1
|
Grote M, Gorb SN, Büscher TH. The effect of age on the attachment ability of stick insects (Phasmatodea). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:867-883. [PMID: 39076693 PMCID: PMC11285055 DOI: 10.3762/bjnano.15.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
Many insect species have found their way into ageing research as small and easy-to-keep model organisms. A major sign of ageing is the loss of locomotory functions due to neuronal disorders or tissue wear. Soft and pliable attachment pads on the tarsi of insects adapt to the substrate texture to maximize their real contact area and, thereby, generate attachment during locomotion. In the majority of stick insects, adhesive microstructures covering those pads support attachment. Stick insects do not molt again after reaching the imaginal stage; hence, the cuticle of their pads is subject to continuous ageing. This study aims to quantify how attachment ability changes with age in the stick insect Sungaya aeta Hennemann, 2023 and elucidate the age effects on the material and microstructure of the attachment apparatus. Attachment performance (adhesion and friction forces) on substrates with different roughnesses was compared between two different age groups, and the change of attachment performance was monitored extending over a larger time frame. Ageing effects on the morphology of the attachment pads and the autofluorescence of the cuticle were documented using light, scanning electron, and confocal laser scanning microscopy. The results show that both adhesion and friction forces decline with age. Deflation of the pads, scarring of the cuticle, and alteration of the autofluorescence, likely indicating stiffening of the cuticle, were observed to accumulate over time. This would reduce the attachment ability of the insect, as pads lose their pliant properties and cannot properly maintain sufficient contact area with the substrate.
Collapse
Affiliation(s)
- Marie Grote
- Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Thies H Büscher
- Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| |
Collapse
|
2
|
Saccardi L, Schiebl J, Balluff F, Christ U, Gorb SN, Kovalev A, Schwarz O. Anti-Adhesive Surfaces Inspired by Bee Mandible Surfaces. Biomimetics (Basel) 2023; 8:579. [PMID: 38132517 PMCID: PMC10742288 DOI: 10.3390/biomimetics8080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Propolis, a naturally sticky substance used by bees to secure their hives and protect the colony from pathogens, presents a fascinating challenge. Despite its adhesive nature, honeybees adeptly handle propolis with their mandibles. Previous research has shown a combination of an anti-adhesive fluid layer and scale-like microstructures on the inner surface of bee mandibles. Our aim was to deepen our understanding of how surface energy and microstructure influence the reduction in adhesion for challenging substances like propolis. To achieve this, we devised surfaces inspired by the intricate microstructure of bee mandibles, employing diverse techniques including roughening steel surfaces, creating lacquer structures using Bénard cells, and moulding resin surfaces with hexagonal patterns. These approaches generated patterns that mimicked the bee mandible structure to varying degrees. Subsequently, we assessed the adhesion of propolis on these bioinspired structured substrates. Our findings revealed that on rough steel and resin surfaces structured with hexagonal dimples, propolis adhesion was significantly reduced by over 40% compared to unstructured control surfaces. However, in the case of the lacquer surface patterned with Bénard cells, we did not observe a significant reduction in adhesion.
Collapse
Affiliation(s)
- Leonie Saccardi
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
- Department of Biomechatronic Systems, FraunhoferInstitute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany
| | - Jonas Schiebl
- Department of Biomechatronic Systems, FraunhoferInstitute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany
| | - Franz Balluff
- Department of Applied Coating Technology, Fraunhofer-Institute for Manufacturing Engineering and Automation (IPA), 70569 Stuttgart, Germany
| | - Ulrich Christ
- Department of Applied Coating Technology, Fraunhofer-Institute for Manufacturing Engineering and Automation (IPA), 70569 Stuttgart, Germany
| | - Stanislav N. Gorb
- Department Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Alexander Kovalev
- Department Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Oliver Schwarz
- Department of Biomechatronic Systems, FraunhoferInstitute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Krings W, Gorb SN. Particle binding capacity of snail saliva. J Chem Phys 2023; 159:185101. [PMID: 37955324 DOI: 10.1063/5.0176668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Gastropods forage with their radula, a thin chitinous membrane with embedded teeth, which scratch across the substrate to lose food particles. During this interaction, the risk of loosening particles is obvious without having a specialized mechanism holding them on the tooth surface. As mucus secretions are essential in molluscan life cycles and the locomotion and attachment gels are known to have an instant high adhesion, we have hypothesized that the saliva could support particle retention during feeding. As adhesion of snail saliva was not studied before, we present here an experimental setup to test its particle-binding capacity using a large land snail (Lissachatina fulica, Stylommatophora, Heterobranchia). This experiment was also applied to the gels produced by the snail foot for comparison and can be potentially applied to various fluids present at a small volume in the future. We found, that the saliva has high particle retention capacity that is comparable to the foot glue of the snail. To gain some insight into the properties of the saliva, we additionally studied it in the scanning electron microscope, estimated its viscosity in a de-wetting experiment, and investigated its elemental composition using energy dispersive X-ray spectroscopy reveling higher contents of Ca, Zn and other potential cross-linkers similar to those found in the glue.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, 04103 Leipzig, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
4
|
Tan W, Zhang C, Wang R, Fu Y, Chen Q, Yang Y, Wang W, Zhang M, Xi N, Liu L. Uncover rock-climbing fish's secret of balancing tight adhesion and fast sliding for bioinspired robots. Natl Sci Rev 2023; 10:nwad183. [PMID: 37560444 PMCID: PMC10408705 DOI: 10.1093/nsr/nwad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 08/11/2023] Open
Abstract
The underlying principle of the unique dynamic adaptive adhesion capability of a rock-climbing fish (Beaufortia kweichowensis) that can resist a pull-off force of 1000 times its weight while achieving simultaneous fast sliding (7.83 body lengths per second (BL/S)) remains a mystery in the literature. This adhesion-sliding ability has long been sought for underwater robots. However, strong surface adhesion and fast sliding appear to contradict each other due to the need for high surface contact stress. The skillfully balanced mechanism of the tight surface adhesion and fast sliding of the rock-climbing fish is disclosed in this work. The Stefan force (0.1 mN/mm2) generated by micro-setae on pectoral fins and ventral fins leads to a 70 N/m2 adhesion force by conforming the overall body of the fish to a surface to form a sealing chamber. The pull-off force is neutralized simultaneously due to the negative pressure caused by the volumetric change of the chamber. The rock-climbing fish's micro-setae hydrodynamic interaction and sealing suction cup work cohesively to contribute to low friction and high pull-off-force resistance and can therefore slide rapidly while clinging to the surface. Inspired by this unique mechanism, an underwater robot is developed with incorporated structures that mimic the functionality of the rock-climbing fish via a micro-setae array attached to a soft self-adaptive chamber, a setup which demonstrates superiority over conventional structures in terms of balancing tight underwater adhesion and fast sliding.
