1
|
Hemstrom W, Freedman M, Zalucki MP, Miller M. Novel genetic association with migratory diapause in Australian monarch butterflies. BMC Ecol Evol 2025; 25:43. [PMID: 40335914 PMCID: PMC12057088 DOI: 10.1186/s12862-025-02384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Monarch butterflies (Danaus plexippus) are a charismatic and culturally important North American butterfly species famous for their unique, dramatic migratory life history. While non-migratory populations of the species are widespread and apparently stable, migratory populations in North America have recently seen declines, prompting concern that the migratory phenomenon in North America may be at risk of disappearing. In contrast, a relatively recently-established monarch population in Australia has rapidly re-acquired a migratory life history following hundreds of generations of residency and successive bottlenecks as the species island-hopped across the Pacific during the late 1800s and early 1900s. The process by which migration re-emerged in Australian monarchs is not currently known. RESULTS We raised and sequenced individuals from Queensland, Australia under environmental conditions associated with migration initiation and found strong variance in reproductive diapause, a key migratory trait, between families which was associated with variation at the spectrin beta chain protein Karst. This protein is known to be involved in diapause termination in monarchs but has not previously been identified as associated with migratory life history variance. The most strongly associated migratory SNPs are also present at a low frequency in North America, suggesting that the Australian population is leveraging standing variation which persisted across repeated bottlenecks as Monarchs spread across the Pacific. CONCLUSIONS Our results provide an intriguing example of how the temporary loss of migration-in this case likely over hundreds of generations-may not entail the loss of genetic variation associated with this complex life history strategy.
Collapse
Affiliation(s)
- William Hemstrom
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Micah Freedman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Myron P Zalucki
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Miller
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| |
Collapse
|
2
|
Reich MS, Shipilina D, Talla V, Bahleman F, Kébé K, Berger JL, Backström N, Talavera G, Bataille CP. Isotope geolocation and population genomics in Vanessa cardui: Short- and long-distance migrants are genetically undifferentiated. PNAS NEXUS 2025; 4:pgae586. [PMID: 39906311 PMCID: PMC11792081 DOI: 10.1093/pnasnexus/pgae586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025]
Abstract
The painted lady butterfly Vanessa cardui is renowned for its virtually cosmopolitan distribution and the remarkable long-distance migrations as part of its annual, multigenerational migratory cycle. In winter, V. cardui individuals inhabit breeding grounds north and south of the Sahara, suggesting distinct migratory behaviors within the species as individuals migrate southward from Europe in the autumn. However, the evolutionary and ecological factors shaping these differences in migratory behavior remain largely unexplored. Here, we performed whole-genome resequencing and analyzed the hydrogen and strontium isotopes of 40 V. cardui individuals simultaneously collected in the autumn from regions both north and south of the Sahara. Our investigation revealed two main migratory groups: (i) short-distance migrants, journeying from temperate Europe to the circum-Mediterranean region and (ii) long-distance migrants, originating from Europe, crossing the Mediterranean Sea and Sahara, and reaching West Africa, covering up to over 4,000 km. Despite these stark differences in migration distance, a genome-wide analysis revealed that short- and long-distance migrants belong to a single intercontinental panmictic population extending from northern Europe to sub-Saharan Africa. Contrary to common biogeographic patterns, the Sahara is not a catalyst for population structuring in this species. No significant genetic differentiation or signs of adaptation and selection were observed between the two migratory phenotypes. Nonetheless, two individuals, who were early arrivals to West Africa covering longer migration distances, exhibited some genetic differentiation. The lack of genetic structure between short- and long-distance migrants suggests that migration distance in V. cardui is a plastic response to environmental conditions.
Collapse
Affiliation(s)
- Megan S Reich
- Department of Biology, University of Ottawa, Ottawa, Canada K1N 7N9
| | - Daria Shipilina
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Venkat Talla
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | | | - Khadim Kébé
- LADB, Higher School of Industrial and Biological Engineering, 11000 Dakar, Senegal
| | - Johanna L Berger
- Ecological Networks, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
| | - Clément P Bataille
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada K1N 7N9
| |
Collapse
|
3
|
Doyle TD, Poole OM, Barnes JC, Hawkes WLS, Jimenez Guri E, Wotton KR. Multiple factors contribute to female dominance in migratory bioflows. Open Biol 2025; 15:240235. [PMID: 39933573 PMCID: PMC11813574 DOI: 10.1098/rsob.240235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/28/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025] Open
Abstract
Migration is a widely observed phenomenon supported by morphological, physiological and behavioural traits that vary with season and sex in many species. Recently, the genetic components underpinning migration in the marmalade hoverfly (Diptera: Syrphidae) have been unpacked through detection of differentially expressed genes between migrant and non-migrant females. Males also migrate, but changing sex ratios during autumn migration, from around 50% female in northern Europe to around 90% in southern Europe, suggests males are poor long-distance fliers. To elucidate the mechanisms underpinning this sex difference, we performed morphological, physiological and transcriptomic characterization of actively migrating females and males. Both sexes show similar physiological adaptations including hyperphagia and starvation resistance, but females display higher tolerance to cold, have lower wing loading values and display a greater flight capacity. In addition, females modulate the expression of genes involved in immunity, hypoxia and longevity while suppressing hormonal pathways involved in maintaining reproductive diapause. These traits contribute to the success of female migrants and underlie the diminishing pool of males, influencing population dynamics across huge geographic areas and through the whole migratory and overwintering period.
Collapse
Affiliation(s)
- Toby D. Doyle
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Oliver M. Poole
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | | | - Will Leo S. Hawkes
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
- Swiss Ornithological Institute, Seerose 1, SempachCH-6204, Switzerland
| | - Eva Jimenez Guri
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Karl R. Wotton
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| |
Collapse
|
4
|
Vickers SH, Meehan TD, Michel NL, Franco AMA, Gilroy JJ. North American avian species that migrate in flocks show greater long-term non-breeding range shift rates. MOVEMENT ECOLOGY 2025; 13:3. [PMID: 39806506 PMCID: PMC11730467 DOI: 10.1186/s40462-024-00527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Many species are exhibiting range shifts associated with anthropogenic change. For migratory species, colonisation of new areas can require novel migratory programmes that facilitate navigation between independently-shifting seasonal ranges. Therefore, in some cases range-shifts may be limited by the capacity for novel migratory programmes to be transferred between generations, which can be genetically and socially mediated. METHODS Here we used 50 years of North American Breeding Bird Survey and Audubon Christmas Bird Count data to test the prediction that breeding and/or non-breeding range-shifts are more prevalent among flocking migrants, which possess a capacity for rapid social transmission of novel migration routes. RESULTS Across 122 North American bird species, social migration was a significant positive predictor for the magnitude of non-breeding centre of abundance (COA) shift within our study region (conterminous United States and Southern Canada). Across a subset of 81 species where age-structured flocking was determined, migrating in mixed-age flocks produced the greatest shifts and solo migrants the lowest. Flocking was not a significant predictor of breeding COA shifts, which were better explained by absolute population trends and migration distance. CONCLUSIONS Our results suggest that social grouping may play an important role in facilitating non-breeding distributional responses to climate change in migratory species. We highlight the need to gain a better understanding of migratory programme inheritance, and how this influences spatiotemporal population dynamics under environmental change.
Collapse
Affiliation(s)
- Stephen H Vickers
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Timothy D Meehan
- National Audubon Society, 225 Varick Street, New York, NY, 10014, USA
| | - Nicole L Michel
- National Audubon Society, 225 Varick Street, New York, NY, 10014, USA
| | - Aldina M A Franco
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - James J Gilroy
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
5
|
Bounas A, Talioura A, Komini C, Toli E, Sotiropoulos K, Barboutis C. Molecular changes and physiological responses involved in migratory bird fuel management and stopover decisions. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:5-14. [PMID: 39108147 PMCID: PMC11617793 DOI: 10.1002/jez.2861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/04/2024] [Accepted: 07/26/2024] [Indexed: 12/06/2024]
Abstract
Migratory birds undertake long journeys across continents to reach breeding habitats with abundant resources. These migrations are essential for their survival and are shaped by a complex interplay of physiological adaptations, behavioral cues, and gene expression patterns. Central to migration are stopovers, critical resting points where birds replenish energy stores before continuing their journey. In this study, we integrate physiological measurements, behavioral observations, and molecular data from temporarily caged migrating Garden Warblers (Sylvia borin) to gain insights into their stopover strategies and physiological adaptations after crossing the extended ecological barrier formed by the Sahara Desert and the Mediterranean Sea. Depleted individuals, marked by low body mass and flight muscle mass, showcased remarkable plasticity in recovering and rapidly rebuilding energy stores within a short 5-day stopover. Flight muscle mass increased during this period, highlighting a dynamic trade-off between muscle rebuilding and refuelling. Notably, birds prioritizing muscle rebuilding exhibited a trade-off with the downregulation of genes related to lipid transport and metabolism and at the same time showing evidence of skeletal muscle angiogenesis. Early arrivals were more motivated to depart and exhibited higher levels of physiological stress. Our study highlights the importance of understanding the adaptive responses of birds to changing environmental conditions along their migration routes.
