1
|
Moneam AAE, El Sharaby A, Aboelnour A, Abumandour MMA, Nomir AG. Morphological and Histological Studies of the Bronchial and Parabronchial System of the White Pekin Duck (Anas platyrhynchos). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:220-235. [PMID: 39575763 DOI: 10.1002/jez.2884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/12/2024] [Accepted: 10/30/2024] [Indexed: 02/04/2025]
Abstract
The present study aimed to provide comprehensive morphological features of the bronchial and parabronchial systems using cast, histological, histochemical, and scanning electron microscopy techniques, with new insights into the parabronchial topographic distribution system on 22 white Pekin ducks. Casting illustrated that the medioventral secondary bronchi (MVSB) were the largest, but the posterior (POSB) ones were the smallest. The primary (PB) and secondary bronchi (SB) were lined with thin pseudostratified, ciliated columnar epithelium. PB contained discontinuous hyaline cartilage plates interconnected by a membrane of fibrous CT with chondrocytes, while SB had mucous glands. There were two types of hexagonal parabronchi with different lumen shapes: circular in neopulmonic and longitudinal in paleopulmonic. The parabronchi had numerous atria opened into the lumen and guarded by different directed muscles: horizontal in the neopulmonic and vertical or horizontal in the paleopulmonic. The atria were lined with squamous to cuboidal cells, forming the interatrial septum (IAS). A funnel atrial duct connecting the atrium to the infundibulum can be branched. The air capillaries were nearby, at a very short distance from the blood capillaries. Despite their small number, air capillaries, which were found in parabronchi, significantly increased in size and diameter. SEM at the 4th torus level showed a parabronchi distribution with elongated paleopulmonic on the dorsomedial part, hexagonal neopulmonic on the ventrolateral part, and some neopulmonic on the medial part. The parabronchial topography distribution exhibited their unique distribution from the 1st to the 6th torus level.
Collapse
Affiliation(s)
- Alaa Abd El Moneam
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ashraf El Sharaby
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Asmaa Aboelnour
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed M A Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed G Nomir
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Maina JN. Structure and function of the avian respiratory system. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230435. [PMID: 40010395 PMCID: PMC11864839 DOI: 10.1098/rstb.2023.0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 02/28/2025] Open
Abstract
Among the extant air-breathing vertebrates, the avian respiratory system is the most efficient gas exchanger. Novel morphological and physiological adaptations and specializations largely explain its exceptional functional superiority. Anatomically, the avian respiratory system is separated into lungs that serve as gas exchangers and air sacs that operate as ventilators. Utterly rigid, the avian lungs are deeply fixed to the ribs and the vertebrae. A thin blood-gas barrier (BGB), vast respiratory surface area and large pulmonary capillary blood volume generate high total pulmonary morphometric diffusing capacity of O2. The weak allometric scaling of the thickness of the BGB indicates optimization for gas exchange; the negative scaling and strong correlation between the surface density of the respiratory surface area and body mass show the extreme subdivision of the gas exchange tissue; and the respiratory surface area, the pulmonary capillary blood volume and the total pulmonary morphometric diffusing capacity of O2 correlate strongly and positively with body mass. The arrangement of the structural components of the exchange tissue form crosscurrent-, countercurrent-like- and multicapillary serial arterialization gas exchange designs. By synchronized actions of the air sacs, the palaeopulmonic part of the of the avian lung is efficiently ventilated continuously and unidirectionally in a caudocranial direction.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- J. N. Maina
- Department of Zoology, University of Johannesburg, Auckland Park, Kingsway, Johannesburg, 2006P.O. Box, 524, South Africa
| |
Collapse
|
3
|
Ponganis PJ, Williams CL, Scadeng M. Respiratory anatomy and physiology in diving penguins. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230422. [PMID: 40010382 PMCID: PMC11864836 DOI: 10.1098/rstb.2023.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 02/28/2025] Open
Abstract
The anatomy and function of the respiratory systems of penguins are reviewed in relation to gas exchange and minimization of the risks of pulmonary barotrauma, decompression sickness and nitrogen narcosis during dives. Topics include available lung morphology and morphometry, respiratory air volumes determined with different techniques, review of possible physiological and biomechanical mechanisms of baroprotection, calculations of baroprotection limits and review of air sac and arterial partial pressure of oxygen (PO2) profiles in relation to movement of air during breathing and during dives. Limits for baroprotection to 200, 400 and 600 m in Adélie, king and emperor penguins, respectively, would require complete transfer of air sac air and reductions in the combined tracheobronchial tree-parabronchial volume of 24% in Adélie, 53% in king penguins and 76% in emperor penguins. Air sac and arterial PO2 profiles at rest and during surface activity were consistent with unidirectional air flow through the lungs. During dives, PO2 profiles were more complex, but were consistent with compression of air sac air into the parabronchi and air capillaries with or without additional air mixing induced by potential differential air sac pressures generated by wing movements.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- P. J. Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - C. L. Williams
- National Marine Mammal Foundation, 2240 Shelter Island Drive, San Diego, CA92106, USA
| | - M. Scadeng
- Department of Anatomy and Medical Imaging, Faculty of Health and Medical Sciences, University of Auckland, Auckland1142, New Zealand
- Center for Functional Magnetic Resonance Imaging, University of California, San Diego, La Jolla, CA92093, USA
| |
Collapse
|
4
|
Lawson AB, Martinez A, Hedrick BP, Echols MS, Schachner ER. Variation in air sac morphology and postcranial skeletal pneumatization patterns in the African grey parrot. J Anat 2025; 246:1-19. [PMID: 39374322 DOI: 10.1111/joa.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
The anatomy of the avian lower respiratory system includes a complex interaction between air-filled pulmonary tissues, pulmonary air sacs, and much of the postcranial skeleton. Hypotheses related to the function and phylogenetic provenance of these respiratory structures have been posed based on extensive interspecific descriptions for an array of taxa. By contrast, intraspecific descriptions of anatomical variation for these features are much more limited, particularly for skeletal pneumatization, and are essential to establish a baseline for evaluating interspecific variation. To address this issue, we collected micro-computed tomography (μCT) scans of live and deceased African grey parrots (Psittacus erithacus) to assess variation in the arrangement of the lungs, the air sacs, and their respective invasion of the postcranial skeleton via pneumatic foramina. Analysis reveals that the two pairs of caudalmost air sacs vary in size and arrangement, often exhibiting an asymmetric morphology. Further, locations of the pneumatic foramina are more variable for midline, non-costal skeletal elements when compared to other pneumatized bones. These findings indicate a need to better understand contributing factors to variation in avian postcranial respiratory anatomy that can inform future intraspecific and interspecific comparisons.
Collapse
Affiliation(s)
- Adam B Lawson
- Department of Structural & Cell Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Aracely Martinez
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Brandon P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | - Emma R Schachner
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Makanya A, Djonov V. Anatomical and Functional Study of the Ostrich ( Struthio camelus) Lung through Macroscopic Analysis in Combination with Optical and Electron Microscopy Techniques. Animals (Basel) 2024; 14:316. [PMID: 38275776 PMCID: PMC10812698 DOI: 10.3390/ani14020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
The Ostrich occupies a unique position as the largest bird on the planet. Like other ratites, it has been reputed to have a phylogenetically primitive lung. We used macroscopy, light microscopy, transmission and scanning electron microscopy as well as silicon rubber casting to elucidate the functional design of its lung and compare it with what is already documented for the avian species. The neopulmonic region was very small and poorly developed. The categories of the secondary bronchi (SB) present and their respective numbers included laterodorsal (8-10), lateroventral (4-5), medioventral (4-6) and posterior (16-24). The lateral aspects of the laterodorsals were covered with a transparent collapsible membrane internally lined with a squamous to cuboidal epithelium. The bulk of these SB were in close proximity to intercostal spaces and the intercostal muscles and were thought to be important in the propulsion of gases. The lung parenchyma was rigid, with the atria well supported by septa containing smooth muscles, connective tissue interparabronchial septa were absent, and blood capillaries were supported by epithelial bridges. There were two categories of epithelia bridges: the homogenous squamous type comprising two leaflets of type I cells and the heterogeneous type consisting of a type I pneumocyte and type II cell. Additional type two cells were found at the atrial openings as well as the walls of the infundibulae and the air capillaries. The atria were shallow and opened either directly into several air capillaries or into a few infundibulae. The presence of numerous type II cells and the absence of interparabronchial connective tissue septa may imply that the ostrich lung could be capable of some degree of compliance.
