1
|
Gamperl AK, Nati JJH, Clow KA, Sandrelli RM, Gerber L, Porter ES, Peroni EC. It's a good thing that severely hypoxic salmon (Salmo salar) have a limited capacity to increase heart rate when warmed. J Exp Biol 2025; 228:JEB249594. [PMID: 39882674 PMCID: PMC11925397 DOI: 10.1242/jeb.249594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
With climate change, fish are facing rising temperatures, an increase in the frequency and severity of heat waves and hypoxia, sometimes concurrently. However, only limited studies have examined the combined effects of increases in temperature and hypoxia on fish physiology and survival. We measured the cardiorespiratory physiology of 12°C-acclimated Atlantic salmon when exposed acutely to normoxia [100% air saturation (sat.)] versus 75 and 50% air sat., and then warmed to their critical thermal maximum (CTmax) at 2°C h-1. Fish exposed to 50% air sat. became bradycardic, were unable to increase heart rate (fH) when warmed, and had lower values for metabolic scope and CTmax (21.3 vs 26.1°C in normoxic fish). The effects of 75% air sat. on cardiorespiratory parameters and CTmax were intermediate. We then used atropine (1.2 mg kg-1) and 8-cyclopentyltheophylline (CPT; 50 nmol kg-1) to investigate what role(s) cholinergic tone on the heart and cardiac adenosinergic effects, respectively, play in preventing severely hypoxic salmon (40% air sat.) from increasing fH when warmed. CPT had no/limited effects on salmon cardiorespiratory parameters and thermal tolerance. However, atropine increased fH in hypoxic fish and allowed it to rise with temperature, and this resulted in salmon that were much less tolerant to warming. Collectively, these results: (1) show that fish in severely hypoxic environments will be very susceptible to climate change-associated heat waves; and (2) suggest that cholinergic tone on the heart is not removed when severely hypoxic fish are exposed to rising temperatures to protect the heart's pumping capacity.
Collapse
Affiliation(s)
- Anthony K. Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Julie J. H. Nati
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Kathy A. Clow
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Lucie Gerber
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Emma S. Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| | - Ellen C. Peroni
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
2
|
Braz-Mota S, Ollerhead KM, Lamarre SG, Almeida-Val VMF, Val AL, MacCormack TJ. Acclimation to constant and fluctuating temperatures promotes distinct metabolic responses in Arctic char (Salvelinus alpinus). J Exp Biol 2024; 227:jeb249475. [PMID: 39319428 DOI: 10.1242/jeb.249475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
The Arctic is warming three times faster than the global average, imposing challenges to cold-adapted fish, such as Arctic char (Salvelinus alpinus). We evaluated stress and metabolic responses of Arctic char to different thermal acclimation scenarios to determine whether responses to thermal variation differed from those to stable exposures. Fish were exposed for 7 days to one of four treatments: (1) control (12°C); (2) mean (16°C), corresponding to the mean temperature of the diel thermal cycle; (3) constant high temperature (20°C); and (4) diel thermal cycling (12 to 20°C every 24 h). Exposure to 20°C causes increases plasma lactate and glucose, an imbalance in antioxidant systems, and oxidative stress in the liver. The 20°C treatment also elevated fractional rates of protein synthesis and caused oxidative stress in the heart. Stress responses were more pronounced in diel thermal cycling than in mean (16°C) fish, indicating that peak exposure temperatures or variation are physiologically important. Cortisol was highest in diel thermal cycling fish and oxidative stress was noted in the liver. Gill Na+/K+-ATPase activity was also significantly reduced in diel thermal cycling fish, suggesting gill remodeling in response to an osmoregulatory stress. Exposure to a constant 20°C was more challenging than a diel thermal cycle, demonstrating the importance of daily cooling to recovery. Arctic char inhabit a thermally variable environment and understanding how this impacts their physiology will be critical for informing conservation strategies in the context of a rapidly warming Arctic.
Collapse
Affiliation(s)
- S Braz-Mota
- Brazilian National Institute for Research in the Amazon, Laboratory of Ecophysiology and Molecular Evolution, Ave André Araújo, 2936, Aleixo, 69067-375 Manaus, AM, Brazil
| | - K M Ollerhead
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 00586B, Australia
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - S G Lamarre
- Département de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - V M F Almeida-Val
- Brazilian National Institute for Research in the Amazon, Laboratory of Ecophysiology and Molecular Evolution, Ave André Araújo, 2936, Aleixo, 69067-375 Manaus, AM, Brazil
| | - A L Val
- Brazilian National Institute for Research in the Amazon, Laboratory of Ecophysiology and Molecular Evolution, Ave André Araújo, 2936, Aleixo, 69067-375 Manaus, AM, Brazil
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| |
Collapse
|
3
|
Sandrelli RM, Porter ES, Gamperl AK. Hyperoxia does not improve the acute upper thermal tolerance of a tropical marine fish (Lutjanus apodus). J Exp Biol 2024; 227:jeb247703. [PMID: 39369300 PMCID: PMC11574356 DOI: 10.1242/jeb.247703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Fish can experience hyperoxia in shallow environments due to photosynthetic activity and this has been suggested to provide them with a metabolic refuge during acute warming. However, this hypothesis has never been tested on a tropical marine species. Thus, we fitted 29°C-acclimated wild schoolmaster snapper (Lutjanus apodus; a species known to experience diel hyperoxia in mangrove creeks and coastal waters) with Transonic® flow probes and exposed them to an acute increase in temperature (at 1°C h-1) in respirometers under normoxia and hyperoxia (150% air saturation), until their critical thermal maximum (CTmax). The CTmax of both groups was ∼39°C, and no differences in maximum cardiac function were recorded as the fish were warmed. However, temperature-induced factorial aerobic scope was significantly greater in fish tested under hyperoxia. These data suggest that hyperoxia will not protect coastal tropical fish species during marine heat waves, despite its effects on metabolic scope/capacity.
