1
|
Shiels HA. Avian cardiomyocyte architecture and what it reveals about the evolution of the vertebrate heart. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210332. [PMID: 36189815 PMCID: PMC9527935 DOI: 10.1098/rstb.2021.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
Bird cardiomyocytes are long, thin and lack transverse (t)-tubules, which is akin to the cardiomyocyte morphology of ectothermic non-avian reptiles, who are typified by low maximum heart rates and low pressure development. However, birds can achieve greater contractile rates and developed pressures than mammals, whose wide cardiomyocytes contain a dense t-tubular network allowing for uniform excitation-contraction coupling and strong contractile force. To address this apparent paradox, this paper functionally links recent electrophysiological studies on bird cardiomyocytes with decades of ultrastructure measurements. It shows that it is the strong transsarcolemmal Ca2+ influx via the L-type Ca2+ current (ICaL) and the high gain of Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR), coupled with an internal SR Ca2+ release relay system, that facilitates the strong fast contractions in the long thin bird cardiomyocytes, without the need for t-tubules. The maintenance of an elongated myocyte morphology following the post-hatch transition from ectothermy to endothermy in birds is discussed in relation to cardiac load, myocyte ploidy, and cardiac regeneration potential in adult cardiomyocytes. Overall, the paper shows how little we know about cellular Ca2+ dynamics in the bird heart and suggests how increased research efforts in this area would provide vital information in our quest to understand the role of myocyte architecture in the evolution of the vertebrate heart. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'. Please see glossary at the end of the paper for definitions of specialized terms.
Collapse
Affiliation(s)
- Holly A. Shiels
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Pettinau L, Lancien F, Zhang Y, Mauduit F, Ollivier H, Farrell AP, Claireaux G, Anttila K. Warm, but not hypoxic acclimation, prolongs ventricular diastole and decreases the protein level of Na +/Ca 2+ exchanger to enhance cardiac thermal tolerance in European sea bass. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111266. [PMID: 35772648 DOI: 10.1016/j.cbpa.2022.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
One of the physiological mechanisms that can limit the fish's ability to face hypoxia or elevated temperature, is maximal cardiac performance. Yet, few studies have measured how cardiac electrical activity and associated calcium cycling proteins change with acclimation to those environmental stressors. To examine this, we acclimated European sea bass for 6 weeks to three experimental conditions: a seasonal average temperature in normoxia (16 °C; 100% air sat.), an elevated temperature in normoxia (25 °C; 100% air sat.) and a seasonal average temperature in hypoxia (16 °C; 50% air sat.). Following each acclimation, the electrocardiogram was measured to assess how acclimation affected the different phases of cardiac cycle, the maximal heart rate (fHmax) and cardiac thermal performance during an acute increase of temperature. Whereas warm acclimation prolonged especially the diastolic phase of the ventricular contraction, reduced the fHmax and increased the cardiac arrhythmia temperature (TARR), hypoxic acclimation was without effect on these functional indices. We measured the level of two key proteins involved with cellular relaxation of cardiomyocytes, i.e. sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). Warm acclimation reduced protein level of both NCX and SERCA and hypoxic acclimation reduced SERCA protein levels without affecting NCX. The changes in ventricular NCX level correlated with the observed changes in diastole duration and fHmax as well as TARR. Our results shed new light on mechanisms of cardiac plasticity to environmental stressors and suggest that NCX might be involved with the observed functional changes, yet future studies should also measure its electrophysiological activity.
Collapse
Affiliation(s)
- Luca Pettinau
- Department of Biology, University of Turku, 20014 Turku, Finland.
| | - Frédéric Lancien
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Yangfan Zhang
- Department of Zoology, Faculty of Land and Food System, University of British Columbia, Vancouver, British Columbia, Canada. https://twitter.com/theYangfanZHANG
| | - Florian Mauduit
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Hélène Ollivier
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Anthony P Farrell
- Department of Zoology, Faculty of Land and Food System, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Claireaux
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Katja Anttila
- Department of Biology, University of Turku, 20014 Turku, Finland. https://twitter.com/anttilaLab
| |
Collapse
|
3
|
Filatova TS, Abramochkin DV, Shiels HA. Warmer, faster, stronger: Ca 2+ cycling in avian myocardium. J Exp Biol 2020; 223:jeb228205. [PMID: 32843363 DOI: 10.1242/jeb.228205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022]
Abstract
Birds occupy a unique position in the evolution of cardiac design. Their hearts are capable of cardiac performance on par with, or exceeding that of mammals, and yet the structure of their cardiomyocytes resembles those of reptiles. It has been suggested that birds use intracellular Ca2+ stored within the sarcoplasmic reticulum (SR) to power contractile function, but neither SR Ca2+ content nor the cross-talk between channels underlying Ca2+-induced Ca2+ release (CICR) have been studied in adult birds. Here we used voltage clamp to investigate the Ca2+ storage and refilling capacities of the SR and the degree of trans-sarcolemmal and intracellular Ca2+ channel interplay in freshly isolated atrial and ventricular myocytes from the heart of the Japanese quail (Coturnix japonica). A trans-sarcolemmal Ca2+ current (ICa) was detectable in both quail atrial and ventricular myocytes, and was mediated only by L-type Ca2+ channels. The peak density of ICa was larger in ventricular cells than in atrial cells, and exceeded that reported for mammalian myocardium recorded under similar conditions. Steady-state SR Ca2+ content of quail myocardium was also larger than that reported for mammals, and reached 750.6±128.2 μmol l-1 in atrial cells and 423.3±47.2 μmol l-1 in ventricular cells at 24°C. We observed SR Ca2+-dependent inactivation of ICa in ventricular myocytes, indicating cross-talk between sarcolemmal Ca2+ channels and ryanodine receptors in the SR. However, this phenomenon was not observed in atrial myocytes. Taken together, these findings help to explain the high-efficiency avian myocyte excitation-contraction coupling with regard to their reptilian-like cellular ultrastructure.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str.,1, Moscow 117997, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str.,1, Moscow 117997, Russia
- Ural Federal University, Mira 19, Ekaterinburg 620002, Russia
- Laboratory of Cardiac Physiology, Institute of Physiology of komi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Pervomayskaya str., 50, 167982 Syktyvkar, Komi Republic, Russia
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
4
|
Filatova TS, Abramochkin DV, Shiels HA. Thermal acclimation and seasonal acclimatization: a comparative study of cardiac response to prolonged temperature change in shorthorn sculpin. ACTA ACUST UNITED AC 2019; 222:jeb.202242. [PMID: 31315933 DOI: 10.1242/jeb.202242] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022]
Abstract
Seasonal thermal remodelling (acclimatization) and laboratory thermal remodelling (acclimation) can induce different physiological changes in ectothermic animals. As global temperatures are changing at an increasing rate, there is urgency to understand the compensatory abilities of key organs such as the heart to adjust under natural conditions. Thus, the aim of the present study was to directly compare the acclimatization and acclimatory response within a single eurythermal fish species, the European shorthorn sculpin (Myoxocephalus scorpio). We used current- and voltage-clamp to measure ionic current densities in both isolated atrial and ventricular myocytes from three groups of fish: (1) summer-caught fish kept at 12°C ('summer-acclimated'); (2) summer-caught fish kept at 3°C ('cold acclimated'); and (3) fish caught in March ('winter-acclimatized'). At a common test temperature of 7.5°C, action potential (AP) was shortened by both winter acclimatization and cold acclimation compared with summer acclimation; however, winter acclimatization caused a greater shortening than did cold acclimation. Shortening of AP was achieved mostly by a significant increase in repolarizing current density (I Kr and I K1) following winter acclimatization, with cold acclimation having only minor effects. Compared with summer acclimation, the depolarizing L-type calcium current (I Ca) was larger following winter acclimatization, but again, there was no effect of cold acclimation on I Ca Interestingly, the other depolarizing current, I Na, was downregulated at low temperatures. Our further analysis shows that ionic current remodelling is primarily due to changes in ion channel density rather than current kinetics. In summary, acclimatization profoundly modified the electrical activity of the sculpin heart while acclimation to the same temperature for >1.5 months produced very limited remodelling effects.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow, Russia 119234 .,Department of Physiology, Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia 117997
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow, Russia 119234.,Department of Physiology, Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia 117997.,Ural Federal University, Mira 19, Ekaterinburg, Russia 620002
| | - Holly A Shiels
- Faculty of Life Sciences, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
5
|
van Opbergen CJ, van der Voorn SM, Vos MA, de Boer TP, van Veen TA. Cardiac Ca2+ signalling in zebrafish: Translation of findings to man. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:45-58. [DOI: 10.1016/j.pbiomolbio.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
|
6
|
Callaghan NI, Williams KJ, Bennett JC, MacCormack TJ. Nanoparticulate-specific effects of silver on teleost cardiac contractility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:721-730. [PMID: 29129433 DOI: 10.1016/j.envpol.2017.10.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/15/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (nAg), due to their biocidal properties, are common in medical applications and are used in more consumer products than any other engineered nanomaterial. This growing abundance, combined with their ability to translocate across the epithelium and bioaccumulate, suggests that internalized nAg may present a risk of toxicity to many organisms in the future. However, little experimentation has been devoted to cardiac responses to acute nAg exposure, even though nAg is known to disrupt ion channels even when ionic Ag+ does not. In this study, we examined the cardiac response to nAg exposure relative to a sham and an ionic AgNO3 control across cardiomyocyte survival and homeostasis, ventricular contractility, and intrinsic pacing rates of whole hearts. Our results suggest that nAg, but not Ag+ alone, inhibits force production by the myocardium, that Ag in any form disrupts normal pacing of cardiac contractions, and that these responses are likely not due to cytotoxicity. This evidence of nanoparticle-specific effects on physiology should encourage further research into nAg cardiotoxicity and other potential sublethal effects.