Collapse
Affiliation(s)
- Andrew Makanya
- Department of Veterinary Anatomy and Physiology, Riverside Drive, Chiromo Campus, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Berne, Switzerland;
| |
Collapse
|
6
|
Maina JN. A critical assessment of the cellular defences of the avian respiratory system: are birds in general and poultry in particular relatively more susceptible to pulmonary infections/afflictions? Biol Rev Camb Philos Soc 2023; 98:2152-2187. [PMID: 37489059 DOI: 10.1111/brv.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway Avenue, Johannesburg, 2006, South Africa
| |
Collapse
|
7
|
Maina JN. Perspectives on the Structure and Function of the Avian Respiratory System: Functional Efficiency Built on Structural Complexity. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.851574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the air-breathing vertebrates, regarding respiratory efficiency, the avian respiratory system rests at the evolutionary zenith. Structurally, it is separated into a lung that serves as a gas exchanger and air sacs that mechanically ventilate the lung continuously and unidirectionally in a caudocranial direction. Largely avascular, the air sacs are delicate, transparent, compliant and capacious air-filled spaces that are not meaningfully involved in gas exchange. The avian lungs are deeply and firmly attached to the vertebrae and the ribs on the dorsolateral aspects, rendering them practically rigid and inflexible. The attachment of the lung to the body wall allowed extreme subdivision of the exchange tissue into minuscule and stable terminal respiratory units, the air capillaries. The process generated a large respiratory surface area in small lungs with low volume density of gas exchange tissue. For the respiratory structures, invariably, thin blood-gas barrier, large respiratory surface area and large pulmonary capillary blood volume are the foremost adaptive structural features that confer large total pulmonary morphometric diffusing capacities of O2. At parabronchial level, the construction and the arrangement of the airway- and the vascular components of the avian lung determine the delivery, the presentation and the exposure of inspired air to capillary blood across the blood-gas barrier. In the avian lung, crosscurrent-, countercurrent- and multicapillary serial arterialization systems that stem from the organization of the structural parts of the lung promote gas exchange. The exceptional respiratory efficiency of the avian respiratory system stems from synergy of morphological properties and physiological processes, means by which O2 uptake is optimized and high metabolic states and capacities supported. Given that among the extant animal taxa insects, birds and bats (which accomplished volancy chronologically in that order) possess structurally much different respiratory systems, the avian respiratory system was by no means a prerequisite for evolution of powered flight but was but one of the adaptive solutions to realization of an exceptionally efficient mode of locomotion.
Collapse
|
8
|
Zwart P, Samour J. The avian respiratory system and its noninfectious ailments: A review. J Exot Pet Med 2021. [DOI: 10.1053/j.jepm.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Lawson AB, Hedrick BP, Echols S, Schachner ER. Anatomy, variation, and asymmetry of the bronchial tree in the African grey parrot (Psittacus erithacus). J Morphol 2021; 282:701-719. [PMID: 33629391 DOI: 10.1002/jmor.21340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
The avian bronchial tree has a unique and elaborate architecture for the maintenance of unidirectional airflow. Gross descriptions of this bronchial arrangement have traditionally relied upon dissection and casts of the negative (air-filled) spaces. In this study, the bronchial trees of five deceased African grey parrots (Psittacus erithacus) were segmented from micro-computed tomography (μCT) scans into three-dimensional (3D) surface models, and then compared. Select metrics of the primary bronchi and major secondary branches in the μCT scans of 11 specimens were taken to assess left-right asymmetry and quantify gross lung structure. Analysis of the 3D surface models demonstrates variation in the number and distribution of secondary bronchi with consistent direct connections to specific respiratory air sacs. A single model of the parabronchi further reveals indirect connections to all but two of the nine total air sacs. Statistical analysis of the metrics show significant left-right asymmetry between the primary bronchi and the origins of the first four secondary bronchi (the ventrobronchi), consistently greater mean values for all right primary bronchus length metrics, and relatively high coefficients of variation for cross-sectional area metrics of the primary bronchi and secondary bronchi ostia. These findings suggest that the lengths of the primary bronchi distal to the ventrobronchi do not preserve lung symmetry, and that aerodynamic valving can functionally accommodate a wide range of bronchial proportions.
Collapse
Affiliation(s)
- Adam B Lawson
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Brandon P Hedrick
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Scott Echols
- The Medical Center for Birds, Oakley, California, USA
| | - Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
10
|
Schachner ER, Hedrick BP, Richbourg HA, Hutchinson JR, Farmer CG. Anatomy, ontogeny, and evolution of the archosaurian respiratory system: A case study on Alligator mississippiensis and Struthio camelus. J Anat 2020; 238:845-873. [PMID: 33345301 DOI: 10.1111/joa.13358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The avian lung is highly specialized and is both functionally and morphologically distinct from that of their closest extant relatives, the crocodilians. It is highly partitioned, with a unidirectionally ventilated and immobilized gas-exchanging lung, and functionally decoupled, compliant, poorly vascularized ventilatory air-sacs. To understand the evolutionary history of the archosaurian respiratory system, it is essential to determine which anatomical characteristics are shared between birds and crocodilians and the role these shared traits play in their respective respiratory biology. To begin to address this larger question, we examined the anatomy of the lung and bronchial tree of 10 American alligators (Alligator mississippiensis) and 11 ostriches (Struthio camelus) across an ontogenetic series using traditional and micro-computed tomography (µCT), three-dimensional (3D) digital models, and morphometry. Intraspecific variation and left to right asymmetry were present in certain aspects of the bronchial tree of both taxa but was particularly evident in the cardiac (medial) region of the lungs of alligators and the caudal aspect of the bronchial tree in both species. The cross-sectional area of the primary bronchus at the level of the major secondary airways and cross-sectional area of ostia scaled either isometrically or negatively allometrically in alligators and isometrically or positively allometrically in ostriches with respect to body mass. Of 15 lung metrics, five were significantly different between the alligator and ostrich, suggesting that these aspects of the lung are more interspecifically plastic in archosaurs. One metric, the distances between the carina and each of the major secondary airways, had minimal intraspecific or ontogenetic variation in both alligators and ostriches, and thus may be a conserved trait in both taxa. In contrast to previous descriptions, the 3D digital models and CT scan data demonstrate that the pulmonary diverticula pneumatize the axial skeleton of the ostrich directly from the gas-exchanging pulmonary tissues instead of the air sacs. Global and specific comparisons between the bronchial topography of the alligator and ostrich reveal multiple possible homologies, suggesting that certain structural aspects of the bronchial tree are likely conserved across Archosauria, and may have been present in the ancestral archosaurian lung.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Cell Biology & Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Brandon P Hedrick
- Department of Cell Biology & Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Heather A Richbourg
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - John R Hutchinson
- Department of Comparative Biomedical Sciences, Structure & Motion Laboratory, Royal Veterinary College, University of London, Hatfield, UK
| | - C G Farmer
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Brocklehurst RJ, Moritz S, Codd J, Sellers WI, Brainerd EL. XROMM kinematics of ventilation in wild turkeys ( Meleagris gallopavo). ACTA ACUST UNITED AC 2019; 222:jeb.209783. [PMID: 31704902 DOI: 10.1242/jeb.209783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
The avian ribcage is derived relative to other amniotes, and is hypothesised to be constrained in its movements during ventilation. The double-headed ribs form two articulations with the vertebrae, and are thought to rotate about a strict anatomical axis. However, this costovertebral joint constraint has not been demonstrated empirically and was not found in other taxa with double-headed ribs (i.e. crocodilians). Here, we used X-ray reconstruction of moving morphology (XROMM) to quantify rib rotation in wild turkeys (Meleagris gallopavo) during breathing. We demonstrate that, as predicted from anatomy, the ribs do rotate in a hinge-like manner about a single axis. There is also evidence for elliptical motion of the sternum, as has been reported in other taxa. The evolution of the avian ribcage is closely related to the co-evolution of ventilation and flight, and these results are important for how we model ventilation mechanics in living and fossil birds.
