1
|
Verellen F, Palottini F, Estravis-Barcala MC, Farina WM. Sugar conditioning combined with nectar nonsugar compounds enhances honey bee pollen foraging in a nectarless diocious crop. Sci Rep 2025; 15:1756. [PMID: 39800782 PMCID: PMC11725577 DOI: 10.1038/s41598-025-85494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees. Additionally, these NSCs presented in combination with scented food improve pollination activity in nectar crops. Here, we evaluated the effect of kiwifruit mimic-scented sugar solution (KM) on colonies located in this crop by supplementing them either with these NSCs individually (KM + CAF, KM + ARG), or combined (KM + MIX). Our results show an increase in colonies' activity after feeding for all treatments. However, the colonies supplemented with the combined mixture (KM + MIX) collected heavier kiwifruit pollen loads and showed an increasing pollen stored area in their hives compared to the KM-treated control colonies. Unexpectedly, the caffeine-treated colonies showed a decrease in the pollen foraging related responses. These results show a combined effect of NSCs that improves honey bee pollen foraging in a nectarless crop, however this activity is impaired when caffeine is used alone for a nectarless crop.
Collapse
Affiliation(s)
- Facundo Verellen
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina
| | - Florencia Palottini
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-UBA, Buenos Aires, Argentina
| | - M Cecilia Estravis-Barcala
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina
- División Entomología, Museo de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter M Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Musah BI. Effects of heavy metals and metalloids on plant-animal interaction and biodiversity of terrestrial ecosystems-an overview. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:12. [PMID: 39623084 DOI: 10.1007/s10661-024-13490-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Heavy metals and metalloids are ubiquitous and persistent in the environment. Anthropogenic activities, including land use change, industrial emissions, mining, chrome plating, and smelting, escalate their distribution and accumulation in terrestrial ecosystems. Priority metals, including lead, chromium, arsenic, nickel, copper, cadmium, and mercury, pose enormous risks to public health, ecological safety, and biodiversity. The adverse effects of heavy metals on plant-animal interactions, pollen viability, species fitness, richness, and abundance are poorly understood. Hence, this review summarises the critical insights from primary investigations on the key sources of heavy metal pollution, distribution pathways, and their adverse effects on plants and pollinators. This study provides insights into how heavy metals compromise nectar quality, pollen viability, plant-pollinator growth, and reproduction. Biotic pollinators are responsible for approximately 90% of the reproduction of flowering plants. Heavy metals adversely affect pollinators that rely on angiosperms for nectar and pollen. Heavy metals interrupt pollinators' and plants' growth, reproduction, and survival. Evidence showed that bees near gold mines had their olfactory learning performances and head sizes reduced by 36% and 4% due to heavy metals exposure. Cadmium (Cd) interrupts the redox balance, causes oxidative stress, alters gut microbiota, and reduces the survival rate of Apis cerana cerana. Excess Cd exposure reduced the flight capacity, loss of mitochondria, and damaged muscle fibre of Bombus terrestris, while Zn stress reduced egg production and hatchability of Harmonia axyridis. Furthermore, heavy metals alter flower visitation, foraging behaviour, and pollination efficiency.
Collapse
Affiliation(s)
- Baba Imoro Musah
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, Menglun, 666316, Yunnan Province, P.R. China.