Collapse
Affiliation(s)
- Neal Ingraham Callaghan
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, E4L 1G8, Canada.
| | - Kenneth Javier Williams
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, E4L 1G8, Canada.
| | - J Craig Bennett
- Department of Physics, Acadia University, Wolfville, NS, B4P 2R6, Canada.
| | - Tyson James MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, E4L 1G8, Canada.
| |
Collapse
|
7
|
Crossley DA, Burggren WW, Reiber CL, Altimiras J, Rodnick KJ. Mass Transport: Circulatory System with Emphasis on Nonendothermic Species. Compr Physiol 2016; 7:17-66. [PMID: 28134997 DOI: 10.1002/cphy.c150010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mass transport can be generally defined as movement of material matter. The circulatory system then is a biological example given its role in the movement in transporting gases, nutrients, wastes, and chemical signals. Comparative physiology has a long history of providing new insights and advancing our understanding of circulatory mass transport across a wide array of circulatory systems. Here we focus on circulatory function of nonmodel species. Invertebrates possess diverse convection systems; that at the most complex generate pressures and perform at a level comparable to vertebrates. Many invertebrates actively modulate cardiovascular function using neuronal, neurohormonal, and skeletal muscle activity. In vertebrates, our understanding of cardiac morphology, cardiomyocyte function, and contractile protein regulation by Ca2+ highlights a high degree of conservation, but differences between species exist and are coupled to variable environments and body temperatures. Key regulators of vertebrate cardiac function and systemic blood pressure include the autonomic nervous system, hormones, and ventricular filling. Further chemical factors regulating cardiovascular function include adenosine, natriuretic peptides, arginine vasotocin, endothelin 1, bradykinin, histamine, nitric oxide, and hydrogen sulfide, to name but a few. Diverse vascular morphologies and the regulation of blood flow in the coronary and cerebral circulations are also apparent in nonmammalian species. Dynamic adjustments of cardiovascular function are associated with exercise on land, flying at high altitude, prolonged dives by marine mammals, and unique morphology, such as the giraffe. Future studies should address limits of gas exchange and convective transport, the evolution of high arterial pressure across diverse taxa, and the importance of the cardiovascular system adaptations to extreme environments. © 2017 American Physiological Society. Compr Physiol 7:17-66, 2017.
Collapse
Affiliation(s)
- Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Warren W Burggren
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Carl L Reiber
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Jordi Altimiras
- AVIAN Behavioral Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| |
Collapse
|
8
|
Larsen J, Bushnell P, Steffensen J, Pedersen M, Qvortrup K, Brill R. Characterization of the functional and anatomical differences in the atrial and ventricular myocardium from three species of elasmobranch fishes: smooth dogfish (Mustelus canis), sandbar shark (Carcharhinus plumbeus), and clearnose skate (Raja eglanteria). J Comp Physiol B 2016; 187:291-313. [PMID: 27686667 DOI: 10.1007/s00360-016-1034-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/25/2016] [Accepted: 09/13/2016] [Indexed: 01/15/2023]
Abstract
We assessed the functional properties in atrial and ventricular myocardium (using isolated cardiac strips) of smooth dogfish (Mustelus canis), clearnose skate (Raja eglanteria), and sandbar shark (Carcharhinus plumbeus) by blocking Ca2+ release from the sarcoplasmic reticulum (SR) with ryanodine and thapsigargin and measuring the resultant changes in contraction-relaxation parameters and the force-frequency relationship at 20 °C and 30 °C. We also examined ultrastructural differences with electron microscopy. In tissues from smooth dogfish, net force (per cross-sectional area) and measures of the speeds of contraction and relaxation were all higher in atrial than ventricular myocardium at both temperatures. Atrial-ventricular differences were evident in the other two species primarily in measures of the rates of contraction and relaxation. Ryanodine-thapsigargin treatment reduced net force and its maximum positive first derivative (i.e., contractility), and increased time to 50 % relaxation in atrial tissue from smooth dogfish at 30 °C. It also increased times to peak force and half relaxation in clearnose skate atrial and ventricular tissue at both temperatures, but only in atrial tissue from sandbar shark at 30 °C; indicating that SR involvement in excitation-contraction (EC) coupling is species- and temperature-specific in elasmobranch fishes, as it is in teleost fishes. Atrial and ventricular myocardium from all three species displayed a negative force-frequency relationship, but there was no evidence that SR involvement in EC coupling was influenced by heart rate. SR was evident in electron micrographs, generally located in proximity to mitochondria and intercalated discs, and to a lesser extent between the myofibrils; with mitochondria being more numerous in ventricular than atrial myocardium in all three species.