Collapse
Affiliation(s)
- Robert J Brocklehurst
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Sabine Moritz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.,Department of Biology, Community College of Rhode Island, Warwick, RI 02886, USA
| | - Jonathan Codd
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - William I Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
12
|
Brocklehurst RJ, Schachner ER, Sellers WI. Vertebral morphometrics and lung structure in non-avian dinosaurs. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180983. [PMID: 30473845 PMCID: PMC6227937 DOI: 10.1098/rsos.180983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
The lung-air sac system of modern birds is unique among vertebrates. However, debate surrounds whether an avian-style lung is restricted to birds or first appeared in their dinosaurian ancestors, as common osteological correlates for the respiratory system offer limited information on the lungs themselves. Here, we shed light on these issues by using axial morphology as a direct osteological correlate of lung structure, and quantifying vertebral shape using geometric morphometrics in birds, crocodilians and a wide range of dinosaurian taxa. Although fully avian lungs were a rather late innovation, we quantitatively show that non-avian dinosaurs and basal dinosauriforms possessed bird-like costovertebral joints and a furrowed thoracic ceiling. This would have immobilized the lung's dorsal surface, a structural prerequisite for a thinned blood-gas barrier and increased gas exchange potential. This could have permitted high levels of aerobic and metabolic activity in dinosaurs, even in the hypoxic conditions of the Mesozoic, contributing to their successful radiation.
Collapse
Affiliation(s)
| | - Emma R. Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - William I. Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Maina JN, McCracken KG, Chua B, York JM, Milsom WK. Morphological and morphometric specializations of the lung of the Andean goose, Chloephaga melanoptera: A lifelong high-altitude resident. PLoS One 2017; 12:e0174395. [PMID: 28339478 PMCID: PMC5365123 DOI: 10.1371/journal.pone.0174395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/08/2017] [Indexed: 01/06/2023] Open
Abstract
High altitude flight in rarefied, extremely cold and hypoxic air is a very challenging activity. Only a few species of birds can achieve it. Hitherto, the structure of the lungs of such birds has not been studied. This is because of the rarity of such species and the challenges of preparing well-fixed lung tissue. Here, it was posited that in addition to the now proven physiological adaptations, high altitude flying birds will also have acquired pulmonary structural adaptations that enable them to obtain the large amounts of oxygen (O2) needed for flight at high elevation, an environment where O2 levels are very low. The Andean goose (Chloephaga melanoptera) normally resides at altitudes above 3000 meters and flies to elevations as high as 6000 meters where O2 becomes limiting. In this study, its lung was morphologically- and morphometrically investigated. It was found that structurally the lungs are exceptionally specialized for gas exchange. Atypically, the infundibulae are well-vascularized. The mass-specific volume of the lung (42.8 cm3.kg-1), the mass-specific respiratory surface area of the blood-gas (tissue) barrier (96.5 cm2.g-1) and the mass-specific volume of the pulmonary capillary blood (7.44 cm3.kg-1) were some of the highest values so far reported in birds. The pulmonary structural specializations have generated a mass-specific total (overall) pulmonary morphometric diffusing capacity of the lung for oxygen (DLo2) of 0.119 mlO2.sec-1.mbar-1.kg-1, a value that is among some of the highest ones in birds that have been studied. The adaptations of the lung of the Andean goose possibly produce the high O2 conductance needed to live and fly at high altitude.
Collapse
Affiliation(s)
- John N. Maina
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
- * E-mail:
| | - Kevin G. McCracken
- Department of Biology and Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, Florida, United States of America
| | - Beverly Chua
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Julia M. York
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - William K. Milsom
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
Holtze S, Eldarov CM, Vays VB, Vangeli IM, Vysokikh MY, Bakeeva LE, Skulachev VP, Hildebrandt TB. Study of Age-Dependent Structural and Functional Changes of Mitochondria in Skeletal Muscles and Heart of Naked Mole Rats (Heterocephalus glaber). BIOCHEMISTRY (MOSCOW) 2017; 81:1429-1437. [PMID: 28259120 DOI: 10.1134/s000629791612004x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Morphometric analysis of mitochondria in skeletal muscles and heart of 6- and 60-month-old naked mole rats (Heterocephalus glaber) revealed a significant age-dependent increase in the total area of mitochondrial cross-sections in studied muscle fibers. For 6- and 60-month-old animals, these values were 4.8 ± 0.4 and 12.7 ± 1.8%, respectively. This effect is mainly based on an increase in the number of mitochondria. In 6-month-old naked mole rats, there were 0.23 ± 0.02 mitochondrial cross-sections per µm2 of muscle fiber, while in 60-month-old animals this value was 0.47 ± 0.03. The average area of a single mitochondrial cross-section also increased with age in skeletal muscles - from 0.21 ± 0.01 to 0.29 ± 0.03 µm2. Thus, naked mole rats show a drastic enlargement of the mitochondrial apparatus in skeletal muscles with age due to an increase in the number of mitochondria and their size. They possess a neotenic type of chondriome accompanied by specific features of mitochondrial functioning in the state of oxidative phosphorylation and a significant decrease in the level of matrix adenine nucleotides.
Collapse
Affiliation(s)
- S Holtze
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Management, Berlin, 10315, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Critical appraisal of some factors pertinent to the functional designs of the gas exchangers. Cell Tissue Res 2016; 367:747-767. [PMID: 27988805 DOI: 10.1007/s00441-016-2549-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
Abstract
Respiration acquires O2 from the external fluid milieu and eliminates CO2 back into the same. Gas exchangers evolved under certain immutable physicochemical laws upon which their elemental functional design is hardwired. Adaptive changes have occurred within the constraints set by such laws to satisfy metabolic needs for O2, environmental conditions, respiratory medium utilized, lifestyle pursued and phylogenetic level of development: correlation between structure and function exists. After the inaugural simple cell membrane, as body size and structural complexity increased, respiratory organs formed by evagination or invagination: the gills developed by the former process and the lungs by the latter. Conservation of water on land was the main driver for invagination of the lungs. In gills, respiratory surface area increases by stratified arrangement of the structural components while in lungs it occurs by internal subdivision. The minuscule terminal respiratory units of lungs are stabilized by surfactant. In gas exchangers, respiratory fluid media are transported by convection over long distances, a process that requires energy. However, movement of respiratory gases across tissue barriers occurs by simple passive diffusion. Short distances and large surface areas are needed for diffusion to occur efficiently. Certain properties, e.g., diffusion of gases through the tissue barrier, stabilization of the respiratory units by surfactant and a thin tripartite tissue barrier, have been conserved during the evolution of the gas exchangers. In biology, such rare features are called Bauplans, blueprints or frozen cores. That several of them (Bauplans) exist in gas exchangers almost certainly indicates the importance of respiration to life.