Collapse
Affiliation(s)
- Anastasios Bounas
- Department of Biological Applications and TechnologyUniversity of IoanninaIoanninaGreece
| | - Artemis Talioura
- Department of Biological Applications and TechnologyUniversity of IoanninaIoanninaGreece
| | - Chrysoula Komini
- Department of Biological Applications and TechnologyUniversity of IoanninaIoanninaGreece
| | - Elisavet‐Aspasia Toli
- Department of Biological Applications and TechnologyUniversity of IoanninaIoanninaGreece
| | | | - Christos Barboutis
- Department of Biological Applications and TechnologyUniversity of IoanninaIoanninaGreece
- Antikythira Bird Observatory, Hellenic Ornithological Society/BirdLife GreeceAthensGreece
| |
Collapse
|
6
|
Widrick JJ, Lambert MR, de Souza Leite F, Jung YL, Park J, Conner JR, Lee EA, Beggs AH, Kunkel LM. High resolution kinematic approach for quantifying impaired mobility of dystrophic zebrafish larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627004. [PMID: 39713379 PMCID: PMC11661059 DOI: 10.1101/2024.12.05.627004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Dystrophin-deficient zebrafish larvae are a small, genetically tractable vertebrate model of Duchenne muscular dystrophy well suited for early stage therapeutic development. However, current approaches for evaluating their impaired mobility, a physiologically relevant therapeutic target, are characterized by low resolution and high variability. To address this, we used high speed videography and deep learning-based markerless motion capture to develop linked-segment models of larval escape response (ER) swimming. Kinematic models provided repeatable, high precision estimates of larval ER performance. Effect sizes for ER peak instantaneous acceleration and speed, final displacement, and ER distance were 2 to 3.5 standard deviations less for dystrophin-deficient mutants vs. wild-types. Further analysis revealed that mutants swam slower because of a reduction in their tail stroke frequency with little change in tail stroke amplitude. Kinematic variables were highly predictive of the dystrophic phenotype with ≤ 3% of larvae misclassified by random forest and support vector machine models. Tail kinematics also performed as well as in vitro assessments of tail muscle contractility in classifying larvae as mutants or wild-type, suggesting that ER kinematics could serve as a non-lethal proxy for direct measurements of muscle function. In summary, ER kinematics can be used as precise, physiologically relevant, non-lethal biomarkers of the dystrophic phenotype. The open-source approach described here may have applications not only for studies of skeletal muscle disease but for other disciplines that use larval mobility as an experimental outcome.
Collapse
Affiliation(s)
- Jeffrey J. Widrick
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Matthias R. Lambert
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Felipe de Souza Leite
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Youngsook Lucy Jung
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| | - Junseok Park
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| | - James R. Conner
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| | - Alan H. Beggs
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| | - Louis M. Kunkel
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
7
|
Crown AM, Wu AH, Hofflander L, Barnea G. Continuous integration of heading and goal directions guides steering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620060. [PMID: 39484507 PMCID: PMC11527344 DOI: 10.1101/2024.10.24.620060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Navigating animals must integrate a diverse array of sensory cues into a single locomotor decision. Insects perform intricate navigational feats using a brain region termed the central complex in which an animal's heading direction is transformed through several layers of circuitry to elicit goal-directed locomotion. These transformations occur mostly in the fan-shaped body (FB), a major locus of multi-sensory integration in the central complex. Key aspects of these sensorimotor computations have been extensively characterized by functional studies, leveraging the genetic tools available in the fruit fly. However, our understanding of how neuronal activity in the FB dictates locomotor behaviors during navigation remains enigmatic. Here, we manipulate the activity of two key neuronal populations that input into the FB-the PFNa and PFNd neurons-used to encode the direction of two complex navigational cues: wind plumes and optic flow, respectively. We find that flies presented with unidirectional optic flow steer along curved walking trajectories, but silencing PFNd neurons abolishes this curvature. We next use optogenetic activation to introduce a fictive heading signal in the PFNs to establish the causal relationship between their activity and steering behavior. Our studies reveal that the central complex guides locomotion by summing the PFN-borne directional signals and shifting movement trajectories left or right accordingly. Based on these results, we propose a model of central complex-mediated locomotion wherein the fly achieves fine-grained control of sensory-guided steering by continuously integrating its heading and goal directions over time.
Collapse
Affiliation(s)
- Anthony M Crown
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Annie H Wu
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Lindsey Hofflander
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Gilad Barnea
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
8
|
Vander Pluym D, Mason NA. Toward a comparative framework for studies of altitudinal migration. Ecol Evol 2024; 14:e70240. [PMID: 39219567 PMCID: PMC11364985 DOI: 10.1002/ece3.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The study and importance of altitudinal migration has attracted increasing interest among zoologists. Altitudinal migrants are taxonomically widespread and move across altitudinal gradients as partial or complete migrants, subjecting them to a wide array of environments and ecological interactions. Here, we present a brief synthesis of recent developments in the field and suggest future directions toward a more taxonomically inclusive comparative framework for the study of altitudinal migration. Our framework centers on a working definition of altitudinal migration that hinges on its biological relevance, which is scale-dependent and related to fitness outcomes. We discuss linguistic nuances of altitudinal movements and provide concrete steps to compare altitudinal migration phenomena across traditionally disparate study systems. Together, our comparative framework outlines a "phenotypic space" that contextualizes the biotic and abiotic interactions encountered by altitudinal migrants from divergent lineages and biomes. We also summarize new opportunities, methods, and challenges for the ongoing study of altitudinal migration. A persistent, primary challenge is characterizing the taxonomic extent of altitudinal migration within and among species. Fortunately, a host of new methods have been developed to help researchers assess the taxonomic prevalence of altitudinal migration-each with their own advantages and disadvantages. An improved comparative framework will allow researchers that study disparate disciplines and taxonomic groups to better communicate and to test hypotheses regarding the evolutionary and ecological drivers underlying variation in altitudinal migration among populations and species.
Collapse
Affiliation(s)
- David Vander Pluym
- Department of Biological Sciences, Museum of Natural ScienceLouisiana State UniversityBaton RougeLouisianaUSA
| | - Nicholas A. Mason
- Department of Biological Sciences, Museum of Natural ScienceLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
9
|
Verheijen BHF, Webb EB, Brasher MG, Hagy HM. Long-term changes in autumn-winter harvest distributions vary among duck species, months, and subpopulations. Ecol Evol 2024; 14:e11331. [PMID: 38832139 PMCID: PMC11145621 DOI: 10.1002/ece3.11331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024] Open
Abstract
Our aim was to describe shifts in autumn and winter harvest distributions of three species of dabbling ducks (blue-winged teal [Spatula discors], mallard [Anas platyrhynchos], and northern pintail [Anas acuta]) in the Central and Mississippi flyways of North America during 1960-2019. We measured shifts in band recovery distributions corrected for changes in hunting season dates and zones by using kernel density estimators to calculate 10 distributional metrics. We then assessed interannual and intraspecific variation by comparing species-specific changes in distributional metrics for 4 months (October-January) and three geographically based subpopulations. During 1960-2019, band recovery distributions shifted west- and southwards (blue-winged teal) or east- and northwards (mallard and northern pintail) by one hundred to several hundred kilometers. For all three species, the broad (95% isopleth) and core distributions (50% isopleth) showed widespread decreases in overlap and increases in relative area compared to a 1960-1979 baseline period. Shifts in band recovery distributions varied by month, with southward shifts for blue-winged teal most pronounced in October and northward shifts for mallard and northern pintail greatest during December and January. Finally, distributional metric response varied considerably among mallard subpopulations, including 2-4-fold differences in longitude, latitude, and overlap, whereas differences among subpopulations were minimal for blue-winged teal and northern pintail. Our findings support the popular notion that winter (December-January) distributions of duck species have shifted north; however, the extent and direction of distributional changes vary among species and subpopulations. Long-term distributional changes are therefore complex and summarizing shifts across species, months, or subpopulations could mask underlying finer-scale patterns that are important to habitat conservation and population management. A detailed understanding of how species distributions have changed over time will help quantify important drivers of species occurrence, identify habitat management options, and could inform decisions on where to focus conservation or restoration efforts.
Collapse
Affiliation(s)
- Bram H. F. Verheijen
- Missouri Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | - Elisabeth B. Webb
- U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of MissouriColumbiaMissouriUSA
| | | | - Heath M. Hagy
- U.S. Fish and Wildlife Service, Habitat and Population Evaluation TeamBismarckNorth DakotaUSA
| |
Collapse
|
10
|
Le Clercq LS, Kotzé A, Grobler JP, Dalton DL. Methylation-based markers for the estimation of age in African cheetah, Acinonyx jubatus. Mol Ecol Resour 2024; 24:e13940. [PMID: 38390700 DOI: 10.1111/1755-0998.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Age is a key demographic in conservation where age classes show differences in important population metrics such as morbidity and mortality. Several traits, including reproductive potential, also show senescence with ageing. Thus, the ability to estimate age of individuals in a population is critical in understanding the current structure as well as their future fitness. Many methods exist to determine age in wildlife, with most using morphological features that show inherent variability with age. These methods require significant expertise and become less accurate in adult age classes, often the most critical groups to model. Molecular methods have been applied to measuring key population attributes, and more recently epigenetic attributes such as methylation have been explored as biomarkers for age. There are, however, several factors such as permits, sample sovereignty, and costs that may preclude the use of extant methods in a conservation context. This study explored the utility of measuring age-related changes in methylation in candidate genes using mass array technology. Novel methods are described for using gene orthologues to identify and assay regions for differential methylation. To illustrate the potential application, African cheetah was used as a case study. Correlation analyses identified six methylation sites with an age relationship, used to develop a model with sufficient predictive power for most conservation contexts. This model was more accurate than previous attempts using PCR and performed similarly to candidate gene studies in other mammal species. Mass array presents an accurate and cost-effective method for age estimation in wildlife of conservation concern.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, Pretoria, South Africa
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, Pretoria, South Africa
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | - Desiré L Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| |
Collapse
|
11
|
Green DA, Polidori S, Stratton SM. Modular switches shift monarch butterfly migratory flight behavior at their Mexican overwintering sites. iScience 2024; 27:109063. [PMID: 38420583 PMCID: PMC10901092 DOI: 10.1016/j.isci.2024.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Eastern North American migratory monarch butterflies exhibit migratory behavioral states in fall and spring characterized by sun-dependent oriented flight. However, it is unclear how monarchs transition between these behavioral states at their overwintering site. Using a modified Mouritsen-Frost flight simulator, we confirm individual directionality and compass-based orientation (leading to group orientation) in fall migrants, and also uncover sustained flight propensity and direction-based flight reinforcement as distinctly migratory behavioral traits. By testing monarchs at their Mexican overwintering sites, we show that overwintering monarchs show reduced propensity for sustained flight and lose individual directionality, leading to the loss of group-level orientation. Overwintering fliers orient axially in a time-of-day dependent manner, which may indicate local versus long-distance directional heading. These results support a model of migratory flight behavior in which modular, state-dependent switches for flight propensity and orientation control are highly dynamic and are controlled in season- and location-dependent manners.