Collapse
Affiliation(s)
- Wenjun Tan
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Ruiqian Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang 110122, China
| | - Qin Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610042, China
| | - Yongliang Yang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Mingjun Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ning Xi
- Emerging Technologies Institute, Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Hong Kong 999077, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| |
Collapse
|
5
|
Thomas J, Gorb SN, Büscher TH. Influence of surface free energy of the substrate and flooded water on the attachment performance of stick insects (Phasmatodea) with different adhesive surface microstructures. J Exp Biol 2023; 226:286279. [PMID: 36606728 DOI: 10.1242/jeb.244295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023]
Abstract
Stick and leaf insects (Phasmatodea) are exclusively herbivores. As they settle in a broad range of habitats, they need to attach to and walk on a wide variety of plant substrates, which can vary in their surface free energy (SFE). The adhesive microstructures (AMs) on the euplantulae of phasmids are assumed to be adapted to such substrate properties. Moreover, the natural substrates can often be covered with water as a result of high relative humidity or rain. Although considerable experimental research has been carried out on different aspects of stick insect attachment, the adaptations to cope with the influence of flooded water on attachment performance remain unclear. To elucidate the role of AMs in this context, we here measured attachment forces in three species of stick insects with different AMs. The results show that attachment forces of the three species studied were influenced by the SFE and the presence of water: they all showed higher pull-off (vertical) and traction (horizontal) forces on dry surfaces, compared with when the surfaces were covered with a water film. However, the extent to which the surface properties influenced attachment differed depending on the species and its AMs. All three species showed approximately the same attachment performance on dry surfaces with different surface free energy but maintained attachment underwater to different extents.
Collapse
Affiliation(s)
- Julian Thomas
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Thies H Büscher
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
6
|
Bergmann JB, Moatsou D, Steiner U, Wilts BD. Bio-inspired materials to control and minimise insect attachment. BIOINSPIRATION & BIOMIMETICS 2022; 17:051001. [PMID: 36099911 DOI: 10.1088/1748-3190/ac91b9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
More than three quarters of all animal species on Earth are insects, successfully inhabiting most ecosystems on the planet. Due to their opulence, insects provide the backbone of many biological processes, but also inflict adverse impacts on agricultural and stored products, buildings and human health. To countermeasure insect pests, the interactions of these animals with their surroundings have to be fully understood. This review focuses on the various forms of insect attachment, natural surfaces that have evolved to counter insect adhesion, and particularly features recently developed synthetic bio-inspired solutions. These bio-inspired solutions often enhance the variety of applicable mechanisms observed in nature and open paths for improved technological solutions that are needed in a changing global society.
Collapse
Affiliation(s)
- Johannes B Bergmann
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Dafni Moatsou
- Institute of Organic Chemistry, Karlsruhe Institute for Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| |
Collapse
|
7
|
van den Boogaart LM, Langowski JKA, Amador GJ. Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction. Biomimetics (Basel) 2022; 7:biomimetics7030134. [PMID: 36134938 PMCID: PMC9496521 DOI: 10.3390/biomimetics7030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Controlled, reversible attachment is widely spread throughout the animal kingdom: from ticks to tree frogs, whose weights span from 2 mg to 200 g, and from geckos to mosquitoes, who stick under vastly different situations, such as quickly climbing trees and stealthily landing on human hosts. A fascinating and complex interplay of adhesive and frictional forces forms the foundation of attachment of these highly diverse systems to various substrates. In this review, we present an overview of the techniques used to quantify the adhesion and friction of terrestrial animals, with the aim of informing future studies on the fundamentals of bioadhesion, and motivating the development and adoption of new or alternative measurement techniques. We classify existing methods with respect to the forces they measure, including magnitude and source, i.e., generated by the whole body, single limbs, or by sub-structures. Additionally, we compare their versatility, specifically what parameters can be measured, controlled, and varied. This approach reveals critical trade-offs of bioadhesion measurement techniques. Beyond stimulating future studies on evolutionary and physicochemical aspects of bioadhesion, understanding the fundamentals of biological attachment is key to the development of biomimetic technologies, from soft robotic grippers to gentle surgical tools.
Collapse
Affiliation(s)
- Luc M. van den Boogaart
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Julian K. A. Langowski
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Correspondence: (J.K.A.L.); (G.J.A.)
| | - Guillermo J. Amador
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Correspondence: (J.K.A.L.); (G.J.A.)
| |
Collapse
|
8
|
Saccardi L, Brümmer F, Schiebl J, Schwarz O, Kovalev A, Gorb S. Interaction between honeybee mandibles and propolis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:958-974. [PMID: 36161253 PMCID: PMC9490071 DOI: 10.3762/bjnano.13.84] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
In a biomimetic top-down process, challenging the problem of resin deposition on woodworking machine tools, an adequate biological model was sought, which hypothetically could have developed evolutionary anti-adhesive strategies. The honeybee (Apis mellifera) was identified as an analogue model since it collects and processes propolis, which largely consists of collected tree resin. Propolis is a sticky substance used by bees to seal their hive and protect the colony against pathogens. In spite of its stickiness, honeybees are able to handle and manipulate propolis with their mandibles. We wanted to know if beneficial anti-adhesive properties of bee mandibles reduce propolis adhesion. The anatomy of bee mandibles was studied in a (cryo-)scanning electron microscope. Adhesion experiments were performed with propolis on bee mandibles to find out if bee mandibles have anti-adhesive properties that enable bees to handle the sticky material. A scale-like pattern was found on the inside of the mandible. Fresh mandibles were covered with a seemingly fluid substance that was at least partially removed during the washing process. Propolis adhesion on bee mandibles was measured to be 1 J/m2 and was indeed significantly lower compared to five technical materials. Propolis adhesion was higher on mandibles that were washed compared to fresh, unwashed mandibles. Results indicate that the medial surface of the mandible is covered with a fluid substance that reduces propolis adhesion. First results suggested that the surface pattern does do not have a direct effect on propolis adhesion.
Collapse
Affiliation(s)
- Leonie Saccardi
- University of Stuttgart, IBBS, Research Unit Biodiversity and Scientific Diving, Stuttgart, Germany
- Department Biomechatronic Systems, Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany
| | - Franz Brümmer
- University of Stuttgart, IBBS, Research Unit Biodiversity and Scientific Diving, Stuttgart, Germany
| | - Jonas Schiebl
- Department Biomechatronic Systems, Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany
| | - Oliver Schwarz
- Department Biomechatronic Systems, Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart, Germany
| | - Alexander Kovalev
- Department Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Stanislav Gorb
- Department Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
9
|
Jiang Q, Wang L, Weng Z, Wang Z, Dai Z, Chen W. Effect of the Structural Characteristics on Attachment-Detachment Mechanics of a Rigid-Flexible Coupling Adhesive Unit. Biomimetics (Basel) 2022; 7:biomimetics7030119. [PMID: 36134923 PMCID: PMC9496190 DOI: 10.3390/biomimetics7030119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
The terminal toes of adhesive animals are characterized by rigid-flexible coupling, and their structure–function relationship is an urgent problem to be solved in understanding bioinspired adhesive systems and the design of biomimetic adhesive units. In this paper, inspired by the rigid-flexible coupling adhesive system of the gecko toe, a rigid-flexible coupling adhesive unit was designed, the interface strength of the adhesives under different preloads was tested, and the model and analysis method of the compression and peeling process of the rigid-flexible coupling adhesive unit was established. Meanwhile, combined with the experimental test, the effect of the coupling mechanism of the rigid-flexible structure on the interfacial stress and the final peeling force during the compression and peeling process of the adhesive unit was studied. The research found that the length of the adhesive unit L has no apparent effect on the normal peel force of the system within a specific range, and the normal peeling force increases linearly with the increase in the compression force P; while the influence of the inclination angle θ0 of the adhesive unit and the thickness of the rigid backing layer hb on the final normal peeling force of the system presents nonlinear characteristics, when the inclination angle θ0 of the adhesive unit is 5°, and the thickness of the rigid backing layer hb is 0.2 mm or 0.3 mm, the normal peel force and the ratio of adhesion force to preload the system reaches its maximum value. Compared with the flexible adhesive unit, the compressed zone formed by the rigid-flexible coupling adhesive unit during the same compression process increased by 6.7 times, while under the same peeling force, the peel zone increased by 8 times, and the maximum normal tensile stress at the peeling end decreased by 20 times. The rigid-flexible coupling mechanics improves the uniformity of the contact stress during the compression and peeling process. The research results provide guidelines for the design of the rigid-flexible coupling adhesive unit, further providing the end effector of the bionic wall-climbing robot with a rigid-flexible coupled bionic design.