Collapse
|
16
|
Maina JN. Pivotal debates and controversies on the structure and function of the avian respiratory system: setting the record straight. Biol Rev Camb Philos Soc 2016; 92:1475-1504. [DOI: 10.1111/brv.12292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022]
Affiliation(s)
- John N. Maina
- Department of Zoology; University of Johannesburg; P.O. Box, 524, Auckland Park, Kingsway Johannesburg 2006 South Africa
| |
Collapse
|
17
|
Apostolaki NE, Rayfield EJ, Barrett PM. Osteological and Soft-Tissue Evidence for Pneumatization in the Cervical Column of the Ostrich (Struthio camelus) and Observations on the Vertebral Columns of Non-Volant, Semi-Volant and Semi-Aquatic Birds. PLoS One 2015; 10:e0143834. [PMID: 26649745 PMCID: PMC4674062 DOI: 10.1371/journal.pone.0143834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022] Open
Abstract
Postcranial skeletal pneumaticity (PSP) is a condition most notably found in birds, but that is also present in other saurischian dinosaurs and pterosaurs. In birds, skeletal pneumatization occurs where bones are penetrated by pneumatic diverticula, membranous extensions that originate from air sacs that serve in the ventilation of the lung. Key questions that remain to be addressed include further characterizing (1) the skeletal features that can be used to infer the presence/absence and extent of PSP in birds and non-avian dinosaurs, and (2) the association between vertebral laminae and specific components of the avian respiratory system. Previous work has used vertebral features such as pneumatic foramina, fossae, and laminae to identify/infer the presence of air sacs and diverticula, and to discuss the range of possible functions of such features. Here, we tabulate pneumatic features in the vertebral column of 11 avian taxa, including the flightless ratites and selected members of semi-volant and semi-aquatic Neornithes. We investigate the associations of these osteological features with each other and, in the case of Struthio camelus, with the specific presence of pneumatic diverticula. We find that the mere presence of vertebral laminae does not indicate the presence of skeletal pneumaticity, since laminae are not always associated with pneumatic foramina or fossae. Nevertheless, laminae are more strongly developed when adjacent to foramina or fossae. In addition, membranous air sac extensions and adjacent musculature share the same attachment points on the vertebrae, rendering the use of such features for reconstructing respiratory soft tissue features ambiguous. Finally, pneumatic diverticula attach to the margins of laminae, foramina, and/or fossae prior to their intraosseous course. Similarities in PSP distribution among the examined taxa are concordant with their phylogenetic interrelationships. The possible functions of PSP are discussed in brief, based upon variation in the extent of PSP between taxa with differing ecologies.
Collapse
Affiliation(s)
- Naomi E. Apostolaki
- Department of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily J. Rayfield
- Department of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Paul M. Barrett
- Department of Earth Sciences, Division of Vertebrates, Anthropology and Palaeobiology, Natural History Museum, London, United Kingdom
| |
Collapse
|
18
|
Maina JN. Structural and Biomechanical Properties of the Exchange Tissue of the Avian Lung. Anat Rec (Hoboken) 2015; 298:1673-88. [DOI: 10.1002/ar.23162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/29/2015] [Accepted: 02/20/2015] [Indexed: 11/06/2022]
Affiliation(s)
- John N. Maina
- Department of Zoology; University of Johannesburg; Kingsway, Johannesburg South Africa
| |
Collapse
|
19
|
A central theory of biology. Med Hypotheses 2015; 85:49-57. [PMID: 25911556 DOI: 10.1016/j.mehy.2015.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/25/2015] [Accepted: 03/21/2015] [Indexed: 12/27/2022]
Abstract
The history of physiologic cellular-molecular interrelationships can be traced all the way back to the unicellular state by following the pathway formed by lipids ubiquitously accommodating calcium homeostasis, and its consequent adaptive effects on oxygen uptake by cells, tissues and organs. As a result, a cohesive, mechanistically integrated view of physiology can be formulated by recognizing the continuum comprising conception, development, physiologic homeostasis and death mediated by soluble growth factor signaling. Seeing such seemingly disparate processes as embryogenesis, chronic disease and dying as the gain and subsequent loss of cell-cell signaling provides a novel perspective for physiology and medicine. It is emblematic of the self-organizing, self-referential nature of life, starting from its origins. Such organizing principles obviate the pitfalls of teleologic evolution, conversely providing a way of resolving such seeming dichotomies as holism and reductionism, genotype and phenotype, emergence and contingence, proximate and ultimate causation in evolution, cells and organisms. The proposed approach is scale-free and predictive, offering a Central Theory of Biology.
Collapse
|
20
|
Ponganis PJ, St Leger J, Scadeng M. Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy. J Exp Biol 2015; 218:720-30. [DOI: 10.1242/jeb.113647] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are smaller in these deeper-diving species than in the spheniscid penguin of the morphometry study. If penguins do inhale to this maximum air sac volume prior to their deepest dives, the magnitude and distribution of the body O2 store would change considerably. In emperor penguins, total body O2 would increase by 75%, and the respiratory fraction would increase from 33% to 61%. We emphasize that the maximum pre-dive respiratory air volume is still unknown in penguins. However, even lesser increases in air sac volume prior to a dive would still significantly increase the O2 store. More refined evaluations of the respiratory O2 store and baroprotective mechanisms in penguins await further investigation of species-specific lung morphometry, start-of-dive air volumes and body buoyancy, and the possibility of air exhalation during dives.
Collapse
Affiliation(s)
- P. J. Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, 9500 Gilman Drive 0204, La Jolla, CA 92093-0204, USA
| | - J. St Leger
- SeaWorld, 500 SeaWorld Drive, San Diego, CA 92109, USA
| | - M. Scadeng
- UC San Diego Center for Functional MRI, 9500 Gilman Drive 0677, La Jolla CA 92093-0677, USA
| |
Collapse
|
21
|
Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 2013; 3:849-915. [PMID: 23720333 PMCID: PMC3926130 DOI: 10.1002/cphy.c120003] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.