| |
Collapse
|
3
|
Leoni V, Panseri S, Giupponi L, Pavlovic R, Gianoncelli C, Coatti G, Beretta G, Giorgi A. Phytochemical profiling of red raspberry (Rubus idaeus L.) honey and investigation of compounds related to its pollen occurrence. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5391-5406. [PMID: 38345434 DOI: 10.1002/jsfa.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Red raspberry (Rubus idaeus L.) is an important nectar source for honey production in some specific habitats as well as an important crop, so the definition of the features of this kind of honey is noteworthy. However, due to its rarity on the market, red raspberry honey is poorly characterized. The aim of this work was the phytochemical characterization of honey containing red raspberry from different geographical origins, through melissopalynological analyses concurrently with untargeted metabolomics achieved with different chromatographic techniques coupled to mass spectrometry: solid-phase micro-extraction/gas chromatography/mass spectrometry (SPME-GC-MS) and high-performance liquid chromatography/Orbitrap mass spectrometry (HPLC-Orbitrap). RESULTS Only 4 out of the 12 samples involved in the study contained raspberry pollen as dominant pollen, although these honeys did not group in the hierarchical cluster analysis nor in the classical multidimensional scaling analyses used for data evaluation. The first result was the detection of mislabelling in two samples, which contained raspberry pollen only as minor or important minor pollen. Of the 188 compounds identified by HPLC-Orbitrap and of the 260 identified by SPME-GC-MS, 87 and 31 compounds were present in all samples, respectively. The structurally related compounds nicotinaldehyde and nicotinamide, nicotinic acid and nicotinyl alcohol were present in 100% of the samples and correlated with R. idaeus pollen count (r > 0.60, Pearson's correlation analysis). CONCLUSION This study reveals important aspects about the characterization of red raspberry honey and could give new insights on bee diet and preferences, since niacin compounds resulted interestingly to be related to the presence of red raspberry pollen. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valeria Leoni
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
| | - Sara Panseri
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Luca Giupponi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
| | - Radmila Pavlovic
- Proteomics and Metabolomics Facility (PROMEFA), San Raffaele Scientific Institute, Milan, Italy
| | | | - Gloria Coatti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
| | - Annamaria Giorgi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
| |
Collapse
|
4
|
Galante H, Czaczkes TJ. Invasive ant learning is not affected by seven potential neuroactive chemicals. Curr Zool 2024; 70:87-97. [PMID: 38476136 PMCID: PMC10926265 DOI: 10.1093/cz/zoad001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2023] [Indexed: 03/14/2024] Open
Abstract
Argentine ants Linepithema humile are one of the most damaging invasive alien species worldwide. Enhancing or disrupting cognitive abilities, such as learning, has the potential to improve management efforts, for example by increasing preference for a bait, or improving ants' ability to learn its characteristics or location. Nectar-feeding insects are often the victims of psychoactive manipulation, with plants lacing their nectar with secondary metabolites such as alkaloids and non-protein amino acids which often alter learning, foraging, or recruitment. However, the effect of neuroactive chemicals has seldomly been explored in ants. Here, we test the effects of seven potential neuroactive chemicals-two alkaloids: caffeine and nicotine; two biogenic amines: dopamine and octopamine, and three nonprotein amino acids: β-alanine, GABA and taurine-on the cognitive abilities of invasive L. humile using bifurcation mazes. Our results confirm that these ants are strong associative learners, requiring as little as one experience to develop an association. However, we show no short-term effect of any of the chemicals tested on spatial learning, and in addition no effect of caffeine on short-term olfactory learning. This lack of effect is surprising, given the extensive reports of the tested chemicals affecting learning and foraging in bees. This mismatch could be due to the heavy bias towards bees in the literature, a positive result publication bias, or differences in methodology.
Collapse
Affiliation(s)
- Henrique Galante
- Department of Zoology and Evolutionary Biology, Animal Comparative Economics Laboratory, University of Regensburg, 93053 Regensburg, Germany
| | - Tomer J Czaczkes
- Department of Zoology and Evolutionary Biology, Animal Comparative Economics Laboratory, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Leoni V, Panseri S, Giupponi L, Pavlovic R, Gianoncelli C, Sala S, Zeni V, Benelli G, Giorgi A. Formal analyses are fundamental for the definition of honey, a product representing specific territories and their changes: the case of North Tyrrhenian dunes (Italy). Sci Rep 2023; 13:17542. [PMID: 37845313 PMCID: PMC10579322 DOI: 10.1038/s41598-023-44769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Honey is a variegate matrix depending significantly on the floral origin, and it could become an important agri-food product to valorise specific territories. Being so diverse, different analytical techniques are necessary for its description. Herein we characterized the honey produced in one of the Italian sand dunes systems hosting beekeeping activities. In terms of floristic origin, phytochemical characterization, and sensory and colour analysis, honey collected in 2021 and 2022 was comparable. Honey was polyfloral, with several pollens from dune habitat plants classified as minor. The presence of the allochthonous Amorpha fruticosa L. and the ruderal Rubus fruticosus L. pollens in the category of the secondary pollens testifies the alteration of the park vegetation. The phytochemical profile was rich in polyphenols. Other interesting compounds were coumarine derivatives, likely attributable to resin-laden plants as rockroses, long chain hydroxyacids typical of royal jelly and nicotinic acid and its analogues (2-hydroxynicotinic acid and 2-hydroxyquinoline). The above-mentioned honey showed interesting features and was a good representation of the vegetation of this area. Our study pointed out the importance of relying on multiple analytical techniques for the characterization of honey and the advisability of a technical support toward beekeepers to correctly describe and valorise their product.
Collapse
Affiliation(s)
- Valeria Leoni
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università, 6, 26900, Lodi, Italy
| | - Luca Giupponi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy.
