2
|
Pae H, Liao J, Yuen N, Giraldo YM. Drosophila require both green and UV wavelengths for sun orientation but lack a time-compensated sun compass. J Exp Biol 2024; 227:jeb246817. [PMID: 39397575 PMCID: PMC11529886 DOI: 10.1242/jeb.246817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Celestial orientation and navigation are performed by many organisms in contexts as diverse as migration, nest finding and straight-line orientation. The vinegar fly, Drosophila melanogaster, performs menotaxis in response to celestial cues during tethered flight and can disperse more than 10 km under field conditions. However, we still do not understand how spectral components of celestial cues and pauses in flight impact heading direction in flies. To assess individual heading, we began by testing flies in a rotating tether arena using a single green LED as a stimulus. We found that flies robustly perform menotaxis and fly straight for at least 20 min. Flies maintain their preferred heading directions after experiencing a period of darkness or stopping flight, even up to 2 h, but reset their heading when the LED changes position, suggesting that flies do not treat this stimulus as the sun. Next, we assessed the flies' responses to a UV spot alone or a paired UV-green stimulus - two dots situated 180 deg apart to simulate the solar and antisolar hemispheres. We found that flies respond to UV much as they do to green light; however, when the stimuli are paired, flies adjust for sudden 90 deg movements, performing sun orientation. Lastly, we found no evidence of a time-compensated sun compass when we moved the paired stimuli at 15 deg h-1 for 6 h. This study demonstrates that wavelength influences how flies respond to visual cues during flight, shaping the interpretation of visual information to execute an appropriate behavioral response.
Collapse
Affiliation(s)
- Haneal Pae
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingzhu Liao
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Nicole Yuen
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Ysabel Milton Giraldo
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA 92521, USA
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Li Y, Wang X, Zhang M, Xu C. Ultraviolet bionic compass method based on non-ideality correction and statistical guidance in twilight conditions. OPTICS EXPRESS 2024; 32:22132-22152. [PMID: 39538707 DOI: 10.1364/oe.521832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/22/2024] [Indexed: 11/16/2024]
Abstract
Bionic polarization compass is a fascinating subject in the navigation domain. However, the polarization navigation accuracy is severely degraded by the influence of city glow at dusk. Therefore, we proposed an ultraviolet bionic compass method based on non-ideality correction and statistical guidance. A non-ideal polarization imaging model was established to correct the system detection error. A meridian extraction algorithm based on the statistical properties of solar direction vectors was proposed for accurate heading calculation. The proposed algorithm was demonstrated experimentally and reduced the heading error to approximately 1°, which shows strong anti-interference performance against urban glare.
Collapse
|
4
|
Ros IG, Omoto JJ, Dickinson MH. Descending control and regulation of spontaneous flight turns in Drosophila. Curr Biol 2024; 34:531-540.e5. [PMID: 38228148 PMCID: PMC10872223 DOI: 10.1016/j.cub.2023.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
The clumped distribution of resources in the world has influenced the pattern of foraging behavior since the origins of locomotion, selecting for a common search motif in which straight movements through resource-poor regions alternate with zig-zag exploration in resource-rich domains. For example, during local search, flying flies spontaneously execute rapid flight turns, called body saccades, but suppress these maneuvers during long-distance dispersal or when surging upstream toward an attractive odor. Here, we describe the key cellular components of a neural network in flies that generate spontaneous turns as well as a specialized pair of neurons that inhibits the network and suppresses turning. Using 2-photon imaging, optogenetic activation, and genetic ablation, we show that only four descending neurons appear sufficient to generate the descending commands to execute flight saccades. The network is organized into two functional units-one for right turns and one for left-with each unit consisting of an excitatory (DNae014) and an inhibitory (DNb01) neuron that project to the flight motor neuropil within the ventral nerve cord. Using resources from recently published connectomes of the fly, we identified a pair of large, distinct interneurons (VES041) that form inhibitory connections to all four saccade command neurons and created specific genetic driver lines for this cell. As predicted by its connectivity, activation of VES041 strongly suppresses saccades, suggesting that it promotes straight flight to regulate the transition between local search and long-distance dispersal. These results thus identify the key elements of a network that may play a crucial role in foraging ecology.
Collapse
Affiliation(s)
- Ivo G Ros
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Jaison J Omoto
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
| | - Michael H Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Westeinde EA, Kellogg E, Dawson PM, Lu J, Hamburg L, Midler B, Druckmann S, Wilson RI. Transforming a head direction signal into a goal-oriented steering command. Nature 2024; 626:819-826. [PMID: 38326621 PMCID: PMC10881397 DOI: 10.1038/s41586-024-07039-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
To navigate, we must continuously estimate the direction we are headed in, and we must correct deviations from our goal1. Direction estimation is accomplished by ring attractor networks in the head direction system2,3. However, we do not fully understand how the sense of direction is used to guide action. Drosophila connectome analyses4,5 reveal three cell populations (PFL3R, PFL3L and PFL2) that connect the head direction system to the locomotor system. Here we use imaging, electrophysiology and chemogenetic stimulation during navigation to show how these populations function. Each population receives a shifted copy of the head direction vector, such that their three reference frames are shifted approximately 120° relative to each other. Each cell type then compares its own head direction vector with a common goal vector; specifically, it evaluates the congruence of these vectors via a nonlinear transformation. The output of all three cell populations is then combined to generate locomotor commands. PFL3R cells are recruited when the fly is oriented to the left of its goal, and their activity drives rightward turning; the reverse is true for PFL3L. Meanwhile, PFL2 cells increase steering speed, and are recruited when the fly is oriented far from its goal. PFL2 cells adaptively increase the strength of steering as directional error increases, effectively managing the tradeoff between speed and accuracy. Together, our results show how a map of space in the brain can be combined with an internal goal to generate action commands, via a transformation from world-centric coordinates to body-centric coordinates.