Collapse
Affiliation(s)
- Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| | - Emma S Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| |
Collapse
|
4
|
Vornanen M, Badr A, Haverinen J. Cardiac arrhythmias in fish induced by natural and anthropogenic changes in environmental conditions. J Exp Biol 2024; 227:jeb247446. [PMID: 39119881 DOI: 10.1242/jeb.247446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A regular heartbeat is essential for maintaining the homeostasis of the vertebrate body. However, environmental pollutants, oxygen deficiency and extreme temperatures can impair heart function in fish. In this Review, we provide an integrative view of the molecular origins of cardiac arrhythmias and their functional consequences, from the level of ion channels to cardiac electrical activity in living fish. First, we describe the current knowledge of the cardiac excitation-contraction coupling of fish, as the electrical activity of the heart and intracellular Ca2+ regulation act as a platform for cardiac arrhythmias. Then, we compile findings on cardiac arrhythmias in fish. Although fish can experience several types of cardiac arrhythmia under stressful conditions, the most typical arrhythmia in fish - both under heat stress and in the presence of toxic substances - is atrioventricular block, which is the inability of the action potential to progress from the atrium to the ventricle. Early and delayed afterdepolarizations are less common in fish hearts than in the hearts of endotherms, perhaps owing to the excitation-contraction coupling properties of the fish heart. In fish hearts, Ca2+-induced Ca2+ release from the sarcoplasmic reticulum plays a smaller role than Ca2+ influx through the sarcolemma. Environmental changes and ion channel toxins can induce arrhythmias in fish and weaken their tolerance to environmental stresses. Although different from endotherm hearts in many respects, fish hearts can serve as a translational model for studying human cardiac arrhythmias, especially for human neonates.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Ahmed Badr
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
- Department of Zoology, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
5
|
Gilbert MJH, Hardison EA, Farrell AP, Eliason EJ, Anttila K. Measuring maximum heart rate to study cardiac thermal performance and heat tolerance in fishes. J Exp Biol 2024; 227:jeb247928. [PMID: 39450710 DOI: 10.1242/jeb.247928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The thermal sensitivity of heart rate (fH) in fishes has fascinated comparative physiologists for well over a century. We now know that elevating fH is the primary mechanism through which fishes increase convective oxygen delivery during warming to meet the concomitant rise in tissue oxygen consumption. Thus, limits on fH can constrain whole-animal aerobic metabolism. In this Review, we discuss an increasingly popular methodology to study these limits, the measurement of pharmacologically induced maximum fH (fH,max) during acute warming of an anaesthetized fish. During acute warming, fH,max increases exponentially over moderate temperatures (Q10∼2-3), but this response is blunted with further warming (Q10∼1-2), with fH,max ultimately reaching a peak (Q10≤1) and the heartbeat becoming arrhythmic. Because the temperatures at which these transitions occur commonly align with whole-animal optimum and critical temperatures (e.g. aerobic scope and the critical thermal maximum), they can be valuable indicators of thermal performance. The method can be performed simultaneously on multiple individuals over a few hours and across a broad size range (<1 to >6000 g) with compact equipment. This simplicity and high throughput make it tractable in lab and field settings and enable large experimental designs that would otherwise be impractical. As with all reductionist approaches, the method does have limitations. Namely, it requires anaesthesia and pharmacological removal of extrinsic cardiac regulation. Nonetheless, the method has proven particularly effective in the study of patterns and limits of thermal plasticity and holds promise for helping to predict and mitigate outcomes of environmental change.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Emily A Hardison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anthony P Farrell
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Katja Anttila
- University of Turku, Department of Biology, 20014 Turku, Finland
| |
Collapse
|
6
|
Ekström A, Hendriks B, Van Wert JC, Gilbert MJH, Farrell AP, Cooke SJ, Patterson DA, Hinch SG, Eliason EJ. Impairing cardiac oxygen supply in swimming coho salmon compromises their heart function and tolerance to acute warming. Sci Rep 2023; 13:21204. [PMID: 38040741 PMCID: PMC10692232 DOI: 10.1038/s41598-023-47713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
Climatic warming elevates mortality for many salmonid populations during their physically challenging up-river spawning migrations, yet, the mechanisms underlying the increased mortality remain elusive. One hypothesis posits that a cardiac oxygen insufficiency impairs the heart's capacity to pump sufficient oxygen to body tissues to sustain up-river swimming, especially in warm water when oxygen availability declines and cardiac and whole-animal oxygen demand increases. We tested this hypothesis by measuring cardiac and metabolic (cardiorespiratory) performance, and assessing the upper thermal tolerance of coho salmon (Oncorhynchus kisutch) during sustained swimming and acute warming. By surgically ligating the coronary artery, which naturally accumulates arteriosclerotic lesions in migrating salmon, we partially impaired oxygen supply to the heart. Coronary ligation caused drastic cardiac impairment during swimming, even at benign temperatures, and substantially constrained cardiorespiratory performance during swimming and progressive warming compared to sham-operated control fish. Furthermore, upper thermal tolerance during swimming was markedly reduced (by 4.4 °C) following ligation. While the cardiorespiratory capacity of female salmon was generally lower at higher temperatures compared to males, upper thermal tolerance during swimming was similar between sexes within treatment groups. Cardiac oxygen supply is a crucial determinant for the migratory capacity of salmon facing climatic environmental warming.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 40530, Gothenburg, Sweden.