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy.
| | - Radmila Pavlovic
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università, 6, 26900, Lodi, Italy
| | - Carla Gianoncelli
- Fondazione Fojanini Di Studi Superiori, Via Valeriana 32, 23100, Sondrio, Italy
| | - Stefano Sala
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
| | - Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Annamaria Giorgi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
| |
Collapse
|
6
|
DesJardins NS, Smith BH, Harrison JF. A mitotoxic fungicide alters post-ingestive glucose signals necessary for associative learning in honey bees. JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104554. [PMID: 37586476 DOI: 10.1016/j.jinsphys.2023.104554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The Proboscis Extension Reflex (PER) paradigm trains honey bees to associate an odor with a sugar reward and is commonly used to assess impacts on associative learning after exposure to pesticides. While the effects of some types of pesticides have been well-investigated, relatively little attention has been focused on fungicides that are applied to flowering crops. We have previously shown that consumption of field-relevant concentrations of the fungicide Pristine® (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) impairs honey bee performance in an associative learning assay, but the mechanism of its action has not been investigated. We hypothesized that Pristine® interferes with carbohydrate absorption and/or regulation, thereby disrupting the post-ingestive feedback mechanisms necessary for robust learning. To test this hypothesis, we measured hemolymph glucose and trehalose levels at five time points during the ten minutes after bees consumed a sucrose solution. Pristine®-exposed bees had elevated baseline glucose concentrations in the hemolymph relative to control bees. Hemolymph glucose levels rose significantly within five minutes of feeding in control bees, but not in Pristine®-fed bees. These data suggest that the post-ingestive feedback mechanisms necessary for robust learning are disrupted in bees that have consumed this fungicide, providing a plausible mechanistic explanation for its effects on learning performance in the PER assay. Pristine®-exposed bees may have elevated hemolymph glucose levels because the fungicide elicits an inflammatory response. These results provide additional mechanistic understanding of the negative physiological effects of mitotoxic fungicides on this important pollinator.
Collapse
Affiliation(s)
- Nicole S DesJardins
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA.
| | - Brian H Smith
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Motta EVS, Arnott RLW, Moran NA. Caffeine Consumption Helps Honey Bees Fight a Bacterial Pathogen. Microbiol Spectr 2023; 11:e0052023. [PMID: 37212661 PMCID: PMC10269917 DOI: 10.1128/spectrum.00520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023] Open
Abstract
Caffeine has long been used as a stimulant by humans. Although this secondary metabolite is produced by some plants as a mechanism of defense against herbivores, beneficial or detrimental effects of such consumption are usually associated with dose. The Western honey bee, Apis mellifera, can also be exposed to caffeine when foraging at Coffea and Citrus plants, and low doses as are found in the nectar of these plants seem to boost memory learning and ameliorate parasite infection in bees. In this study, we investigated the effects of caffeine consumption on the gut microbiota of honey bees and on susceptibility to bacterial infection. We performed in vivo experiments in which honey bees, deprived of or colonized with their native microbiota, were exposed to nectar-relevant concentrations of caffeine for a week, then challenged with the bacterial pathogen Serratia marcescens. We found that caffeine consumption did not impact the gut microbiota or survival rates of honey bees. Moreover, microbiota-colonized bees exposed to caffeine were more resistant to infection and exhibited increased survival rates compared to microbiota-colonized or microbiota-deprived bees only exposed to the pathogen. Our findings point to an additional benefit of caffeine consumption in honey bee health by protecting against bacterial infections. IMPORTANCE The consumption of caffeine is a remarkable feature of the human diet. Common drinks, such as coffee and tea, contain caffeine as a stimulant. Interestingly, honey bees also seem to like caffeine. They are usually attracted to the low concentrations of caffeine found in nectar and pollen of Coffea plants, and consumption improves learning and memory retention, as well as protects against viruses and fungal parasites. In this study, we expanded these findings by demonstrating that caffeine can improve survival rates of honey bees infected with Serratia marcescens, a bacterial pathogen known to cause sepsis in animals. However, this beneficial effect was only observed when bees were colonized with their native gut microbiota, and caffeine seemed not to directly affect the gut microbiota or survival rates of bees. Our findings suggest a potential synergism between caffeine and gut microbial communities in protection against bacterial pathogens.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Ryan L. W. Arnott
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
8
|
Barberis M, Calabrese D, Galloni M, Nepi M. Secondary Metabolites in Nectar-Mediated Plant-Pollinator Relationships. PLANTS (BASEL, SWITZERLAND) 2023; 12:550. [PMID: 36771634 PMCID: PMC9920422 DOI: 10.3390/plants12030550] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/01/2023]
Abstract
In recent years, our understanding of the complex chemistry of floral nectar and its ecological implications for plant-pollinator relationships has certainly increased. Nectar is no longer considered merely a reward for pollinators but rather a plant interface for complex interactions with insects and other organisms. A particular class of compounds, i.e., nectar secondary compounds (NSCs), has contributed to this new perspective, framing nectar in a more comprehensive ecological context. The aim of this review is to draft an overview of our current knowledge of NSCs, including emerging aspects such as non-protein amino acids and biogenic amines, whose presence in nectar was highlighted quite recently. After considering the implications of the different classes of NSCs in the pollination scenario, we discuss hypotheses regarding the evolution of such complex nectar profiles and provide cues for future research on plant-pollinator relationships.