Collapse
Affiliation(s)
- Delbert A. Green
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Sean Polidori
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Samuel M. Stratton
- Department of Ecology and Evolutionary Biology, University of Michigan—Ann Arbor, 1105 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Webster CF, Smotherman M, Pippel M, Brown T, Winkler S, Pieri M, Mai M, Myers EW, Teeling EC, Vernes SC. The genome sequence of Tadarida brasiliensis I. Geoffroy Saint-Hilaire, 1824 [Molossidae; Tadarida]. Wellcome Open Res 2024; 9:98. [PMID: 38800517 PMCID: PMC11128047 DOI: 10.12688/wellcomeopenres.20603.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 05/29/2024] Open
Abstract
We present a genome assembly from an individual male Tadarida brasiliensis (The Brazilian free-tailed bat; Chordata; Mammalia; Chiroptera; Molossidae). The genome sequence is 2.28 Gb in span. The majority of the assembly is scaffolded into 25 chromosomal pseudomolecules, with the X and Y sex chromosomes assembled.
Collapse
Affiliation(s)
- Cara F. Webster
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
| | - Myrtani Pieri
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Meike Mai
- School of Biology, University of St Andrews, St Andrews, UK
| | - Eugene W. Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridgeshire, CB10 1SA, UK
| | - Sonja C. Vernes
- School of Biology, University of St Andrews, St Andrews, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - The Bat1K Consortium
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- School of Biology, University of St Andrews, St Andrews, UK
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridgeshire, CB10 1SA, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Gu Z, Dixon A, Zhan X. Genetics and Evolution of Bird Migration. Annu Rev Anim Biosci 2024; 12:21-43. [PMID: 37906839 DOI: 10.1146/annurev-animal-021122-092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Bird migration has long been a subject of fascination for humankind and is a behavior that is both intricate and multifaceted. In recent years, advances in technology, particularly in the fields of genomics and animal tracking, have enabled significant progress in our understanding of this phenomenon. In this review, we provide an overview of the latest advancements in the genetics of bird migration, with a particular focus on genomics, and examine various factors that contribute to the evolution of this behavior, including climate change. Integration of research from the fields of genomics, ecology, and evolution can enhance our comprehension of the complex mechanisms involved in bird migration and inform conservation efforts in a rapidly changing world.
Collapse
Affiliation(s)
- Zhongru Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
| | - Andrew Dixon
- Mohamed Bin Zayed Raptor Conservation Fund, Abu Dhabi, United Arab Emirates
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
- Cardiff University-Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
14
|
Bascón-Cardozo K, Bours A, Manthey G, Durieux G, Dutheil JY, Pruisscher P, Odenthal-Hesse L, Liedvogel M. Fine-Scale Map Reveals Highly Variable Recombination Rates Associated with Genomic Features in the Eurasian Blackcap. Genome Biol Evol 2024; 16:evad233. [PMID: 38198800 PMCID: PMC10781513 DOI: 10.1093/gbe/evad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Recombination is responsible for breaking up haplotypes, influencing genetic variability, and the efficacy of selection. Bird genomes lack the protein PR domain-containing protein 9, a key determinant of recombination dynamics in most metazoans. Historical recombination maps in birds show an apparent stasis in positioning recombination events. This highly conserved recombination pattern over long timescales may constrain the evolution of recombination in birds. At the same time, extensive variation in recombination rate is observed across the genome and between different species of birds. Here, we characterize the fine-scale historical recombination map of an iconic migratory songbird, the Eurasian blackcap (Sylvia atricapilla), using a linkage disequilibrium-based approach that accounts for population demography. Our results reveal variable recombination rates among and within chromosomes, which associate positively with nucleotide diversity and GC content and negatively with chromosome size. Recombination rates increased significantly at regulatory regions but not necessarily at gene bodies. CpG islands are associated strongly with recombination rates, though their specific position and local DNA methylation patterns likely influence this relationship. The association with retrotransposons varied according to specific family and location. Our results also provide evidence of heterogeneous intrachromosomal conservation of recombination maps between the blackcap and its closest sister taxon, the garden warbler. These findings highlight the considerable variability of recombination rates at different scales and the role of specific genomic features in shaping this variation. This study opens the possibility of further investigating the impact of recombination on specific population-genomic features.
Collapse
Affiliation(s)
- Karen Bascón-Cardozo
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Andrea Bours
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Georg Manthey
- Institute of Avian Research “Vogelwarte Helgoland”, Wilhelmshaven 26386, Germany
| | - Gillian Durieux
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Julien Y Dutheil
- Department for Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Peter Pruisscher
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
- Department of Zoology, Stockholm University, Stockholm SE-106 91, Sweden
| | - Linda Odenthal-Hesse
- Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Miriam Liedvogel
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
- Institute of Avian Research “Vogelwarte Helgoland”, Wilhelmshaven 26386, Germany
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| |
Collapse
|
15
|
Le Clercq LS, Kotzé A, Grobler JP, Dalton DL. Biological clocks as age estimation markers in animals: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2023; 98:1972-2011. [PMID: 37356823 DOI: 10.1111/brv.12992] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Various biological attributes associated with individual fitness in animals change predictably over the lifespan of an organism. Therefore, the study of animal ecology and the work of conservationists frequently relies upon the ability to assign animals to functionally relevant age classes to model population fitness. Several approaches have been applied to determining individual age and, while these methods have proved useful, they are not without limitations and often lack standardisation or are only applicable to specific species. For these reasons, scientists have explored the potential use of biological clocks towards creating a universal age-determination method. Two biological clocks, tooth layer annulation and otolith layering have found universal appeal. Both methods are highly invasive and most appropriate for post-mortem age-at-death estimation. More recently, attributes of cellular ageing previously explored in humans have been adapted to studying ageing in animals for the use of less-invasive molecular methods for determining age. Here, we review two such methods, assessment of methylation and telomere length, describing (i) what they are, (ii) how they change with age, and providing (iii) a summary and meta-analysis of studies that have explored their utility in animal age determination. We found that both attributes have been studied across multiple vertebrate classes, however, telomere studies were used before methylation studies and telomere length has been modelled in nearly twice as many studies. Telomere length studies included in the review often related changes to stress responses and illustrated that telomere length is sensitive to environmental and social stressors and, in the absence of repair mechanisms such as telomerase or alternative lengthening modes, lacks the ability to recover. Methylation studies, however, while also detecting sensitivity to stressors and toxins, illustrated the ability to recover from such stresses after a period of accelerated ageing, likely due to constitutive expression or reactivation of repair enzymes such as DNA methyl transferases. We also found that both studied attributes have parentally heritable features, but the mode of inheritance differs among taxa and may relate to heterogamy. Our meta-analysis included more than 40 species in common for methylation and telomere length, although both analyses included at least 60 age-estimation models. We found that methylation outperforms telomere length in terms of predictive power evidenced from effect sizes (more than double that observed for telomeres) and smaller prediction intervals. Both methods produced age correlation models using similar sample sizes and were able to classify individuals into young, middle, or old age classes with high accuracy. Our review and meta-analysis illustrate that both methods are well suited to studying age in animals and do not suffer significantly from variation due to differences in the lifespan of the species, genome size, karyotype, or tissue type but rather that quantitative method, patterns of inheritance, and environmental factors should be the main considerations. Thus, provided that complex factors affecting the measured trait can be accounted for, both methylation and telomere length are promising targets to develop as biomarkers for age determination in animals.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
16
|
Anttonen T, Burghi T, Duvall L, Fernandez MP, Gutierrez G, Kermen F, Merlin C, Michaiel A. Neurobiology and Changing Ecosystems: Mechanisms Underlying Responses to Human-Generated Environmental Impacts. J Neurosci 2023; 43:7530-7537. [PMID: 37940589 PMCID: PMC10634574 DOI: 10.1523/jneurosci.1431-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 11/10/2023] Open
Abstract
Human generated environmental change profoundly affects organisms that reside across diverse ecosystems. Although nervous systems evolved to flexibly sense, respond, and adapt to environmental change, it is unclear whether the rapid rate of environmental change outpaces the adaptive capacity of complex nervous systems. Here, we explore neural systems mediating responses to, or impacted by, changing environments, such as those induced by global heating, sensory pollution, and changing habitation zones. We focus on rising temperature and accelerated changes in environments that impact sensory experience as examples of perturbations that directly or indirectly impact neural function, respectively. We also explore a mechanism involved in cross-species interactions that arises from changing habitation zones. We demonstrate that anthropogenic influences on neurons, circuits, and behaviors are widespread across taxa and require further scientific investigation to understand principles underlying neural resilience to accelerating environmental change.SIGNIFICANCE STATEMENT Neural systems evolved over hundreds of millions of years to allow organisms to sense and respond to their environments - to be receptive and responsive, yet flexible. Recent rapid, human-generated environmental changes are testing the limits of the adaptive capacity of neural systems. This presents an opportunity and an urgency to understand how neurobiological processes, including molecular, cellular, and circuit-level mechanisms, are vulnerable or resilient to changing environmental conditions. We showcase examples that range from molecular to circuit to behavioral levels of analysis across several model species, framing a broad neuroscientific approach to explore topics of neural adaptation, plasticity, and resilience. We believe this emerging scientific area is of great societal and scientific importance and will provide a unique opportunity to reexamine our understanding of neural adaptation and the mechanisms underlying neural resilience.