Collapse
Affiliation(s)
- Qijun Jiang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Liuwei Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhiyuan Weng
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhouyi Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen 518063, China
- Correspondence: (Z.W.); (W.C.)
| | - Zhendong Dai
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Weidong Chen
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Correspondence: (Z.W.); (W.C.)
| |
Collapse
|
10
|
Tran-Ngoc PT, Lim LZ, Gan JH, Wang H, Vo-Doan TT, Sato H. A robotic leg inspired from an insect leg. BIOINSPIRATION & BIOMIMETICS 2022; 17:056008. [PMID: 35700723 DOI: 10.1088/1748-3190/ac78b5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
While most insect-inspired robots come with a simple tarsus, such as a hemispherical foot tip, insect legs have complex tarsal structures and claws, which enable them to walk on complex terrain. Their sharp claws can smoothly attach and detach on plant surfaces by actuating a single muscle. Thus, installing an insect-inspired tarsus on legged robots would improve their locomotion on complex terrain. This paper shows that the tendon-driven ball-socket structure provides the tarsus with both flexibility and rigidity, which is necessary for the beetle to walk on a complex substrate such as a mesh surface. Disabling the tarsus' rigidity by removing the socket and elastic membrane of a tarsal joint, means that the claws could not attach to the mesh securely. Meanwhile, the beetle struggled to draw the claws out of the substrate when we turned the tarsus rigid by tubing. We then developed a cable-driven bio-inspired tarsus structure to validate the function of the tarsus as well as to show its potential application in the legged robot. With the tarsus, the robotic leg was able to attach and retract smoothly from the mesh substrate when performing a walking cycle.
Collapse
Affiliation(s)
- P Thanh Tran-Ngoc
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Leslie Ziqi Lim
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jia Hui Gan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hong Wang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, People's Republic of China
| | | | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Khan MN, Huo T, Zhang Q, Hu Z, Zhao J, Chen J, Wang Z, Ji K. Synergetic adhesion in highly adaptable bio-inspired adhesive. Colloids Surf B Biointerfaces 2022; 212:112335. [PMID: 35078054 DOI: 10.1016/j.colsurfb.2022.112335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
Biologically inspired adhesives microstructure requires enough flexibility to make a conformal attachment to the surface as well as high rigidity to maintain the mechanical stability of structure against buckling. To tackle these conflicting factors for the synthetic adhesives is a challenge towards large-scale production and utilizing in practical applications. Addressing this problem, we have fabricated a honeycomb structure with a soft elastic film, partially covering the cavity of the honeycomb pattern. Honeycomb structure provides enough support to maintain the structural stability of the microstructure and soft PDMS film over the pattern provides sufficient flexibility to form a strong attachment with the target surface. Meanwhile, the resemblance of the designed structure to the octopi's sucker generates a negative pressure resulting in suction forces. To justify this suction effect, we compared our results with other controlled honeycomb microstructures (1) without any elastic film (2) with elastic film covering the whole cavity of the honeycomb pattern. Experimental results and theoretical prediction demonstrate the synergistic role of van der Waals and suction forces in the proposed partial-film honeycomb microstructure. The synergistic role of adhesive forces makes this structure a stronger, durable, and surface adaptable adhesive. We also investigated the critical role of the viscous forces for our proposed microstructure in water and silicon oil wetting conditions which signify the contribution of capillary forces.
Collapse
Affiliation(s)
- Muhammad Niaz Khan
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Tingwei Huo
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Qian Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhuoyang Hu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiahui Zhao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jian Chen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhouyi Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Keju Ji
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
12
|
Wang Y, Zhang L, Guo Y, Gan Y, Liu G, Zhang D, Chen H. Air Bubble Bridge-Based Bioinspired Underwater Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103423. [PMID: 34554641 DOI: 10.1002/smll.202103423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Wet adhesion is greatly demanded in fields of wearable devices, wound dressings, and smart robotics. However, reusable, noninvasive and convenient adhesive pads in the liquid environment have remained a challenge. Here, a novel concept of underwater adhesion inspired by the diving beetle, which utilizes the air bubbles as an adhesive to realize nondestructive and repeatable adhesion working across a wide range of scales is shown. The mechanism of underwater bubble adhesion is revealed by the capillarity of air-bubble bridge, of which the property depends on the dynamic bubble contact angles and the gap distance. The design principle of the air bubble-based underwater adhesion is proposed and validated to tune the interfacial acting force by theoretical and experimental results. Finally, a strong, reusable surface adhesive based on air bubble bridges is demonstrated from macro- to microscales in applications of particle manipulation and particle self-assembly. This unique view of underwater bubble adhesion provides new ideas for broader applications.
Collapse
Affiliation(s)
- Yan Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Liwen Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Yurun Guo
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Yang Gan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Guang Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
13
|
Büscher TH, Gorb SN. Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:725-743. [PMID: 34354900 PMCID: PMC8290099 DOI: 10.3762/bjnano.12.57] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 05/25/2023]
Abstract
Adhesive pads are functional systems with specific micro- and nanostructures which evolved as a response to specific environmental conditions and therefore exhibit convergent traits. The functional constraints that shape systems for the attachment to a surface are general requirements. Different strategies to solve similar problems often follow similar physical principles, hence, the morphology of attachment devices is affected by physical constraints. This resulted in two main types of attachment devices in animals: hairy and smooth. They differ in morphology and ultrastructure but achieve mechanical adaptation to substrates with different roughness and maximise the actual contact area with them. Species-specific environmental surface conditions resulted in different solutions for the specific ecological surroundings of different animals. As the conditions are similar in discrete environments unrelated to the group of animals, the micro- and nanostructural adaptations of the attachment systems of different animal groups reveal similar mechanisms. Consequently, similar attachment organs evolved in a convergent manner and different attachment solutions can occur within closely related lineages. In this review, we present a summary of the literature on structural and functional principles of attachment pads with a special focus on insects, describe micro- and nanostructures, surface patterns, origin of different pads and their evolution, discuss the material properties (elasticity, viscoelasticity, adhesion, friction) and basic physical forces contributing to adhesion, show the influence of different factors, such as substrate roughness and pad stiffness, on contact forces, and review the chemical composition of pad fluids, which is an important component of an adhesive function. Attachment systems are omnipresent in animals. We show parallel evolution of attachment structures on micro- and nanoscales at different phylogenetic levels, focus on insects as the largest animal group on earth, and subsequently zoom into the attachment pads of the stick and leaf insects (Phasmatodea) to explore convergent evolution of attachment pads at even smaller scales. Since convergent events might be potentially interesting for engineers as a kind of optimal solution by nature, the biomimetic implications of the discussed results are briefly presented.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
14
|
Büscher TH, Gorb SN. Complementary effect of attachment devices in stick insects (Phasmatodea). ACTA ACUST UNITED AC 2019; 222:jeb.209833. [PMID: 31727762 DOI: 10.1242/jeb.209833] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022]