Collapse
Affiliation(s)
- Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | |
Collapse
|
22
|
Schachner ER, Hutchinson JR, Farmer C. Pulmonary anatomy in the Nile crocodile and the evolution of unidirectional airflow in Archosauria. PeerJ 2013; 1:e60. [PMID: 23638399 PMCID: PMC3628916 DOI: 10.7717/peerj.60] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/10/2013] [Indexed: 11/20/2022] Open
Abstract
The lungs of birds have long been known to move air in only one direction during both inspiration and expiration through most of the tubular gas-exchanging bronchi (parabronchi). Recently a similar pattern of airflow has been observed in American alligators, a sister taxon to birds. The pattern of flow appears to be due to the arrangement of the primary and secondary bronchi, which, via their branching angles, generate inspiratory and expiratory aerodynamic valves. Both the anatomical similarity of the avian and alligator lung and the similarity in the patterns of airflow raise the possibility that these features are plesiomorphic for Archosauria and therefore did not evolve in response to selection for flapping flight or an endothermic metabolism, as has been generally assumed. To further test the hypothesis that unidirectional airflow is ancestral for Archosauria, we measured airflow in the lungs of the Nile crocodile (Crocodylus niloticus). As in birds and alligators, air flows cranially to caudally in the cervical ventral bronchus, and caudally to cranially in the dorsobronchi in the lungs of Nile crocodiles. We also visualized the gross anatomy of the primary, secondary and tertiary pulmonary bronchi of C. niloticus using computed tomography (CT) and microCT. The cervical ventral bronchus, cranial dorsobronchi and cranial medial bronchi display similar characteristics to their proposed homologues in the alligator, while there is considerable variation in the tertiary and caudal group bronchi. Our data indicate that the aspects of the crocodilian bronchial tree that maintain the aerodynamic valves and thus generate unidirectional airflow, are ancestral for Archosauria.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Biology, University of Utah , Salt Lake City, UT , USA
| | | | | |
Collapse
|
23
|
Jimoh SA, Maina JN. Immuno-localization of type-IV collagen in the blood-gas barrier and the epithelial-epithelial cell connections of the avian lung. Biol Lett 2013; 9:20120951. [PMID: 23193049 PMCID: PMC3565516 DOI: 10.1098/rsbl.2012.0951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/05/2012] [Indexed: 11/12/2022] Open
Abstract
The terminal respiratory units of the gas exchange tissue of the avian lung, the air capillaries (ACs) and the blood capillaries (BCs), are small and rigid: the basis of this mechanical feature has been highly contentious. Because the strength of the blood-gas barrier (BGB) of the mammalian lung has been attributed to the presence of type-IV collagen (T-IVc), localization of T-IVc in the basement membranes (BM) of the BGB and the epithelial-epithelial cell connections (E-ECCs) of the exchange tissue of the lung of the avian (chicken) lung was performed in order to determine whether it may likewise contribute to the strength of the BGB. T-IVc was localized in both the BM and the E-ECCs. As part of an integrated fibroskeletal scaffold on the lung, T-IVc may directly contribute to the strengths of the ACs and the BCs.
Collapse
Affiliation(s)
- S. A. Jimoh
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - J. N. Maina
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
24
|
Development and remodeling of the vertebrate blood-gas barrier. BIOMED RESEARCH INTERNATIONAL 2012; 2013:101597. [PMID: 23484070 PMCID: PMC3591247 DOI: 10.1155/2013/101597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/24/2012] [Indexed: 11/18/2022]
Abstract
During vertebrate development, the lung inaugurates as an endodermal bud from the primitive foregut. Dichotomous subdivision of the bud results in arborizing airways that form the prospective gas exchanging chambers, where a thin blood-gas barrier (BGB) is established. In the mammalian lung, this proceeds through conversion of type II cells to type I cells, thinning, and elongation of the cells as well as extrusion of the lamellar bodies. Subsequent diminution of interstitial tissue and apposition of capillaries to the alveolar epithelium establish a thin BGB. In the noncompliant avian lung, attenuation proceeds through cell-cutting processes that result in remarkable thinning of the epithelial layer. A host of morphoregulatory molecules, including transcription factors such as Nkx2.1, GATA, HNF-3, and WNT5a; signaling molecules including FGF, BMP-4, Shh, and TFG- β and extracellular proteins and their receptors have been implicated. During normal physiological function, the BGB may be remodeled in response to alterations in transmural pressures in both blood capillaries and airspaces. Such changes are mitigated through rapid expression of the relevant genes for extracellular matrix proteins and growth factors. While an appreciable amount of information regarding molecular control has been documented in the mammalian lung, very little is available on the avian lung.
Collapse
|
25
|
Estimating oxygen diffusive conductances of gas-exchange systems: A stereological approach illustrated with the human placenta. Ann Anat 2012; 196:34-40. [PMID: 23069190 DOI: 10.1016/j.aanat.2012.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/31/2012] [Indexed: 11/22/2022]
Abstract
For many organisms, respiratory gas exchange is a vital activity and different types of gas-exchange apparatus have evolved to meet individual needs. They include not only skin, gills, tracheal systems and lungs but also transient structures such as the chorioallantois of avian eggs and the placenta of eutherian mammals. The ability of these structures to allow passage of oxygen by passive diffusion can be expressed as a diffusive conductance (units: cm(3) O2 min(-1) kPa(-1)). Occasionally, the ability to estimate diffusive conductance by physiological techniques is compromised by the difficulty of obtaining O2 partial pressures on opposite sides of the tissue interface between the delivery medium (air, water, blood) and uptake medium (usually blood). An alternative strategy is to estimate a morphometric diffusive conductance by combining stereological estimates of key structural quantities (volumes, surface areas, membrane thicknesses) with complementary physicochemical data (O2-haemoglobin chemical reaction rates and Krogh's permeability coefficients). This approach has proved valuable in a variety of comparative studies on respiratory organs from diverse species. The underlying principles were formulated in pioneering studies on the pulmonary lung but are illustrated here by taking the human placenta as the gas exchanger.
Collapse
|
26
|
Makanya AN, Koller T, Hlushchuk R, Djonov V. Pre-hatch lung development in the ostrich. Respir Physiol Neurobiol 2011; 180:183-92. [PMID: 22138612 DOI: 10.1016/j.resp.2011.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/27/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
Abstract
We studied development of the ostrich lung using light microscopy as well as electron microscopy techniques. At E24, the lung comprised a few epithelial tubes, interspersed with abundant mesenchyme with scattered profiles of incipient blood vessels. Between E24 and E39, the epithelial thickness was reduced by 90% from 13.5 ± 0.41 μm to 1.33 ± 0.014 μm (mean ± SD, respectively). Atria were evident at E32, and by E35, the first portions of the blood-gas barrier (BGB) measuring 3.41 ± 1.12 μm were encountered. Gas exchange tissue was well formed by E39 with atria, infundibulae, air capillaries and a mature blood-gas barrier (BGB). BGB formation proceeded through the complex processes of secarecytosis and peremerecytosis, which entailed decapitation of epithelial cells by cutting or pinching off respectively and by E39, the BGB was thin at 2.21 ± 1.21 μm. Vascular remodeling by intussusceptive angiogenesis was a late stage process mediated by intraluminal pillars in the pulmonary vasculature.
Collapse
Affiliation(s)
- A N Makanya
- Department of Veterinary Anatomy & Physiology, University of Nairobi, Riverside Drive, PO Box 30197-00100 Nairobi, Kenya.
| | | | | | | |
Collapse
|
27
|
Schachner ER, Farmer C, McDonald AT, Dodson P. Evolution of the Dinosauriform Respiratory Apparatus: New Evidence from the Postcranial Axial Skeleton. Anat Rec (Hoboken) 2011; 294:1532-47. [DOI: 10.1002/ar.21439] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 03/25/2011] [Indexed: 11/07/2022]
|
28
|
Maina JN, West JB, Orgeig S, Foot NJ, Daniels CB, Kiama SG, Gehr P, Mühlfeld C, Blank F, Müller L, Lehmann A, Brandenberger C, Rothen-Rutishauser B. Recent advances into understanding some aspects of the structure and function of mammalian and avian lungs. Physiol Biochem Zool 2010; 83:792-807. [PMID: 20687843 DOI: 10.1086/652244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent findings are reported about certain aspects of the structure and function of the mammalian and avian lungs that include (a) the architecture of the air capillaries (ACs) and the blood capillaries (BCs); (b) the pulmonary blood capillary circulatory dynamics; (c) the adaptive molecular, cellular, biochemical, compositional, and developmental characteristics of the surfactant system; (d) the mechanisms of the translocation of fine and ultrafine particles across the airway epithelial barrier; and (e) the particle-cell interactions in the pulmonary airways. In the lung of the Muscovy duck Cairina moschata, at least, the ACs are rotund structures that are interconnected by narrow cylindrical sections, while the BCs comprise segments that are almost as long as they are wide. In contrast to the mammalian pulmonary BCs, which are highly compliant, those of birds practically behave like rigid tubes. Diving pressure has been a very powerful directional selection force that has influenced phenotypic changes in surfactant composition and function in lungs of marine mammals. After nanosized particulates are deposited on the respiratory tract of healthy human subjects, some reach organs such as the brain with potentially serious health implications. Finally, in the mammalian lung, dendritic cells of the pulmonary airways are powerful agents in engulfing deposited particles, and in birds, macrophages and erythrocytes are ardent phagocytizing cellular agents. The morphology of the lung that allows it to perform different functions-including gas exchange, ventilation of the lung by being compliant, defense, and secretion of important pharmacological factors-is reflected in its "compromise design."