Collapse
Affiliation(s)
| | - Emily Kellogg
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Paul M Dawson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jenny Lu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Lydia Hamburg
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Benjamin Midler
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Garner D, Kind E, Nern A, Houghton L, Zhao A, Sancer G, Rubin GM, Wernet MF, Kim SS. Connectomic reconstruction predicts the functional organization of visual inputs to the navigation center of the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569241. [PMID: 38076786 PMCID: PMC10705420 DOI: 10.1101/2023.11.29.569241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Many animals, including humans, navigate their surroundings by visual input, yet we understand little about how visual information is transformed and integrated by the navigation system. In Drosophila melanogaster, compass neurons in the donut-shaped ellipsoid body of the central complex generate a sense of direction by integrating visual input from ring neurons, a part of the anterior visual pathway (AVP). Here, we densely reconstruct all neurons in the AVP using FlyWire, an AI-assisted tool for analyzing electron-microscopy data. The AVP comprises four neuropils, sequentially linked by three major classes of neurons: MeTu neurons, which connect the medulla in the optic lobe to the small unit of anterior optic tubercle (AOTUsu) in the central brain; TuBu neurons, which connect the anterior optic tubercle to the bulb neuropil; and ring neurons, which connect the bulb to the ellipsoid body. Based on neuronal morphologies, connectivity between different neural classes, and the locations of synapses, we identified non-overlapping channels originating from four types of MeTu neurons, which we further divided into ten subtypes based on the presynaptic connections in medulla and postsynaptic connections in AOTUsu. To gain an objective measure of the natural variation within the pathway, we quantified the differences between anterior visual pathways from both hemispheres and between two electron-microscopy datasets. Furthermore, we infer potential visual features and the visual area from which any given ring neuron receives input by combining the connectivity of the entire AVP, the MeTu neurons' dendritic fields, and presynaptic connectivity in the optic lobes. These results provide a strong foundation for understanding how distinct visual features are extracted and transformed across multiple processing stages to provide critical information for computing the fly's sense of direction.
Collapse
Affiliation(s)
- Dustin Garner
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Emil Kind
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy Houghton
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gizem Sancer
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Gerald M. Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
7
|
Mathejczyk TF, Babo ÉJ, Schönlein E, Grinda NV, Greiner A, Okrožnik N, Belušič G, Wernet MF. Behavioral responses of free-flying Drosophila melanogaster to shiny, reflecting surfaces. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:929-941. [PMID: 37796303 PMCID: PMC10643280 DOI: 10.1007/s00359-023-01676-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023]
Abstract
Active locomotion plays an important role in the life of many animals, permitting them to explore the environment, find vital resources, and escape predators. Most insect species rely on a combination of visual cues such as celestial bodies, landmarks, or linearly polarized light to navigate or orient themselves in their surroundings. In nature, linearly polarized light can arise either from atmospheric scattering or from reflections off shiny non-metallic surfaces like water. Multiple reports have described different behavioral responses of various insects to such shiny surfaces. Our goal was to test whether free-flying Drosophila melanogaster, a molecular genetic model organism and behavioral generalist, also manifests specific behavioral responses when confronted with such polarized reflections. Fruit flies were placed in a custom-built arena with controlled environmental parameters (temperature, humidity, and light intensity). Flight detections and landings were quantified for three different stimuli: a diffusely reflecting matt plate, a small patch of shiny acetate film, and real water. We compared hydrated and dehydrated fly populations, since the state of hydration may change the motivation of flies to seek or avoid water. Our analysis reveals for the first time that flying fruit flies indeed use vision to avoid flying over shiny surfaces.
Collapse
Affiliation(s)
- Thomas F Mathejczyk
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Édouard J Babo
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Erik Schönlein
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Nikolai V Grinda
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Andreas Greiner
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Nina Okrožnik
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mathias F Wernet
- Division of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie and Pharmazie, Freie Universität Berlin, Königin-Luise Strasse 1-3, 14195, Berlin, Germany.
| |
Collapse
|
8
|
Ros IG, Omoto JJ, Dickinson MH. Descending control and regulation of spontaneous flight turns in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.555791. [PMID: 37732262 PMCID: PMC10508747 DOI: 10.1101/2023.09.06.555791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The clumped distribution of resources in the world has influenced the pattern of foraging behavior since the origins of life, selecting for a common locomotor search motif in which straight movements through resource-poor regions alternate with zig -zag exploration in resource-rich domains. For example, flies execute rapid changes in flight heading called body saccades during local search, but suppress these turns during long-distance dispersal or when surging upwind after encountering an attractive odor plume. Here, we describe the key cellular components of a neural network in flies that generates spontaneous turns as well as a specialized neuron that inhibits the network to promote straight flight. Using 2-photon imaging, optogenetic activation, and genetic ablation, we show that only four descending neurons appear sufficient to generate the descending commands to execute flight saccades. The network is organized into two functional couplets-one for right turns and one for left-with each couplet consisting of an excitatory (DNae014) and inhibitory (DNb01) neuron that project to the flight motor neuropil within the ventral nerve cord. Using resources from recently published connectomes of the fly brain, we identified a large, unique interneuron (VES041) that forms inhibitory connections to all four saccade command neurons and created specific genetic driver lines for this cell. As suggested by its connectivity, activation of VES041 strongly suppresses saccades, suggesting that it regulates the transition between local search and long-distance dispersal. These results thus identify the critical elements of a network that not only structures the locomotor behavior of flies, but may also play a crucial role in their natural foraging ecology.
Collapse
|
9
|
Beetz MJ, Kraus C, El Jundi B. Neural representation of goal direction in the monarch butterfly brain. Nat Commun 2023; 14:5859. [PMID: 37730704 PMCID: PMC10511513 DOI: 10.1038/s41467-023-41526-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Neural processing of a desired moving direction requires the continuous comparison between the current heading and the goal direction. While the neural basis underlying the current heading is well-studied, the coding of the goal direction remains unclear in insects. Here, we used tetrode recordings in tethered flying monarch butterflies to unravel how a goal direction is represented in the insect brain. While recording, the butterflies maintained robust goal directions relative to a virtual sun. By resetting their goal directions, we found neurons whose spatial tuning was tightly linked to the goal directions. Importantly, their tuning was unaffected when the butterflies changed their heading after compass perturbations, showing that these neurons specifically encode the goal direction. Overall, we here discovered invertebrate goal-direction neurons that share functional similarities to goal-direction cells reported in mammals. Our results give insights into the evolutionarily conserved principles of goal-directed spatial orientation in animals.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Christian Kraus
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Basil El Jundi
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
- Animal Physiology, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
10
|
Currier TA, Pang MM, Clandinin TR. Visual processing in the fly, from photoreceptors to behavior. Genetics 2023; 224:iyad064. [PMID: 37128740 PMCID: PMC10213501 DOI: 10.1093/genetics/iyad064] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Originally a genetic model organism, the experimental use of Drosophila melanogaster has grown to include quantitative behavioral analyses, sophisticated perturbations of neuronal function, and detailed sensory physiology. A highlight of these developments can be seen in the context of vision, where pioneering studies have uncovered fundamental and generalizable principles of sensory processing. Here we begin with an overview of vision-guided behaviors and common methods for probing visual circuits. We then outline the anatomy and physiology of brain regions involved in visual processing, beginning at the sensory periphery and ending with descending motor control. Areas of focus include contrast and motion detection in the optic lobe, circuits for visual feature selectivity, computations in support of spatial navigation, and contextual associative learning. Finally, we look to the future of fly visual neuroscience and discuss promising topics for further study.