Collapse
Affiliation(s)
- Julie Larsen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Peter Bushnell
- Department of Biology, Indiana University South Bend, 1700 Mishawaka Avenue, South Bend, IN, 46634-7111, USA
| | - John Steffensen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Morten Pedersen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Klaus Qvortrup
- Department of Biomedical Sciences/CFIM, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Richard Brill
- Behavioral Ecology Branch, Ecosystems Processes Division, Northeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Sandy Hook, NJ, USA. .,Virginia Institute of Marine Science, PO Box 1346, Gloucester Point, VA, 23062, USA.
| |
Collapse
|
9
|
Metabolic compartmentation in rainbow trout cardiomyocytes: coupling of hexokinase but not creatine kinase to mitochondrial respiration. J Comp Physiol B 2016; 187:103-116. [PMID: 27522222 DOI: 10.1007/s00360-016-1025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 01/12/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) cardiomyocytes have a simple morphology with fewer membrane structures such as sarcoplasmic reticulum and t-tubules penetrating the cytosol. Despite this, intracellular ADP diffusion is restricted. Intriguingly, although diffusion is restricted, trout cardiomyocytes seem to lack the coupling between mitochondrial creatine kinase (CK) and respiration. Our aim was to study the distribution of diffusion restrictions in permeabilized trout cardiomyocytes and verify the role of CK. We found a high activity of hexokinase (HK), which led us to reassess the situation in trout cardiomyocytes. We show that diffusion restrictions are more prominent than previously thought. In the presence of a competitive ADP-trapping system, ADP produced by HK, but not CK, was channeled to the mitochondria. In agreement with this, we found no positively charged mitochondrial CK in trout heart homogenate. The results were best fit by a simple mathematical model suggesting that trout cardiomyocytes lack a functional coupling between ATPases and pyruvate kinase. The model simulations show that diffusion is restricted to almost the same extent in the cytosol and by the outer mitochondrial membrane. Furthermore, they confirm that HK, but not CK, is functionally coupled to respiration. In perspective, our results suggest that across a range of species, cardiomyocyte morphology and metabolism go hand in hand with cardiac performance, which is adapted to the circumstances. Mitochondrial CK is coupled to respiration in adult mammalian hearts, which are specialized to high, sustained performance. HK associates with mitochondria in hearts of trout and neonatal mammals, which are more hypoxia-tolerant.
Collapse
|
10
|
Shiels HA, Galli GLJ, Block BA. Cardiac function in an endothermic fish: cellular mechanisms for overcoming acute thermal challenges during diving. Proc Biol Sci 2016; 282:20141989. [PMID: 25540278 DOI: 10.1098/rspb.2014.1989] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Understanding the physiology of vertebrate thermal tolerance is critical for predicting how animals respond to climate change. Pacific bluefin tuna experience a wide range of ambient sea temperatures and occupy the largest geographical niche of all tunas. Their capacity to endure thermal challenge is due in part to enhanced expression and activity of key proteins involved in cardiac excitation-contraction coupling, which improve cardiomyocyte function and whole animal performance during temperature change. To define the cellular mechanisms that enable bluefin tuna hearts to function during acute temperature change, we investigated the performance of freshly isolated ventricular myocytes using confocal microscopy and electrophysiology. We demonstrate that acute cooling and warming (between 8 and 28°C) modulates the excitability of the cardiomyocyte by altering the action potential (AP) duration and the amplitude and kinetics of the cellular Ca(2+) transient. We then explored the interactions between temperature, adrenergic stimulation and contraction frequency, and show that when these stressors are combined in a physiologically relevant way, they alter AP characteristics to stabilize excitation-contraction coupling across an acute 20°C temperature range. This allows the tuna heart to maintain consistent contraction and relaxation cycles during acute thermal challenges. We hypothesize that this cardiac capacity plays a key role in the bluefin tunas' niche expansion across a broad thermal and geographical range.
Collapse
Affiliation(s)
- H A Shiels
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9PL, UK
| | - G L J Galli
- Faculty of Medical and Human Sciences, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9PL, UK
| | - B A Block
- Department of Biology, Tuna Research and Conservation Center, Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| |
Collapse
|
11
|
Shiels HA, Galli GL. The Sarcoplasmic Reticulum and the Evolution of the Vertebrate Heart. Physiology (Bethesda) 2014; 29:456-69. [DOI: 10.1152/physiol.00015.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The sarcoplasmic reticulum (SR) is crucial for contraction and relaxation of the mammalian cardiomyocyte, but its role in other vertebrate classes is equivocal. Recent evidence suggests differences in SR function across species may have an underlying structural basis. Here, we discuss how SR recruitment relates to the structural organization of the cardiomyocyte to provide new insight into the evolution of cardiac design and function in vertebrates.
Collapse
Affiliation(s)
- Holly A. Shiels
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| | - Gina L.J. Galli
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Ferreira EO, Anttila K, Farrell AP. Thermal optima and tolerance in the eurythermic goldfish (Carassius auratus): relationships between whole-animal aerobic capacity and maximum heart rate. Physiol Biochem Zool 2014; 87:599-611. [PMID: 25244373 DOI: 10.1086/677317] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The wide thermal tolerance range of a eurythermic fish (goldfish, Carassius auratus) was used to evaluate how temperature performance curves derived from maximum heart rate (fH) related to those for aerobic scope. For acclimation temperatures of 12°, 20°, and 28°C, optimum temperatures derived from aerobic scope curves (Topt) were 19.9° ± 0.4°, 19.3° ± 0.8°, and 28.7° ± 0.8°C, respectively. The Arrhenius breakpoint temperatures (TAB) for maximum fH were 21.5° ± 0.6°, 23.8° ± 0.9°, and 24.6° ± 0.5°C, respectively. The TQB (temperature where the incremental Q10 of maximum fH decreased abruptly below 1.9) was 24.0° ± 0.7° and 29.8° ± 0.6°C for the 12° and 28°C acclimation temperatures, respectively, and was within the Topt window (11.5°-30.3° and 26.9°-30.5°C, respectively), but TQB for the 20°C acclimation temperature (27.3° ± 0.6°C) was higher than the Topt window (15.4°-23.2°C). Warm acclimation increased the upper critical temperature (Tcrit; from 37.2° ± 0.7° to 44.7° ± 11.8°C) as well as the temperature that triggered a cardiac arrhythmia (Tarr; from 31.1° ± 0.7° to 39.3° ± 0.4°C). In conclusion, we propose that maximum fH and its associated rate transition temperatures (TAB, TQB, and Tarr) can be used to estimate the upper thermal tolerance of eurythermic as well as stenothermic fish independent of acclimation temperature. All the same, great care is needed with such evaluations. For the goldfish, while TAB and TQB were always within the Topt window for 90% of maximum aerobic scope and Topt was closely associated with TAB for 12°C-acclimated fish, TQB had the closest association after 28°C acclimation, and both TAB and TQB were above the Topt window after 20°C acclimation.
Collapse
Affiliation(s)
- Elizabeth O Ferreira
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada; 2Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | |
Collapse
|
13
|
Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon. PLoS One 2013; 8:e55056. [PMID: 23372811 PMCID: PMC3555865 DOI: 10.1371/journal.pone.0055056] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 12/19/2012] [Indexed: 12/05/2022] Open
Abstract
Cardiac muscle is a principal target organ for exercise-induced acclimation mechanisms in fish and mammals, given that sustained aerobic exercise training improves cardiac output. Yet, the molecular mechanisms underlying such cardiac acclimation have been scarcely investigated in teleosts. Consequently, we studied mechanisms related to cardiac growth, contractility, vascularization, energy metabolism and myokine production in Atlantic salmon pre-smolts resulting from 10 weeks exercise-training at three different swimming intensities: 0.32 (control), 0.65 (medium intensity) and 1.31 (high intensity) body lengths s−1. Cardiac responses were characterized using growth, immunofluorescence and qPCR analysis of a large number of target genes encoding proteins with significant and well-characterized function. The overall stimulatory effect of exercise on cardiac muscle was dependent on training intensity, with changes elicited by high intensity training being of greater magnitude than either medium intensity or control. Higher protein levels of PCNA were indicative of cardiac growth being driven by cardiomyocyte hyperplasia, while elevated cardiac mRNA levels of MEF2C, GATA4 and ACTA1 suggested cardiomyocyte hypertrophy. In addition, up-regulation of EC coupling-related genes suggested that exercised hearts may have improved contractile function, while higher mRNA levels of EPO and VEGF were suggestive of a more efficient oxygen supply network. Furthermore, higher mRNA levels of PPARα, PGC1α and CPT1 all suggested a higher capacity for lipid oxidation, which along with a significant enlargement of mitochondrial size in cardiac myocytes of the compact layer of fish exercised at high intensity, suggested an enhanced energetic support system. Training also elevated transcription of a set of myokines and other gene products related to the inflammatory process, such as TNFα, NFκB, COX2, IL1RA and TNF decoy receptor. This study provides the first characterization of the underlying molecular acclimation mechanisms in the heart of exercise-trained fish, which resemble those reported for mammalian physiological cardiac growth.