Collapse
Affiliation(s)
- Tommi Anttonen
- Institute of Biology, University of Southern Denmark, Odense, Denmark DK-5230
| | - Thiago Burghi
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom CB2 1PZ
| | - Laura Duvall
- Department of Biological Sciences, Columbia University, New York City, New York 10027
| | - Maria P Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Gabrielle Gutierrez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Florence Kermen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark DK-1165
| | - Christine Merlin
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Angie Michaiel
- Department of Life Sciences, The Kavli Foundation, Los Angeles, California 90230
| |
Collapse
|
17
|
Freedman MG, Kronforst MR. Migration genetics take flight: genetic and genomic insights into monarch butterfly migration. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101079. [PMID: 37385346 PMCID: PMC10592233 DOI: 10.1016/j.cois.2023.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Monarch butterflies have emerged as a model system in migration genetics. Despite inherent challenges associated with studying the integrative phenotypes that characterize migration, recent research has highlighted genes and transcriptional networks underlying aspects of the monarch's migratory syndrome. Circadian clock genes and the vitamin A synthesis pathway regulate reproductive diapause initiation, while diapause termination appears to involve calcium and insulin signaling. Comparative approaches have highlighted genes that distinguish migratory and nonmigratory monarch populations, as well as genes associated with natural variation in propensity to initiate diapause. Population genetic techniques demonstrate that seasonal migration can collapse patterns of spatial structure at continental scales, whereas loss of migration can drive differentiation between even nearby populations. Finally, population genetics can be applied to reconstruct the monarch's evolutionary history and search for contemporary demographic changes, which can provide relevant context for understanding recently observed declines in overwintering North American monarch numbers.
Collapse
|
18
|
Scridel D, Pirrello S, Imperio S, Cecere JG, Albanese G, Andreotti A, Arveda G, Borghesi F, La Gioia G, Massa L, Mengoni C, Micheloni P, Mucci N, Nardelli R, Nissardi S, Volponi S, Zucca C, Serra L. Weather, sex and body condition affect post-fledging migration behaviour of the greater flamingo Phoenicopterus roseus. MOVEMENT ECOLOGY 2023; 11:51. [PMID: 37612593 PMCID: PMC10464070 DOI: 10.1186/s40462-023-00409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/29/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Understanding which intrinsic and extrinsic factors dictate decision-making processes such as leaving the natal area or not (migratory vs resident strategy), departure time, and non-breeding destination are key-issues in movement ecology. This is particularly relevant for a partially migratory meta-population in which only some individuals migrate. METHODS We investigated these decision making-processes for 40 juvenile greater flamingos Phoenicopterus roseus fledged in three Mediterranean colonies and equipped with GPS-GSM devices. RESULTS Contrary to the body size and the dominance hypotheses, juveniles in better body condition were more likely to migrate than those in worse conditions, which opted for a residence strategy. Flamingo probability of departure was not associated with an increase in local wind intensity, but rather with the presence of tailwinds with departure limited to night-time mostly when the wind direction aligned with the migratory destination. Moreover, a positive interaction between tailwind speed and migration distance suggested that juveniles opted for stronger winds when initiating long-distance journeys. In contrast to previous studies, the prevailing seasonal winds were only partially aligned with the migratory destination, suggesting that other factors (e.g., adults experience in mix-aged flocks, availability of suitable foraging areas en route, density-dependence processes) may be responsible for the distribution observed at the end of the first migratory movement. We found potential evidence of sex-biased timing of migration with females departing on average 10 days later and flying ca. 10 km/h faster than males. Female flight speed, but not male one, was positively influenced by tailwinds, a pattern most likely explained by sexual differences in mechanical power requirements for flight (males being ca. 20% larger than females). Furthermore, juveniles considerably reduced their flight speeds after 400 km from departure, highlighting a physiological threshold, potentially linked to mortality risks when performing long-distance non-stop movements. CONCLUSION These results suggest that not only intrinsic factors such as individual conditions and sex, but also extrinsic factors like weather, play critical roles in triggering migratory behaviour in a partially migratory metapopulation. Furthermore, social factors, including conspecific experience, should be taken into consideration when evaluating the adaptive processes underlying migration phenology, flight performance, and final destination selection.
Collapse
Affiliation(s)
- Davide Scridel
- Area Avifauna Migratrice (BIO-AVM), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Ca' Fornacetta 9, 40064, Ozzano dell'Emilia, BO, Italy.
- CNR-IRSA National Research Council-Water Research Institute, via del Mulino 19, 20861, Brugherio, MB, Italy.
- Department of Life Sciences, University of Trieste, 34127, Trieste, TS, Italy.
| | - Simone Pirrello
- Area Avifauna Migratrice (BIO-AVM), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Ca' Fornacetta 9, 40064, Ozzano dell'Emilia, BO, Italy
| | - Simona Imperio
- Area Avifauna Migratrice (BIO-AVM), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Ca' Fornacetta 9, 40064, Ozzano dell'Emilia, BO, Italy
| | - Jacopo G Cecere
- Area Avifauna Migratrice (BIO-AVM), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Ca' Fornacetta 9, 40064, Ozzano dell'Emilia, BO, Italy
| | | | - Alessandro Andreotti
- Area Avifauna Migratrice (BIO-AVM), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Ca' Fornacetta 9, 40064, Ozzano dell'Emilia, BO, Italy
| | | | - Fabrizio Borghesi
- Servizio Tutela Ambiente e Territorio, Ufficio Zone Naturali, Comune di Ravenna, via Berlinguer 30, 48121, Ravenna, RA, Italy
| | - Giuseppe La Gioia
- Associazione Ornitologia Mediterranea, via Saponaro 7, 73100, Lecce, LE, Italy
| | - Luisanna Massa
- Parco Naturale Regionale Molentargius Saline, via La Palma n 9, 09126, Cagliari, CA, Italy
| | - Chiara Mengoni
- Area per la Genetica della Conservazione (BIO-CGE), Istituto Superiore per la Protezione e la Ricerca. Ambientale (ISPRA), via Ca' Fornacetta 9, 40064, Ozzano dell'Emilia, BO, Italy
| | - Pierfrancesco Micheloni
- Area Avifauna Migratrice (BIO-AVM), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Ca' Fornacetta 9, 40064, Ozzano dell'Emilia, BO, Italy
| | - Nadia Mucci
- Area per la Genetica della Conservazione (BIO-CGE), Istituto Superiore per la Protezione e la Ricerca. Ambientale (ISPRA), via Ca' Fornacetta 9, 40064, Ozzano dell'Emilia, BO, Italy
| | - Riccardo Nardelli
- Area Avifauna Migratrice (BIO-AVM), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Ca' Fornacetta 9, 40064, Ozzano dell'Emilia, BO, Italy
| | - Sergio Nissardi
- Anthus s.n.c., via Luigi Canepa 22, 09129, Cagliari, CA, Italy
| | - Stefano Volponi
- Area per i pareri tecnici e per le strategie di conservazione e gestione del patrimonio faunistico nazionale (BIO-CFN), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Ca' Fornacetta 9, 40064, Ozzano dell'Emilia, BO, Italy
| | - Carla Zucca
- Anthus s.n.c., via Luigi Canepa 22, 09129, Cagliari, CA, Italy
| | - Lorenzo Serra
- Area Avifauna Migratrice (BIO-AVM), Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Ca' Fornacetta 9, 40064, Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
19
|
Le Clercq LS, Bazzi G, Cecere JG, Gianfranceschi L, Grobler JP, Kotzé A, Rubolini D, Liedvogel M, Dalton DL. Time trees and clock genes: a systematic review and comparative analysis of contemporary avian migration genetics. Biol Rev Camb Philos Soc 2023; 98:1051-1080. [PMID: 36879518 DOI: 10.1111/brv.12943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Timing is a crucial aspect for survival and reproduction in seasonal environments leading to carefully scheduled annual programs of migration in many species. But what are the exact mechanisms through which birds (class: Aves) can keep track of time, anticipate seasonal changes, and adapt their behaviour? One proposed mechanism regulating annual behaviour is the circadian clock, controlled by a highly conserved set of genes, collectively called 'clock genes' which are well established in controlling the daily rhythmicity of physiology and behaviour. Due to diverse migration patterns observed within and among species, in a seemingly endogenously programmed manner, the field of migration genetics has sought and tested several candidate genes within the clock circuitry that may underlie the observed differences in breeding and migration behaviour. Among others, length polymorphisms within genes such as Clock and Adcyap1 have been hypothesised to play a putative role, although association and fitness studies in various species have yielded mixed results. To contextualise the existing body of data, here we conducted a systematic review of all published studies relating polymorphisms in clock genes to seasonality in a phylogenetically and taxonomically informed manner. This was complemented by a standardised comparative re-analysis of candidate gene polymorphisms of 76 bird species, of which 58 are migrants and 18 are residents, along with population genetics analyses for 40 species with available allele data. We tested genetic diversity estimates, used Mantel tests for spatial genetic analyses, and evaluated relationships between candidate gene allele length and population averages for geographic range (breeding- and non-breeding latitude), migration distance, timing of migration, taxonomic relationships, and divergence times. Our combined analysis provided evidence (i) of a putative association between Clock gene variation and autumn migration as well as a putative association between Adcyap1 gene variation and spring migration in migratory species; (ii) that these candidate genes are not diagnostic markers to distinguish migratory from sedentary birds; and (iii) of correlated variability in both genes with divergence time, potentially reflecting ancestrally inherited genotypes rather than contemporary changes driven by selection. These findings highlight a tentative association between these candidate genes and migration attributes as well as genetic constraints on evolutionary adaptation.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Gaia Bazzi
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca' Fornacetta 9, Ozzano Emilia (BO), I-40064, Italy
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca' Fornacetta 9, Ozzano Emilia (BO), I-40064, Italy
| | - Luca Gianfranceschi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
| | - Johannes Paul Grobler
- Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
- Istituto di Ricerca sulle Acque, IRSA-CNR, Via del Mulino 19, Brugherio (MB), I-20861, Italy
| | - Miriam Liedvogel
- Max Planck Research Group Behavioral Genomics, Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
20
|
Sharma A, Sur S, Tripathi V, Kumar V. Genetic Control of Avian Migration: Insights from Studies in Latitudinal Passerine Migrants. Genes (Basel) 2023; 14:1191. [PMID: 37372370 DOI: 10.3390/genes14061191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Twice-a-year, large-scale movement of billions of birds across latitudinal gradients is one of the most fascinating behavioral phenomena seen among animals. These seasonal voyages in autumn southwards and in spring northwards occur within a discrete time window and, as part of an overall annual itinerary, involve close interaction of the endogenous rhythm at several levels with prevailing photoperiod and temperature. The overall success of seasonal migrations thus depends on their close coupling with the other annual sub-cycles, namely those of the breeding, post-breeding recovery, molt and non-migratory periods. There are striking alterations in the daily behavior and physiology with the onset and end of the migratory period, as shown by the phase inversions in behavioral (a diurnal passerine bird becomes nocturnal and flies at night) and neural activities. Interestingly, there are also differences in the behavior, physiology and regulatory strategies between autumn and spring (vernal) migrations. Concurrent molecular changes occur in regulatory (brain) and metabolic (liver, flight muscle) tissues, as shown in the expression of genes particularly associated with 24 h timekeeping, fat accumulation and the overall metabolism. Here, we present insights into the genetic basis of migratory behavior based on studies using both candidate and global gene expression approaches in passerine migrants, with special reference to Palearctic-Indian migratory blackheaded and redheaded buntings.