| | - Brian Hendriks
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jacey C Van Wert
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106-9620, USA
| | - Matthew J H Gilbert
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Anthony P Farrell
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Scott G Hinch
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106-9620, USA
| |
Collapse
|
7
|
Wallbom N, Zena LA, McArley TJ, Ekström A, Axelsson M, Gräns A, Sandblom E, Morgenroth D, Kallstenius N. Increased reliance on coronary perfusion for cardiorespiratory performance in seawater-acclimated rainbow trout. J Exp Biol 2023; 226:286759. [PMID: 36700410 PMCID: PMC10088527 DOI: 10.1242/jeb.244733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023]
Abstract
Salmonid ventricles are composed of spongy and compact myocardium, the latter being perfused via a coronary circulation. Rainbow trout (Oncorhynchus mykiss) acclimated to sea water have higher proportions of compact myocardium and display stroke volume-mediated elevations in resting cardiac output relative to freshwater-acclimated trout, probably to meet the higher metabolic needs of osmoregulatory functions. Here, we tested the hypothesis that cardiorespiratory performance of rainbow trout in sea water is more dependent on coronary perfusion by assessing the effects of coronary ligation on cardiorespiratory function in resting and exhaustively exercised trout acclimated to fresh water or sea water. While ligation only had minor effects on resting cardiorespiratory function across salinities, cardiac function after chasing to exhaustion was impaired, presumably as a consequence of atrioventricular block. Ligation reduced maximum O2 consumption rate by 33% and 17% in fish acclimated to sea water and fresh water, respectively, which caused corresponding 41% and 17% reductions in aerobic scope. This was partly explained by different effects on cardiac performance, as maximum stroke volume was only significantly impaired by ligation in sea water, resulting in 38% lower maximum cardiac output in seawater compared with 28% in fresh water. The more pronounced effect on respiratory performance in sea water was presumably also explained by lower blood O2 carrying capacity, with ligated seawater-acclimated trout having 16% and 17% lower haemoglobin concentration and haematocrit, respectively, relative to ligated freshwater trout. In conclusion, we show that the coronary circulation allows seawater-acclimated trout to maintain aerobic scope at a level comparable to that in fresh water.
Collapse
Affiliation(s)
- Nicklas Wallbom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Lucas A Zena
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Tristan J McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nicklas Kallstenius
- University of Gothenburg, Department of Biological and Environmental Sciences, Sweden
| |
Collapse
|
8
|
Anttila K, Mauduit F, Kanerva M, Götting M, Nikinmaa M, Claireaux G. Cardiovascular oxygen transport and peripheral oxygen extraction capacity contribute to acute heat tolerance in European seabass. Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111340. [PMID: 36347467 DOI: 10.1016/j.cbpa.2022.111340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
This study evaluated whether different parameters describing cardiovascular function, energy metabolism, oxygen transport and oxidative stress were related to the critical thermal maximum (CTMAX) of European seabass (Dicentrarchus labrax) and if there were differential changes in these parameters during and after heat shock in animals with different CTMAX in order to characterize which physiological features make seabass vulnerable to heat waves. Seabass (n = 621) were tested for CTMAX and the physiological parameters were measured in individuals with good or poor temperature tolerance before and after a heat shock (change in temperature from 15 °C to 28 °C in 1.5 h). Fish with good thermal tolerance had larger ventricles with higher maximal heart rate during the heat shock than individuals with poor tolerance. Furthermore, they initially had a high ventricular Ca2+-ATPase activity, which was reduced to a similar level as in fish with poor tolerance following heat shock. The activity of heart lactate dehydrogenase increased in fish with high tolerance, when they were exposed to heat shock, while the aerobic enzyme activity did not differ between groups. The tolerant individuals had smaller red muscle fibers with higher myoglobin content than the poorly tolerant ones. The poorly tolerant individuals had higher hematocrit, which increased with heat shock in both groups. The poorly tolerant individuals had also higher activity of enzymes related to oxidative stress especially after heat shock. In general, CTMAX was not depending on merely one physiological factor but several organ and cellular parameters were related to the CTMAX of seabass and when working in combination they might protect the highly tolerant seabass from future heat waves.
Collapse
Affiliation(s)
- Katja Anttila
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Florian Mauduit
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Unité PFOM-ARN, Centre Ifremer de Bretagne, Plouzané 29280, France
| | - Mirella Kanerva
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Miriam Götting
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Unité PFOM-ARN, Centre Ifremer de Bretagne, Plouzané 29280, France
| |
Collapse
|
9
|
Kuzmin V, Ushenin KS, Dzhumaniiazova IV, Abramochkin D, Vornanen M. High temperature and hyperkalemia cause exit block of action potentials at the atrioventricular junction of rainbow trout (Oncorhynchus mykiss) heart. J Therm Biol 2022; 110:103378. [PMID: 36462845 DOI: 10.1016/j.jtherbio.2022.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
At critically high temperatures, atrioventricular (AV) block causes ventricular bradycardia and collapse of cardiac output in fish. Here, the possible role of the AV canal in high temperature-induced heart failure was examined. To this end, optical mapping was used to measure action potential (AP) conduction in isolated AV junction preparations of the rainbow trout (Oncorhynchus mykiss) heart during acute warming/cooling in the presence of 4 or 8 mM external K+ concentration. The preparation included the AV canal and some atrial and ventricular tissue at its edges, and it was paced either from atrial or ventricular side at a frequency of 0.67 Hz (40 beats min-1) to trigger forward (anterograde) and backward (retrograde) conduction, respectively. The propagation of AP was fast in atrial and ventricular tissues, but much slower in the AV canal, causing an AV delay. Acute warming from 15 °C to 27 °C or cooling from 15 °C to 5 °C did not impair AP conduction in the AV canal, as both anterograde and retrograde excitations propagated regularly through the AV canal. In contrast, anterograde conduction through the AV canal did not trigger ventricular excitation at the boundary zone between the AV canal and the ventricle when extracellular K+ concentration was raised from 4 mM to 8 mM at 27 °C. Also, the retrograde conduction was blocked at the border between the AV canal and the atrium in high K+ at 27 °C. These findings suggest that the AV canal is resistant against high temperatures (and high K+), but the ventricular muscle cannot be excited by APs coming from the AV canal when temperature and external K+ concentration are simultaneously elevated. Therefore, bradycardia at high temperatures in fish may occur due to inability of AP of the AV canal to trigger ventricular AP at the junctional zone between the AV canal and the proximal part of the ventricle.