Collapse
Affiliation(s)
- Marta Barberis
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Daniele Calabrese
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Marta Galloni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
- National Biodiversity Future Centre (NBFC), 90123 Palermo, Italy
| |
Collapse
|
9
|
Muth F, Philbin CS, Jeffrey CS, Leonard AS. Discovery of octopamine and tyramine in nectar and their effects on bumblebee behavior. iScience 2022; 25:104765. [PMID: 35942103 PMCID: PMC9356080 DOI: 10.1016/j.isci.2022.104765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/30/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Nectar chemistry can influence the behavior of pollinators in ways that affect pollen transfer, yet basic questions about how nectar chemical diversity impacts plant-pollinator relationships remain unexplored. For example, plants’ capacity to produce neurotransmitters and endocrine disruptors may offer a means to manipulate pollinator behavior. We surveyed 15 plant species and discovered that two insect neurotransmitters, octopamine and tyramine, were widely distributed in floral nectar. We detected the highest concentration of these chemicals in Citrus, alongside the well-studied alkaloid caffeine. We explored the separate and interactive effects of these chemicals on insect pollinators in a series of behavioral experiments on bumblebees (Bombus impatiens). We found that octopamine and tyramine interacted with caffeine to alter key aspects of bee behavior relevant to plant fitness (sucrose responsiveness, long-term memory, and floral preferences). These results provide evidence for a means by which synergistic or antagonistic nectar chemistry might influence pollinators. We found octopamine and tyramine in the floral nectar of 15 plant species These neurotransmitters orchestrate insect foraging and influence bee cognition In Citrus, these chemicals occur with caffeine, well known for its effects on bees Nectar neurotransmitters interact with caffeine to alter pollinator behavior
Collapse
Affiliation(s)
- Felicity Muth
- Department of Integrative Biology, University of Texas at Austin; Austin, TX 78712, USA
- Corresponding author
| | - Casey S. Philbin
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno; Reno, NV 89557, USA
- Corresponding author
| | | | - Anne S. Leonard
- Department of Biology, University of Nevada, Reno; Reno, NV 89557, USA
| |
Collapse
|
10
|
Estravis-Barcala MC, Palottini F, Farina WM. Learning of a mimic odor combined with nectar nonsugar compounds enhances honeybee pollination of a commercial crop. Sci Rep 2021; 11:23918. [PMID: 34907244 PMCID: PMC8671565 DOI: 10.1038/s41598-021-03305-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/01/2021] [Indexed: 12/04/2022] Open
Abstract
The increasing demand on pollination services leads food industry to consider new strategies for management of pollinators to improve their efficiency in agroecosystems. Recently, it was demonstrated that feeding beehives food scented with an odorant mixture mimicking the floral scent of a crop (sunflower mimic, SM) enhanced foraging activity and improved recruitment to the target inflorescences, which led to higher density of bees on the crop and significantly increased yields. Besides, the oral administration of nonsugar compounds (NSC) naturally found in nectars (caffeine and arginine) improved short and long-term olfactory memory retention in conditioned bees under laboratory conditions. To test the effect of offering of SM-scented food supplemented with NSC on honeybees pollinating sunflower for hybrid seed production, in a commercial plantation we fed colonies SM-scented food (control), and SM-scented food supplemented with either caffeine, arginine, or a mixture of both, in field realistic concentrations. Their foraging activity was assessed at the hive and on the crop up to 90 h after treatment, and sunflower yield was estimated prior to harvest. Our field results show that SM + Mix-treated colonies exhibited the highest incoming rates and densities on the crop. Additionally, overall seed mass was significantly higher by 20% on inflorescences close to these colonies than control colonies. Such results suggest that combined NSC potentiate olfactory learning of a mimic floral odor inside the hive, promoting faster colony-level foraging responses and increasing crop production.
Collapse
Affiliation(s)
- M Cecilia Estravis-Barcala
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Palottini
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Walter M Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina. .,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|