Collapse
|
14
|
Da Silva D, Costa DCF, Alves CM, Block BA, Landeira-Fernandez AM. Temperature dependence of cardiac sarcoplasmic reticulum Ca²⁺-ATPase from rainbow trout Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2011; 79:789-800. [PMID: 21884113 DOI: 10.1111/j.1095-8649.2011.03076.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this work, the temperature dependence of the sarco-endoplasmic reticulum Ca(2+) -ATPase (SERCA2) activity from rainbow trout Oncorhynchus mykiss cardiac ventricles was measured and compared with the mammalian SERCA2 isoform. The rate of ATP-dependent Ca(2+) transport catalysed by O. mykiss vesicles was totally abolished by thapsigargin and the Ca(2+) ionophore A(23187) . At warm temperatures (25 and 30° C), the SERCA2 from O. mykiss ventricles displayed the same rate of Ca(2+) uptake. At 35° C, the activity of the O. mykiss enzyme decreased after 20 min of reaction time. The rate of Ca(2+) uptake catalysed by the mammalian SERCA2 was temperature dependent exhibiting its maximal activity at 35° C. In contrast to the rate of Ca(2+) uptake, the rate of ATP hydrolysis catalysed by O. mykiss SERCA2 was not significantly different at 25 and 35° C, but the rate of ATP hydrolysis catalysed by the rat Rattus norvegicus SERCA2 isoform at 35° C was two-fold higher than at 25° C. At low temperatures (5 to 20° C), the rate of Ca(2+) uptake from O. mykiss SR was less temperature dependent than the R. norvegicus isoform, being able to sustain a high activity even at 5° C. The mean ±s.e. Q(10) values calculated from 25 to 35° C for ATP hydrolysis were 1·112 ± 0·026 (n = 3) and 2·759 ± 0·240 (n = 5) for O. mykiss and R. norvegicus, respectively. Taken together, the results show that the O. mykiss SERCA2 was not temperature dependent over the 10 to 25° C temperature interval commonly experienced by the animal in vivo. The Q(10) value of SERCA2 was significantly lower in O. mykiss than R. norvegicus which may be key for cardiac function over the wide environmental temperatures experienced in this eurythermal fish.
Collapse
Affiliation(s)
- D Da Silva
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Carlos Chagas Filho, 373, Bl H2-sl 025, CCS/ICB/UFRJ Rio de Janeiro, RJ 21941-902, Brazil
| | | | | | | | | |
Collapse
|
15
|
Llach A, Molina CE, Alvarez-Lacalle E, Tort L, Benítez R, Hove-Madsen L. Detection, properties, and frequency of local calcium release from the sarcoplasmic reticulum in teleost cardiomyocytes. PLoS One 2011; 6:e23708. [PMID: 21897853 PMCID: PMC3163583 DOI: 10.1371/journal.pone.0023708] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022] Open
Abstract
Calcium release from the sarcoplasmic reticulum (SR) plays a central role in the regulation of cardiac contraction and rhythm in mammals and humans but its role is controversial in teleosts. Since the zebrafish is an emerging model for studies of cardiovascular function and regeneration we here sought to determine if basic features of SR calcium release are phylogenetically conserved. Confocal calcium imaging was used to detect spontaneous calcium release (calcium sparks and waves) from the SR. Calcium sparks were detected in 16 of 38 trout atrial myocytes and 6 of 15 ventricular cells. The spark amplitude was 1.45±0.03 times the baseline fluorescence and the time to half maximal decay of sparks was 27±3 ms. Spark frequency was 0.88 sparks µm(-1) min(-1) while calcium waves were 8.5 times less frequent. Inhibition of SR calcium uptake reduced the calcium transient (F/F(0)) from 1.77±0.17 to 1.12±0.18 (p = 0.002) and abolished calcium sparks and waves. Moreover, elevation of extracellular calcium from 2 to 10 mM promoted early and delayed afterdepolarizations (from 0.6±0.3 min(-1) to 8.1±2.0 min(-1), p = 0.001), demonstrating the ability of SR calcium release to induce afterdepolarizations in the trout heart. Calcium sparks of similar width and duration were also observed in zebrafish ventricular myocytes. In conclusion, this is the first study to consistently report calcium sparks in teleosts and demonstrate that the basic features of calcium release through the ryanodine receptor are conserved, suggesting that teleost cardiac myocytes is a relevant model to study the functional impact of abnormal SR function.
Collapse
Affiliation(s)
- Anna Llach
- Cardiovascular Research Centre CSIC and IIB Sant Pau, Hospital de Sant Pau, Barcelona, Barcelona, Spain
| | - Cristina E. Molina
- Cardiovascular Research Centre CSIC and IIB Sant Pau, Hospital de Sant Pau, Barcelona, Barcelona, Spain
| | - Enrique Alvarez-Lacalle
- Departamento Ingeniería de Sistemas, Automática e Informática Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Lluis Tort
- Departamento Biología Celular, Fisiología e Inmunología, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raul Benítez
- Departamento Ingeniería de Sistemas, Automática e Informática Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Leif Hove-Madsen
- Cardiovascular Research Centre CSIC and IIB Sant Pau, Hospital de Sant Pau, Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Galli GLJ, Lipnick MS, Shiels HA, Block BA. Temperature effects on Ca2+ cycling in scombrid cardiomyocytes: a phylogenetic comparison. J Exp Biol 2011; 214:1068-76. [PMID: 21389190 PMCID: PMC3052253 DOI: 10.1242/jeb.048231] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 11/20/2022]
Abstract
Specialisations in excitation-contraction coupling may have played an important role in the evolution of endothermy and high cardiac performance in scombrid fishes. We examined aspects of Ca(2+) handling in cardiomyocytes from Pacific bonito (Sarda chiliensis), Pacific mackerel (Scomber japonicus), yellowfin tuna (Thunnus albacares) and Pacific bluefin tuna (Thunnus orientalis). The whole-cell voltage-clamp technique was used to measure the temperature sensitivity of the L-type Ca(2+) channel current (I(Ca)), density, and steady-state and maximal sarcoplasmic reticulum (SR) Ca(2+) content (ssSR(load) and maxSR(load)). Current-voltage relations, peak I(Ca) density and charge density of I(Ca) were greatest in mackerel and yellowfin at all temperatures tested. I(Ca) density and kinetics were temperature sensitive in all species studied, and the magnitude of this response was not related to the thermal preference of the species. SR(load) was greater in atrial than in ventricular myocytes in the Pacific bluefin tuna, and in species that are more cold tolerant (bluefin tuna and mackerel). I(Ca) and SR(load) were particularly small in bonito, suggesting the Na(+)/Ca(2+) exchanger plays a more pivotal role in Ca(2+) entry into cardiomyocytes of this species. Our comparative approach reveals that the SR of cold-tolerant scombrid fishes has a greater capacity for Ca(2+) storage. This specialisation may contribute to the temperature tolerance and thermal niche expansion of the bluefin tuna and mackerel.