Collapse
Affiliation(s)
- Vladislav Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, building 12, Moscow, 119991, Russia.
| | - Konstantin S Ushenin
- Ural Federal University, Institute of Natural Sciences and Mathematics, Ekaterinburg, Kuybysheva Str., 48, Ekaterinburg, 620026, Russia
| | - Irina V Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, building 12, Moscow, 119991, Russia
| | - Denis Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, building 12, Moscow, 119991, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O.Box 111, 80101, Joensuu, Finland
| |
Collapse
|
10
|
Shiels HA. Avian cardiomyocyte architecture and what it reveals about the evolution of the vertebrate heart. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210332. [PMID: 36189815 PMCID: PMC9527935 DOI: 10.1098/rstb.2021.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
Bird cardiomyocytes are long, thin and lack transverse (t)-tubules, which is akin to the cardiomyocyte morphology of ectothermic non-avian reptiles, who are typified by low maximum heart rates and low pressure development. However, birds can achieve greater contractile rates and developed pressures than mammals, whose wide cardiomyocytes contain a dense t-tubular network allowing for uniform excitation-contraction coupling and strong contractile force. To address this apparent paradox, this paper functionally links recent electrophysiological studies on bird cardiomyocytes with decades of ultrastructure measurements. It shows that it is the strong transsarcolemmal Ca2+ influx via the L-type Ca2+ current (ICaL) and the high gain of Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR), coupled with an internal SR Ca2+ release relay system, that facilitates the strong fast contractions in the long thin bird cardiomyocytes, without the need for t-tubules. The maintenance of an elongated myocyte morphology following the post-hatch transition from ectothermy to endothermy in birds is discussed in relation to cardiac load, myocyte ploidy, and cardiac regeneration potential in adult cardiomyocytes. Overall, the paper shows how little we know about cellular Ca2+ dynamics in the bird heart and suggests how increased research efforts in this area would provide vital information in our quest to understand the role of myocyte architecture in the evolution of the vertebrate heart. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'. Please see glossary at the end of the paper for definitions of specialized terms.
Collapse
Affiliation(s)
- Holly A. Shiels
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Ørsted M, Jørgensen LB, Overgaard J. Finding the right thermal limit: a framework to reconcile ecological, physiological and methodological aspects of CTmax in ectotherms. J Exp Biol 2022; 225:277015. [DOI: 10.1242/jeb.244514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Upper thermal limits (CTmax) are frequently used to parameterize the fundamental niche of ectothermic animals and to infer biogeographical distribution limits under current and future climate scenarios. However, there is considerable debate associated with the methodological, ecological and physiological definitions of CTmax. The recent (re)introduction of the thermal death time (TDT) model has reconciled some of these issues and now offers a solid mathematical foundation to model CTmax by considering both intensity and duration of thermal stress. Nevertheless, the physiological origin and boundaries of this temperature–duration model remain unexplored. Supported by empirical data, we here outline a reconciling framework that integrates the TDT model, which operates at stressful temperatures, with the classic thermal performance curve (TPC) that typically describes biological functions at permissive temperatures. Further, we discuss how the TDT model is founded on a balance between disruptive and regenerative biological processes that ultimately defines a critical boundary temperature (Tc) separating the TDT and TPC models. Collectively, this framework allows inclusion of both repair and accumulation of heat stress, and therefore also offers a consistent conceptual approach to understand the impact of high temperature under fluctuating thermal conditions. Further, this reconciling framework allows improved experimental designs to understand the physiological underpinnings and ecological consequences of ectotherm heat tolerance.
Collapse
Affiliation(s)
- Michael Ørsted
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| | | | - Johannes Overgaard
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| |
Collapse
|
12
|
Abstract
Understanding the physiological mechanisms that limit animal thermal tolerance is crucial in predicting how animals will respond to increasingly severe heat waves. Despite their importance for understanding climate change impacts, these mechanisms underlying the upper thermal tolerance limits of animals are largely unknown. It has been hypothesized that the upper thermal tolerance in fish is limited by the thermal tolerance of the brain and is ultimately caused by a global brain depolarization. In this study, we developed methods for measuring the upper thermal limit (CTmax) in larval zebrafish (Danio rerio) with simultaneous recordings of brain activity using GCaMP6s calcium imaging in both free-swimming and agar-embedded fish. We discovered that during warming, CTmax precedes, and is therefore not caused by, a global brain depolarization. Instead, the CTmax coincides with a decline in spontaneous neural activity and a loss of neural response to visual stimuli. By manipulating water oxygen levels both up and down, we found that oxygen availability during heating affects locomotor-related neural activity, the neural response to visual stimuli, and CTmax. Our results suggest that the mechanism limiting the upper thermal tolerance in zebrafish larvae is insufficient oxygen availability causing impaired brain function.