Collapse
Affiliation(s)
- Timothy A Currier
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle M Pang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Kobayashi N, Hasegawa Y, Okada R, Sakura M. Visual learning in tethered bees modifies flight orientation and is impaired by epinastine. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01623-z. [PMID: 36930349 DOI: 10.1007/s00359-023-01623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Visual-orientation learning of a tethered flying bee was investigated using a flight simulator and a novel protocol in which orientation preference toward trained visual targets was assessed in tests performed before and after appetitive conditioning. Either a blue or a green rectangle (conditioned stimulus, CS) was associated with 30% sucrose solution (unconditioned stimulus, US), whereas the other rectangle was not paired with US. Bees were tested in a closed-looped flight simulator 5 min after ten pairings of the US and CS. Conditioned bees were preferentially oriented to the CS after such training. This increase in preference for CS was maintained for 24 h, indicating the presence of long-term memory. Because the total orienting time was not altered by conditioning, conditioning did not enhance orientation activity itself but increased the relative time for orientation to CS. When 0.4 or 4 mM epinastine (an antagonist of octopamine receptors) was injected into the bee's head 30 min prior to the experiment, both short- and long-term memory formation were significantly impaired, suggesting that octopamine, which is crucial for appetitive olfactory learning in insects, is also involved in visual orientation learning.
Collapse
Affiliation(s)
- Norihiro Kobayashi
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | | | - Ryuichi Okada
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Midori Sakura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
12
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
13
|
Steyn VM, Mitchell KA, Nyamukondiwa C, Terblanche JS. Understanding costs and benefits of thermal plasticity for pest management: insights from the integration of laboratory, semi-field and field assessments of Ceratitis capitata (Diptera: Tephritidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:458-468. [PMID: 35535735 DOI: 10.1017/s0007485321000389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The relative costs and benefits of thermal acclimation for manipulating field performance of pest insects depend upon a number of factors including which traits are affected and how persistent any trait changes are in different environments. By assessing plastic trait responses of Ceratitis capitata (Mediterranean fruit fly) across three distinct operational environments (laboratory, semi-field, and field), we examined the influence of different thermal acclimation regimes (cool, intermediate [or handling control], and warm) on thermal tolerance traits (chill-coma recovery, heat-knockdown time, critical thermal minimum and critical thermal maximum) and flight performance (mark-release-recapture). Under laboratory conditions, thermal acclimation altered thermal limits in a relatively predictable manner and there was a generally positive effect across all traits assessed, although some traits responded more strongly. By contrast, dispersal-related performance yielded strongly contrasting results depending on the specific operational environment assessed. In semi-field conditions, warm- or cold-acclimated flies were recaptured more often than the control group at cooler ambient conditions suggesting an overall stimulatory influence of thermal variability on low-temperature dispersal. Under field conditions, a different pattern was identified: colder flies were recaptured more in warmer field conditions relative to other treatment groups. This study highlights the trait- and context-specific nature of how thermal acclimation influences traits of thermal performance and tolerance. Consequently, laboratory and semi-field assessments of dispersal may not provide results that extend into the field setting despite the apparent continuum of environmental complexity among them (laboratory < semi-field < field).
Collapse
Affiliation(s)
- Vernon M Steyn
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Katherine A Mitchell
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Casper Nyamukondiwa
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
14
|
Supple JA, Varennes-Phillit L, Gajjar-Reid D, Cerkvenik U, Belušič G, Krapp HG. Generating spatiotemporal patterns of linearly polarised light at high frame rates for insect vision research. J Exp Biol 2022; 225:275926. [PMID: 35708202 PMCID: PMC9339910 DOI: 10.1242/jeb.244087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
Polarisation vision is commonplace among invertebrates; however, most experiments focus on determining behavioural and/or neurophysiological responses to static polarised light sources rather than moving patterns of polarised light. To address the latter, we designed a polarisation stimulation device based on superimposing polarised and non-polarised images from two projectors, which can display moving patterns at frame rates exceeding invertebrate flicker fusion frequencies. A linear polariser fitted to one projector enables moving patterns of polarised light to be displayed, whilst the other projector contributes arbitrary intensities of non-polarised light to yield moving patterns with a defined polarisation and intensity contrast. To test the device, we measured receptive fields of polarisation-sensitive Argynnis paphia butterfly photoreceptors for both non-polarised and polarised light. We then measured local motion sensitivities of the optic flow-sensitive lobula plate tangential cell H1 in Calliphora vicina blowflies under both polarised and non-polarised light, finding no polarisation sensitivity in this neuron. Summary: Design of a versatile visual stimulation device for presenting moving patterns of polarised light, and demonstration of its use to characterise polarisation sensitivity in butterfly photoreceptors and blowfly motion-sensitive interneurons.
Collapse
Affiliation(s)
- Jack A Supple
- Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK
| | - Léandre Varennes-Phillit
- Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK
| | - Dexter Gajjar-Reid
- Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK
| | - Uroš Cerkvenik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Holger G Krapp
- Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
15
|
Ryu L, Kim SY, Kim AJ. From Photons to Behaviors: Neural Implementations of Visual Behaviors in Drosophila. Front Neurosci 2022; 16:883640. [PMID: 35600623 PMCID: PMC9115102 DOI: 10.3389/fnins.2022.883640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Neural implementations of visual behaviors in Drosophila have been dissected intensively in the past couple of decades. The availability of premiere genetic toolkits, behavioral assays in tethered or freely moving conditions, and advances in connectomics have permitted the understanding of the physiological and anatomical details of the nervous system underlying complex visual behaviors. In this review, we describe recent advances on how various features of a visual scene are detected by the Drosophila visual system and how the neural circuits process these signals and elicit an appropriate behavioral response. Special emphasis was laid on the neural circuits that detect visual features such as brightness, color, local motion, optic flow, and translating or approaching visual objects, which would be important for behaviors such as phototaxis, optomotor response, attraction (or aversion) to moving objects, navigation, and visual learning. This review offers an integrative framework for how the fly brain detects visual features and orchestrates an appropriate behavioral response.
Collapse
Affiliation(s)
- Leesun Ryu
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Sung Yong Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Anmo J. Kim
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
16
|
Excessive energy expenditure due to acute physical restraint disrupts Drosophila motivational feeding response. Sci Rep 2021; 11:24208. [PMID: 34921197 PMCID: PMC8683507 DOI: 10.1038/s41598-021-03575-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
To study the behavior of Drosophila, it is often necessary to restrain and mount individual flies. This requires removal from food, additional handling, anesthesia, and physical restraint. We find a strong positive correlation between the length of time flies are mounted and their subsequent reflexive feeding response, where one hour of mounting is the approximate motivational equivalent to ten hours of fasting. In an attempt to explain this correlation, we rule out anesthesia side-effects, handling, additional fasting, and desiccation. We use respirometric and metabolic techniques coupled with behavioral video scoring to assess energy expenditure in mounted and free flies. We isolate a specific behavior capable of exerting large amounts of energy in mounted flies and identify it as an attempt to escape from restraint. We present a model where physical restraint leads to elevated activity and subsequent faster nutrient storage depletion among mounted flies. This ultimately further accelerates starvation and thus increases reflexive feeding response. In addition, we show that the consequences of the physical restraint profoundly alter aerobic activity, energy depletion, taste, and feeding behavior, and suggest that careful consideration is given to the time-sensitive nature of these highly significant effects when conducting behavioral, physiological or imaging experiments that require immobilization.