Collapse
Affiliation(s)
- Gina L J Galli
- Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA.
| | | | | | | |
Collapse
|
17
|
Shiels HA, Di Maio A, Thompson S, Block BA. Warm fish with cold hearts: thermal plasticity of excitation-contraction coupling in bluefin tuna. Proc Biol Sci 2010; 278:18-27. [PMID: 20667881 DOI: 10.1098/rspb.2010.1274] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bluefin tuna have a unique physiology. Elevated metabolic rates coupled with heat exchangers enable bluefin tunas to conserve heat in their locomotory muscle, viscera, eyes and brain, yet their hearts operate at ambient water temperature. This arrangement of a warm fish with a cold heart is unique among vertebrates and can result in a reduction in cardiac function in the cold despite the elevated metabolic demands of endothermic tissues. In this study, we used laser scanning confocal microscopy and electron microscopy to investigate how acute and chronic temperature change affects tuna cardiac function. We examined the temporal and spatial properties of the intracellular Ca2+ transient (Δ[Ca2+]i) in Pacific bluefin tuna (Thunnus orientalis) ventricular myocytes at the acclimation temperatures of 14°C and 24°C and at a common test temperature of 19°C. Acute (less than 5 min) warming and cooling accelerated and slowed the kinetics of Δ[Ca2+]i, indicating that temperature change limits cardiac myocyte performance. Importantly, we show that thermal acclimation offered partial compensation for these direct effects of temperature. Prolonged cold exposure (more than four weeks) increased the amplitude and kinetics of Δ[Ca2+]i by increasing intracellular Ca2+ cycling through the sarcoplasmic reticulum (SR). These functional findings are supported by electron microscopy, which revealed a greater volume fraction of ventricular SR in cold-acclimated tuna myocytes. The results indicate that SR function is crucial to the performance of the bluefin tuna heart in the cold. We suggest that SR Ca2+ cycling is the malleable unit of cellular Ca2+ flux, offering a mechanism for thermal plasticity in fish hearts. These findings have implications beyond endothermic fish and may help to delineate the key steps required to protect vertebrate cardiac function in the cold.
Collapse
Affiliation(s)
- H A Shiels
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9PL, UK.
| | | | | | | |
Collapse
|
18
|
Korajoki H, Vornanen M. Expression of calsequestrin in atrial and ventricular muscle of thermally acclimated rainbow trout. ACTA ACUST UNITED AC 2010; 212:3403-14. [PMID: 19837881 DOI: 10.1242/jeb.031617] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calsequestrin (CASQ) is the main Ca(2+) binding protein within the sarcoplasmic reticulum (SR) of the vertebrate heart. The contribution of SR Ca(2+) stores to contractile activation is larger in atrial than ventricular muscle, and in ectothermic fish hearts acclimation to low temperatures increases the use of SR Ca(2+) in excitation-contraction coupling. The hypotheses that chamber-specific and temperature-induced differences in SR function are due to the increased SR CASQ content were tested in rainbow trout (Oncorhynchus mykiss) acclimated at either 4 degrees C (cold acclimation, CA) or 18 degrees C (warm acclimation, WA). To this end, the trout cardiac CASQ (omCASQ2) was cloned and sequenced. The omCASQ2 consists of 1275 nucleotides encoding a predicted protein of 425 amino acids (54 kDa in molecular mass, MM) with a high (75-87%) sequence similarity to other vertebrate cardiac CASQs. The transcript levels of the omCASQ2 were 1.5-2 times higher in CA than WA fish and about 2.5 times higher in the atrium than ventricle (P<0.001). The omCASQ2 protein was measured from western blots using a polyclonal antibody against the amino acid sequence 174-315 of the omCASQ2. Unlike the omCASQ2 transcripts, no differences were found in the abundance of the omCASQ2 protein between CA and WA fish, nor between the atrium and ventricle (P>0.05). However, a prominent qualitative difference appeared between the acclimation groups: two CASQ isoforms with apparent MMs of 54 and 59 kDa, respectively, were present in atrial and ventricular muscle of the WA trout whereas only the 54 kDa protein was clearly expressed in the CA heart. The 59 kDA isoform was a minor CASQ component representing 22% and 13% of the total CASQ proteins in the atrium and ventricle of the WA fish, respectively. In CA hearts, the 59 kDa protein was present in trace amounts (1.5-2.4%). Collectively, these findings indicate that temperature-related and chamber-specific differences in trout cardiac SR function are not related to the abundance of luminal Ca(2+) buffering by cardiac CASQ.
Collapse
Affiliation(s)
- Hanna Korajoki
- University of Joensuu, Faculty of Biosciences, Joensuu, Finland.
| | | |
Collapse
|
19
|
Pieperhoff S, Bennett W, Farrell AP. The intercellular organization of the two muscular systems in the adult salmonid heart, the compact and the spongy myocardium. J Anat 2009; 215:536-47. [PMID: 19627390 PMCID: PMC2780571 DOI: 10.1111/j.1469-7580.2009.01129.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2009] [Indexed: 01/12/2023] Open
Abstract
The ventricle of the salmonid heart consists of an outer compact layer of circumferentially arranged cardiomyocytes encasing a spongy myocardium that spans the lumen of the ventricle with a fine arrangement of muscular trabeculae. While many studies have detailed the anatomical structure of fish hearts, few have considered how these two cardiac muscle architectures are attached to form a functional working unit. The present study considers how the spindle-like cardiomyocytes, unlike the more rectangular structure of adult mammalian cardiomyocytes, form perpendicular connections between the two muscle layers that withstand the mechanical forces generated during cardiac systole and permit a simultaneous, coordinated contraction of both ventricular components. Therefore, hearts of rainbow trout (Oncorhynchus mykiss) and sockeye salmon (Oncorhynchus nerka) were investigated in detail using scanning electron microscopy (SEM) and various light microscopic techniques. In contrast to earlier suggestions, we found no evidence for a distinct connective tissue layer between the two muscle architectures that might 'glue' together the compact and the spongy myocardium. Instead, the contact layer between the compact and the spongy myocardium was characterized by a significantly higher amount of desmosome-like (D) and fascia adhaerens-like (FA) adhering junctions compared with either region alone. In addition, we observed that the trabeculae form muscular sheets of fairly uniform thickness and variable width rather than thick cylinders of variable diameter. This sheet-like trabecular anatomy would minimize diffusion distance while maximizing the area of contact between the trabecular muscle and the venous blood as well as the muscle tension generated by a single trabecular sheet.
Collapse
Affiliation(s)
- Sebastian Pieperhoff
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
20
|
Galli GLJ, Warren DE, Shiels HA. Ca2+ cycling in cardiomyocytes from a high-performance reptile, the varanid lizard (Varanus exanthematicus). Am J Physiol Regul Integr Comp Physiol 2009; 297:R1636-44. [PMID: 19812356 PMCID: PMC2803631 DOI: 10.1152/ajpregu.00381.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The varanid lizard possesses one of the largest aerobic capacities among reptiles with maximum rates of oxygen consumption that are twice that of other lizards of comparable sizes at the same temperature. To support this aerobic capacity, the varanid heart possesses morphological adaptations that allow the generation of high heart rates and blood pressures. Specializations in excitation-contraction coupling may also contribute to the varanids superior cardiovascular performance. Therefore, we investigated the electrophysiological properties of the l-type Ca(2+) channel and the Na(+)/Ca(2+) exchanger (NCX) and the contribution of the sarcoplasmic reticulum to the intracellular Ca(2+) transient (Delta[Ca(2+)](i)) in varanid lizard ventricular myocytes. Additionally, we used confocal microscopy to visualize myocytes and make morphological measurements. Lizard ventricular myocytes were found to be spindle-shaped, lack T-tubules, and were approximately 190 microm in length and 5-7 microm in width and depth. Cardiomyocytes had a small cell volume ( approximately 2 pL), leading to a large surface area-to-volume ratio (18.5), typical of ectothermic vertebrates. The voltage sensitivity of the l-type Ca(2+) channel current (I(Ca)), steady-state activation and inactivation curves, and the time taken for recovery from inactivation were also similar to those measured in other reptiles and teleosts. However, transsarcolemmal Ca(2+) influx via reverse mode Na(+)/Ca(2+) exchange current was fourfold higher than most other ectotherms. Moreover, pharmacological inhibition of the sarcoplasmic reticulum led to a 40% reduction in the Delta[Ca(2+)](i) amplitude, and slowed the time course of decay. In aggregate, our results suggest varanids have an enhanced capacity to transport Ca(2+) through the Na(+)/Ca(2+) exchanger, and sarcoplasmic reticulum suggesting specializations in excitation-contraction coupling may provide a means to support high cardiovascular performance.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Manchester, United Kingdom.