Collapse
|
13
|
Gilbert MJH, Middleton EK, Kanayok K, Harris LN, Moore JS, Farrell AP, Speers-Roesch B. Rapid cardiac thermal acclimation in wild anadromous Arctic char (Salvelinus alpinus). J Exp Biol 2022; 225:276421. [PMID: 36000268 DOI: 10.1242/jeb.244055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022]
Abstract
Migratory fishes commonly encounter large and rapid thermal variation, which has the potential to disrupt essential physiological functions. Thus, we acclimated wild, migratory Arctic char to 13°C (∼7°C above a summer average) for an ecologically relevant period (3 days) and measured maximum heart rate (ƒHmax) during acute warming to determine their ability to rapidly improve cardiac function at high temperatures. Arctic char exhibited rapid compensatory cardiac plasticity similar to past observations following prolonged warm acclimation: They reduced ƒHmax over intermediate temperatures (-8%), improved their ability to increase ƒHmax during warming (+10%), and increased (+1.3°C) the temperature at the onset of an arrhythmic heartbeat, a sign of cardiac failure. Consequently, this rapid cardiac plasticity may help migrating fishes like Arctic char mitigate short-term thermal challenges. Furthermore, by using mobile Arctic research infrastructure in a remote field location, the present study illustrates the potential for field-based, experimental physiology in such locations.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Department of Biological Sciences, University of New Brunswick - Saint John, 100 Tucker Park Rd., Saint John, NB, E2L 4L5, Canada
| | - Ella K Middleton
- Department of Biological Sciences, University of New Brunswick - Saint John, 100 Tucker Park Rd., Saint John, NB, E2L 4L5, Canada
| | - Kevin Kanayok
- Ekaluktutiak Hunters & Trappers Organization, Box 1270, Ekaluktutiak, NU, X0B 0C0, Canada
| | - Les N Harris
- Arctic and Aquatic Research Division, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Jean-Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes and Département de Biologie, Université Laval, 1030 Avenue de la Médecine, Quebec City, QC, Québec G1V 0A6, Canada
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada.,Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick - Saint John, 100 Tucker Park Rd., Saint John, NB, E2L 4L5, Canada
| |
Collapse
|
14
|
Badr A, Hassinen M, Vornanen M. Spatial uniformity of action potentials indicates base-to-apex depolarization and repolarization of rainbow trout (Oncorhynchus mykiss) ventricle. J Exp Biol 2022; 225:276292. [PMID: 35950359 DOI: 10.1242/jeb.244466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
The spatial pattern of electrical activation is crucial for a full understanding of fish heart function. However, it remains unclear whether there is regional variation in action potential (AP) morphologies and underlying ion currents. Because the direction of depolarization and spatial differences in the durations of ventricular APs set limits to potential patterns of ventricular repolarization, we determined AP morphologies, underlying ion currents, and ion channel expression in 4 different regions (spongy myocardium; and apex, base, and middle of the compact myocardium), and correlated them with in vivo electrocardiogram (ECG) in rainbow trout (Oncorhynchus mykiss). ECG recorded from 3 leads indicated that the depolarization and repolarization of AP propagate from base-to-apex, and the main depolarization axis of the ventricle is between +90° and +120°. AP shape was uniform across the whole ventricle, and little regional differences were found in density of repolarizing K+ currents or depolarizing Ca2+ and Na+ currents and the underlying transcripts of ion channels, providing compelling evidence for the suggested excitation pattern. The spatial uniformity of AP durations and base-to-apex propagation of activation with a relatively slow velocity of propagation indicates no special ventricular conduction pathway in the trout ventricle like the His-Purkinje system of mammalian hearts. The sequence of repolarization is solely determined by activation time without being affected by regional differences in AP duration.
Collapse
Affiliation(s)
- Ahmed Badr
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland.,Sohag University, Faculty of Science, Department of Zoology, 82524 Sohag, Egypt
| | - Minna Hassinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|
15
|
Pettinau L, Lancien F, Zhang Y, Mauduit F, Ollivier H, Farrell AP, Claireaux G, Anttila K. Warm, but not hypoxic acclimation, prolongs ventricular diastole and decreases the protein level of Na +/Ca 2+ exchanger to enhance cardiac thermal tolerance in European sea bass. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111266. [PMID: 35772648 DOI: 10.1016/j.cbpa.2022.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
One of the physiological mechanisms that can limit the fish's ability to face hypoxia or elevated temperature, is maximal cardiac performance. Yet, few studies have measured how cardiac electrical activity and associated calcium cycling proteins change with acclimation to those environmental stressors. To examine this, we acclimated European sea bass for 6 weeks to three experimental conditions: a seasonal average temperature in normoxia (16 °C; 100% air sat.), an elevated temperature in normoxia (25 °C; 100% air sat.) and a seasonal average temperature in hypoxia (16 °C; 50% air sat.). Following each acclimation, the electrocardiogram was measured to assess how acclimation affected the different phases of cardiac cycle, the maximal heart rate (fHmax) and cardiac thermal performance during an acute increase of temperature. Whereas warm acclimation prolonged especially the diastolic phase of the ventricular contraction, reduced the fHmax and increased the cardiac arrhythmia temperature (TARR), hypoxic acclimation was without effect on these functional indices. We measured the level of two key proteins involved with cellular relaxation of cardiomyocytes, i.e. sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). Warm acclimation reduced protein level of both NCX and SERCA and hypoxic acclimation reduced SERCA protein levels without affecting NCX. The changes in ventricular NCX level correlated with the observed changes in diastole duration and fHmax as well as TARR. Our results shed new light on mechanisms of cardiac plasticity to environmental stressors and suggest that NCX might be involved with the observed functional changes, yet future studies should also measure its electrophysiological activity.
Collapse
Affiliation(s)
- Luca Pettinau
- Department of Biology, University of Turku, 20014 Turku, Finland.
| | - Frédéric Lancien
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Yangfan Zhang
- Department of Zoology, Faculty of Land and Food System, University of British Columbia, Vancouver, British Columbia, Canada. https://twitter.com/theYangfanZHANG
| | - Florian Mauduit
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Hélène Ollivier
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Anthony P Farrell
- Department of Zoology, Faculty of Land and Food System, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Claireaux
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Katja Anttila
- Department of Biology, University of Turku, 20014 Turku, Finland. https://twitter.com/anttilaLab
| |
Collapse
|
16
|
Abramochkin DV, Filatova TS, Pustovit KB, Voronina YA, Kuzmin VS, Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111204. [PMID: 35346823 DOI: 10.1016/j.cbpa.2022.111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