Collapse
Affiliation(s)
- J N Maina
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Maina JN, Jimoh SA, Hosie M. Implicit mechanistic role of the collagen, smooth muscle, and elastic tissue components in strengthening the air and blood capillaries of the avian lung. J Anat 2010; 217:597-608. [PMID: 20819116 PMCID: PMC3035864 DOI: 10.1111/j.1469-7580.2010.01279.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2010] [Indexed: 11/28/2022] Open
Abstract
To identify the forces that may exist in the parabronchus of the avian lung and that which may explain the reported strengths of the terminal respiratory units, the air capillaries and the blood capillaries, the arrangement of the parabronchial collagen fibers (CF) of the lung of the domestic fowl, Gallus gallus variant domesticus was investigated by discriminatory staining, selective alkali digestion, and vascular casting followed by alkali digestion. On the luminal circumference, the atrial and the infundibular CF are directly connected to the smooth muscle fibers and the elastic tissue fibers. The CF in this part of the parabronchus form the internal column (the axial scaffold), whereas the CF in the interparabronchial septa and those associated with the walls of the interparabronchial blood vessels form the external, i.e. the peripheral, parabronchial CF scaffold. Thin CF penetrate the exchange tissue directly from the interparabronchial septa and indirectly by accompanying the intraparabronchial blood vessels. Forming a dense network that supports the air and blood capillaries, the CF weave through the exchange tissue. The exchange tissue, specifically the air and blood capillaries, is effectively suspended between CF pillars by an intricate system of thin CF, elastic and smooth muscle fibers. The CF course through the basement membranes of the walls of the blood and air capillaries. Based on the architecture of the smooth muscle fibers, the CF, the elastic muscle fibers, and structures like the interparabronchial septa and their associated blood vessels, it is envisaged that dynamic tensional, resistive, and compressive forces exist in the parabronchus, forming a tensegrity (tension integrity) system that gives the lung rigidity while strengthening the air and blood capillaries.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, South Africa.
| | | | | |
Collapse
|
30
|
Schachner ER, Lyson TR, Dodson P. Evolution of the respiratory system in nonavian theropods: evidence from rib and vertebral morphology. Anat Rec (Hoboken) 2009; 292:1501-13. [PMID: 19711481 DOI: 10.1002/ar.20989] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent reports of region-specific vertebral pneumaticity in nonavian theropod dinosaurs have brought attention to the hypothesis that these animals possessed an avian-style respiratory system with flow-through ventilation. This study explores the thoracic rib and vertebral anatomy of Sinraptor, Allosaurus, Tyrannosaurus, and Deinonychus; four nonavian theropods that all show well-preserved thoracic vertebrae and ribs. Comparisons to the osteology and soft tissue anatomy of extant saurians provide new evidence supporting the hypothesis of flow-through ventilation in nonavian theropods. Analyses of diapophyseal and parapophyseal position and thoracic rib morphology suggest that most nonavian theropods possessed lungs that were deeply incised by the adjacent bicapitate thoracic ribs. This functionally constrains the lungs as rigid nonexpansive organs that were likely ventilated by accessory nonvascularized air sacs. The axial anatomy of this group also reveals that a crocodilian-like hepatic-piston lung would be functionally and biomechanically untenable. Taken together with the evidence that avian-like air sacs were present in basal theropods, these data lead us to conclude that an avian-style pulmonary system was likely a universal theropod trait.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
31
|
Maina J, Singh P, Moss E. Inspiratory aerodynamic valving occurs in the ostrich, Struthio camelus lung: A computational fluid dynamics study under resting unsteady state inhalation. Respir Physiol Neurobiol 2009; 169:262-70. [DOI: 10.1016/j.resp.2009.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 09/15/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
32
|
Perry SF, Christian A, Breuer T, Pajor N, Codd JR. Implications of an avian-style respiratory system for gigantism in sauropod dinosaurs. ACTA ACUST UNITED AC 2009; 311:600-10. [PMID: 19189317 DOI: 10.1002/jez.517] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In light of evidence for avian-like lungs in saurischian dinosaurs, the physiological implications of cross-current gas exchange and voluminous, highly heterogeneous lungs for sauropod gigantism are critically examined. At 12 ton the predicted body temperature and metabolic rate of a growing sauropod would be similar to that of a bird scaled to the same body weight, but would increase exponentially as body mass increases. Although avian-like lung structure would be consistent with either a tachymetabolic-endothermic or a bradymetabolic-gigantothermic model, increasing body temperature requires adjustments to avoid overheating. We suggest that a unique sauropod structure/function unit facilitated the evolution of gigantism. This unit consisted of (1) a reduction in metabolic rate below that predicted by the body temperature, akin to thermal adaptation as seen in extant squamates, (2) presence of air-filled diverticula in the long neck and in the visceral cavity, and (3) low activity of respiratory muscles coupled with the high efficiency of cross-current gas exchange.
Collapse
Affiliation(s)
- Steven F Perry
- Institut für Zoologie, University of Bonn, Bonn, Germany.
| | | | | | | | | |
Collapse
|
33
|
Maina JN, Woodward JD. Three-Dimensional Serial Section Computer Reconstruction of the Arrangement of the Structural Components of the Parabronchus of the Ostrich,Struthio CamelusLung. Anat Rec (Hoboken) 2009; 292:1685-98. [DOI: 10.1002/ar.21002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Development and spatial organization of the air conduits in the lung of the domestic fowl,Gallus gallusvariantdomesticus. Microsc Res Tech 2008; 71:689-702. [DOI: 10.1002/jemt.20608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Kiama SG, Adekunle JS, Maina JN. Comparative in vitro study of interactions between particles and respiratory surface macrophages, erythrocytes, and epithelial cells of the chicken and the rat. J Anat 2008; 213:452-63. [PMID: 18643797 DOI: 10.1111/j.1469-7580.2008.00951.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In mammals, surface macrophages (SMs) play a foremost role in protecting the respiratory system by engulfing and destroying inhaled pathogens and harmful particulates. However, in birds, the direct defense role(s) that SMs perform remains ambiguous. Paucity and even lack of SMs have been reported in the avian respiratory system. It has been speculated that the pulmonary defenses in birds are inadequate and that birds are exceptionally susceptible to pulmonary diseases. In an endeavour to resolve the existing controversy, the phagocytic capacities of the respiratory SMs of the domestic fowl and the rat were compared under similar experimental conditions by exposure to polystyrene particles. In cells of equivalent diameters (8.5 microm in the chicken and 9.0 microm in the rat) and hence volumes, with the volume density of the engulfed polystyrene particles, i.e. the volume of the particles per unit volume of the cell (SM) of 23% in the chicken and 5% in the rat cells, the avian cells engulfed substantially more particles. Furthermore, the avian SMs phagocytized the particles more efficiently, i.e. at a faster rate. The chicken erythrocytes and the epithelial cells of the airways showed noteworthy phagocytic activity. In contrast to the rat cells that did not, 22% of the chicken erythrocytes phagocytized one to six particles. In birds, the phagocytic efficiencies of the SMs, erythrocytes, and epithelial cells may consolidate pulmonary defense. The assorted cellular defenses may explain how and why scarcity of SMs may not directly lead to a weak pulmonary defense. The perceived susceptibility of birds to respiratory diseases may stem from the human interventions that have included extreme genetic manipulation and intensive management for maximum productivity. The stress involved and the structural-functional disequilibria that have occurred from a 'directed evolutionary process', rather than weak immunological and cellular immunity, may explain the alleged vulnerability of the avian gas exchanger to diseases.