| | | | | |
Collapse
|
21
|
Haverinen J, Vornanen M. Comparison of sarcoplasmic reticulum calcium content in atrial and ventricular myocytes of three fish species. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1180-7. [PMID: 19692664 DOI: 10.1152/ajpregu.00022.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ryanodine (Ry) sensitivity of cardiac contraction differs between teleost species, between atrium and ventricle, and according to the thermal history of the fish. The hypothesis that variability in Ry sensitivity of contraction is due to species-specific, chamber-specific, and temperature-related differences in the sarcoplasmic reticulum (SR) Ca(2+) content, was tested by comparing steady-state (SS) and maximal (Max) Ca(2+) loads of the SR in three teleost fish, rainbow trout (Oncorhynchus mykiss), burbot (Lota lota), and crucian carp (Carassius carassius), which differ in the extent of SR contribution to excitation-contraction coupling. Fish were acclimated at 4 degrees C (cold-acclimation, CA) or 18 degrees C (warm-acclimation, WA), and SR Ca(2+) content was released by a rapid application of 10 mM caffeine to single cardiac myocytes; its amount was determined from the Na(+)-Ca(2+) exchange current at 18 degrees C. SS Ca(2+) load was larger in atrial (304-915 micromol/l) than ventricular (224-540 micromol/l) myocytes in all fish species (P < 0.05), and the same was true for Max SR Ca(2+) content: 550-1,522 micromol/l and 438-840 micromol/l for atrial and ventricular myocytes, respectively (P < 0.05). Consistent with the hypothesis, acclimation to cold increased Ca(2+) load of the cardiac SR in the burbot heart, but contrary to the hypothesis, temperature acclimation did not affect SR Ca(2+) content in rainbow trout and crucian carp hearts. Furthermore, there was an inverse relation between SR Ca(2+) content and Ry sensitivity of contraction force: the species with the smallest SR Ca(2+) content (burbot) is most sensitive to Ry. Collectively, these findings show that SR Ca(2+) content of fish cardiac myocytes is several times larger than that in mammalian cardiac SR.
Collapse
Affiliation(s)
- Jaakko Haverinen
- University of Joensuu, Faculty of Biosciences, Joensuu, Finland.
| | | |
Collapse
|
22
|
Galli GLJ, Shiels HA, Brill RW. Temperature sensitivity of cardiac function in pelagic fishes with different vertical mobilities: yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus), mahimahi (Coryphaena hippurus), and swordfish (Xiphias gladius). Physiol Biochem Zool 2009; 82:280-90. [PMID: 19284308 DOI: 10.1086/597484] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We measured the temperature sensitivity, adrenergic sensitivity, and dependence on sarcoplasmic reticulum (SR) Ca(2+) of ventricular muscle from pelagic fishes with different vertical mobility patterns: bigeye tuna (Thunnus obesus), yellowfin tuna (Thunnus albacares), and mahimahi (Coryphaena hippurus) and a single specimen from swordfish (Xiphias gladius). Ventricular muscle from the bigeye tuna and mahimahi exhibited a biphasic response to an acute decrease in temperature (from 26 degrees to 7 degrees C); twitch force and kinetic parameters initially increased and then declined. The magnitude of this response was larger in the bigeye tuna than in the mahimahi. Under steady state conditions at 26 degrees C, inhibition of SR Ca(2+) release and reuptake with ryanodine and thapsigargin decreased twitch force and kinetic parameters, respectively, in the bigeye tuna only. However, the initial inotropy associated with decreasing temperature was abolished by SR inhibition in both the bigeye tuna and the mahimahi. Application of adrenaline completely reversed the effects of ryanodine and thapsigargin, but this effect was diminished at cold temperatures. In the yellowfin tuna, temperature and SR inhibition had minor effects on twitch force and kinetics, while adrenaline significantly increased these parameters. Limited data suggest that swordfish ventricular muscle responds to acute temperature reduction, SR inhibition, and adrenergic stimulation in a manner similar to that of bigeye tuna ventricular muscle. In aggregate, our results show that the temperature sensitivity, SR dependence, and adrenergic sensitivity of pelagic fish hearts are species specific and that these differences reflect species-specific vertical mobility patterns.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Life Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom.
| | | | | |
Collapse
|
23
|
Galli GLJ, Lipnick MS, Block BA. Effect of thermal acclimation on action potentials and sarcolemmal K+ channels from Pacific bluefin tuna cardiomyocytes. Am J Physiol Regul Integr Comp Physiol 2009; 297:R502-9. [PMID: 19515982 DOI: 10.1152/ajpregu.90810.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To sustain cardiac muscle contractility relatively independent of temperature, some fish species are capable of temporarily altering excitation-contraction coupling processes to meet the demands of their environment. The Pacific bluefin tuna, Thunnus orientalis, is a partially endothermic fish that inhabits a wide range of thermal niches. The present study examined the effects of temperature and thermal acclimation on sarcolemmal K(+) currents and their role in action potential (AP) generation in bluefin tuna cardiomyocytes. Atrial and ventricular myocytes were enzymatically isolated from cold (14 degrees C)- and warm (24 degrees C)-acclimated bluefin tuna. APs and current-voltage relations of K(+) channels were measured using the whole cell current and voltage clamp techniques, respectively. Data were collected either at the cardiomyocytes' respective acclimation temperature of 14 or 24 degrees C or at a common test temperature of 19 degrees C (to reveal the effects of acclimation). AP duration (APD) was prolonged in cold-acclimated (CA) cardiomyocytes tested at 14 degrees C compared with 19 degrees C and in warm-acclimated (WA) cardiomyocytes tested at 19 degrees C compared with 24 degrees C. This effect was mirrored by a decrease in the density of the delayed-rectifier current (I(Kr)), whereas the density of the background inward-rectifier current (I(K1)) was unchanged. When CA and WA cardiomyocytes were tested at a common temperature of 19 degrees C, no significant effects of temperature acclimation on AP shape or duration were observed, whereas I(Kr) density was markedly increased in CA cardiomyocytes. I(K1) density was unaffected in CA ventricular myocytes but was significantly reduced in CA atrial myocytes, resulting in a depolarization of atrial resting membrane potential. Our results indicate the bluefin AP is relatively short compared with other teleosts, which may allow the bluefin heart to function at cold temperatures without the necessity for thermal compensation of APD.