The orderly contraction of the vertebrate heart is determined by generation and propagation of cardiac action potentials (APs). APs are generated by the integrated activity of time- and voltage-dependent ionic channels which carry inward Na+ and Ca2+ currents, and outward K+ currents. This review compares atrial and ventricular APs and underlying ion currents between different taxa of vertebrates. We have collected literature data and attempted to find common electrophysiological features for two or more vertebrate groups, show differences between taxa and cardiac chambers, and indicate gaps in the existing data. Although electrical excitability of the heart in all vertebrates is based on the same superfamily of channels, there is a vast variability of AP waveforms between atrial and ventricular myocytes, between different species of the same vertebrate class and between endothermic and ectothermic animals. The wide variability of AP shapes is related to species-specific differences in animal size, heart rate, stage of ontogenetic development, excitation-contraction coupling, temperature and oxygen availability. Some of the differences between taxa are related to evolutionary development of genomes, which appear e.g. in the expression of different Na+ and K+ channel orthologues in cardiomyocytes of vertebrates. There is a wonderful variability of AP shapes and underlying ion currents with which electrical excitability of vertebrate heart can be generated depending on the intrinsic and extrinsic conditions of animal body. This multitude of ionic mechanisms provides excellent material for studying how the function of the vertebrate heart can adapt or acclimate to prevailing physiological and environmental conditions.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Yana A Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3(rd) Cherepkovskaya str., 15A, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
17
|
Garner M, Stecyk JA. Does the ventricle limit cardiac contraction rate in the anoxic turtle (Trachemys scripta)? I. Comparison of the intrinsic contractile responses of cardiac chambers to the extracellular changes that accompany prolonged anoxia exposure. Curr Res Physiol 2022; 5:312-326. [PMID: 35872835 PMCID: PMC9301509 DOI: 10.1016/j.crphys.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple lines of evidence suggest that an inability of the ventricle to contract in coordination with the pacemaker during anoxia exposure may suppress cardiac pumping rate in anoxia-tolerant turtles. To determine under what extracellular conditions the ventricle could be the weak link that limits cardiac pumping, we compared, under various extracellular conditions, the intrinsic contractile properties of isometrically-contracting ventricular and atrial strips obtained from 21 °C- to 5 °C- acclimated turtles (Trachemys scripta) that had been exposed to either normoxia or anoxia (16 h at 21 °C; 12 days at 5 °C). We found that combined extracellular anoxia, acidosis, and hyperkalemia (AAK), severely disrupted ventricular, but not right or left atrial, excitability and contractibility of 5 °C anoxic turtles. However, combined hypercalcemia and heightened adrenergic stimulation counteracted the negative effects of AAK. We also report that the turtle heart is resilient to prolonged diastolic intervals, which would ensure that contractile force is maintained if arrhythmia were to occur during anoxia exposure. Finally, our findings reinforce that prior temperature and anoxia experiences are central to the intrinsic contractile response of the turtle myocardium to altered extracellular conditions. At 21 °C, prior anoxia exposure preconditioned the ventricle for anoxic and acidosis exposure. At 5 °C, prior anoxia exposure evoked heightened sensitivity of the ventricle to hyperkalemia, as well as all chambers to combined hypercalcemia and increased adrenergic stimulation. Overall, our findings show that the ventricle could limit cardiac pumping rate during prolonged anoxic submergence in cold-acclimated turtles if hypercalcemia and heightened adrenergic stimulation are insufficient to counteract the negative effects of combined extracellular anoxia, acidosis, and hyperkalemia. Turtle atria are more resilient to extracellular factors that disrupt contraction than the ventricle. Combined anoxia, acidosis, and hyperkalemia disrupted ventricular excitability and contractibility of 5 °C anoxic turtles. Heightened adrenergic stimulation counteracted the negative effects. The ventricle could limit cardiac pumping during anoxia at 5 °C if adrenergic stimulation is low.
Collapse
|
18
|
Haverinen J, Badr A, Vornanen M. Cardiac Toxicity of Cadmium Involves Complex Interactions Among Multiple Ion Currents in Rainbow Trout (Oncorhynchus mykiss) Ventricular Myocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2874-2885. [PMID: 34255886 DOI: 10.1002/etc.5161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd2+ ) is cardiotoxic to fish, but its effect on the electrical excitability of cardiac myocytes is largely unknown. To this end, we used the whole-cell patch-clamp method to investigate the effects of Cd2+ on ventricular action potentials (APs) and major ion currents in rainbow trout (Oncorhynchus mykiss) ventricular myocytes. Trout were acclimated to +4 °C, and APs were measured at the acclimated temperature and elevated temperature (+18 °C). Cd2+ (10, 20, and 100 µM) altered the shape of the ventricular AP in a complex manner. The early plateau fell to less positive membrane voltages, and the total duration of AP prolonged. These effects were obvious at both +4 °C and +18 °C. The depression of the early plateau is due to the strong Cd2+ -induced inhibition of the L-type calcium (Ca2+ ) current (ICaL ), whereas the prolongation of the AP is an indirect consequence of the ICaL inhibition: at low voltages of the early plateau, the delayed rectifier potassium (K+ ) current (IKr ) remains small, delaying repolarization of AP. Cd2+ reduced the density and slowed the kinetics of the Na+ current (INa ) but left the inward rectifier K+ current (IK1 ) intact. These altered cellular and molecular functions can explain several Cd2+ -induced changes in impulse conduction of the fish heart, for example, slowed propagation of the AP in atrial and ventricular myocardia (inhibition of INa ), delayed relaxation of the ventricle (prolongation of ventricular AP duration), bradycardia, and atrioventricular block (inhibition of ICaL ). These findings indicate that the cardiotoxicity of Cd2+ in fish involves multiple ion currents that are directly and indirectly altered by Cd2+ . Through these mechanisms, Cd2+ may trigger cardiac arrhythmias and impair myocardial contraction. Elevated temperature (+18 °C) slightly increases Cd2+ toxicity in trout ventricular myocytes. Environ Toxicol Chem 2021;40:2874-2885. © 2021 SETAC.
Collapse
Affiliation(s)
- Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Ahmed Badr
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- Zoology Department, Sohag University, Sohag, Egypt
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
19
|
Bouyoucos IA, Trujillo JE, Weideli OC, Nakamura N, Mourier J, Planes S, Simpfendorfer CA, Rummer JL. Investigating links between thermal tolerance and oxygen supply capacity in shark neonates from a hyperoxic tropical environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146854. [PMID: 33853007 DOI: 10.1016/j.scitotenv.2021.146854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Temperature and oxygen limit the distribution of marine ectotherms. Haematological traits underlying blood-oxygen carrying capacity are thought to be correlated with thermal tolerance in certain fishes, and this relationship is hypothesised to be explained by oxygen supply capacity. We tested this hypothesis using reef shark neonates as experimental models because they live near their upper thermal limits and are physiologically sensitive to low oxygen conditions. We first described in situ associations between temperature and oxygen at the study site (Moorea, French Polynesia) and found that the habitats for reef shark neonates (Carcharhinus melanopterus and Negaprion acutidens) were hyperoxic at the maximum recorded temperatures. Next, we tested for in situ associations between thermal habitat characteristics and haematological traits of neonates. Contrary to predictions, we only demonstrated a negative association between haemoglobin concentration and maximum habitat temperatures in C. melanopterus. Next, we tested for ex situ associations between critical thermal maximum (CTMax) and haematological traits, but only demonstrated a negative association between haematocrit and CTMax in C. melanopterus. Finally, we measured critical oxygen tension (pcrit) ex situ and estimated its temperature sensitivity to predict oxygen-dependent values of CTMax. Estimated temperature sensitivity of pcrit was similar to reported values for sharks and skates, and predicted values for CTMax equalled maximum habitat temperatures. These data demonstrate unique associations between haematological traits and thermal tolerance in a reef shark that are likely not explained by oxygen supply capacity. However, a relationship between oxygen supply capacity and thermal tolerance remains to be demonstrated empirically.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia; PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France.