Abstract
Stick insects are well adapted in their locomotion to various surfaces and topographies of natural substrates. Single pad measurements characterised the pretarsal arolia of these insects as shear-sensitive adhesive pads and the tarsal euplantulae as load-sensitive friction pads. Different attachment microstructures on the euplantulae reveal an adaptation of smooth euplantulae to smooth surfaces and nubby eupantulae to a broader range of surface roughness. However, how different attachment pads and claws work in concert and how strong the contribution of different structures is to the overall attachment performance remains unclear. We therefore assessed combinatory effects in the attachment system of two stick insect species with different types of euplantular microstructures by analysing their usage in various posture situations and the performance on different levels of substrate roughness. For comparison, we provide attachment force data of the whole attachment system. The combination of claws, arolia and euplantulae provides mechanical interlocking on rough surfaces, adhesion and friction on smooth surfaces in different directions, and facilitates attachment on different inclines and on a broad range of surface roughness, with the least performance in the range 0.3-1.0 µm. On smooth surfaces, stick insects use arolia always, but employ euplantulae if the body weight can generate load on them (upright, wall). On structured surfaces, claws enable mechanical interlocking at roughnesses higher than 12 µm. On less-structured surfaces, the attachment strength depends on the use of pads and, corroborating earlier studies, favours smooth pads on smooth surfaces, but nubby euplantulae on micro-rough surfaces.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
15
|
Büscher TH, Kryuchkov M, Katanaev VL, Gorb SN. Versatility of Turing patterns potentiates rapid evolution in tarsal attachment microstructures of stick and leaf insects (Phasmatodea). J R Soc Interface 2019; 15:rsif.2018.0281. [PMID: 29925583 DOI: 10.1098/rsif.2018.0281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/30/2018] [Indexed: 11/12/2022] Open
Abstract
In its evolution, the diverse group of stick and leaf insects (Phasmatodea) has undergone a rapid radiation. These insects evolved specialized structures to adhere to different surfaces typical for their specific ecological environments. The cuticle of their tarsal attachment pads (euplantulae) is known to possess a high diversity of attachment microstructures (AMS) which are suggested to reflect ecological specializations of different groups within phasmids. However, the origin of these microstructures and their developmental background remain largely unknown. Here, based on the detailed scanning electron microscopy study of pad surfaces, we present a theoretical approach to mathematically model an outstanding diversity of phasmid AMS using the reaction-diffusion model by Alan Turing. In general, this model explains pattern formation in nature. For the first time, we were able to identify eight principal patterns and simulate the transitions among these. In addition, intermediate transitional patterns were predicted by the model. The ease of transformation suggests a high adaptability of the microstructures that might explain the rapid evolution of pad characters. We additionally discuss the functional morphology of the different microstructures and their assumed advantages in the context of the ecological background of species.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| | - Mikhail Kryuchkov
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Kiel, Germany
| |
Collapse
|
16
|
Adhesion of Soft Materials to Rough Surfaces: Experimental Studies, Statistical Analysis and Modelling. COATINGS 2018. [DOI: 10.3390/coatings8100350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Adhesion between rough surfaces is an active field of research where both experimental studies and theoretical modelling are used. However, it is rather difficult to conduct precise experimental evaluations of adhesive properties of the so-called anti-adhesive materials. Hence, it was suggested earlier by Purtov et al. (2013) to prepare epoxy resin replicas of surfaces having different topography and conduct depth-sensing indentation of the samples using a micro-force tester with a spherical smooth probe made of the compliant polydimethylsiloxane polymer in order to compare values of the force of adhesion to the surfaces. Surprising experimental observations were obtained in which a surface having very small roughness showed the greater value of the force of adhesion than the value for a replica of smooth surface. A plausible explanation of the data was given suggesting that these rough surfaces had full adhesive contact and their true contact area is greater than the area for a smooth surface, while the surfaces with higher values of roughness do not have full contact. Here, the experimental results of surface topography measurements and the statistical analysis of the data are presented. Several modern tests of normality used showed that the height distribution of the surfaces under investigation is normal (Gaussian) and hence the classic statistical models of adhesive contact between rough surfaces may formally be used. Employing one of the Galanov (2011) models of adhesive contact between rough surfaces, the plausible explanation of the experimental observations has been confirmed and theoretically justified.
Collapse
|
17
|
Voigt D, Gorb S. Functional morphology of tarsal adhesive pads and attachment ability in ticks Ixodes ricinus (Arachnida, Acari, Ixodidae). ACTA ACUST UNITED AC 2018; 220:1984-1996. [PMID: 28566356 DOI: 10.1242/jeb.152942] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/16/2017] [Indexed: 11/20/2022]
Abstract
The presence of well-developed, elastic claws on ticks and widely pilose hosts led us to hypothesise that ticks are mostly adapted to attachment and locomotion on rough, strongly corrugated and hairy, felt-like substrates. However, by using a combination of morphological and experimental approaches, we visualised the ultrastructure of attachment devices of Ixodes ricinus and showed that this species adheres more strongly to smooth surfaces than to rough ones. Between paired, elongated, curved, elastic claws, I. ricinus bears a large, flexible, foldable adhesive pad, which represents an adaptation to adhesion on smooth surfaces. Accordingly, ticks attached strongest to glass and to surface profiles similar to those of the human skin, generating safety factors (attachment force relative to body weight) up to 534 (females). Considerably lower attachment force was found on silicone substrates and as a result of thanatosis after jolting.
Collapse
Affiliation(s)
- Dagmar Voigt
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel D-24098, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel D-24098, Germany
| |
Collapse
|
18
|
Schroeder TBH, Houghtaling J, Wilts BD, Mayer M. It's Not a Bug, It's a Feature: Functional Materials in Insects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705322. [PMID: 29517829 DOI: 10.1002/adma.201705322] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/15/2017] [Indexed: 05/25/2023]
Abstract
Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect-inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem-solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.
Collapse
Affiliation(s)
- Thomas B H Schroeder
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
19
|
Sarmiento-Ponce EJ, Sutcliffe MPF, Hedwig B. Substrate texture affects female cricket walking response to male calling song. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172334. [PMID: 29657819 PMCID: PMC5882743 DOI: 10.1098/rsos.172334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Field crickets are extensively used as a model organism to study female phonotactic walking behaviour, i.e. their attraction to the male calling song. Laboratory-based phonotaxis experiments generally rely on arena or trackball-based settings; however, no attention has been paid to the effect of substrate texture on the response. Here, we tested phonotaxis in female Gryllus bimaculatus, walking on trackballs machined from methyl-methacrylate foam with different cell sizes. Surface height variations of the trackballs, due to the cellular composition of the material, were measured with profilometry and characterized as smooth, medium or rough, with roughness amplitudes of 7.3, 16 and 180 µm. Female phonotaxis was best on a rough and medium trackball surface, a smooth surface resulted in a significant lower phonotactic response. Claws of the cricket foot were crucial for effective walking. Females insert their claws into the surface pores to allow mechanical interlocking with the substrate texture and a high degree of attachment, which cannot be established on smooth surfaces. These findings provide insight to the biomechanical basis of insect walking and may inform behavioural studies that the surface texture on which walking insects are tested is crucial for the resulting behavioural response.