Collapse
Affiliation(s)
- G L J Galli
- Stanford University, Palo Alto, California, USA.
| | | | | |
Collapse
|
24
|
Stecyk JAW, Galli GL, Shiels HA, Farrell AP. Cardiac survival in anoxia-tolerant vertebrates: An electrophysiological perspective. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:339-54. [PMID: 18589002 DOI: 10.1016/j.cbpc.2008.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/31/2008] [Accepted: 05/31/2008] [Indexed: 11/24/2022]
Abstract
Certain vertebrates, such as freshwater turtles of the genus Chrysemys and Trachemys and crucian carp (Carassius carassius), have anoxia-tolerant hearts that continue to function throughout prolonged periods of anoxia (up to many months) due to successful balancing of cellular ATP supply and demand. In the present review, we summarize the current and limited understanding of the cellular mechanisms underlying this cardiac anoxia tolerance. What emerges is that cold temperature substantially modifies cardiac electrophysiology to precondition the heart for winter anoxia. Intrinsic heart rate is slowed and density of sarcolemmal ion currents substantially modified to alter cardiac action potential (AP) characteristics. These changes depress cardiac activity and reduce the energetic costs associated with ion pumping. In contrast, anoxia per se results in limited changes to cardiac AP shape or ion current densities in turtle and crucian carp, suggesting that anoxic modifications of cardiac electrophysiology to reduce ATP demand are not extensive. Additionally, as knowledge of cellular physiology in non-mammalian vertebrates is still in its infancy, we briefly discuss the cellular defense mechanisms towards the acidosis that accompanies anoxia as well as mammalian cardiac models of hypoxia/ischemia tolerance. By examining if fundamental cellular mechanisms have been conserved during the evolution of anoxia tolerance we hope to have provided a framework for the design of future experiments investigating cardiac cellular mechanisms of anoxia survival.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Physiology Programme, Department of Molecular Biosciences, University of Oslo, PO Box 1041, N-0316, Oslo, Norway.
| | | | | | | |
Collapse
|
25
|
Clark TD, Sandblom E, Cox GK, Hinch SG, Farrell AP. Circulatory limits to oxygen supply during an acute temperature increase in the Chinook salmon (Oncorhynchus tshawytscha). Am J Physiol Regul Integr Comp Physiol 2008; 295:R1631-9. [PMID: 18768764 DOI: 10.1152/ajpregu.90461.2008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was undertaken to provide a comprehensive set of data relevant to disclosing the physiological effects and possible oxygen transport limitations in the Chinook salmon (Oncorhynchus tshawytscha) during an acute temperature change. Fish were instrumented with a blood flow probe around the ventral aorta and catheters in the dorsal aorta and sinus venosus. Water temperature was progressively increased from 13 degrees C in steps of 4 degrees C up to 25 degrees C. Cardiac output increased from 29 to 56 ml.min(-1).kg(-1) between 13 and 25 degrees C through an increase in heart rate (58 to 105 beats/min). Systemic vascular resistance was reduced, causing a stable dorsal aortic blood pressure, yet central venous blood pressure increased significantly at 25 degrees C. Oxygen consumption rate increased from 3.4 to 8.7 mg.min(-1).kg(-1) during the temperature increase, although there were signs of anaerobic respiration at 25 degrees C in the form of increased blood lactate and decreased pH. Arterial oxygen partial pressure was maintained during the heat stress, although venous oxygen partial pressure (Pv(O(2))) and venous oxygen content were significantly reduced. Cardiac arrhythmias were prominent in three of the largest fish (>4 kg) at 25 degrees C. Given the switch to anaerobic metabolism and the observation of cardiac arrhythmias at 25 degrees C, we propose that the cascade of venous oxygen depletion results in a threshold value for Pv(O(2)) of around 1 kPa. At this point, the oxygen supply to systemic and cardiac tissues is compromised, such that the oxygen-deprived and acidotic myocardium becomes arrhythmic, and blood perfusion through the gills and to the tissues becomes compromised.
Collapse
Affiliation(s)
- Timothy D Clark
- Faculty of Land and Food Systems, Univ. of British Columbia, Vancouver, Canada, V6T 1Z4.
| | | | | | | | | |
Collapse
|
26
|
Ultrastructure of the sarcoplasmic reticulum in cardiac myocytes from Pacific bluefin tuna. Cell Tissue Res 2008; 334:121-34. [DOI: 10.1007/s00441-008-0669-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
|
27
|
Farrell AP, Axelsson M, Altimiras J, Sandblom E, Claireaux G. Maximum cardiac performance and adrenergic sensitivity of the sea bassDicentrarchus labraxat high temperatures. J Exp Biol 2007; 210:1216-24. [PMID: 17371920 DOI: 10.1242/jeb.002881] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined maximum cardiac performance of sea bass Dicentrarchus labrax acclimated to 18°C and 22°C, temperatures near the optimum for growth of this species. Our aim was to study whether cardiac performance,especially the effect of adrenergic stimulation, differed when compared to salmonids. Sea bass and salmonids are both athletic swimmers but their cardiac anatomy differs markedly. The sea bass ventricle does not receive any oxygenated blood via a coronary circulation while salmonids have a well-developed arterial supply of oxygen to the compact layer of the ventricle. Using in situ perfused heart preparations, maximum cardiac performance of 18°C-acclimated sea bass (i.e. cardiac output=90.8±6.6 ml min–1 kg–1 and power output=11.41±0.83 mW g–1) was found to be comparable to that previously reported for rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta at similar temperatures and with tonic adrenergic (5 nmol l–1 adrenaline) stimulation. For 22°C-acclimated sea bass, heart rate was significantly higher, but maximum stroke volume was reduced by 22% (1.05±0.05 ml kg–1)compared with 18°C (1.38± 0.11 ml kg–1). As a result, maximum cardiac output (99.4±3.9 ml min–1kg–1) was not significantly different at 22°C. Instead,maximum power output was 27% higher at 22°C (14.95±0.96 mW g–1) compared with 18°C, primarily because of the smaller relative ventricular mass in 22°C-acclimated sea bass. Compared with tonic adrenergic stimulation with 5 nmol l–1 adrenaline, maximum adrenergic stimulation of the sea bass heart produced only modest stimulatory effects at both temperatures (12–13% and 14–15% increases in maximum cardiac output and power output, respectively, with no chronotropic effect). Adrenergic stimulation also increased the cardiac sensitivity to filling pressure, with the maximum left-shift in the Starling curve being produced by 50–100 nmol l–1 adrenaline at 18°C and 10–50 nmol l–1 adrenaline at 22°C. We show that the sea bass, which lacks a coronary arterial oxygen supply to the ventricle, has a powerful heart. Its maximum performance is comparable to a salmonid heart,as is the modest stimulatory effect of adrenaline at high temperature.