Collapse
|
17
|
Kind E, Longden KD, Nern A, Zhao A, Sancer G, Flynn MA, Laughland CW, Gezahegn B, Ludwig HDF, Thomson AG, Obrusnik T, Alarcón PG, Dionne H, Bock DD, Rubin GM, Reiser MB, Wernet MF. Synaptic targets of photoreceptors specialized to detect color and skylight polarization in Drosophila. eLife 2021; 10:e71858. [PMID: 34913436 PMCID: PMC8789284 DOI: 10.7554/elife.71858] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Color and polarization provide complementary information about the world and are detected by specialized photoreceptors. However, the downstream neural circuits that process these distinct modalities are incompletely understood in any animal. Using electron microscopy, we have systematically reconstructed the synaptic targets of the photoreceptors specialized to detect color and skylight polarization in Drosophila, and we have used light microscopy to confirm many of our findings. We identified known and novel downstream targets that are selective for different wavelengths or polarized light, and followed their projections to other areas in the optic lobes and the central brain. Our results revealed many synapses along the photoreceptor axons between brain regions, new pathways in the optic lobes, and spatially segregated projections to central brain regions. Strikingly, photoreceptors in the polarization-sensitive dorsal rim area target fewer cell types, and lack strong connections to the lobula, a neuropil involved in color processing. Our reconstruction identifies shared wiring and modality-specific specializations for color and polarization vision, and provides a comprehensive view of the first steps of the pathways processing color and polarized light inputs.
Collapse
Affiliation(s)
- Emil Kind
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| | - Kit D Longden
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gizem Sancer
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| | - Miriam A Flynn
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Connor W Laughland
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Bruck Gezahegn
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Henrique DF Ludwig
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alex G Thomson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tessa Obrusnik
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| | - Paula G Alarcón
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| | - Heather Dionne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Mathias F Wernet
- Instititut für Biologie – Abteilung Neurobiologie, Fachbereich Biologie, Chemie & Pharmazie, Freie Universität BerlinBerlinGermany
| |
Collapse
|
18
|
Hulse BK, Haberkern H, Franconville R, Turner-Evans D, Takemura SY, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad AM, Rubin GM, Jayaraman V. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 2021; 10:e66039. [PMID: 34696823 PMCID: PMC9477501 DOI: 10.7554/elife.66039] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which are experimentally challenging to study. In insects, recurrent circuit dynamics in a brain region called the central complex (CX) enable directed locomotion, sleep, and context- and experience-dependent spatial navigation. We describe the first complete electron microscopy-based connectome of the Drosophila CX, including all its neurons and circuits at synaptic resolution. We identified new CX neuron types, novel sensory and motor pathways, and network motifs that likely enable the CX to extract the fly's head direction, maintain it with attractor dynamics, and combine it with other sensorimotor information to perform vector-based navigational computations. We also identified numerous pathways that may facilitate the selection of CX-driven behavioral patterns by context and internal state. The CX connectome provides a comprehensive blueprint necessary for a detailed understanding of network dynamics underlying sleep, flexible navigation, and state-dependent action selection.
Collapse
Affiliation(s)
- Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hannah Haberkern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Romain Franconville
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daniel Turner-Evans
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marcella Noorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Chuntao Dan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
19
|
Massy R, Hawkes WLS, Doyle T, Troscianko J, Menz MHM, Roberts NW, Chapman JW, Wotton KR. Hoverflies use a time-compensated sun compass to orientate during autumn migration. Proc Biol Sci 2021; 288:20211805. [PMID: 34547904 PMCID: PMC8456149 DOI: 10.1098/rspb.2021.1805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
The sun is the most reliable celestial cue for orientation available to daytime migrants. It is widely assumed that diurnal migratory insects use a 'time-compensated sun compass' to adjust for the changing position of the sun throughout the day, as demonstrated in some butterfly species. The mechanisms used by other groups of diurnal insect migrants remain to be elucidated. Migratory species of hoverflies (Diptera: Syrphidae) are one of the most abundant and beneficial groups of diurnal migrants, providing multiple ecosystem services and undergoing directed seasonal movements throughout much of the temperate zone. To identify the hoverfly navigational strategy, a flight simulator was used to measure orientation responses of the hoverflies Scaeva pyrastri and Scaeva selenitica to celestial cues during their autumn migration. Hoverflies oriented southwards when they could see the sun and shifted this orientation westward following a 6 h advance of their circadian clocks. Our results demonstrate the use of a time-compensated sun compass as the primary navigational mechanism, consistent with field observations that hoverfly migration occurs predominately under clear and sunny conditions.
Collapse
Affiliation(s)
- Richard Massy
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Will L. S. Hawkes
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Jolyon Troscianko
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Myles H. M. Menz
- Department of Migration, Max Planck Institute of Animal Behaviour, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | | | - Jason W. Chapman
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
- Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn, UK
- Department of Entomology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Karl R. Wotton
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| |
Collapse
|
20
|
Leitch KJ, Ponce FV, Dickson WB, van Breugel F, Dickinson MH. The long-distance flight behavior of Drosophila supports an agent-based model for wind-assisted dispersal in insects. Proc Natl Acad Sci U S A 2021; 118:e2013342118. [PMID: 33879607 PMCID: PMC8092610 DOI: 10.1073/pnas.2013342118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the ecological importance of long-distance dispersal in insects, its mechanistic basis is poorly understood in genetic model species, in which advanced molecular tools are readily available. One critical question is how insects interact with the wind to detect attractive odor plumes and increase their travel distance as they disperse. To gain insight into dispersal, we conducted release-and-recapture experiments in the Mojave Desert using the fruit fly, Drosophila melanogaster We deployed chemically baited traps in a 1 km radius ring around the release site, equipped with cameras that captured the arrival times of flies as they landed. In each experiment, we released between 30,000 and 200,000 flies. By repeating the experiments under a variety of conditions, we were able to quantify the influence of wind on flies' dispersal behavior. Our results confirm that even tiny fruit flies could disperse ∼12 km in a single flight in still air and might travel many times that distance in a moderate wind. The dispersal behavior of the flies is well explained by an agent-based model in which animals maintain a fixed body orientation relative to celestial cues, actively regulate groundspeed along their body axis, and allow the wind to advect them sideways. The model accounts for the observation that flies actively fan out in all directions in still air but are increasingly advected downwind as winds intensify. Our results suggest that dispersing insects may strike a balance between the need to cover large distances while still maintaining the chance of intercepting odor plumes from upwind sources.