Collapse
Affiliation(s)
- E. J. Sarmiento-Ponce
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - M. P. F. Sutcliffe
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - B. Hedwig
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
20
|
Adhesion and friction in hunting spiders: The effect of contact splitting on their attachment ability. ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Rebora M, Michels J, Salerno G, Heepe L, Gorb E, Gorb S. Tarsal attachment devices of the southern green stink bug Nezara viridula
(Heteroptera: Pentatomidae). J Morphol 2018; 279:660-672. [DOI: 10.1002/jmor.20801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie; University of Perugia; Perugia 06121 Italy
| | - Jan Michels
- Department of Functional Morphology and Biomechanics; Zoological Institute, Kiel University; 24118 Kiel Germany
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali; University of Perugia; Perugia Italy
| | - Lars Heepe
- Department of Functional Morphology and Biomechanics; Zoological Institute, Kiel University; 24118 Kiel Germany
| | - Elena Gorb
- Department of Functional Morphology and Biomechanics; Zoological Institute, Kiel University; 24118 Kiel Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics; Zoological Institute, Kiel University; 24118 Kiel Germany
| |
Collapse
|
22
|
Schmitt C, Betz O. Morphology and ultrastructure of the tarsal adhesive organs of the Madagascar hissing cockroach Gromphadorhina portentosa. Cell Tissue Res 2017; 370:243-265. [DOI: 10.1007/s00441-017-2661-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/15/2017] [Indexed: 01/05/2023]
|
23
|
Attachment ability of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:601-611. [DOI: 10.1007/s00359-017-1177-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 11/25/2022]
|
24
|
Speidel MW, Kleemeier M, Hartwig A, Rischka K, Ellermann A, Daniels R, Betz O. Structural and tribometric characterization of biomimetically inspired synthetic "insect adhesives". BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:45-63. [PMID: 28144564 PMCID: PMC5238622 DOI: 10.3762/bjnano.8.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/14/2016] [Indexed: 05/12/2023]
Abstract
Background: Based on previous chemical analyses of insect tarsal adhesives, we prepared 12 heterogeneous synthetic emulsions mimicking the polar/non-polar principle, analysed their microscopical structure and tested their adhesive, frictional, and rheological properties. Results: The prepared emulsions varied in their consistency from solid rubber-like, over soft elastic, to fluid (watery or oily). With droplet sizes >100 nm, all the emulsions belonged to the common type of macroemulsions. The emulsions of the first generation generally showed broader droplet-size ranges compared with the second generation, especially when less defined components such as petrolatum or waxes were present in the lipophilic fraction of the first generation of emulsions. Some of the prepared emulsions showed a yield point and were Bingham fluids. Tribometric adhesion was tested via probe tack tests. Compared with the "second generation" (containing less viscous components), the "first generation" emulsions were much more adhesive (31-93 mN), a finding attributable to their highly viscous components, i.e., wax, petrolatum, gelatin and poly(vinyl alcohol). In the second generation emulsions, we attained much lower adhesivenesses, ranging between 1-18 mN. The adhesive performance was drastically reduced in the emulsions that contained albumin as the protein component or that lacked protein. Tribometric shear tests were performed at moderate normal loads. Our measured friction forces (4-93 mN in the first and 0.1-5.8 mN in the second generation emulsions) were comparatively low. Differences in shear performance were related to the chemical composition and emulsion structure. Conclusion: By varying their chemical composition, synthetic heterogeneous adhesive emulsions can be adjusted to have diverse consistencies and are able to mimic certain rheological and tribological properties of natural tarsal insect adhesives.
Collapse
Affiliation(s)
- Matthias W Speidel
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Malte Kleemeier
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, D-28359 Bremen, Germany
| | - Andreas Hartwig
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, D-28359 Bremen, Germany
- Universität Bremen, Fachbereich 2 Biologie/Chemie, Leobener Str., 28359 Bremen, Germany
| | - Klaus Rischka
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, D-28359 Bremen, Germany
| | - Angelika Ellermann
- Pharmazeutisches Institut, Universität Tübingen, Pharmazeutische Technologie und Biopharmazie, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | - Rolf Daniels
- Pharmazeutisches Institut, Universität Tübingen, Pharmazeutische Technologie und Biopharmazie, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | - Oliver Betz
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
25
|
Lee H, Um DS, Lee Y, Lim S, Kim HJ, Ko H. Octopus-Inspired Smart Adhesive Pads for Transfer Printing of Semiconducting Nanomembranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7457-7465. [PMID: 27322886 DOI: 10.1002/adma.201601407] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/15/2016] [Indexed: 06/06/2023]
Abstract
By mimicking muscle actuation to control cavity-pressure-induced adhesion of octopus suckers, smart adhesive pads are developed in which the thermoresponsive actuation of a hydrogel layer on elastomeric microcavity pads enables excellent switchable adhesion in response to a thermal stimulus (maximum adhesive strength: 94 kPa, adhesion switching ratio: ≈293 for temperature change between 22 and 61 °C).
Collapse
Affiliation(s)
- Hochan Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Doo-Seung Um
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Youngsu Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Seongdong Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 689-798, Republic of Korea
| | - Hyung-Jun Kim
- Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 689-798, Republic of Korea.
| |
Collapse
|
26
|
A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints. MATERIALS 2016; 9:ma9070566. [PMID: 28773688 PMCID: PMC5456843 DOI: 10.3390/ma9070566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/20/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022]
Abstract
There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.
Collapse
|
27
|
Song Y, Dai Z, Wang Z, Ji A, Gorb SN. The synergy between the insect-inspired claws and adhesive pads increases the attachment ability on various rough surfaces. Sci Rep 2016; 6:26219. [PMID: 27198650 PMCID: PMC4873747 DOI: 10.1038/srep26219] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/29/2016] [Indexed: 11/09/2022] Open
Abstract
To attach reliably on various inclined rough surfaces, many insects have evolved both claws and adhesive pads on their feet. However, the interaction between these organs still remains unclear. Here we designed an artificial attachment device, which mimics the structure and function of claws and adhesive pads, and tested it on stiff spheres of different dimensions. The results show that the attachment forces of claws decrease with an increase of the sphere radius. The forces may become very strong, when the sphere radius is smaller or comparable to the claw radius, because of the frictional self-lock. On the other hand, adhesive pads generate considerable adhesion on large sphere diameter due to large contact areas. The synergy effect between the claws and adhesive pads leads to much stronger attachment forces, if compared to the action of claw or adhesive pads independently (or even to the sum of both). The results carried out by our insect-inspired artificial attachment device clearly demonstrate why biological evolution employed two attachment organs working in concert. The results may greatly inspire the robot design, to obtain reliable attachment forces on various substrates.
Collapse
Affiliation(s)
- Yi Song
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016, Nanjing, China.,College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016, Nanjing, China
| | - Zhendong Dai
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016, Nanjing, China
| | - Zhouyi Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016, Nanjing, China
| | - Aihong Ji
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016, Nanjing, China
| | - Stanislav N Gorb
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, 210016, Nanjing, China.,Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| |
Collapse
|
28
|
King DR, Crosby AJ. Optimizing Adhesive Design by Understanding Compliance. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27771-27781. [PMID: 26618537 DOI: 10.1021/acsami.5b08934] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings.