Collapse
Affiliation(s)
- Aakansha Sharma
- IndoUS Center in Chronobiology, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Sayantan Sur
- IndoUS Center in Chronobiology, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi 110003, India
| | - Vinod Kumar
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
21
|
Buchinger TJ, Hondorp DW, Krueger CC. Spatiotemporal segregation by migratory phenotype indicates potential for assortative mating in lake sturgeon. Oecologia 2023; 201:953-964. [PMID: 36995424 DOI: 10.1007/s00442-022-05280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/31/2022] [Indexed: 03/31/2023]
Abstract
Migratory diversity can promote population differentiation if sympatric phenotypes become temporally, spatially, or behaviorally segregated during breeding. In this study, the potential for spatiotemporal segregation was tested among three migratory phenotypes of lake sturgeon (Acipenser fulvescens) that spawn in the St. Clair River of North America's Laurentian Great Lakes but differ in how often they migrate into the river and in which direction they move after spawning. Acoustic telemetry over 9 years monitored use of two major spawning sites by lake sturgeon that moved north to overwinter in Lake Huron or south to overwinter in Lake St. Clair. Lake St. Clair migrants were further distinguished by whether they migrated into the St. Clair River each year (annual migrants) or intermittently (intermittent migrants). Social network analyses indicated lake sturgeon generally co-occurred with individuals of the same migratory phenotype more often than with different migratory phenotypes. A direct test for differences in space use revealed one site was almost exclusively visited by Lake St. Clair migrants whereas the other site was visited by Lake Huron migrants, intermittent Lake St. Clair migrants, and, to a lesser extent, annual Lake St. Clair migrants. Analysis of arrival and departure dates indicated opportunity for co-occurrence at the site visited by all phenotypes but showed Lake Huron migrants arrived approximately 2 weeks before Lake St. Clair migrants. Taken together, our results indicated partial spatiotemporal segregation of migratory phenotypes that may generate assortative mating and promote population differentiation.
Collapse
Affiliation(s)
- Tyler J Buchinger
- Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University, East Lansing, MI, 48824, USA.
- Great Lakes Science Center, U. S. Geological Survey, 1451 Green Rd., Ann Arbor, MI, 48105, USA.
| | - Darryl W Hondorp
- Great Lakes Science Center, U. S. Geological Survey, 1451 Green Rd., Ann Arbor, MI, 48105, USA
| | - Charles C Krueger
- Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
22
|
Gochanour B, Fernández‐López J, Contina A. abmR
: An R package for agent‐based model analysis of large‐scale movements across taxa. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Benjamin Gochanour
- Corix Plains Institute University of Oklahoma Norman Oklahoma USA
- Oklahoma Biological Survey University of Oklahoma Norman Oklahoma USA
| | | | - Andrea Contina
- Department of Integrative Biology University of Colorado Denver Denver Colorado USA
- Department of Microbiology and Plant Biology Center for Earth Observation and Modeling University of Oklahoma Norman Oklahoma USA
- Department of Integrative Biology University of Texas at Austin Austin Texas USA
| |
Collapse
|
23
|
YOLDAS T, ERİŞMİŞ UC. Hayvanlarda Soğuğa Dayanıklılık: Çift Yaşarların Kriyobiyolojisi. COMMAGENE JOURNAL OF BIOLOGY 2022. [DOI: 10.31594/commagene.1176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Organizmalar yaşamlarını devam ettirebilmek için abiyotik çevresel koşullara uyum sağlarlar. Özellikle ortam sıcaklığındaki değişimler; canlıların beslenme, üreme, gelişim ve morfolojileri üzerinde etkilidir. Sıra dışı sıcaklık değişimleri özellikle ektotermik hayvanlar için ölümcül olabilir. Karasal ektotermler. doğada donma noktasının altındaki sıcaklıklarda hayatta kalabilmek için davranışsal, fizyolojik ve biyokimyasal bazı özel stratejiler geliştirmişlerdir. Bazı türler göç ederek su ya da toprak altında kış uykusuna yatmak suretiyle dondurucu sıcaklıklardan kaçınırlar. Bazıları ise donma koşullarına maruz kalarak kışı geçirmek zorundadırlar. Genel olarak dondurucu soğuğa dayanıklılık donmadan kaçınma (süper soğuma) ve donma toleransı stratejilerine bağlıdır. Donmadan kaçınma durumunda vücut sıvılarının donma noktasının altındaki sıcaklıklarda sıvı formu korunurken donma toleransı stratejisini kullanan canlılarda ise vücutlarındaki toplam suyun %50’sinden fazlasının donması tolere edilebilir. Karasal hibernatör hayvanlardan bazı amfibi ve sürüngen gruplarında da tespit edilen donma toleransı stratejisi onların dondurucu kış koşullarında hayatta kalmalarını sağlamaktadır. Bu özel türler kriyoprotektif mekanizmaları ile donmanın ölümcül etkilerinden korunurlar. Donma süresince yaşamsal faaliyetleri tamamen duran bu hayvanlar çözündükten sonra kısa bir süre içerisinde de normal yaşama dönerler. Bu mucizevi mekanizmanın araştırılması yalnızca hayvanların karmaşık adaptasyonunu açıklamakla kalmaz, aynı zamanda doku ve hücre kriyoprezervasyon teknolojisine de kaynak sağlar. Bu derleme amfibilerin donma toleransı stratejilerine dair bilgiler sunarak henüz yeterince çalışılmamış bu konuda araştırma yapmak isteyenlere katkı sağlayacaktır.
Collapse
Affiliation(s)
- Taner YOLDAS
- DÜZCE ÜNİVERSİTESİ, BİLİMSEL VE TEKNOLOJİK ARAŞTIRMALAR UYGULAMA VE ARAŞTIRMA MERKEZİ
| | | |
Collapse
|
24
|
Sharma A, Tripathi V, Kumar V. Control and adaptability of seasonal changes in behavior and physiology of latitudinal avian migrants: Insights from laboratory studies in Palearctic-Indian migratory buntings. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:902-918. [PMID: 35677956 DOI: 10.1002/jez.2631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Twice-a-year migrations, one in autumn and the other in spring, occur within a discrete time window with striking alterations in the behavior and physiology, as regulated by the interaction of endogenous rhythms with prevailing photoperiod. These seasonal voyages are not isolated events; rather, they are part of an overall annual itinerary and remain closely coupled to the other annual subcycles, called seasonal life history states (LHSs). The success of migration depends on appropriate timing of the initiation and termination of each LHS, for example, reproduction, molt, summer nonmigratory, preautumn migratory (fattening and weight gain), autumn migratory, winter nonmigratory (wnM), prevernal (spring) migratory (fattening and weight gain), and spring migratory LHSs. Migration-linked photoperiod-induced changes include the body fattening and weight gain, nocturnal Zugunruhe (migratory restlessness), elevated triglycerides and free fatty acids, triiodothyronine and corticosterone levels. Hypothalamic expression of the thyroid hormone-responsive dio2 and dio3, light-responsive per2, cry1, and adcyap1 and th (tyrosine hydroxylase, involved in dopamine biosynthesis) genes also show significant changes with transition from wnM to the vernal migratory LHS. Concurrent changes in the expression of genes associated with lipid metabolism and its transport also occur in the liver and flight muscles, respectively. Interestingly, there are clear differences in the behavioral and physiological phenotypes, and associated molecular changes, between the autumn and vernal migrations. In this review, we discuss seasonal changes in the behavior and physiology, and present molecular insights into the development of migratory phenotypes in latitudinal avian migrants, with special reference to Palearctic-Indian migratory buntings.
Collapse
Affiliation(s)
- Aakansha Sharma
- Department of Zoology, IndoUS Center in Chronobiology, University of Delhi, Delhi, India
| | - Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| | - Vinod Kumar
- Department of Zoology, IndoUS Center in Chronobiology, University of Delhi, Delhi, India
| |
Collapse
|
25
|
Shipilina D, Näsvall K, Höök L, Vila R, Talavera G, Backström N. Linkage mapping and genome annotation give novel insights into gene family expansions and regional recombination rate variation in the painted lady (Vanessa cardui) butterfly. Genomics 2022; 114:110481. [PMID: 36115505 DOI: 10.1016/j.ygeno.2022.110481] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 01/14/2023]
Abstract
Characterization of gene family expansions and crossing over is crucial for understanding how organisms adapt to the environment. Here, we develop a high-density linkage map and detailed genome annotation of the painted lady butterfly (Vanessa cardui) - a non-diapausing, highly polyphagous species famous for its long-distance migratory behavior and almost cosmopolitan distribution. Our results reveal a complex interplay between regional recombination rate variation, gene duplications and transposable element activity shaping the genome structure of the painted lady. We identify several lineage specific gene family expansions. Their functions are mainly associated with protein and fat metabolism, detoxification, and defense against infection - critical processes for the painted lady's unique life-history. Furthermore, the detailed recombination maps allow us to characterize the regional recombination landscape, data that reveal a strong effect of chromosome size on the recombination rate, a limited impact of GC-biased gene conversion and a positive association between recombination and short interspersed elements.