Collapse
Affiliation(s)
- Katherine J Leitch
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Francesca V Ponce
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - William B Dickson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Floris van Breugel
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Michael H Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
21
|
Heinze S. Why flies look to the skies. eLife 2021; 10:e68684. [PMID: 33860762 PMCID: PMC8051943 DOI: 10.7554/elife.68684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/14/2022] Open
Abstract
Fruit flies rely on an intricate neural pathway to process polarized light signals in order to inform their internal compass about the position of the Sun.
Collapse
Affiliation(s)
- Stanley Heinze
- Lund Vision Group and NanoLund, Lund UniversityLundSweden
| |
Collapse
|
22
|
Hardcastle BJ, Omoto JJ, Kandimalla P, Nguyen BCM, Keleş MF, Boyd NK, Hartenstein V, Frye MA. A visual pathway for skylight polarization processing in Drosophila. eLife 2021; 10:e63225. [PMID: 33755020 PMCID: PMC8051946 DOI: 10.7554/elife.63225] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Many insects use patterns of polarized light in the sky to orient and navigate. Here, we functionally characterize neural circuitry in the fruit fly, Drosophila melanogaster, that conveys polarized light signals from the eye to the central complex, a brain region essential for the fly's sense of direction. Neurons tuned to the angle of polarization of ultraviolet light are found throughout the anterior visual pathway, connecting the optic lobes with the central complex via the anterior optic tubercle and bulb, in a homologous organization to the 'sky compass' pathways described in other insects. We detail how a consistent, map-like organization of neural tunings in the peripheral visual system is transformed into a reduced representation suited to flexible processing in the central brain. This study identifies computational motifs of the transformation, enabling mechanistic comparisons of multisensory integration and central processing for navigation in the brains of insects.
Collapse
Affiliation(s)
- Ben J Hardcastle
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Jaison J Omoto
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Pratyush Kandimalla
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Bao-Chau M Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mehmet F Keleş
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Natalie K Boyd
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
23
|
Uemura M, Meglič A, Zalucki MP, Battisti A, Belušič G. Spatial orientation of social caterpillars is influenced by polarized light. Biol Lett 2021; 17:20200736. [PMID: 33592154 PMCID: PMC8086976 DOI: 10.1098/rsbl.2020.0736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Processionary caterpillars of Thaumetopoea pityocampa (in Europe) and Ochrogaster lunifer (in Australia) (Lepidoptera: Notodontidae) form single files of larvae crawling head-to-tail when moving to feeding and pupation sites. We investigated if the processions are guided by polarization vision. The heading orientation of processions could be manipulated with linear polarizing filters held above the leading caterpillar. Exposure to changes in the angle of polarization around the caterpillars resulted in corresponding changes in heading angles. Anatomical analysis indicated specializations for polarization vision of stemma I in both species. Stemma I has a rhabdom with orthogonal and aligned microvilli, and an opaque and rugged surface, which are optimizations for skylight polarization vision, similar to the dorsal rim of adult insects. Stemmata II-VI have a smooth and shiny surface and lobed rhabdoms with non-orthogonal and non-aligned microvilli; they are thus optimized for general vision with minimal polarization sensitivity. Behavioural and anatomical evidence reveal that polarized light cues are important for larval orientation and can be robustly detected with a simple visual system.
Collapse
Affiliation(s)
- Mizuki Uemura
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, 35020 Legnaro, Padova, Italy
| | - Andrej Meglič
- Eye Hospital, University Medical Centre, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrea Battisti
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, 35020 Legnaro, Padova, Italy
| | - Gregor Belušič
- Department of Biology, Biotechnical faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Kobayashi N, Okada R, Sakura M. Orientation to polarized light in tethered flying honeybees. J Exp Biol 2020; 223:jeb228254. [PMID: 33106299 DOI: 10.1242/jeb.228254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022]
Abstract
Many insects exploit the partial plane polarization of skylight for visual compass orientation and/or navigation. In the present study, using a tethering system, we investigated how flying bees respond to polarized light stimuli. The behavioral responses of honeybees (Apis mellifera) to a zenithal polarized light stimulus were observed using a tethered animal in a flight simulator. Flight direction of the bee was recorded by monitoring the horizontal movement of its abdomen, which was strongly anti-correlated with its torque. When the e-vector orientation of the polarized light was rotated clockwise or counterclockwise, the bee responded with periodic right-and-left abdominal movements; however, the bee did not show any clear periodic movement under the static e-vector or depolarized stimulus. The steering frequency of the bee was well coordinated with the e-vector rotation frequency of the stimulus, indicating that the flying bee oriented itself to a certain e-vector orientation, i.e. exhibited polarotaxis. The percentage of bees exhibiting clear polarotaxis was much smaller under the fast stimulus (3.6 deg s-1) compared with that under a slow stimulus (0.9 or 1.8 deg s-1). Bees did not demonstrate any polarotactic behavior after the dorsal rim area of the eyes, which mediates insect polarization vision in general, was bilaterally covered with black paint. Preferred e-vector orientations under the clockwise stimulus varied among individuals and distributed throughout -90 to 90 deg. Some bees showed similar preferred e-vector orientations for clockwise and counterclockwise stimuli whereas others did not. Our results strongly suggest that flying honeybees utilize the e-vector information from the skylight to deduce their heading orientation for navigation.
Collapse
Affiliation(s)
- Norihiro Kobayashi
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Ryuichi Okada
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo 657-8501, Japan
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Midori Sakura
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
25
|
Kaushik PK, Olsson SB. Using virtual worlds to understand insect navigation for bio-inspired systems. CURRENT OPINION IN INSECT SCIENCE 2020; 42:97-104. [PMID: 33010476 DOI: 10.1016/j.cois.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Insects perform a wide array of intricate behaviors over large spatial and temporal scales in complex natural environments. A mechanistic understanding of insect cognition has direct implications on how brains integrate multimodal information and can inspire bio-based solutions for autonomous robots. Virtual Reality (VR) offers an opportunity assess insect neuroethology while presenting complex, yet controlled, stimuli. Here, we discuss the use of insects as inspiration for artificial systems, recent advances in different VR technologies, current knowledge gaps, and the potential for application of insect VR research to bio-inspired robots. Finally, we advocate the need to diversify our model organisms, behavioral paradigms, and embrace the complexity of the natural world. This will help us to uncover the proximate and ultimate basis of brain and behavior and extract general principles for common challenging problems.