Collapse
Affiliation(s)
- Daniel R King
- Polymer Science and Engineering Department, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
29
|
Wolff JO, Seiter M, Gorb SN. Functional anatomy of the pretarsus in whip spiders (Arachnida, Amblypygi). ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:524-540. [PMID: 26386460 DOI: 10.1016/j.asd.2015.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
Whip spiders (Amblypygi) are a small, cryptic order of arachnids mainly distributed in the tropics. Some basal lineages (families Charinidae and Charontidae) have adhesive pads on the tips of their six walking legs. The present study describes the macro- and ultrastructure of these pads and investigates their contact mechanics and adhesive strength on smooth and rough substrates. Furthermore, the structure of the pretarsus and its kinematics are compared in Charon cf. grayi (with an adhesive pad) and Phrynus longipes (without an adhesive pad). The adhesive pads exhibit an elaborate structure with a unique combination of structural features of smooth and hairy foot pads including a long transversal contact zone performing lateral detachment, a thick internally-branched cuticle with longitudinal ribs and hexagonal surface microstructures with spatulate keels. The contact area of the pads on smooth glass is discontinuous due to the spatulate microstructures with a discontinuous detachment, which could be observed in vivo by high speed videography at a rate of up to 10,000 fps. Adhesive strength was measured with vertical whole animal pull-off tests, obtaining mean values between 55 and 200 kPa. The occurrence of viscous lipid secretions between microstructures was occasionally observed, which, however, seems not to be a necessity for good foothold. The results are discussed in relation to the whip spider's ecology and evolution. Structure-function relationships of the adhesive pads are compared to those of insects and vertebrates.
Collapse
Affiliation(s)
- Jonas O Wolff
- Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 9, 24098 Kiel, Germany.
| | - Michael Seiter
- Arthropod Ecology and Behavior, Department of Crop Sciences, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, 1190 Vienna, Austria
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute, University of Kiel, Am Botanischen Garten 9, 24098 Kiel, Germany
| |
Collapse
|
30
|
|
31
|
Zheden V, Klepal W, Gorb SN, Kovalev A. Mechanical properties of the cement of the stalked barnacle Dosima fascicularis (Cirripedia, Crustacea). Interface Focus 2015; 5:20140049. [PMID: 25657833 PMCID: PMC4275868 DOI: 10.1098/rsfs.2014.0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The stalked barnacle Dosima fascicularis secretes foam-like cement, the amount of which usually exceeds that produced by other barnacles. When Dosima settles on small objects, this adhesive is additionally used as a float which gives buoyancy to the animal. The dual use of the cement by D. fascicularis requires mechanical properties different from those of other barnacle species. In the float, two regions with different morphological structure and mechanical properties can be distinguished. The outer compact zone with small gas-filled bubbles (cells) is harder than the interior one and forms a protective rind presumably against mechanical damage. The inner region with large, gas-filled cells is soft. This study demonstrates that D. fascicularis cement is soft and visco-elastic. We show that the values of the elastic modulus, hardness and tensile stress are considerably lower than in the rigid cement of other barnacles.
Collapse
Affiliation(s)
- Vanessa Zheden
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research , University of Vienna , Vienna , Austria
| | - Waltraud Klepal
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research , University of Vienna , Vienna , Austria
| | - Stanislav N Gorb
- Zoological Institute: Functional Morphology and Biomechanics , Kiel University , Kiel , Germany
| | - Alexander Kovalev
- Zoological Institute: Functional Morphology and Biomechanics , Kiel University , Kiel , Germany
| |
Collapse
|
32
|
Zhou Y, Robinson A, Viney C, Federle W. Effect of shear forces and ageing on the compliance of adhesive pads in adult cockroaches. J Exp Biol 2015. [DOI: 10.1242/jeb.124362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flexibility of insect adhesive pads is crucial for their ability to attach on rough surfaces. Here we use transparent substrates with micropillars to test in adult cockroaches (Nauphoeta cinerea) whether and how the stiffness of smooth adhesive pads changes when shear forces are applied, and whether the insect's age has any influence. We found that during pulls towards the body, the pad's ability to conform to the surface microstructures was improved in comparison to a contact without shear, suggesting that shear forces make the pad more compliant. The mechanism underlying this shear-dependent increase in compliance is still unclear. The effect was not explained by viscoelastic creep, changes in normal pressure, or shear-induced pad rolling, which brings new areas of cuticle into surface contact. Adhesive pads were significantly stiffer in older cockroaches. Stiffness increased most rapidly in cockroaches aged between 2.5 and 4 months. The increase in stiffness is likely based on wear and repair of the delicate adhesive cuticle. Recent wear (visualised by methylene blue staining) was not age-dependent, whereas permanent damage (visible as brown scars) accumulated with age, reducing the pads' flexibility.
Collapse
Affiliation(s)
- Yanmin Zhou
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Adam Robinson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Christine Viney
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Walter Federle
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
33
|
Gandyra D, Walheim S, Gorb S, Barthlott W, Schimmel T. The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:11-8. [PMID: 25671147 PMCID: PMC4311649 DOI: 10.3762/bjnano.6.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/21/2014] [Indexed: 05/21/2023]
Abstract
We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor) to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1) determination of the water adhesion force and the elasticity of individual hairs (trichomes) of the floating fern Salvinia molesta. (2) The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics) was performed. The method also resulted in the measurement of an elastic modulus (Young's modulus) for individual hairs of 3.0 × 10(5) N/cm(2), which is within the typical range known for human hair. (3) Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods.
Collapse
Affiliation(s)
- Daniel Gandyra
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Stefan Walheim
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Stanislav Gorb
- Zoological Institute, University of Kiel, 24118 Kiel, Germany
| | - Wilhelm Barthlott
- Nees Institute for Biodiversity of Plants, University of Bonn, 53115 Bonn, Germany
| | - Thomas Schimmel
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| |
Collapse
|
34
|
Ji A, Lei Y, Wang J, Ni Y, Dong B, Dai Z. Variation in spatial and temporal kinematics of level, vertical and inverted locomotion on a stinkbug Erthesina fullo. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Kleinteich T, Gorb SN. Tongue adhesion in the horned frog Ceratophrys sp. Sci Rep 2014; 4:5225. [PMID: 24921415 PMCID: PMC5381498 DOI: 10.1038/srep05225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/21/2014] [Indexed: 11/09/2022] Open
Abstract
Frogs are well-known to capture elusive prey with their protrusible and adhesive tongues. However, the adhesive performance of frog tongues and the mechanism of the contact formation with the prey item remain unknown. Here we measured for the first time adhesive forces and tongue contact areas in living individuals of a horned frog (Ceratophrys sp.) against glass. We found that Ceratophrys sp. generates adhesive forces well beyond its own body weight. Surprisingly, we found that the tongues adhered stronger in feeding trials in which the coverage of the tongue contact area with mucus was relatively low. Thus, besides the presence of mucus, other features of the frog tongue (surface profile, material properties) are important to generate sufficient adhesive forces. Overall, the experimental data shows that frog tongues can be best compared to pressure sensitive adhesives (PSAs) that are of common technical use as adhesive tapes or labels.
Collapse
Affiliation(s)
- Thomas Kleinteich
- Christian-Albrechts-Universität Kiel, Functional Morphology and Biomechanics, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Christian-Albrechts-Universität Kiel, Functional Morphology and Biomechanics, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
36
|
Friedemann K, Beutel RG. Morphology of arolia in Auchenorrhyncha (Insecta, Hemiptera). J Morphol 2014; 275:1217-25. [DOI: 10.1002/jmor.20290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/31/2014] [Accepted: 04/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Katrin Friedemann
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie; FSU Jena Jena 07743 Germany
- Max Planck Institute for Chemical Ecology; Jena 07745 Germany
| | - Rolf G. Beutel
- Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie; FSU Jena Jena 07743 Germany
| |
Collapse
|
37
|
Physical characterization of the liquid adhesive from orb-weaving spiders. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 34:341-4. [DOI: 10.1016/j.msec.2013.09.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/27/2013] [Accepted: 09/21/2013] [Indexed: 11/17/2022]
|
38
|
Tramacere F, Kovalev A, Kleinteich T, Gorb SN, Mazzolai B. Structure and mechanical properties of Octopus vulgaris suckers. J R Soc Interface 2013; 11:20130816. [PMID: 24284894 PMCID: PMC3869157 DOI: 10.1098/rsif.2013.0816] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers.