Collapse
Affiliation(s)
- S G Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | | | | |
Collapse
|
36
|
Maina JN. Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone. Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.2006.tb00218.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Kiama SG, Maina JN, Bhattacharjee J, Mwangi DK, Macharia RG, Weyrauch KD. The morphology of the pecten oculi of the ostrich, Struthio camelus. Ann Anat 2006; 188:519-28. [PMID: 17140144 DOI: 10.1016/j.aanat.2006.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pecten oculi is a structure peculiar to the avian eye. Three morphological types of pecten oculi are recognized: conical type, vaned type and pleated type. The pleated type has been well studied. However, there exists only scanty data on the morphology of the latter two types of pectens. The structure of the vaned type of pecten of the ostrich, Struthio camelus was investigated with light and electron microscope. The pecten of this species consists of a vertical primary lamella that arises from the optic disc and supports 16-19 laterally located secondary lamellae, which run from the base and confluence at the apex. Some of the secondary lamellae give rise to 2 or 3 tertiary lamellae. The lamellae provide a wide surface, which supports 2-3 Layers of blood capillaries. Pigmentation is highest at the distal ends of the secondary and tertiary Lamella where blood capillaries are concentrated and very scanty on the primary and the proximal ends of the secondary lamella where the presence of capillaries is much reduced. In contrast to the capillaries of the pleated pecten, the endothelium of the capillaries in the pecten of the ostrich exhibits very few microvilli. These observations suggest that the morphology of the pecten of the ostrich, a flightless ratite bird is unique to the pleated pecten and is designed to meet the balance between optimal vision and large surface area for blood supply and yet ensuring it is kept firmly erect within the vitreous.
Collapse
Affiliation(s)
- S G Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. Box 30197, Nairobi, Kenya.
| | | | | | | | | | | |
Collapse
|
38
|
Maina JN. Spectacularly robust! Tensegrity principle explains the mechanical strength of the avian lung. Respir Physiol Neurobiol 2006; 155:1-10. [PMID: 16815758 DOI: 10.1016/j.resp.2006.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 05/23/2006] [Indexed: 11/27/2022]
Abstract
Among the air-breathing vertebrates, the respiratory system of birds, the lung-air sac system, is remarkably complex and singularly efficient. The most perplexing structural property of the avian lung pertains to its exceptional mechanical strength, especially that of the minuscule terminal respiratory units, the air- and the blood capillaries. In different species of birds, the air capillaries range in diameter from 3 to 20 micro m: the blood capillaries are in all cases relatively smaller. Over and above their capacity to withstand enormous surface tension forces at the air-tissue interface, the air capillaries resist mechanical compression (parabronchial distending pressure) as high as 20 cm H(2)O (2 kPa). The blood capillaries tolerate a pulmonary arterial vascular pressure of 24.1 mmHg (3.2 kPa) and vascular resistance of 22.5 mmHg (3 kPa) without distending. The design of the avian respiratory system fundamentally stems from the rigidity (strength) of the lung. The gas exchanger (the lung) is uncoupled from the ventilator (the air sacs), allowing the lung (the paleopulmonic parabronchi) to be ventilated continuously and unidirectionally by synchronized bellows like action of the air sacs. Since during the ventilation of the lung the air capillaries do not have to be distended (dilated), i.e., surface tension force does not have to be overcome (as would be the case if the lung was compliant), extremely intense subdivision of the exchange tissue was possible. Minuscule terminal respiratory units developed, producing a vast respiratory surface area in a limited lung volume. I make a case that a firm (rigid) rib cage, a lung tightly held by the ribs and the horizontal septum, a lung directly attached to the trunk, specially formed and compactly arranged parabronchi, intertwined atrial muscles, and tightly set air capillaries and blood capillaries form an integrated hierarchy of discrete network system of tension and compression, a tensegrity (tensional integrity) array, which absorbs, transmits, and dissipates stress, stabilizing (strengthening) the lung and its various structural components.
Collapse
Affiliation(s)
- J N Maina
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, Johannesburg, South Africa.
| |
Collapse
|
39
|
Runciman S, Seymour RS, Baudinette RV, Pearson JT. An allometric study of lung morphology during development in the Australian pelican, Pelicanus conspicillatus, from embryo to adult. J Anat 2006; 207:365-80. [PMID: 16191165 PMCID: PMC1571551 DOI: 10.1111/j.1469-7580.2005.00457.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pelicans produce altricial chicks that develop into some of the largest birds capable of sustained flight. We traced pulmonary morphological development in the Australian pelican, Pelicanus conspicillatus, from third trimester embryos to adults. We described growth and development with allometric relationships between lung components and body mass or lung volume, according to the equation y = ax(b). Pelican lung volume increased faster than body mass (b = 1.07). Relative to lung volume, the airways and vascular spaces increased allometrically (b > 1) in embryos, but isometrically (b approximately 1) after hatching. Parabronchial mantle volume decreased (b < 1) prior to hatching and increased isometrically thereafter. Surface area of air capillaries, blood capillaries and the blood-gas barrier increased relative to lung volume (b > 0.67) before and after hatching. Barrier thickness decreased before hatching, remained constant in juveniles and decreased by adulthood. The anatomical diffusing capacity significantly increased before hatching (b = 4.44) and after hatching (b = 1.26). Although altricial pelicans developed pulmonary complexity later than precocial turkeys, the volume-specific characteristics were similar. However, lungs of volant adult pelicans became significantly larger, with a greater capacity for gas exchange, than lungs of terrestrial turkeys. Exchange characteristics of growing pelican lungs were inferior to those of adult birds of 26 other species, but converged with them at maturity.
Collapse
Affiliation(s)
- S Runciman
- Anatomy and Histology, Flinders University of South Australia, Adelaide, South Australia 5001, Australia.
| | | | | | | |
Collapse
|
40
|
Maina JN, West JB. Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier. Physiol Rev 2005; 85:811-44. [PMID: 15987796 DOI: 10.1152/physrev.00022.2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In gas exchangers, the tissue barrier, the partition that separates the respiratory media (water/air and hemolymph/blood), is exceptional for its remarkable thinness, striking strength, and vast surface area. These properties formed to meet conflicting roles: thinness was essential for efficient flux of oxygen by passive diffusion, and strength was crucial for maintaining structural integrity. What we have designated as "three-ply" or "laminated tripartite" architecture of the barrier appeared very early in the evolution of the vertebrate gas exchanger. The design is conspicuous in the water-blood barrier of the fish gills through the lungs of air-breathing vertebrates, where the plan first appeared in lungfishes (Dipnoi) some 400 million years ago. The similarity of the structural design of the barrier in respiratory organs of animals that remarkably differ phylogenetically, behaviorally, and ecologically shows that the construction has been highly conserved both vertically and horizontally, i.e., along and across the evolutionary continuum. It is conceivable that the blueprint may have been the only practical construction that could simultaneously grant satisfactory strength and promote gas exchange. In view of the very narrow allometric range of the thickness of the blood-gas barrier in the lungs of different-sized vertebrate groups, the measurement has seemingly been optimized. There is convincing, though indirect, evidence that the extracellular matrix and particularly the type IV collagen in the lamina densa of the basement membrane is the main stress-bearing component of the blood-gas barrier. Under extreme conditions of operation and in some disease states, the barrier fails with serious consequences. The lamina densa which in many parts of the blood-gas barrier is <50 nm thin is a lifeline in the true sense of the word.