Collapse
Affiliation(s)
- Daria Shipilina
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden; Swedish Collegium for Advanced Study, Thunbergsvägen 2, 75236 Uppsala, Sweden.
| | - Karin Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Roger Vila
- The Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva, Passeig Martim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Passeig del Migdia s/n, 08038 Barcelona, Spain
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| |
Collapse
|
26
|
Flack A, Aikens EO, Kölzsch A, Nourani E, Snell KR, Fiedler W, Linek N, Bauer HG, Thorup K, Partecke J, Wikelski M, Williams HJ. New frontiers in bird migration research. Curr Biol 2022; 32:R1187-R1199. [DOI: 10.1016/j.cub.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Spiecker L, Laurien M, Dammann W, Franke A, Clemmesen C, Gerlach G. Juvenile Atlantic herring (Clupea harengus) use a time-compensated sun compass for orientation. J Exp Biol 2022; 225:276683. [PMID: 35996951 DOI: 10.1242/jeb.244607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022]
Abstract
Atlantic herring (Clupea harengus), an ecologically and economically important species in the Northern Hemisphere, shows pronounced seasonal migratory behaviour. To follow distinctive migration patterns over hundreds of kilometers between feeding, overwintering, and spawning grounds, they are probably guided by orientation mechanisms. We tested whether juvenile Western Baltic Spring-Spawning Herring use a sun compass for orientation just before they start leaving their hatching area. Fish were randomly divided into two groups, one of them clock-shifted 6 h backwards, to investigate if they shift their orientation direction accordingly. Individual fish were placed in a circular bowl and their orientation was tested multiple times with the sun as a sole visual orientational cue. Our results show for the first time that juvenile Atlantic herring use a time-compensated sun compass during their migration. Their swimming direction was impaired, but still present, even when the sky was very cloudy, indicating additional orientation capabilities.
Collapse
Affiliation(s)
- Lisa Spiecker
- Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Malien Laurien
- Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Wiebke Dammann
- Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Andrea Franke
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Germany.,Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research (AWI), Germany
| | | | - Gabriele Gerlach
- Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Germany
| |
Collapse
|
28
|
Doyle T, Jimenez‐Guri E, Hawkes WLS, Massy R, Mantica F, Permanyer J, Cozzuto L, Hermoso Pulido T, Baril T, Hayward A, Irimia M, Chapman JW, Bass C, Wotton KR. Genome-wide transcriptomic changes reveal the genetic pathways involved in insect migration. Mol Ecol 2022; 31:4332-4350. [PMID: 35801824 PMCID: PMC9546057 DOI: 10.1111/mec.16588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Insects are capable of extraordinary feats of long-distance movement that have profound impacts on the function of terrestrial ecosystems. The ability to undertake these movements arose multiple times through the evolution of a suite of traits that make up the migratory syndrome, however the underlying genetic pathways involved remain poorly understood. Migratory hoverflies (Diptera: Syrphidae) are an emerging model group for studies of migration. They undertake seasonal movements in huge numbers across large parts of the globe and are important pollinators, biological control agents and decomposers. Here, we assembled a high-quality draft genome of the marmalade hoverfly (Episyrphus balteatus). We leveraged this genomic resource to undertake a genome-wide transcriptomic comparison of actively migrating Episyrphus, captured from a high mountain pass as they flew south to overwinter, with the transcriptomes of summer forms which were non-migratory. We identified 1543 genes with very strong evidence for differential expression. Interrogation of this gene set reveals a remarkable range of roles in metabolism, muscle structure and function, hormonal regulation, immunity, stress resistance, flight and feeding behaviour, longevity, reproductive diapause and sensory perception. These features of the migrant phenotype have arisen by the integration and modification of pathways such as insulin signalling for diapause and longevity, JAK/SAT for immunity, and those leading to octopamine production and fuelling to boost flight capabilities. Our results provide a powerful genomic resource for future research, and paint a comprehensive picture of global expression changes in an actively migrating insect, identifying key genomic components involved in this important life-history strategy.
Collapse
Affiliation(s)
- Toby Doyle
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Eva Jimenez‐Guri
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Will L. S. Hawkes
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Richard Massy
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Federica Mantica
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jon Permanyer
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luca Cozzuto
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Toni Hermoso Pulido
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Tobias Baril
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Alex Hayward
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Manuel Irimia
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- ICREABarcelonaSpain
| | - Jason W. Chapman
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
- Environment and Sustainability InstituteUniversity of Exeter, Cornwall CampusPenrynUK
- Department of Entomology, College of Plant ProtectionNanjing Agricultural UniversityNanjingPeople's Republic of China
| | - Chris Bass
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Karl R. Wotton
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| |
Collapse
|
29
|
Viewing animal migration through a social lens. Trends Ecol Evol 2022; 37:985-996. [PMID: 35931583 DOI: 10.1016/j.tree.2022.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
Evidence of social learning is growing across the animal kingdom. Researchers have long hypothesized that social interactions play a key role in many animal migrations, but strong empirical support is scarce except in a few unique systems and species. In this review, we aim to catalyze advances in the study of social migrations by synthesizing research across disciplines and providing a framework for understanding when, how, and why social influences shape the decisions animals make during migration. Integrating research across the fields of social learning and migration ecology will advance our understanding of the complex behavioral phenomena of animal migration and help to inform conservation of animal migrations in a changing world.
Collapse
|
30
|
Nguyen TAT, Beetz MJ, Merlin C, Pfeiffer K, el Jundi B. Weighting of Celestial and Terrestrial Cues in the Monarch Butterfly Central Complex. Front Neural Circuits 2022; 16:862279. [PMID: 35847485 PMCID: PMC9285895 DOI: 10.3389/fncir.2022.862279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation.
Collapse
Affiliation(s)
| | - M. Jerome Beetz
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States
| | - Keram Pfeiffer
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
| | - Basil el Jundi
- Biocenter, Zoology II, University of Wuerzburg, Würzburg, Germany
- Department of Biology, Animal Physiology, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Basil el Jundi
| |
Collapse
|
31
|
Local adaptation to climate anomalies relates to species phylogeny. Commun Biol 2022; 5:143. [PMID: 35177761 PMCID: PMC8854402 DOI: 10.1038/s42003-022-03088-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
Climatic anomalies are increasing in intensity and frequency due to rapid rates of global change, leading to increased extinction risk for many species. The impacts of anomalies are likely to vary between species due to different degrees of sensitivity and extents of local adaptation. Here, we used long-term butterfly monitoring data of 143 species across six European bioclimatic regions to show how species’ population dynamics have responded to local or globally-calculated climatic anomalies, and how species attributes mediate these responses. Contrary to expectations, degree of apparent local adaptation, estimated from the relative population sensitivity to local versus global anomalies, showed no associations with species mobility or reproductive rate but did contain a strong phylogenetic signal. The existence of phylogenetically-patterned local adaptation to climate has important implications for forecasting species responses to current and future climatic conditions and for developing appropriate conservation practices. Melero et al. investigate butterfly responses to climatic anomalies from long-term monitoring observations in the field. They found the degree of adaptation to local fluctuations in climate had a strong phylogenetic signal but was not associated with mobility or reproductive rate of a species.
Collapse
|
32
|
Cavedon M, vonHoldt B, Hebblewhite M, Hegel T, Heppenheimer E, Hervieux D, Mariani S, Schwantje H, Steenweg R, Theoret J, Watters M, Musiani M. Genomic legacy of migration in endangered caribou. PLoS Genet 2022; 18:e1009974. [PMID: 35143486 PMCID: PMC8830729 DOI: 10.1371/journal.pgen.1009974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Wide-ranging animals, including migratory species, are significantly threatened by the effects of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in nearly a quarter of species being at risk of extinction. Caribou are one such example of a wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the proportion of individuals considered as "migrants" can vary dramatically. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans, and this impact could result in the permanent loss of the migratory trait in some populations. However, genetic determination of migration has not previously been studied in an endangered terrestrial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in western North America and carried out genomic scans for the same individuals. Here we determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster. We also detect >50 SNPs associated with migratory behavior, which are in genes with hypothesized roles in determining migration in other organisms. Furthermore, we determine that propensity to migrate depends upon the proportion of ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report, migratory behavior is influenced by genes, caribou could be further impacted by the loss of the migratory trait in some isolated populations already at low numbers. Our results indicating an ancestral genetic component also suggest that the migratory trait and their associated genetic mutations could not be easily re-established when lost in a population.