Collapse
Affiliation(s)
- Francesca Tramacere
- Center for Micro-BioRobotics@SSSA, Istituto Italiano di Tecnologia, , Pontedera, Italy
| | | | | | | | | |
Collapse
|
39
|
Borodich FM, Galanov BA, Gorb SN, Prostov MY, Prostov YI, Suarez-Alvarez MM. Evaluation of Adhesive and Elastic Properties of Polymers by the BG Method. MACROMOL REACT ENG 2013. [DOI: 10.1002/mren.201300107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feodor M. Borodich
- School of Engineering; Cardiff University, The Parade; Cardiff; CF24 3AA; UK
| | - Boris A. Galanov
- Institute for Problems in Materials Science; National Academy of Sciences of Ukraine; Kiev; 03142; Ukraine
| | - Stanislav N. Gorb
- Zoological Institute of the University of Kiel, Kiel D-24098; Germany
| | - Mikhail Y. Prostov
- Faculty of Mechanics and Mathematics; Moscow State University; Moscow; 119991; Russia
| | - Yuriy I. Prostov
- Moscow State Technical University of Radioengineering; Electronics and Automation; Moscow; 119454; Russia
| | | |
Collapse
|
40
|
Tsai CY, Chang CC. Auto-adhesive transdermal drug delivery patches using beetle inspired micropillar structures. J Mater Chem B 2013; 1:5963-5970. [DOI: 10.1039/c3tb20735h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
41
|
Xue L, Kovalev A, Thöle F, Rengarajan GT, Steinhart M, Gorb SN. Tailoring normal adhesion of arrays of thermoplastic, spring-like polymer nanorods by shaping nanorod tips. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10781-8. [PMID: 22746364 DOI: 10.1021/la3020354] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The tip shape of contact elements in hairy adhesion systems is crucial for proper contact formation and adhesion enhancement. While submicrometer terminal contact elements show much better adhesion performance than their larger counterparts, shaping their tips so as to maximize normal adhesion has remained challenging. We prepared durable nanorod arrays consisting of stiff, highly entangled thermoplastic polymers with rationally shaped tips by replication of anodic aluminum oxide (AAO). Nanorod arrays with pancake-like tips showed pronounced normal dry adhesion already for small loading forces. For small loading forces, adhesion forces significantly exceeded the loading forces. Both the absence of hysteresis in force/displacement curves and the pronounced durability of the nanorods in series of repeated attachment/detachment cycles suggest that the nanorods behave like elastic springs. Experimental load-adhesion curves were reproduced with a modified Schargott-Popov-Gorb (SPG) model, assuming that contacts between probe and individual nanorods are sequentially formed with increasing indentation depth.
Collapse
Affiliation(s)
- Longjian Xue
- Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Wang K, He B, Li MH, Ji Y. Fabrication of biomimetic wet adhesive pads with surface microstructures by combining electroforming with soft lithography. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2012. [DOI: 10.3103/s1068375512020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Peisker H, Gorb SN. Evaporation dynamics of tarsal liquid footprints in flies (Calliphora vicina)and beetles (Coccinella septempunctata). J Exp Biol 2012; 215:1266-71. [DOI: 10.1242/jeb.065722] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Insect tarsal adhesive structures secrete a thin layer of fluid into the contact area. It was previously reported that the presence of this fluid significantly increases adhesion on various substrata. Previous data obtained from representatives of different insect groups suggest a difference not only in the chemical composition of the fluid, but also in its physical properties. In the present study, we have measured for the first time changes in the droplet geometry over time and the evaporation rate of the fluid in flies (Calliphora vicina) and beetles (Coccinella septempunctata) by the use of atomic force microscopy. Flattened droplets of the beetle had lower evaporation rates than hemispherical footprints of the fly. Within 1 h, the droplet volume reduced to 21% of the initial volume for the fly, and to 65% for the beetle, suggesting a larger fraction of volatile compounds in the fly fluid. It was revealed that drop geometry changes significantly during evaporation and shows pinning effects for the fly footprints due to an assumed self-organizing oil layer on top of the water fraction of the micro-emulsion. The data obtained suggest that the adhesion strength in capillarity-based switchable adhesive systems must be time-dependent because of the specific evaporation rate of the adhesive fluid. These results are important for our understanding of the functional mechanism of insect adhesive systems and also for biomimetics of artificial capillarity-based adhesive systems.
Collapse
Affiliation(s)
- Henrik Peisker
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian Albrecht University of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian Albrecht University of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| |
Collapse
|
44
|
Functional morphology and adhesive performance of the stick-capture apparatus of the rove beetles Stenus spp. (Coleoptera, Staphylinidae). ZOOLOGY 2012; 115:117-27. [PMID: 22445573 DOI: 10.1016/j.zool.2011.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/15/2011] [Accepted: 09/18/2011] [Indexed: 11/22/2022]
Abstract
The adhesive prey-capture apparatus of the representatives of the rove beetle genus Stenus (Coleoptera, Staphylinidae) is an outstanding example of biological adhesive systems. This unique prey-capture device is used for catching elusive prey by combining (i) hierarchically structured adhesive outgrowths, (ii) an adhesive secretion, and (iii) a network of cuticular fibres within the pad. The outgrowths arise from a pad-like cuticle and are completely immersed within the secretion. To date, the forces generated during the predatory strike of these beetles have only been estimated theoretically. In the present study, we used force transducers to measure both the compressive and adhesive forces during the predatory strike of two Stenus species. The experiments revealed that the compressive forces are low, ranging from 0.10 mN (Stenus bimaculatus) to 0.18 mN (Stenus juno), whereas the corresponding adhesive forces attain up to 1.0 mN in S. juno and 1.08 mN in S. bimaculatus. The tenacity or adhesive strength (adhesive force per apparent unit area) amounts to 51.9 kPa (S. bimaculatus) and 69.7 kPa (S. juno). S. juno beetles possess significantly smaller pad surface areas than S. bimaculatus but seem to compensate for this disadvantage by generating higher compressive forces. Consequently, S. juno beetles reach almost identical adhesive properties and an equal prey-capture success in attacks on larger prey. The possible functions of the various parts of the adhesive system during the adhesive prey-capture process are discussed in detail.
Collapse
|
45
|
Bartlett MD, Croll AB, King DR, Paret BM, Irschick DJ, Crosby AJ. Looking beyond fibrillar features to scale gecko-like adhesion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1078-1083. [PMID: 22278804 DOI: 10.1002/adma.201104191] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/06/2011] [Indexed: 05/31/2023]
Abstract
Hand-sized gecko-inspired adhesives with reversible force capacities as high as 2950 N (29.5 N cm(-2) ) are designed without the use of fibrillar features through a simple scaling theory. The scaling theory describes both natural and synthetic gecko-inspired adhesives, over 14 orders of magnitude in adhesive force capacity, from nanoscopic to macroscopic length scales.