Collapse
Affiliation(s)
- Pavan Kumar Kaushik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560064, India.
| | - Shannon B Olsson
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560064, India.
| |
Collapse
|
26
|
Matched-filter coding of sky polarization results in an internal sun compass in the brain of the desert locust. Proc Natl Acad Sci U S A 2020; 117:25810-25817. [PMID: 32989147 DOI: 10.1073/pnas.2005192117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many animals use celestial cues for spatial orientation. These include the sun and, in insects, the polarization pattern of the sky, which depends on the position of the sun. The central complex in the insect brain plays a key role in spatial orientation. In desert locusts, the angle of polarized light in the zenith above the animal and the direction of a simulated sun are represented in a compass-like fashion in the central complex, but how both compasses fit together for a unified representation of external space remained unclear. To address this question, we analyzed the sensitivity of intracellularly recorded central-complex neurons to the angle of polarized light presented from up to 33 positions in the animal's dorsal visual field and injected Neurobiotin tracer for cell identification. Neurons were polarization sensitive in large parts of the virtual sky that in some cells extended to the horizon in all directions. Neurons, moreover, were tuned to spatial patterns of polarization angles that matched the sky polarization pattern of particular sun positions. The horizontal components of these calculated solar positions were topographically encoded in the protocerebral bridge of the central complex covering 360° of space. This whole-sky polarization compass does not support the earlier reported polarization compass based on stimulation from a small spot above the animal but coincides well with the previously demonstrated direct sun compass based on unpolarized light stimulation. Therefore, direct sunlight and whole-sky polarization complement each other for robust head direction coding in the locust central complex.
Collapse
|
27
|
Liang H, Bai H, Liu N, Shen K. Limitation of Rayleigh sky model for bioinspired polarized skylight navigation in three-dimensional attitude determination. BIOINSPIRATION & BIOMIMETICS 2020; 15:046007. [PMID: 32106105 DOI: 10.1088/1748-3190/ab7ab7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Insects such as desert ants and drosophilae can sense polarized skylight for navigation. Inspired by insects, many researchers have begun to study how to use skylight polarization patterns for attitude determination. The Rayleigh sky model has become the most widely used skylight polarization model for bioinspired polarized skylight navigation due to its simplicity and practicality. However, this is an ideal model considering only single Rayleigh scatter events, and the limitation of this model in bio-inspired attitude determination has not been paid much attention and lacks strict inference proof. To address this problem, the rotational and plane symmetry of the Rayleigh sky model are analyzed in detail, and it is theoretically proved that this model contains only single solar vector information, which contains only two independent scalar pieces of attitude information, so it is impossible to determine three Euler angles simultaneously in real-time. To further verify this conclusion, based on a designed hypothetical polarization camera, we discuss what conditions different three-dimensional attitudes must satisfy so that the polarization images taken at different 3D attitudes are the same; this indicates that multiple solutions will appear when only using the Rayleigh sky model to determine 3D attitude. In conclusion, due to its single solar vector information and the existence of multiple solutions, it is fully proved that 3D attitude cannot be determined in real time based only upon the Rayleigh sky model. Code is available at: https://github.com/HuajuLiang/HypotheticalPolarizationCamera.
Collapse
Affiliation(s)
- Huaju Liang
- School of Energy and Power Engineering, Nanjing University of Science and Technology (NJUST), Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
28
|
Characterizing long-range search behavior in Diptera using complex 3D virtual environments. Proc Natl Acad Sci U S A 2020; 117:12201-12207. [PMID: 32424090 PMCID: PMC7275712 DOI: 10.1073/pnas.1912124117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The exemplary search capabilities of flying insects have established them as one of the most diverse taxa on Earth. However, we still lack the fundamental ability to quantify, represent, and predict trajectories under natural contexts to understand search and its applications. For example, flying insects have evolved in complex multimodal three-dimensional (3D) environments, but we do not yet understand which features of the natural world are used to locate distant objects. Here, we independently and dynamically manipulate 3D objects, airflow fields, and odor plumes in virtual reality over large spatial and temporal scales. We demonstrate that flies make use of features such as foreground segmentation, perspective, motion parallax, and integration of multiple modalities to navigate to objects in a complex 3D landscape while in flight. We first show that tethered flying insects of multiple species navigate to virtual 3D objects. Using the apple fly Rhagoletis pomonella, we then measure their reactive distance to objects and show that these flies use perspective and local parallax cues to distinguish and navigate to virtual objects of different sizes and distances. We also show that apple flies can orient in the absence of optic flow by using only directional airflow cues, and require simultaneous odor and directional airflow input for plume following to a host volatile blend. The elucidation of these features unlocks the opportunity to quantify parameters underlying insect behavior such as reactive space, optimal foraging, and dispersal, as well as develop strategies for pest management, pollination, robotics, and search algorithms.
Collapse
|
29
|
Liang H, Bai H, Liu N, Sui X. Polarized skylight compass based on a soft-margin support vector machine working in cloudy conditions. APPLIED OPTICS 2020; 59:1271-1279. [PMID: 32225383 DOI: 10.1364/ao.381612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The skylight polarization pattern, which is a result of the scattering of unpolarized sunlight by particles in the atmosphere, can be used by many insects for navigation. Inspired by insects, several polarization navigation sensors have been designed and combined with various heading determination methods in recent years. However, up until now, few of these studies have fully considered the influences of different meteorological conditions, which play key roles in navigation accuracy, especially in cloudy weather. Therefore, this study makes a major contribution to the study on bio-inspired heading determination by designing a skylight compass method to suppress cloud disturbances. The proposed method transforms the heading determination problem into a binary classification problem by segmentation, connected component detection, and inversion. Considering the influences of noise and meteorological conditions, the binary classification problem is solved by the soft-margin support vector machine. In addition, to verify this method, a pixelated polarization compass platform is constructed that can take polarization images at four different orientations simultaneously in real time. Finally, field experimental results show that the designed method can more effectively suppress the interference of clouds compared with other methods.
Collapse
|
30
|
Wehner R. Cataglyphis meets Drosophila. J Neurogenet 2020; 34:184-188. [PMID: 31997671 DOI: 10.1080/01677063.2020.1713117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In Cataglyphis and Drosophila - in desert ants and fruit flies - research on visually guided behavior took different paths. While work in Cataglyphis started in the field and covered the animal's wide navigational repertoire, in Drosophila the initial focus was on a particular kind of visual control behavior scrutinized within the confines of the laboratory arena, before research concentrated on more advanced behaviors. In recent times, these multi-pronged approaches in flies and ants increasingly converge, both conceptually and methodologically, and thus lay the ground for combined neuroethological efforts. In spite of the obvious differences in the behavioral repertoire of these two groups of insects, likely commonalities in the navigational processes and underlying neuronal circuitries are increasingly coming to the fore.