Collapse
Affiliation(s)
- Maria Cavedon
- Faculty of Environmental Design, University of Calgary, Calgary, Alberta, Canada
| | - Bridgett vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mark Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America
| | - Troy Hegel
- Yukon Department of Environment, Whitehorse, Yukon, Canada
| | - Elizabeth Heppenheimer
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Dave Hervieux
- Fish and Wildlife Stewardship Branch, Alberta Environment and Parks, Grande Prairie, Alberta, Canada
| | - Stefano Mariani
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Helen Schwantje
- Wildlife and Habitat Branch, Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Government of British Columbia, Nanaimo, British Columbia, Canada
| | - Robin Steenweg
- Pacific Region, Canadian Wildlife Service, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Jessica Theoret
- Faculty of Environmental Design, University of Calgary, Calgary, Alberta, Canada
| | - Megan Watters
- Land and Resource Specialist, Fort St. John, British Columbia, Canada
| | - Marco Musiani
- Department of Biological Sciences, Faculty of Science and Veterinary Medicine (Joint Appointment), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Franzke M, Kraus C, Gayler M, Dreyer D, Pfeiffer K, el Jundi B. Stimulus-dependent orientation strategies in monarch butterflies. J Exp Biol 2022; 225:274064. [PMID: 35048981 PMCID: PMC8918799 DOI: 10.1242/jeb.243687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022]
Abstract
Insects are well-known for their ability to keep track of their heading direction based on a combination of skylight cues and visual landmarks. This allows them to navigate back to their nest, disperse throughout unfamiliar environments, as well as migrate over large distances between their breeding and non-breeding habitats. The monarch butterfly (Danaus plexippus) for instance is known for its annual southward migration from North America to certain trees in Central Mexico. To maintain a constant flight route, these butterflies use a time-compensated sun compass for orientation which is processed in a region in the brain, termed the central complex. However, to successfully complete their journey, the butterflies’ brain must generate a multitude of orientation strategies, allowing them to dynamically switch from sun-compass orientation to a tactic behavior toward a certain target. To study if monarch butterflies exhibit different orientation modes and if they can switch between them, we observed the orientation behavior of tethered flying butterflies in a flight simulator while presenting different visual cues to them. We found that the butterflies’ behavior depended on the presented visual stimulus. Thus, while a dark stripe was used for flight stabilization, a bright stripe was fixated by the butterflies in their frontal visual field. If we replaced a bright stripe by a simulated sun stimulus, the butterflies switched their behavior and exhibited compass orientation. Taken together, our data show that monarch butterflies rely on and switch between different orientation modes, allowing the animal to adjust orientation to its actual behavioral demands.
Collapse
Affiliation(s)
- Myriam Franzke
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| | - Christian Kraus
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| | - Maria Gayler
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| | - David Dreyer
- Lund University, Department of Biology, Lund Vision Group, Lund, Sweden
| | - Keram Pfeiffer
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| | - Basil el Jundi
- University of Wuerzburg, Biocenter, Zoology II, Würzburg, Germany
| |
Collapse
|
34
|
Baert JM, Stienen EWM, Verbruggen F, Van de Weghe N, Lens L, Müller W. Resource predictability drives interannual variation in migratory behavior in a long-lived bird. Behav Ecol 2021. [DOI: 10.1093/beheco/arab132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
There is a growing awareness that experience may play a major role in migratory decisions, especially in long-lived species. However, empirical support remains to date scarce. Here, we use multiyear GPS-tracking data on 28 adult Lesser Black-backed Gulls (Larus fuscus), a long-lived species for which migratory strategies typically consist of a series of long stopovers, to assess how experience affects interannual variation in stopover selection. We expect that food source reliability should play a pivotal role, as it both reduces the uncertainty on food availability across years, and enables for more efficient foraging during stopovers by reducing searching efforts. We found that during stopovers gulls indeed developed high fidelity to particular foraging locations, which strongly reduced the daily distance travelled for foraging. When revisiting stopovers in consecutive years, birds used over 80% of foraging locations from the previous year. Although the average fidelity to stopovers across years was a high as 85%, stopovers where birds showed high foraging site fidelity were up to 60% more likely to be revisited compared to stopover with low foraging site fidelity. Accordingly, birds using more stopovers with reliable foraging opportunities showed significantly less interannual variation in their stopover use than birds using stopovers with less reliable foraging opportunities. Our results thus highlight the need to further deepen our understanding of the role of cognitive processes in individual variation in migratory behavior.
Collapse
Affiliation(s)
- Jan M Baert
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Eric W M Stienen
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Frederick Verbruggen
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan, Ghent, Belgium
| | - Nico Van de Weghe
- Department of Geography, CartoGIS Unit, Ghent University, Krijgslaan, Ghent, Belgium
| | - Luc Lens
- Department of Biology, Terrestrial Ecology Unit, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Wendt Müller
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
| |
Collapse
|
35
|
Fudickar AM, Jahn AE, Ketterson ED. Animal Migration: An Overview of One of Nature's Great Spectacles. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-031035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The twenty-first century has witnessed an explosion in research on animal migration, in large part due to a technological revolution in tracking and remote-sensing technologies, along with advances in genomics and integrative biology. We now have access to unprecedented amounts of data on when, where, and how animals migrate across various continents and oceans. Among the important advancements, recent studies have uncovered a surprising level of variation in migratory trajectories at the species and population levels with implications for both speciation and the conservation of migratory populations. At the organismal level, studies linking molecular and physiological mechanisms to traits that support migration have revealed a remarkable amount of seasonal flexibility in many migratory animals. Advancements in the theory for why animals migrate have resulted in promising new directions for empirical studies. We provide an overview of the current state of knowledge and promising future avenues of study.
Collapse
Affiliation(s)
- Adam M. Fudickar
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405, USA;, ,
| | - Alex E. Jahn
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405, USA;, ,
| | - Ellen D. Ketterson
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405, USA;, ,
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
36
|
Westerman EL, Bowman SEJ, Davidson B, Davis MC, Larson ER, Sanford CPJ. Deploying Big Data to Crack the Genotype to Phenotype Code. Integr Comp Biol 2021; 60:385-396. [PMID: 32492136 DOI: 10.1093/icb/icaa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanistically connecting genotypes to phenotypes is a longstanding and central mission of biology. Deciphering these connections will unite questions and datasets across all scales from molecules to ecosystems. Although high-throughput sequencing has provided a rich platform on which to launch this effort, tools for deciphering mechanisms further along the genome to phenome pipeline remain limited. Machine learning approaches and other emerging computational tools hold the promise of augmenting human efforts to overcome these obstacles. This vision paper is the result of a Reintegrating Biology Workshop, bringing together the perspectives of integrative and comparative biologists to survey challenges and opportunities in cracking the genotype to phenotype code and thereby generating predictive frameworks across biological scales. Key recommendations include promoting the development of minimum "best practices" for the experimental design and collection of data; fostering sustained and long-term data repositories; promoting programs that recruit, train, and retain a diversity of talent; and providing funding to effectively support these highly cross-disciplinary efforts. We follow this discussion by highlighting a few specific transformative research opportunities that will be advanced by these efforts.
Collapse
Affiliation(s)
- Erica L Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sarah E J Bowman
- High-Throughput Crystallization Screening Center, Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA.,Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, NY 14203, USA
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Marcus C Davis
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Eric R Larson
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Christopher P J Sanford
- Department of Ecology, Evolution and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| |
Collapse
|
37
|
Climate Change Impacts on Himalayan Biodiversity: Evidence-Based Perception and Current Approaches to Evaluate Threats Under Climate Change. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00237-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
The genetic regulation of avian migration timing: combining candidate genes and quantitative genetic approaches in a long-distance migrant. Oecologia 2021; 196:373-387. [PMID: 33963450 DOI: 10.1007/s00442-021-04930-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Plant and animal populations can adapt to prolonged environmental changes if they have sufficient genetic variation in important phenological traits. The genetic regulation of annual cycles can be studied either via candidate genes or through the decomposition of phenotypic variance by quantitative genetics. Here, we combined both approaches to study the timing of migration in a long-distance migrant, the collared flycatcher (Ficedula albicollis). We found that none of the four studied candidate genes (CLOCK, NPAS2, ADCYAP1 and CREB1) had any consistent effect on the timing of six annual cycle stages of geolocator-tracked individuals. This negative result was confirmed by direct observations of males arriving in spring to the breeding site over four consecutive years. Although male spring arrival date was significantly repeatable (R = 0.24 ± 0.08 SE), most was attributable to permanent environmental effects, while the additive genetic variance and heritability were very low (h2 = 0.03 ± 0.17 SE). This low value constrains species evolutionary adaptation, and our study adds to warnings that such populations may be threatened, e.g. by ongoing climate change.
Collapse
|
39
|
Development and Control of Behaviour. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Abstract
Diadromy, the predictable movements of individuals between marine and freshwater environments, is biogeographically and phylogenetically widespread across fishes. Thus, despite the high energetic and potential fitness costs involved in moving between distinct environments, diadromy appears to be an effective life history strategy. Yet, the origin and molecular mechanisms that underpin this migratory behavior are not fully understood. In this review, we aim first to summarize what is known about diadromy in fishes; this includes the phylogenetic relationship among diadromous species, a description of the main hypotheses regarding its origin, and a discussion of the presence of non-migratory populations within diadromous species. Second, we discuss how recent research based on -omics approaches (chiefly genomics, transcriptomics, and epigenomics) is beginning to provide answers to questions on the genetic bases and origin(s) of diadromy. Finally, we suggest future directions for -omics research that can help tackle questions on the evolution of diadromy.
Collapse
Affiliation(s)
- M. Lisette Delgado
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Daniel E. Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
41
|
van Oers K, Sepers B, Sies W, Gawehns F, Verhoeven KJF, Laine VN. Epigenetics of Animal Personality: DNA Methylation Cannot Explain the Heritability of Exploratory Behavior in a Songbird. Integr Comp Biol 2020; 60:1517-1530. [PMID: 33031487 PMCID: PMC7742756 DOI: 10.1093/icb/icaa138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The search for the hereditary mechanisms underlying quantitative traits traditionally focused on the identification of underlying genomic polymorphisms such as single-nucleotide polymorphisms. It has now become clear that epigenetic mechanisms, such as DNA methylation, can consistently alter gene expression over multiple generations. It is unclear, however, if and how DNA methylation can stably be transferred from one generation to the next and can thereby be a component of the heritable variation of a trait. In this study, we explore whether DNA methylation responds to phenotypic selection using whole-genome and genome-wide bisulfite approaches. We assessed differential erythrocyte DNA methylation patterns between extreme personality types in the Great Tit (Parus major). For this, we used individuals from a four-generation artificial bi-directional selection experiment and siblings from eight F2 inter-cross families. We find no differentially methylated sites when comparing the selected personality lines, providing no evidence for the so-called epialleles associated with exploratory behavior. Using a pair-wise sibling design in the F2 intercrosses, we show that the genome-wide DNA methylation profiles of individuals are mainly explained by family structure, indicating that the majority of variation in DNA methylation in CpG sites between individuals can be explained by genetic differences. Although we found some candidates explaining behavioral differences between F2 siblings, we could not confirm this with a whole-genome approach, thereby confirming the absence of epialleles in these F2 intercrosses. We conclude that while epigenetic variation may underlie phenotypic variation in behavioral traits, we were not able to find evidence that DNA methylation can explain heritable variation in personality traits in Great Tits.