Collapse
Affiliation(s)
- Michael D Bartlett
- Polymer Science and Engineering Department, University of Massachusetts-Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
46
|
Koerner L, Gorb SN, Betz O. Adhesive performance of the stick-capture apparatus of rove beetles of the genus Stenus (Coleoptera, Staphylinidae) toward various surfaces. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:155-63. [PMID: 22119444 DOI: 10.1016/j.jinsphys.2011.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 05/14/2023]
Abstract
Rove beetles of the genus Stenus possess a unique adhesive prey-capture apparatus that enables them to catch elusive prey such as springtails over a distance of several millimeters. The prey-capture device combines the hierarchically organized morphology of dry adhesive systems with the properties of wet ones, since an adhesive secretion is released into the contact zone. We hypothesize that this combination enables Stenus species successfully to capture prey possessing a wide range of surface structures and chemistries. We have investigated the influence of both surface energy and roughness of the substrate on the adhesive performance of the prey-capture apparatus in two Stenus species. Force transducers have been used to measure both the compressive and adhesive forces generated during the predatory strike of the beetles on (1) epoxy resin surfaces with defined roughness values (smooth versus rough with asperity diameters ranging from 0.3 to 12 μm) and (2) hydrophobic versus hydrophilic glass surfaces. Our experiments show that neither the surface roughness nor the surface energy significantly influences the attachment ability of the prey-capture apparatus. Thus, in contrast to the performance of locomotory adhesive systems in geckos, beetles, and flies, no critical surface roughness exists that might impede adhesion of the prey-capture apparatus of Stenus beetles. The prey-capture apparatus of Stenus beetles is therefore well adapted to adhere to the various unpredictable surfaces with diverse roughness and surface energy occurring in a wide range of potential prey.
Collapse
Affiliation(s)
- Lars Koerner
- Department of Evolutionary Biology of Invertebrates, Institute for Evolution and Ecology, University Tübingen, Auf der Morgenstelle 28E, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
47
|
Han L, Wang Z, Ji A, Dai Z. Grip and detachment of locusts on inverted sandpaper substrates. BIOINSPIRATION & BIOMIMETICS 2011; 6:046005. [PMID: 21993149 DOI: 10.1088/1748-3182/6/4/046005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Locusts (Locusta migratoria manilensis) are characterized by their strong flying and grasping ability. Research on the grasping mechanism and behaviour of locusts on sloping substrates plays an important role in elucidating the mechanics of hexapod locomotion. Data on the maximum angles of slope at which locusts can grasp stably (critical angles of detachment) were obtained from high-speed video recordings at 215 fps. The grasping forces were collected by using two sensors, in situations where all left legs were standing on one and the right legs on the other sensor plate. These data were used to illustrate the grasping ability of locusts on slopes with varying levels of roughness. The grasping morphologies of locusts' bodies and tarsi were observed, and the surface roughness as well as diameters of their claw tips was measured under a microscope to account for the grasping mechanism of these insects on the sloping substrate. The results showed that the claw tips and part of the pads were in contact with the inverted substrate when the mean particle diameter was in the range of 15.3-40.5 µm. The interaction between pads and substrates may improve the stability of contact, and claw tips may play a key role in keeping the attachment reliable. A model was developed to explain the significant effects of the relative size of claw tips and mean particle diameter on grasping ability as well as the observed increase in lateral force (2.09-4.05 times greater than the normal force during detachment) with increasing slope angle, which indicates that the lateral force may be extremely important in keeping the contact reliable. This research lays the groundwork for the probable design and development of biomimetic robotics.
Collapse
Affiliation(s)
- Longbao Han
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | | | | | | |
Collapse
|
48
|
Busshardt P, Gorb SN, Wolf H. Activity of the claw retractor muscle in stick insects in wall and ceiling situations. ACTA ACUST UNITED AC 2011; 214:1676-84. [PMID: 21525313 DOI: 10.1242/jeb.051953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activity of the middle part of the claw retractor muscle was examined in two species of stick insects (Carausius morosus and Cuniculina impigra). We performed electromyographic recordings while the animals were standing on a smooth or a rough surface of a platform in horizontal, vertical or inverted positions, as well as during rotations of the platform. We recorded tonic and phasic motor units. The tonic units were active all the time without significant differences in spike frequency, regardless of the position of the animals (although there was a tendency for higher discharge frequencies to occur during platform rotations). The phasic units were active almost exclusively during platform movement. In contrast to the tonic units, we detected significant differences in the activities of the phasic units; namely, higher spike frequencies during rotations compared with the stationary phases, especially for rotations into 'more awkward' positions. A comparison of the two species revealed no difference in muscle activity, despite differences in the animals' tarsal attachment structures. The same was true when comparing the muscle activity of the two species on both the smooth and the rough surfaces.
Collapse
Affiliation(s)
- Philipp Busshardt
- Functional Morphology and Biomechanics, Christian-Albrecht-University of Kiel, Am Botanischen Garten 1-9, D-24098 Kiel, Germany.
| | | | | |
Collapse
|
49
|
Bullock JMR, Federle W. Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae. Naturwissenschaften 2011; 98:381-7. [PMID: 21465175 DOI: 10.1007/s00114-011-0781-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/26/2022]
Abstract
Leaf beetles are able to climb on smooth and rough surfaces using arrays of micron-sized adhesive hairs (setae) of varying morphology. We report the first in vivo adhesive force measurements of individual setae in the beetle Gastrophysa viridula, using a smooth polystyrene substrate attached to a glass capillary micro-cantilever. The beetles possess three distinct adhesive pads on each leg which differ in function and setal morphology. Visualisation of pull-offs allowed forces to be measured for each tarsal hair type. Male discoidal hairs adhered with the highest forces (919 ± 104 nN, mean ± SE), followed by spatulate (582 ± 59 nN) and pointed (127 ± 19 nN) hairs. Discoidal hairs were stiffer in the normal direction (0.693 ± 0.111 N m(-1)) than spatulate (0.364 ± 0.039 N m(-1)) or pointed (0.192 ± 0.044 N m(-1)) hairs. The greater adhesion on smooth surfaces and the higher stability of discoidal hairs help male beetles to achieve strong adhesion on the elytra of females during copulation. A comparison of pull-off forces measured for single setae and whole pads (arrays) revealed comparable levels of adhesive stress. This suggests that beetles are able to achieve equal load sharing across their adhesive pads so that detachment through peeling is prevented.
Collapse
Affiliation(s)
- James M R Bullock
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | | |
Collapse
|
50
|
Dirks JH, Federle W. Mechanisms of fluid production in smooth adhesive pads of insects. J R Soc Interface 2011; 8:952-60. [PMID: 21208970 DOI: 10.1098/rsif.2010.0575] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insect adhesion is mediated by thin fluid films secreted into the contact zone. As the amount of fluid affects adhesive forces, a control of secretion appears probable. Here, we quantify for the first time the rate of fluid secretion in adhesive pads of cockroaches and stick insects. The volume of footprints deposited during consecutive press-downs decreased exponentially and approached a non-zero steady state, demonstrating the presence of a storage volume. We estimated its size and the influx rate into it from a simple compartmental model. Influx was independent of step frequency. Fluid-depleted pads recovered maximal footprint volumes within 15 min. Pads in stationary contact accumulated fluid along the perimeter of the contact zone. The initial fluid build-up slowed down, suggesting that flow is driven by negative Laplace pressure. Freely climbing stick insects left hardly any traceable footprints, suggesting that they save secretion by minimizing contact area or by recovering fluid during detachment. However, even the highest fluid production rates observed incur only small biosynthesis costs, representing less than 1 per cent of the resting metabolic rate. Our results show that fluid secretion in insect wet adhesive systems relies on simple physical principles, allowing for passive control of fluid volume within the contact zone.
Collapse
Affiliation(s)
- Jan-Henning Dirks
- Department of Zoology, University of Cambridge, , Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|