| | - José E Trujillo
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | - Ornella C Weideli
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Nao Nakamura
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Johann Mourier
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France; Laboratoire d'Excellence "CORAIL", EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia; Université de Corse Pasquale Paoli, UMS 3514 Plateforme Marine Stella Mare, 20620 Biguglia, France
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France; Laboratoire d'Excellence "CORAIL", EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
20
|
Little AG. Thyroid hormone regulation of thermal acclimation in ectotherms: Physiological mechanisms and ecoevolutionary implications. Mol Cell Endocrinol 2021; 530:111285. [PMID: 33891994 DOI: 10.1016/j.mce.2021.111285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/07/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
The pathways that regulate adaptive thermal plasticity in ectothermic vertebrates have received little attention relative to those in birds and mammals. However, there is increasing evidence that thyroid hormone represents a critical regulator of thermal plasticity in both ectothermic and endothermic vertebrates. In this review, I summarize the evidence for thyroid hormone-mediated thermal compensation responses in ectothermic vertebrates, with specific focus on effects on the whole animal, skeletal muscle, and cardiac muscle. Interestingly, these effects can differ wildly between focal tissues and species. I move on to discuss what the role of thyroid hormone in ectotherm thermal plasticity can reveal about stressor interactions and central vs. peripheral levels of thyroid hormone regulation. Lastly, I focus on the conserved nature of thyroid hormone signaling in animal thermal responses, with specific reference to the ectotherm → endotherm spectrum. I use this framework to highlight research avenues that will further resolve the evolutionary trajectory of thyroid hormone actions across animals. I hope to emphasize what thyroid hormone-mediated cold acclimation in a 3 cm fish can contribute to ongoing debates surrounding the impacts of stressor interactions, the potential costs of plasticity, the evolution of endothermy, and the impacts of global change.
Collapse
Affiliation(s)
- A G Little
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
21
|
Haverinen J, Dzhumaniiazova I, Abramochkin DV, Hassinen M, Vornanen M. Effects of Na+ channel isoforms and cellular environment on temperature tolerance of cardiac Na+ current in zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss). J Exp Biol 2021; 224:237812. [PMID: 33914031 DOI: 10.1242/jeb.241067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022]
Abstract
Heat tolerance of heart rate in fish is suggested to be limited by impaired electrical excitation of the ventricle due to the antagonistic effects of high temperature on Na+ (INa) and K+ (IK1) ion currents (INa is depressed at high temperatures while IK1 is resistant to them). To examine the role of Na+ channel proteins in heat tolerance of INa, we compared temperature dependencies of zebrafish (Danio rerio, warm-dwelling subtropical species) and rainbow trout (Oncorhynchus mykiss, cold-active temperate species) ventricular INa, and INa generated by the cloned zebrafish and rainbow trout NaV1.4 and NaV1.5 Na+ channels in human embryonic kidney (HEK) cells. Whole-cell patch-clamp recordings showed that zebrafish ventricular INa has better heat tolerance and slower inactivation kinetics than rainbow trout ventricular INa. In contrast, heat tolerance and inactivation kinetics of zebrafish and rainbow trout NaV1.4 channels are similar when expressed in the identical cellular environment of HEK cells. The same applies to NaV1.5 channels. These findings indicate that thermal adaptation of ventricular INa is largely achieved by differential expression of Na+ channel alpha subunits: zebrafish that tolerate higher temperatures mainly express the slower NaV1.5 isoform, while rainbow trout that prefer cold waters mainly express the faster NaV1.4 isoform. Differences in elasticity (stiffness) of the lipid bilayer and/or accessory protein subunits of the channel assembly may also be involved in thermal adaptation of INa. The results are consistent with the hypothesis that slow Na+ channel kinetics are associated with increased heat tolerance of cardiac excitation.
Collapse
Affiliation(s)
- Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119234 Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119234 Moscow, Russia.,Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3rd Cherepkovskaya 15a, 121552 Moscow, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Str. 1, 117997 Moscow, Russia
| | - Minna Hassinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| |
Collapse
|
22
|
Adrenergic tone benefits cardiac performance and warming tolerance in two teleost fishes that lack a coronary circulation. J Comp Physiol B 2021; 191:701-709. [PMID: 33738526 PMCID: PMC8241749 DOI: 10.1007/s00360-021-01359-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 01/14/2023]
Abstract
Tolerance to acute environmental warming in fish is partly governed by the functional capacity of the heart to increase systemic oxygen delivery at high temperatures. However, cardiac function typically deteriorates at high temperatures, due to declining heart rate and an impaired capacity to maintain or increase cardiac stroke volume, which in turn has been attributed to a deterioration of the electrical conductivity of cardiac tissues and/or an impaired cardiac oxygen supply. While autonomic regulation of the heart may benefit cardiac function during warming by improving myocardial oxygenation, contractility and conductivity, the role of these processes for determining whole animal thermal tolerance is not clear. This is in part because interpretations of previous pharmacological in vivo experiments in salmonids are ambiguous and were confounded by potential compensatory increases in coronary oxygen delivery to the myocardium. Here, we tested the previously advanced hypothesis that cardiac autonomic control benefits heart function and acute warming tolerance in perch (Perca fluviatilis) and roach (Rutilus rutilus); two species that lack coronary arteries and rely entirely on luminal venous oxygen supplies for cardiac oxygenation. Pharmacological blockade of β-adrenergic tone lowered the upper temperature where heart rate started to decline in both species, marking the onset of cardiac failure, and reduced the critical thermal maximum (CTmax) in perch. Cholinergic (muscarinic) blockade had no effect on these thermal tolerance indices. Our findings are consistent with the hypothesis that adrenergic stimulation improves cardiac performance during acute warming, which, at least in perch, increases acute thermal tolerance.