Collapse
Affiliation(s)
- Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
- Behavioural Ecology Group, Wageningen University & Research, Wageningen, P.O. Box 338, 6700 AH, the Netherlands
| | - Bernice Sepers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
- Behavioural Ecology Group, Wageningen University & Research, Wageningen, P.O. Box 338, 6700 AH, the Netherlands
| | - William Sies
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
| | - Fleur Gawehns
- Bioinformatics Unit, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
| | - Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
42
|
Merlin C, Iiams SE, Lugena AB. Monarch Butterfly Migration Moving into the Genetic Era. Trends Genet 2020; 36:689-701. [DOI: 10.1016/j.tig.2020.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
|
43
|
Abstract
Migration is a complex trait that often has genetic underpinnings. However, it is unclear if migratory behaviour itself is inherited (direct genetic control), or if the decision to migrate is instead the outcome of a set of physiological traits (indirect genetic control). For steelhead/rainbow trout (Oncorhynchus mykiss), migration is strongly linked to a large genomic region across their range. Here, we demonstrate a shared allelic basis between early life growth rate and migratory behaviour. Next, we demonstrate that early life growth differs among resident/migratory genotypes in wild juveniles several months prior to migration, with resident genotypes achieving a larger size in their first few months of life than migratory genotypes. We suggest that the genetic basis of migration is likely indirect and mediated by physiological traits such as growth rate. Evolutionary benefits of this indirect genetic mechanism likely include flexibility among individuals and persistence of life-history diversity within and among populations.
Collapse
Affiliation(s)
- Suzanne J Kelson
- Global Water Center, Biology Department, University of Nevada, Reno, NV, USA
| | - Stephanie M Carlson
- Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Michael R Miller
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
44
|
Wang S, Minter M, Homem RA, Michaelson LV, Venthur H, Lim KS, Withers A, Xi J, Jones CM, Zhou J. Odorant binding proteins promote flight activity in the migratory insect,
Helicoverpa armigera. Mol Ecol 2020; 29:3795-3808. [DOI: 10.1111/mec.15556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/27/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Shang Wang
- College of Plant Sciences Jilin University Changchun China
- Biointeractions and Crop Protection Rothamsted Research Harpenden UK
| | - Melissa Minter
- Biointeractions and Crop Protection Rothamsted Research Harpenden UK
- Department of Biology University of York York UK
| | - Rafael A. Homem
- Biointeractions and Crop Protection Rothamsted Research Harpenden UK
| | | | - Herbert Venthur
- Laboratorio de Química Ecológica Departamento de Ciencias Químicas y Recursos Naturales Universidad de La Frontera Temuco Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA) Universidad de La Frontera Temuco Chile
| | - Ka S. Lim
- Biointeractions and Crop Protection Rothamsted Research Harpenden UK
| | - Amy Withers
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Jinghui Xi
- College of Plant Sciences Jilin University Changchun China
| | - Christopher M. Jones
- Biointeractions and Crop Protection Rothamsted Research Harpenden UK
- Vector Biology Department Liverpool School of Tropical Medicine Liverpool UK
| | - Jing‐Jiang Zhou
- College of Plant Sciences Jilin University Changchun China
- Biointeractions and Crop Protection Rothamsted Research Harpenden UK
| |
Collapse
|
45
|
Franzke M, Kraus C, Dreyer D, Pfeiffer K, Beetz MJ, Stöckl AL, Foster JJ, Warrant EJ, El Jundi B. Spatial orientation based on multiple visual cues in non-migratory monarch butterflies. J Exp Biol 2020; 223:jeb223800. [PMID: 32341174 DOI: 10.1242/jeb.223800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022]
Abstract
Monarch butterflies (Danaus plexippus) are prominent for their annual long-distance migration from North America to their overwintering area in Central Mexico. To find their way on this long journey, they use a sun compass as their main orientation reference but will also adjust their migratory direction with respect to mountain ranges. This indicates that the migratory butterflies also attend to the panorama to guide their travels. Although the compass has been studied in detail in migrating butterflies, little is known about the orientation abilities of non-migrating butterflies. Here, we investigated whether non-migrating butterflies - which stay in a more restricted area to feed and breed - also use a similar compass system to guide their flights. Performing behavioral experiments on tethered flying butterflies in an indoor LED flight simulator, we found that the monarchs fly along straight tracks with respect to a simulated sun. When a panoramic skyline was presented as the only orientation cue, the butterflies maintained their flight direction only during short sequences, suggesting that they potentially use it for flight stabilization. We further found that when we presented the two cues together, the butterflies incorporate both cues in their compass. Taken together, we show here that non-migrating monarch butterflies can combine multiple visual cues for robust orientation, an ability that may also aid them during their migration.
Collapse
Affiliation(s)
- Myriam Franzke
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - Christian Kraus
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - David Dreyer
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Keram Pfeiffer
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - M Jerome Beetz
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - Anna L Stöckl
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| | - James J Foster
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Eric J Warrant
- Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| | - Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, 97074 Würzburg, Germany
| |
Collapse
|
46
|
Waters J, Emerson B, Arribas P, McCulloch G. Dispersal Reduction: Causes, Genomic Mechanisms, and Evolutionary Consequences. Trends Ecol Evol 2020; 35:512-522. [DOI: 10.1016/j.tree.2020.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/23/2022]
|
47
|
Bingman VP, Ewry EM. On a Search for a Neurogenomics of Cognitive Processes Supporting Avian Migration and Navigation. Integr Comp Biol 2020; 60:967-975. [DOI: 10.1093/icb/icaa040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synopsis
The migratory behavioral profile of birds is characterized by considerable variation in migratory phenotype, and a number of distinct orientation and navigational mechanisms supports avian migration and homing. As such, bird navigation potentially offers a unique opportunity to investigate the neurogenomics of an often spectacular, naturally occurring spatial cognition. However, a number of factors may impede realization of this potential. First, aspects of the migratory behavior displayed by birds, including some navigational-support mechanisms, are under innate/genetic influence as, for example, young birds on their first migration display appropriate migratory orientation and timing without any prior experience and even when held in captivity from the time of birth. Second, many of the genes with an allelic variation that co-varies with migratory phenotype are genes that regulate processes unrelated to cognition. Where cognition and navigation clearly converge is in the familiar landmark/landscape navigation best studied in homing pigeons and known to be dependent on the hippocampus. Encouraging here are differences in the hippocampal organization among different breeds of domestic pigeons and a different allelic profile in the LRP8 gene of homing pigeons. A focus on the hippocampus also suggests that differences in developmentally active genes that promote hippocampal differentiation might also be genes where allelic or epigenetic variation could explain the control of or comparison-group differences in a cognition of navigation. Sobering, however, is just how little has been learned about the neurogenomics of cognition (“intelligence”) in humans despite the vast resources and research activity invested; resources that would be unimaginable for any avian study investigating bird navigation.
Collapse
Affiliation(s)
- Verner P Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Emily M Ewry
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
48
|
Wan G, Liu R, Li C, He J, Pan W, Sword GA, Hu G, Chen F. Change in geomagnetic field intensity alters migration-associated traits in a migratory insect. Biol Lett 2020; 16:20190940. [PMID: 32343935 DOI: 10.1098/rsbl.2019.0940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Geomagnetic field (GMF) intensity can be used by some animals to determine their position during migration. However, its role, if any, in mediating other migration-related phenotypes remains largely unknown. Here, we simulated variation in GMF intensity between two locations along the migration route of a nocturnal insect migrant, the brown planthopper Nilaparvata lugens, that varied by approximately 5 µT in field intensity. After one generation of exposure, we tested for changes in key morphological, behavioural and physiological traits related to migratory performance, including wing dimorphism, flight capacity and positive phototaxis. Our results showed that all three morphological and behavioural phenotypes responded to a small difference in magnetic field intensity. Consistent magnetic responses in the expression of the phototaxis-related Drosophila-like cryptochrome 1 (Cry1) gene and levels of two primary energy substrates used during flight, triglyceride and trehalose, were also found. Our findings indicate changes in GMF intensity can alter the expression of phenotypes critical for insect migration and highlight the unique role of magnetoreception as a trait that may help migratory insects express potentially beneficial phenotypes in geographically variable environments.
Collapse
Affiliation(s)
- Guijun Wan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ruiying Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chunxu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jinglan He
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Gao Hu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
49
|
|
50
|
Abstract
Migratory behaviour is rapidly changing in response to recent environmental changes, yet it is difficult to predict how migration will evolve in the future. To understand what determines the rate of adaptive evolutionary change in migratory behaviour, we simulated the evolution of residency using an individual-based threshold model, which allows for variation in selection, number of genes, environmental effects and assortative mating. Our model indicates that the recent reduction in migratory activity found in a population of Eurasian blackcaps (Sylvia atricapilla) is only compatible with this trait being under strong directional selection, in which residents have the highest fitness and fitness declines exponentially with migration distance. All other factors had minor effects on the adaptive response. Under this form of selection, a completely migratory population will become partially migratory in 6 and completely resident in 98 generations, demonstrating the persistence of partial migration, even under strong directional selection. Resident populations will preserve large amounts of cryptic genetic variation, particularly if migration is controlled by a large number of genes with small effects. This model can be used to realistically simulate the evolution of any threshold trait, including semi-continuous traits like migration, for predicting evolutionary response to natural selection in the wild.
Collapse
Affiliation(s)
- Tiago de Zoeten
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Pulido
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|