Collapse
Affiliation(s)
- Rüdiger Wehner
- Brain Research Institute, University of Zürich, Zürich, Switzerland
| |
Collapse
|
31
|
Abstract
Many animals use an internal sense of direction to guide their movements through the world. Neurons selective to head direction are thought to support this directional sense and have been found in a diverse range of species, from insects to primates, highlighting their evolutionary importance. Across species, most head-direction networks share four key properties: a unique representation of direction at all times, persistent activity in the absence of movement, integration of angular velocity to update the representation, and the use of directional cues to correct drift. The dynamics of theorized network structures called ring attractors elegantly account for these properties, but their relationship to brain circuits is unclear. Here, we review experiments in rodents and flies that offer insights into potential neural implementations of ring attractor networks. We suggest that a theory-guided search across model systems for biological mechanisms that enable such dynamics would uncover general principles underlying head-direction circuit function.
Collapse
Affiliation(s)
- Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA; ,
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA; ,
| |
Collapse
|
32
|
Cellular and synaptic adaptations of neural circuits processing skylight polarization in the fly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:233-246. [DOI: 10.1007/s00359-019-01389-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
|
33
|
Heading choices of flying Drosophila under changing angles of polarized light. Sci Rep 2019; 9:16773. [PMID: 31727972 PMCID: PMC6856357 DOI: 10.1038/s41598-019-53330-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/30/2019] [Indexed: 11/14/2022] Open
Abstract
Many navigating insects include the celestial polarization pattern as an additional visual cue to orient their travels. Spontaneous orientation responses of both walking and flying fruit flies (Drosophila melanogaster) to linearly polarized light have previously been demonstrated. Using newly designed modular flight arenas consisting entirely of off-the-shelf parts and 3D-printed components we present individual flying flies with a slow and continuous rotational change in the incident angle of linear polarization. Under such open-loop conditions, single flies choose arbitrary headings with respect to the angle of polarized light and show a clear tendency to maintain those chosen headings for several minutes, thereby adjusting their course to the slow rotation of the incident stimulus. Importantly, flies show the tendency to maintain a chosen heading even when two individual test periods under a linearly polarized stimulus are interrupted by an epoch of unpolarized light lasting several minutes. Finally, we show that these behavioral responses are wavelength-specific, existing under polarized UV stimulus while being absent under polarized green light. Taken together, these findings provide further evidence supporting Drosophila’s abilities to use celestial cues for visually guided navigation and course correction.
Collapse
|
34
|
Abstract
A new study demonstrates that fruit flies can use a sun compass, which is encoded in specific neurons in the fly's brain, to maintain a fixed heading direction for up to six hours.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Emmy-Noether Animal Navigation Group, Biocenter, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Basil El Jundi
- Biocenter, Zoology II, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
35
|
Green J, Vijayan V, Mussells Pires P, Adachi A, Maimon G. A neural heading estimate is compared with an internal goal to guide oriented navigation. Nat Neurosci 2019; 22:1460-1468. [PMID: 31332373 PMCID: PMC7688015 DOI: 10.1038/s41593-019-0444-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/04/2019] [Indexed: 11/28/2022]
Abstract
Goal-directed navigation is thought to rely on the activity of head-direction cells, but how this activity guides moment-to-moment action remains poorly understood. Here we characterize how heading neurons in the Drosophila central complex guide moment-to-moment actions. We establish an innate, heading-neuron dependent, tethered navigational behavior where walking flies maintain a straight trajectory along a specific angular bearing for hundreds of body lengths. While flies perform this task, we use chemogenetics to transiently rotate their neural heading estimate and observe that the flies slow down and turn in a direction that aims to return the heading estimate to the angle it occupied prior to stimulation. These results support a working model in which the fly brain quantitatively compares an internal estimate of current heading with an internal goal heading and uses the sign and magnitude of the difference to determine which way to turn, how hard to turn, and how fast to walk forward.
Collapse
Affiliation(s)
- Jonathan Green
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Vikram Vijayan
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Peter Mussells Pires
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Atsuko Adachi
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
36
|
Takeuchi I, Yamashiro H, Gushi M. Usage of UV-curable oligomer-based adhesive agent in hermatypic coral experimental research. MethodsX 2019; 6:1600-1607. [PMID: 31334036 PMCID: PMC6614589 DOI: 10.1016/j.mex.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
The global decline of the tropical and subtropical coral reefs requires urgent completion of various experiments that will reveal the factors influencing coral health. We describe the procedure of a new inexpensive, easy, and fast method for attaching fragments of the hermatypic coral Acropora spp. to small polycarbonate hexagon head bolts using Bondic®, an ultraviolet (UV)-curable oligomer-based adhesive agent made by Laser Bonding Tech, Inc. (Aurora, ON, Canada). The attachment was hardened within 10 s after applying the adhesive to the cut surface of the coral fragment. The corals attached to polycarbonate bolt were tolerant to long-distance aerial transport 3 days after the attachment. In addition to its implementation in various experiments using hermatypic corals, this method will contribute to aquaculture of hermatypic corals, exhibition of corals in aquariums, and coral reef restoration. The advantages of this new method are summarized below: •A new UV-curable oligomer-based adhesive agent is used as an artificial substrate for coral.•This method is inexpensive, easy to use, and coral attaches quickly to the artificial substrate.•Corals attached to the artificial substrate can withstand long periods of transportation.
Collapse
Affiliation(s)
- Ichiro Takeuchi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
- Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hideyuki Yamashiro
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Mikako Gushi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| |
Collapse
|
37
|
Warren TL, Giraldo YM, Dickinson MH. Celestial navigation in Drosophila. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb186148. [PMID: 30728228 DOI: 10.1242/jeb.186148] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many casual observers typecast Drosophila melanogaster as a stationary pest that lurks around fruit and wine. However, the omnipresent fruit fly, which thrives even in desert habitats, likely established and maintained its cosmopolitan status via migration over large spatial scales. To perform long-distance dispersal, flies must actively maintain a straight compass heading through the use of external orientation cues, such as those derived from the sky. In this Review, we address how D. melanogaster accomplishes long-distance navigation using celestial cues. We focus on behavioral and physiological studies indicating that fruit flies can navigate both to a pattern of linearly polarized light and to the position of the sun - the same cues utilized by more heralded insect navigators such as monarch butterflies and desert ants. In both cases, fruit flies perform menotaxis, selecting seemingly arbitrary headings that they then maintain over time. We discuss how the fly's nervous system detects and processes this sensory information to direct the steering maneuvers that underlie navigation. In particular, we highlight recent findings that compass neurons in the central complex, a set of midline neuropils, are essential for navigation. Taken together, these results suggest that fruit flies share an ancient, latent capacity for celestial navigation with other insects. Furthermore, they illustrate the potential of D. melanogaster to help us to elucidate both the cellular basis of navigation and mechanisms of directed dispersal on a landscape scale.