Collapse
Affiliation(s)
- John N Maina
- School of Anatomical Sciences, Faculty of Health Sciences, The University of Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
41
|
Woodward JD, Maina JN. A 3D digital reconstruction of the components of the gas exchange tissue of the lung of the muscovy duck, Cairina moschata. J Anat 2005; 206:477-92. [PMID: 15857367 PMCID: PMC1571511 DOI: 10.1111/j.1469-7580.2005.00413.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2005] [Indexed: 11/28/2022] Open
Abstract
To elucidate the shape, size, and spatial arrangement and association of the terminal respiratory units of the avian lung, a three-dimensional (3D) computer-aided voxel reconstruction was generated from serial plastic sections of the lung of the adult muscovy duck, Cairina moschata. The air capillaries (ACs) are rather rotund structures that interconnect via short, narrow passageways, and the blood capillaries (BCs) comprise proliferative segments of rather uniform dimensions. The ACs and BCs anastomose profusely and closely intertwine with each other, forming a complex network. The two sets of respiratory units are, however, absolutely not mirror images of each other, as has been claimed by some investigators. Historically, the terms 'air capillaries' and 'blood capillaries' were derived from observations that the exchange tissue of the avian lung mainly consisted of a network of minuscule air- and vascular units. The entrenched notion that the ACs are straight (non-branching), blind-ending tubules that project outwards from the parabronchial lumen and that the BCs are direct tubules that run inwards parallel to and in contact with the ACs is overly simplistic, misleading and incorrect. The exact architectural properties of the respiratory units of the avian lung need to be documented and applied in formulating reliable physiological models. A few ostensibly isolated ACs were identified. The mechanism through which such units form and their functional significance, if any, are currently unclear.
Collapse
Affiliation(s)
- Jeremy D Woodward
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
42
|
Maina JN. A systematic study of the development of the airway (bronchial) system of the avian lung from days 3 to 26 of embryogenesis: a transmission electron microscopic study on the domestic fowl, Gallus gallus variant domesticus. Tissue Cell 2003; 35:375-91. [PMID: 14517104 DOI: 10.1016/s0040-8166(03)00058-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the embryo of the domestic fowl, Gallus gallus variant domesticus, the lung buds become evident on day 3 of development. After fusing on the ventral midline, the single entity divides into left and right primordial lungs that elongate caudally while diverging and shifting towards the dorsolateral aspects of the coelomic cavity. On reaching their definitive topographical locations, the lungs rotate along a longitudinal axis, attach, and begin to slide into the ribs. First appearing as a solid cord of epithelial cells that runs in the proximal-distal axis of the developing lung, progressively, the intrapulmonary primary bronchus begins to canalize. In quick succession, secondary bronchi sprout from it in a craniocaudal sequence and radiate outwards. On reaching the periphery of the lung, parabronchi (tertiary bronchi) bud from the secondary bronchi and project into the surrounding mesenchymal cell mass. The parabronchi canalize, lengthen, increase in diameter, anastomose, and ultimately connect the secondary bronchi. The luminal aspect of the formative parabronchi is initially lined by a composite epithelium of which the peripheral cells attach onto the basement membrane while the apical ones project prominently into the lumen. The epithelium transforms to a simple columnar type in which the cells connect through arm-like extensions and prominently large intercellular spaces form. The atria are conspicuous on day 15, the infundibulae on day 16, and air capillaries on day 18. At hatching (day 21), the air and blood capillaries have anastomosed profusely and the blood-gas barrier become remarkably thin. The lung is well developed and potentially functionally competent at the end of the embryonic life. Thereafter, at least upto day 26, no further consequential structures form. The mechanisms by which the airways in the avian lung develop fundamentally differ from those that occur in the mammalian one. Compared with the blind-ended bronchial system that inaugurates in the mammalian lung, an elaborate, continuous system of air conduits develops in the avian one. Further studies are necessary to underpin the specific molecular factors and genetic processes that direct the morphogenesis of an exceptionally complex and efficient respiratory organ.
Collapse
Affiliation(s)
- J N Maina
- School of Anatomical Sciences, Faculty of Health Sciences, The University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa.
| |
Collapse
|
43
|
Fuller A, Kamerman PR, Maloney SK, Mitchell G, Mitchell D. Variability in brain and arterial blood temperatures in free-ranging ostriches in their natural habitat. J Exp Biol 2003; 206:1171-81. [PMID: 12604577 DOI: 10.1242/jeb.00230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used implanted miniature data loggers to measure brain (in or near the hypothalamus) and carotid arterial blood temperatures at 5 min intervals in six free-ranging ostriches Struthio camelus in their natural habitat, for a period of up to 14 days. Carotid blood temperature exhibited a large amplitude (3.0-4.6 degrees C) circadian rhythm, and was positively correlated with air temperature. During the day, brain temperature exceeded carotid blood temperature by approx. 0.4 degrees C, but there were episodes when brain temperature was lowered below blood temperature. Selective brain cooling, however, was not present in all ostriches, and was not tightly coupled to the prevailing body temperature. Brain temperature was maintained within narrow daily limits of approx. 2 degrees C, and varied significantly less than blood temperature at short time scales of 5 to 20 min. At night, brain temperature exceeded blood temperature by as much as 3 degrees C. We attribute the elevated brain temperatures to warming of cerebral arterial blood, by reduced heat exchange in the ophthalmic rete or possibly heat gain from cranial structures, before supplying the hypothalamus. Further studies are necessary to elucidate the significance of such variations in brain temperature and the importance of selective brain cooling in free-living birds.
Collapse
Affiliation(s)
- Andrea Fuller
- School of Physiology, University of the Witwatersrand Medical School, 7 York Road, Parktown 2193, South Africa.
| | | | | | | | | |
Collapse
|
44
|
Maina JN. Some recent advances on the study and understanding of the functional design of the avian lung: morphological and morphometric perspectives. Biol Rev Camb Philos Soc 2002; 77:97-152. [PMID: 11911376 DOI: 10.1017/s1464793101005838] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The small highly aerobic avian species have morphometrically superior lungs while the large flightless ones have less well-refined lungs. Two parabronchial systems, i.e. the paleopulmo and neopulmo, occur in the lungs of relatively advanced birds. Although their evolution and development are not clear, understanding their presence is physiologically important particularly since the air- and blood flow patterns in them are different. Geometrically, the bulk air flow in the parabronchial lumen, i.e. in the longitudinal direction, and the flow of deoxygenated blood from the periphery, i.e. in a centripetal direction, are perpendicularly arranged to produce a cross-current relationship. Functionally, the blood capillaries in the avian lung constitute a multicapillary serial arterialization system. The amount of oxygen and carbon dioxide exchanged arises from many modest transactions that occur where air- and blood capillaries interface along the parabronchial lengths, an additive process that greatly enhances the respiratory efficiency. In some species of birds, an epithelial tumescence occurs at the terminal part of the extrapulmonary primary bronchi (EPPB). The swelling narrows the EPPB, conceivably allowing the shunting of inspired air across the openings of the medioventral secondary bronchi, i.e. inspiratory aerodynamic valving. The defence stratagems in the avian lung differ from those of mammals: fewer surface (free) macrophages (SMs) occur, the epithelial cells that line the atria and infundibula are phagocytic, a large population of subepithelial macrophages is present and pulmonary intravascular macrophages exist. This complex defence inventory may explain the paucity of SMs in the avian lung.
Collapse
Affiliation(s)
- J N Maina
- Department of Anatomical Sciences, The Medical School, The University of the Witwatersrand, Parktown, Johannesburg, South Africa.
| |
Collapse
|