Collapse
Affiliation(s)
- Anthony P Farrell
- UBC Centre for Aquaculture and the Environment, Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | | | | | | | |
Collapse
|
28
|
Shiels HA, Paajanen V, Vornanen M. Sarcolemmal ion currents and sarcoplasmic reticulum Ca2+content in ventricular myocytes from the cold stenothermic fish, the burbot(Lota lota). J Exp Biol 2006; 209:3091-100. [PMID: 16888058 DOI: 10.1242/jeb.02321] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe burbot (Lota lota) is a cold stenothermic fish species whose heart is adapted to function in the cold. In this study we use whole-cell voltage-clamp techniques to characterize the electrophysiological properties of burbot ventricular myocytes and to test the hypothesis that changes in membrane currents and intracellular Ca2+ cycling associated cold-acclimation in other fish species are routine for stenothermic cold-adapted species. Experiments were performed at 4°C, which is the body temperature of burbot for most of the year, and after myocytes were acutely warmed to 11°C, which is in the upper range of temperatures experienced by burbot in nature. Results on K+ channels support our hypothesis as the relative density of K-channel conductances in the burbot heart are similar to those found for cold-acclimated cold-active fish species. IK1 conductance was small (39.2±5.4 pS pF-1 at 4°C and 71.4±1.7 pS pF-1 at 11°C)and IKr was large (199±27 pS pF-1 at 4°C and 320.3±8 pS pF-1 at 11°C) in burbot ventricular myocytes. We found high Na+-Ca2+ exchange(NCX) activity (35.9±6.3 pS pF-1 at 4°C and 58.6±8.4 pS pF-1 at 11°C between -40 and 20 mV),suggesting that it may be the primary pathway for sarcolemmal (SL)Ca2+ influx in this species. In contrast, the density(ICa, 0.81±0.13 pA pF-1 at 4°C, and 1.35±0.18 pA pF-1 at 11°C) and the charge(QCa, 0.24±0.043 pC pF-1 at 4°C and 0.21±0.034 pC pF-1 at 11°C) carried by the l-type Ca2+ current was small. Our results on sarcolemmal ion currents in burbot ventricular myocytes suggest that cold stenothermy and compensative cold-acclimation involve many of the same subcellular adaptations that culminate in enhanced excitability in the cold.
Collapse
Affiliation(s)
- Holly A Shiels
- Faculty of Life Sciences, University of Manchester, 2.18c Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK.
| | | | | |
Collapse
|
29
|
Shiels HA, White E. Temporal and spatial properties of cellular Ca2+flux in trout ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1756-66. [PMID: 15650128 DOI: 10.1152/ajpregu.00510.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Confocal microscopy was used to investigate the temporal and spatial properties of Ca2+transients and Ca2+sparks in ventricular myocytes of the rainbow trout ( Oncorhynchus mykiss). Confocal imaging confirmed the absence of T tubules and the long (∼160 μm), thin (∼8 μm) morphology of trout myocytes. Line scan imaging of Ca2+transients evoked by electrical stimulation in cells loaded with fluo 4 revealed spatial inhomogeneities in the temporal properties of Ca2+transients across the width of the myocytes. The Ca2+wavefront initiated faster, rose faster, and reached larger peak amplitudes in the periphery of the myocyte compared with the center. These differences were exacerbated by stimulation with the L-type Ca2+channel agonist (−)BAY K 8644 or by sarcoplasmic reticulum (SR) inhibition with ryanodine and thapsigargin. Results reveal that the shape of the trout myocyte allows for rapid diffusion of Ca2+from the cell periphery to the cell center, with SR Ca2+release contributing to the cytosolic Ca2+rise in a time-dependent manner. Spontaneous Ca2+sparks were exceedingly rare in trout myocytes under control conditions (1 sparking cell from 238 cells examined). This is in marked contrast to the rat where a total of 56 spontaneous Ca2+sparks were observed in 9 of 11 myocytes examined. Ca2+sparklike events were observed in a very small number of trout myocytes (15 sparks from 9 of 378 cells examined) after stimulation with either (−)BAY K 8644 or high Ca2+(6 mM). Reducing temperature to 15°C in intact myocytes or permeabilizing myocytes to adjust intracellular conditions to favor Ca2+spark detection was without significant effects. Possible reasons for the rarity of Ca2+sparks in a cardiac myocyte with an active SR are discussed.
Collapse
|
30
|
Shiels HA, Blank JM, Farrell AP, Block BA. Electrophysiological properties of the L-type Ca2+current in cardiomyocytes from bluefin tuna and Pacific mackerel. Am J Physiol Regul Integr Comp Physiol 2004; 286:R659-68. [PMID: 14656768 DOI: 10.1152/ajpregu.00521.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tunas are capable of exceptionally high maximum metabolic rates; such capability requires rapid delivery of oxygen and metabolic substrate to the tissues. This requirement is met, in part, by exceptionally high maximum cardiac outputs, opening the possibility that myocardial Ca2+delivery is enhanced in myocytes from tuna compared with those from other fish. In this study, we investigated the electrophysiological properties of the cardiac L-type Ca2+channel current ( ICa) to test the hypothesis that Ca2+influx would be larger and have faster kinetics in cardiomyocytes from Pacific bluefin tuna ( Thunnus orientalis) than in those from its sister taxon, the Pacific mackerel ( Scomber japonicus). In accordance with this hypothesis, ICain atrial myocytes from bluefin tuna had significantly greater peak current amplitudes and faster fast inactivation kinetics (-4.4 ± 0.2 pA/pF and 25.9 ± 1.6 ms, respectively) than those from mackerel (-2.7 ± 0.5 pA/pF and 32.3 ± 3.8 ms, respectively). Steady-state activation, inactivation, and recovery from inactivation were also faster in atrial myocytes from tuna than from mackerel. In ventricular myocytes, current amplitude and activation and inactivation rates were similar in both species but elevated compared with those of other teleosts (Vornanen M. Am J Physiol Regul Integr Comp Physiol 272: R1432-R1440, 1997). These results indicate enhanced ICain atrial myocytes from bluefin tuna compared with Pacific mackerel; this enhanced ICamay be associated with elevated cardiac performance, because ICadelivers the majority of Ca2+involved in excitation-contraction coupling in most fish hearts. Similarly, ICais enhanced in the ventricle of both species compared with other teleosts and may play a role in the robust cardiac performance of fishes of the family Scombridae.
Collapse
Affiliation(s)
- H A Shiels
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.
| | | | | | | |
Collapse
|
31
|
Shiels HA, Vornanen M, Farrell AP. Effects of temperature on intracellular [Ca2+] in trout atrial myocytes. J Exp Biol 2002; 205:3641-50. [PMID: 12409490 DOI: 10.1242/jeb.205.23.3641] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYAcute temperature change can be cardioplegic to mammals, yet certain ectotherms maintain their cardiac scope over a wide temperature range. To better understand the acute effects of temperature on the ectothermic heart,we investigated the stimulus-induced change in intracellular Ca2+concentration ([Ca2+]i; cytosolic Ca2+transient) in isolated rainbow trout myocytes at 7°C, 14°C and 21°C. Myocytes were voltage-clamped and loaded with Fura-2 to measure the L-type Ca2+ channel current (ICa) and[Ca2+]i during physiological action potential (AP)pulses at frequencies that correspond to trout heart rates in vivo at 7°C, 14°C and 21°C. Additionally, [Ca2+]iand ICa were examined with square (SQ) pulses at slow (0.2 Hz) and physiologically relevant contraction frequencies. The amplitude of[Ca2+]i decreased with increasing temperature for both SQ and AP pulses, which may contribute to the well-known negative inotropic effect of warm temperature on contractile strength in trout hearts. With SQ pulses, [Ca2+]i decreased from 474±53 nmol l-1 at 7°C to 198±21 nmol l-1 at 21°C,while the decrease in [Ca2+]i with AP pulses was from 234±49 nmol l-1 to 79±12 nmol l-1,respectively. Sarcolemmal Ca2+ influx was increased slightly at cold temperatures with AP pulses (charge transfer was 0.27±0.04 pC pF-1, 0.19±0.03 pC pF-1 and 0.13±0.03 pC pF-1 at 7°C, 14°C and 21°C, respectively). At all temperatures, cells were better able to maintain diastolic Ca2+levels at physiological frequencies with AP pulses compared with 500 ms SQ pulses. We suggest that temperature-dependent modulation of the AP is important for cellular Ca2+ regulation during temperature and frequency change in rainbow trout heart.
Collapse
Affiliation(s)
- Holly A Shiels
- Simon Fraser University, Biological Sciences, Burnaby, British Columbia, V5A 1S6, Canada.
| | | | | |
Collapse
|