Collapse
Affiliation(s)
- Timothy L Warren
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Ysabel M Giraldo
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| | - Michael H Dickinson
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA
| |
Collapse
|
38
|
El Jundi B, Baird E, Byrne MJ, Dacke M. The brain behind straight-line orientation in dung beetles. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb192450. [PMID: 30728239 DOI: 10.1242/jeb.192450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For many insects, celestial compass cues play an important role in keeping track of their directional headings. One well-investigated group of celestial orientating insects are the African ball-rolling dung beetles. After finding a dung pile, these insects detach a piece, form it into a ball and roll it away along a straight path while facing backwards. A brain region, termed the central complex, acts as an internal compass that constantly updates the ball-rolling dung beetle about its heading. In this review, we give insights into the compass network behind straight-line orientation in dung beetles and place it in the context of the orientation mechanisms and neural networks of other insects. We find that the neuronal network behind straight-line orientation in dung beetles has strong similarities to the ones described in path-integrating and migrating insects, with the central complex being the key control point for this behavior. We conclude that, despite substantial differences in behavior and navigational challenges, dung beetles encode compass information in a similar way to other insects.
Collapse
Affiliation(s)
- Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, Emmy-Noether Group, 97074 Würzburg, Germany
| | - Emily Baird
- Stockholm University, Faculty of Science, Department of Zoology, Division of Functional Morphology, 10691 Stockholm, Sweden
| | - Marcus J Byrne
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa
| | - Marie Dacke
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa.,Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| |
Collapse
|
39
|
Serres JR, Viollet S. Insect-inspired vision for autonomous vehicles. CURRENT OPINION IN INSECT SCIENCE 2018; 30:46-51. [PMID: 30553484 DOI: 10.1016/j.cois.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023]
Abstract
Flying insects are being studied these days as if they were agile micro air vehicles fitted with smart sensors, requiring very few brain resources. The findings obtained on these natural fliers have proved to be extremely valuable when it comes to designing compact low-weight artificial optical sensors capable of performing visual processing tasks robustly under various environmental conditions (light, clouds, contrast). Here, we review some outstanding bio-inspired visual sensors, which can be used for either detecting motion in the visible spectrum or controlling celestial navigation in the ultraviolet spectrum and for attitude stabilisation purposes. Biologically inspired visual sensors do not have to comprise a very large number of pixels: they are able to perform both short and long range navigation tasks surprisingly well with just a few pixels and a weak resolution.
Collapse
|
40
|
Giraldo YM, Leitch KJ, Ros IG, Warren TL, Weir PT, Dickinson MH. Sun Navigation Requires Compass Neurons in Drosophila. Curr Biol 2018; 28:2845-2852.e4. [PMID: 30174187 PMCID: PMC7301569 DOI: 10.1016/j.cub.2018.07.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023]
Abstract
Despite their small brains, insects can navigate over long distances by orienting using visual landmarks [1], skylight polarization [2-9], and sun position [3, 4, 6, 10]. Although Drosophila are not generally renowned for their navigational abilities, mark-and-recapture experiments in Death Valley revealed that they can fly nearly 15 km in a single evening [11]. To accomplish such feats on available energy reserves [12], flies would have to maintain relatively straight headings, relying on celestial cues [13]. Cues such as sun position and polarized light are likely integrated throughout the sensory-motor pathway [14], including the highly conserved central complex [4, 15, 16]. Recently, a group of Drosophila central complex cells (E-PG neurons) have been shown to function as an internal compass [17-19], similar to mammalian head-direction cells [20]. Using an array of genetic tools, we set out to test whether flies can navigate using the sun and to identify the role of E-PG cells in this behavior. Using a flight simulator, we found that Drosophila adopt arbitrary headings with respect to a simulated sun, thus performing menotaxis, and individuals remember their heading preference between successive flights-even over several hours. Imaging experiments performed on flying animals revealed that the E-PG cells track sun stimulus motion. When these neurons are silenced, flies no longer adopt and maintain arbitrary headings relative to the sun stimulus but instead exhibit frontal phototaxis. Thus, without the compass system, flies lose the ability to execute menotaxis and revert to a simpler, reflexive behavior.
Collapse
Affiliation(s)
- Ysabel Milton Giraldo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katherine J Leitch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ivo G Ros
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Timothy L Warren
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Institute of Neuroscience, University of Oregon, Eugene, OR 97401, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Peter T Weir
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael H Dickinson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
41
|
Negelspach DC, Kaladchibachi S, Fernandez F. The circadian activity rhythm is reset by nanowatt pulses of ultraviolet light. Proc Biol Sci 2018; 285:20181288. [PMID: 30068685 PMCID: PMC6111179 DOI: 10.1098/rspb.2018.1288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
The circadian pacemaker synchronizes to the Earth's rotation by tracking step-by-step changes in illumination that occur as the sun passes the horizon. While twilight progressions of irradiance and colour are considered important stimuli in this process, comparably less thought has been given to the possibility that ultraviolet A (UVA) radiation might actually play a more formative role given its evolutionary significance in shaping 24 h timekeeping. Here, we show that Drosophila activity rhythms can be phase-shifted by UVA light at an energy range seated well below that of the visible spectrum. Because the energy threshold for this resetting matches the incident amount of UVA on the human retina at twilight, our results suggest that UVA light has the potential to function as a similar time cue in people.
Collapse
Affiliation(s)
| | | | - Fabian Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
42
|
Green J, Maimon G. Building a heading signal from anatomically defined neuron types in the Drosophila central complex. Curr Opin Neurobiol 2018; 52:156-164. [PMID: 30029143 DOI: 10.1016/j.conb.2018.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/06/2018] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
Abstract
A network of a few hundred neurons in the Drosophila central complex carries an estimate of the fly's heading in the world, akin to the mammalian head-direction system. Here we describe how anatomically defined neuronal classes in this network are poised to implement specific sub-processes for building and updating this population-level heading signal. The computations we describe in the fly central complex strongly resemble those posited to exist in the mammalian brain, in computational models for building head-direction signals. By linking circuit anatomy to navigational physiology, the Drosophila central complex should provide a detailed example of how a heading signal is built.
Collapse
Affiliation(s)
- Jonathan Green
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, United States; Laboratory of Integrative Brain Function, The Rockefeller University, 1230 York Ave., Mailbox #294, New York, NY 10065, United States.
| | - Gaby Maimon
- Laboratory of Integrative Brain Function, The Rockefeller University, 1230 York Ave., Mailbox #294, New York, NY 10065, United States.
| |
Collapse
|