Collapse
|
23
|
Hassinen M, Dzhumaniiazova I, Abramochkin DV, Vornanen M. Ionic basis of atrioventricular conduction: ion channel expression and sarcolemmal ion currents of the atrioventricular canal of the rainbow trout (Oncorhynchus mykiss) heart. J Comp Physiol B 2021; 191:327-346. [PMID: 33575867 PMCID: PMC7895799 DOI: 10.1007/s00360-021-01344-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022]
Abstract
Atrioventricular (AV) nodal tissue synchronizes activities of atria and ventricles of the vertebrate heart and is also a potential site of cardiac arrhythmia, e.g., under acute heat stress. Since ion channel composition and ion currents of the fish AV canal have not been previously studied, we measured major cation currents and transcript expression of ion channels in rainbow trout (Oncorhynchus mykiss) AV tissue. Both ion current densities and expression of ion channel transcripts indicate that the fish AV canal has a characteristic electrophysiological phenotype that differs from those of sinoatrial tissue, atrium and ventricle. Two types of cardiomyocytes were distinguished electrophysiologically in trout AV nodal tissue: the one (transitional cell) is functionally intermediate between working atrial/ventricular myocytes and the other (AV nodal cell) has a less negative resting membrane potential than atrial and ventricular myocytes and is a more similar to the sinoatrial nodal cells in ion channel composition. The AV nodal cells are characterized by a small or non-existent inward rectifier potassium current (IK1), low density of fast sodium current (INa) and relatively high expression of T-type calcium channels (CACNA3.1). Pacemaker channel (HCN4 and HCN2) transcripts were expressed in the AV nodal tissue but If current was not found in enzymatically isolated nodal myocytes. The electrophysiological properties of the rainbow trout nodal cells are appropriate for a slow rate of action potential conduction (small INa) and a moderate propensity for pacemaking activity (absence of IK1).
Collapse
Affiliation(s)
- Minna Hassinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland
| | - Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia.,Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, Moscow, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland.
| |
Collapse
|
24
|
Abstract
Temperature influences many physiological processes that govern life as a result of the thermal sensitivity of chemical reactions. The repeated evolution of endothermy and widespread behavioral thermoregulation in animals highlight the importance of elevating tissue temperature to increase the rate of chemical processes. Yet, movement performance that is robust to changes in body temperature has been observed in numerous species. This thermally robust performance appears exceptional in light of the well-documented effects of temperature on muscle contractile properties, including shortening velocity, force, power and work. Here, we propose that the thermal robustness of movements in which mechanical processes replace or augment chemical processes is a general feature of any organismal system, spanning kingdoms. The use of recoiling elastic structures to power movement in place of direct muscle shortening is one of the most thoroughly studied mechanical processes; using these studies as a basis, we outline an analytical framework for detecting thermal robustness, relying on the comparison of temperature coefficients (Q 10 values) between chemical and mechanical processes. We then highlight other biomechanical systems in which thermally robust performance that arises from mechanical processes may be identified using this framework. Studying diverse movements in the context of temperature will both reveal mechanisms underlying performance and allow the prediction of changes in performance in response to a changing thermal environment, thus deepening our understanding of the thermal ecology of many organisms.
Collapse
Affiliation(s)
- Jeffrey P Olberding
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Stephen M Deban
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, USA
| |
Collapse
|
25
|
Christen F, Dufresne F, Leduc G, Dupont-Cyr BA, Vandenberg GW, Le François NR, Tardif JC, Lamarre SG, Blier PU. Thermal tolerance and fish heart integrity: fatty acids profiles as predictors of species resilience. CONSERVATION PHYSIOLOGY 2020; 8:coaa108. [PMID: 33408863 PMCID: PMC7771578 DOI: 10.1093/conphys/coaa108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 05/05/2023]
Abstract
The cardiovascular system is a major limiting system in thermal adaptation, but the exact physiological mechanisms underlying responses to thermal stress are still not completely understood. Recent studies have uncovered the possible role of reactive oxygen species production rates of heart mitochondria in determining species' upper thermal limits. The present study examines the relationship between individual response to a thermal challenge test (CTmax), susceptibility to peroxidation of membrane lipids, heart fatty acid profiles and cardiac antioxidant enzyme activities in two salmonid species from different thermal habitats (Salvelinus alpinus, Salvelinus fontinalis) and their hybrids. The susceptibility to peroxidation of membranes in the heart was negatively correlated with individual thermal tolerance. The same relationship was found for arachidonic and eicosapentaenoic acid. Total H2O2 buffering activity of the heart muscle was higher for the group with high thermal resistance. These findings underline a potential general causative relationship between sensitivity to oxidative stress, specific fatty acids, antioxidant activity in the cardiac muscle and thermal tolerance in fish and likely other ectotherms. Heart fatty acid profile could be indicative of species resilience to global change, and more importantly the plasticity of this trait could predict the adaptability of fish species or populations to changes in environmental temperature.
Collapse
Affiliation(s)
- Felix Christen
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - France Dufresne
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - Gabriel Leduc
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - Bernard A Dupont-Cyr
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
| | - Grant W Vandenberg
- Département de Sciences Animales, Université Laval, Québec, Québec, G1V 0A6, Canada
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, H1T 1C8, Canada
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, Moncton, New-Brunswick, E1A 3E9, Canada
| | - Pierre U Blier
- Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada
- Corresponding author: Département de Biologie, Université du Québec à Rimouski, Rimouski, Québec, G5L3A1, Canada.
| |
Collapse
|